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ABSTRACT

Graph contrastive learning (GCL) has emerged as an effective tool to learn repre-
sentations for whole graphs in the absence of labels. The key idea is to maximize
the agreement between two augmented views of each graph via data augmen-
tation. Existing GCL models mainly focus on applying identical augmentation
strategies for all graphs within a given scenario. However, real-world graphs are
often not monomorphic but abstractions of diverse natures. Even within the same
scenario (e.g., macromolecules and online communities), different graphs might
need diverse augmentations to perform effective GCL. Thus, blindly augmenting
all graphs without considering their individual characteristics may undermine the
performance of GCL arts. However, it is non-trivial to achieve personalized allo-
cation since the search space for all graphs is exponential to the number of graphs.
To bridge the gap, we propose the first principled framework, termed as Graph
contrastive learning with Personalized Augmentation (GPA). It advances conven-
tional GCL by allowing each graph to choose its own suitable augmentation op-
erations. To cope with the huge search space, we design a tailored augmentation
selector by converting the discrete space into continuous, which is a plug-and-
play module and can be effectively trained with downstream GCL models end-to-
end. Extensive experiments across 10 benchmark graphs from different types and
domains demonstrate the superiority of GPA against state-of-the-art competitors.
Moreover, by visualizing the learned augmentation distributions across different
types of datasets, we show that GPA can effectively identify the most suitable
augmentations for each graph based on its characteristics. The code is available at
https://anonymous.4open.science/r/GPA-2F2B/.

1 INTRODUCTION

Graph contrastive learning (GCL) could learn effective representations of graphs (Hassani &
Khasahmadi, 2020) in a self-supervised manner. It attracts considerable attention (Sun et al., 2020;
Tan et al., 2022), given that labels are not available in many real-world networked systems. The core
idea of GCL is to generate two augmented views for each graph by perturbing it, and then learn rep-
resentations via maximizing the mutual information between the two views (Velickovic et al., 2019;
Peng et al., 2020). Existing efforts can be roughly divided into two categories, i.e., node-level (Zhu
et al., 2021; Wan et al., 2020) and graph-level (You et al., 2021). In this paper, we focus on the latter.

The performance of GCL is known to be heavily affected by the chosen augmentation types (Hassani
& Khasahmadi, 2020; You et al., 2020; Jin et al., 2020), since different augmentations may impose
different inductive biases about the data. Intensive recent works have been devoted to exploring
effective augmentations for different graph scenarios (Veličković et al., 2019; Zhu et al., 2021; You
et al., 2021; Chen et al., 2022). Typical augmentation strategies include node dropping, edge pertur-
bation, subgraph sampling, and attribute masking. The best augmentation option is often data-driven
and varies in graph scales or types (You et al., 2020; Jin et al., 2020). For example, (You et al., 2020)
revealed that edge perturbation may benefit social networks but hurt biochemical molecules. There-
fore, manually searching augmentation strategies for a given scenario would involve extensive trials
and efforts, hindering the practical usages of GCL. Several studies have been proposed to address
this issue by automating GCL.
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Augmenta)on Strategies:
1  →  Original
2 →  Node Dropping
3 →  Edge Perturba)on
4 →  Subgraph Sampling
5 →  AAribute Masking

E.g., 𝐴!,# means Edge Perturba)on 
vs AAribute Masking

Figure 1: The effect of different augmentation strategies toward four randomly sampled graphs from
MUTAG. X-axis denotes the id of augmentation pair. Y-axis is the graph id. The color represents the
performance. The darker the color is, the better performance GCL achieves under the corresponding
augmentation strategy.

Despite the recent advances, existing GCL might be suboptimal for augmentation configuration,
since they apply a well-chosen but identical augmentation option to all graphs in a dataset. The
rationale is: graphs in a scenario usually have different properties because the characteristics of real-
world graphs are complex and diverse (West et al., 2001; Liu et al., 2019). For example, by slightly
changing the structure of a molecular graph, its target function could be completely different (Mor-
ris et al., 2020). Similar observations have also been found in many other graph domains, such as
social communities and protein-protein interaction networks (Thakoor et al., 2021). Motivated by
these observations, we conduct a preliminary experiment on the MUTAG dataset to test how differ-
ent augmentation types impact the GCL results. Results in Fig. 1 show that different graphs favor
distinct perturbation operations to achieve their best performance. For example, graph 1 performs
better when using edge perturbation vs attribute masking, while graph 2 prefers original vs node
dropping. Such personalized phenomenon of graph instances, in terms of their desirable augmen-
tation strategies, has never been explored in GCL. To bridge the gap, in this paper, we propose to
develop an effective augmentation selector to identify the most informative perturbation operators
for different graphs when performing GCL on a specific dataset.

However, it is a challenging task to perform personalized augmentations in GCL because of two
major reasons. First, unlike the traditional GCL setting, the search space in our personalized sce-
nario grows exponentially with the number of graphs N in a dataset. This search space is intolerable
in practice since N could be thousands or even tens of thousands (Hu et al., 2020a). As a result,
the conventional trial-and-error approach cannot be directly applied because each trail itself (i.e.,
testing an augmentation option for a dataset) is time-consuming. Second, the augmentation choices
and GCL model naturally depend on and reinforce each other since the contrastive loss consists of
augmented views and GCL encoder. That is, learning a better GCL requires well-chosen augmenta-
tion strategies (You et al., 2020), while selecting suitable augmentation operators needs the signals
of GCL as feedback (You et al., 2021). Thus, how to perform effective personalized augmentation
selector on a premise of such mutual effect is another challenge.

To tackle the aforementioned challenges, we propose a novel contrastive learning framework,
dubbed GPA. Specifically, we aim to investigate two research questions. 1) What are the impacts
of different augmentation strategies on a given graph (an instance in a graph dataset)? 2) Can we
build a stronger automated GCL by allowing each graph instance to choose its favorable augmenta-
tion types? GPA works by iteratively updating a personalized augmentation selector and the GCL
method, where the former aims to identify optimal augmentation types for each graph instance,
and the latter is trained according to an instance-level contrastive loss defined on those assigned
augmentation options.

Our main contributions are highlighted as follows. First, we focus on augmentation selection for
graph contrastive learning, and propose an effective personalized augmentation framework (GPA).
To the best of our knowledge, GPA is the first to assign personalized augmentation types to each
graph based on its own characteristic. Moreover, we automate the personalized augmentation pro-
cess, equipping GPA with broader applicability and practicability. Second, to cope with the huge
search space, we develop a personalized augmentation selector to effectively infer optimal augmen-
tation strategies by relaxing the discrete space to be continuous. To exploit the mutual reinforced ef-
fect between augmentation strategies and GCL, GPA is formulated as a bi-level optimization, which
learns the augmentation selector and GCL method systematically. Third, we conduct extensive ex-
periments to evaluate GPA on multiple graph benchmarks of diverse scales and types. Empirical
results demonstrate the superiority of GPA against state-of-the-art GCL competitors.
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2 PROBLEM STATEMENT

Notation. Let G = {Gn : 1 ≤ n ≤ N} denote a graph set with N sample graphs, where Gn =
(V, E) ∈ G stands for an undirected graph with nodes V and edges E . Each node v ∈ V in Gn is
described by an F -dimensional feature vector Xv ∈ RF . We use A = {Ak : 1 ≤ k ≤ K} to denote
a set of data augmentation operators, where K is the maximum number of augmentation types of
interest. Each augmentation operator Ak : Gn → G̃n transforms a graph into its conceptually
similar form with certain prior. In previous GCL studies, they focus on identifying two optimal
augmentation types for the whole dataset G, such as the augmentation pair Ai,j = (Ai, Aj), where
Ai, Aj ∈ A. The optimal augmentation pair here is often manually picked via rules of thumb or
trial-and-error. However, as shown in Fig. 1, different graphs within the dataset may favor different
augmentation combinations. Therefore, we study personalized augmentation selection and formally
define the research problem as below.

Definition 1 Personalized augmentation selection. Given a set of graphs G = (Gn : 1 ≤ n ≤ N),
and the augmentation space A = {Ak : 1 ≤ k ≤ K} consisting of K different augmentation
types, to perform GCL, personalized augmentation selection aims to find the optimal augmentation
pair An

i,j = (An
i , A

n
j ) for each graph Gn ∈ G. The values of i and j are only determined by the

characteristic of the n-th sample graph Gn.
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Figure 2: Illustration of our GPA framework. The personalized augmentation selector infers the
two most informative augmentation operators, and the GCL model trains GNN encoder based on the
sampled augmented views. Specifically, the personalized augmentation selector is learned to adjust
its selection strategy to infer optimal augmentations on each graph, according to the characteristic
of each graph and the GCL model’s performance, i.e., loss.

3 METHODOLOGY

In this section, we present the details of the proposed GPA shown in Fig. 2. In a nutshell, it contains
two critical components: the personalized augmentation selector and the GCL model. The former
module aims to infer augmentation choices for the downstream GCL methods when training them
on the training set, while the later provides reward to update the augmentation selector based on the
validation set. In the following, we first illustrate the exponential selection space of our personalized
augmentation setting. Then, we elaborate the details of the augmentation selector and the GCL
method. Finally, we show how to jointly optimize the two components in a unified perspective.

3.1 PERSONALIZED AUGMENTATION SELECTION SPACE

Given the graph dataset G = {Gn : 1 ≤ n ≤ N} and a pool of augmentation operators
A = {A1, A2, · · · , AK}, existing GCL efforts aim to select two informative operators (e.g.,
(Ai, Aj | 1 ≤ i, j ≤ K)) for N graphs to create their augmented views. Since the augmenta-
tion operators are shared for the whole dataset, the total selection space is

(
K+1
2

)
, i.e., sampling two
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operators with replacement. This collective selection strategy is widely adopted in existing GCL
works. However, as discussed before, various sample graphs may favor different augmentation op-
erators owing to the diversity of graph-structured data. Therefore, we propose to adaptively choose
two augmentation strategies for different graphs. Following Definition 1, we define the selected
augmentations for each graph Gn as An

i,j = (An
i , A

n
j ). Then, the potential augmentation selection

size for each graph is
(
K+1
2

)
, and the total selection space for the whole dataset equals to

(
K+1
2

)N
.

Although K is empirically small (e.g., K = 5) in GCL domain, the total selection space in our
personalized setting is still huge and intractable, since the complexity grows exponentially to the
number of graphs. For instance, when K = 5 and N = 100, we already have 15100 selection con-
figurations roughly. The situation is more serious in real-world scenarios where N is thousands or
even tens of thousands. In this paper, we adopt five essential augmentation operators (i.e. K = 5),
denoted by A = {Identical,NodeDrop,EdgePert,Subgraph,AttMask}. These augmentations
are initially proposed by the pioneering work (You et al., 2020), and have been demonstrated to
be effective for contrastive learning (You et al., 2021). The details of these augmentations and the
augmentation pairs are left in Appendix B

In summary, by considering personalized augmentation, the search space per dataset increases from(
K+1
2

)
to

(
K+1
2

)N
. Therefore, common selection techniques such as rules of thumb or trial-and-

errors adopted by prior GCL approaches (You et al., 2021; 2020) are no longer appropriate. Thus, a
tailored augmentation selector is needed to effectively tackle the challenging personalized augmen-
tation problem.

3.2 PERSONALIZED AUGMENTATION SELECTOR

In order to assign different augmentation operators to various sample graphs when performing GCL
on a specific dataset, random selection is the intuitive solution. Its key idea is to randomly sample
two augmentation types for each graph from the candidate set. Despite the simplicity, the random
selection approach fails to control the quality of sampled augmentation operators. Therefore, di-
rectly coupling the existing GCL framework with random augmentation selection would lead to
performance degradation (shown as the variant: GPA-random in Sec. 4.3).

To address this issue, we focus on data-driven search by making the augmentation selection process
learnable. The principle idea is to parameterize our personalized augmentation selector with a deep
neural network, which takes a query graph as input and outputs its optimal augmentation choices.
There are two main hurdles to achieve this goal: (i) given the exponential augmentation space, how
can we make our personalized augmentation selector scale to the real-world dataset with thousands
of graphs; (ii) since the topology structure and node attributes are crucial to graph-structured data,
how can our personalized augmentation selector exploit this information to produce a more precise
augmentation choice? We illustrate our dedicated solutions below.

Given the augmentation pool A = {Ai : 1 ≤ i ≤ K} and a query graph Gn, our augmentation
selector is required to select the most two informative augmentations, e.g., (An

1 , A
n
3 ), from the

candidate set. This selection problem is well-known to be discrete and non-differentiable. Although
enormous efforts based on evolution or reinforcement learning have been proposed to address the
discrete selection problem, they are still not suitable for such a large selection space (illustrated in
Sec. 3.1) and are far from utilizing the properties of graphs. Therefore, we propose to make the
search space learnable by relaxing the discrete selection space to be continuous inspired by (Liu
et al., 2018) and further make this relaxation consider the characteristic of graphs. Specifically,
given the sampled augmentation pair An

i,j = (An
i , A

n
j ) of Gn, its importance score α̂n

i,j is computed
as

α̂n
i,j =

exp(αn
i,j)∑

i′j′ exp(α
n
i′,j′)

, αn
i,j = gθ(fw(A

n
i (Gn) ∥ An

j (Gn))), (1)

where gθ denotes the score function that takes the representations of augmented views An
i (Gn) and

An
j (Gn) as input. This design enforces the score estimation to take into account the topology and

node attributes of Gn. In practice, gθ is parameterized as a two-layer MLP with a ReLU activation
function. fw is the GNN encoder for graph representation learning. ∥ indicates the concatenation
operation. Through Eq. 1, the discrete augmentation selection process reduces to learning a score
function gθ under the consideration of graph characteristic.
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After the personalized selector is well-trained, let αn = [α̂n
1,1, · · · , α̂n

i,j , · · · , α̂n
K,K ] denote the

vector of importance scores associated with all different augmentation pairs of the graph Gn. The
optimal augmentation choice of Gn can be obtained by selecting the augmentation pair with the
maximum score in αn. For example, An = (An

i , A
n
j ) if α̂n

i,j = argmaxi′,j′ α̂
n
i′,j′ .

To summarize, the above equation provides a principled solution to our personalized augmentation
setting. On one hand, it allows augmentation selection in such a large search space via the simple
forward propagation of a shallow neural network, i.e., gθ. On the other hand, it can also infer the
most informative augmentations for each graph based on its own characteristic for downstream GCL
model training(discussed in Sec. 3.3).

3.3 GCL MODEL LEARNING

After the personalized augmentation selector is plugged in, we can adopt it to train the GCL model.
Notice that our model is applicable to arbitrary GCL methods that rely on two augmented views
as input. In this section, we mainly focus on the most popular and generic GCL architecture -
GraphCL (You et al., 2020) as the backbone and leave other specific architectures for future work.

Assume (An
i , A

n
j ) is the optimal augmentation pair of graph Gn identified by our personalized aug-

mentation selector, and fw(·) is the GNN encoder. GraphCL proposes to learn fw(·) by maximizing
the agreement between the two augmented views, i.e., An

i (Gn), A
n
j (Gn). The GNN encoder can

encode the whole graph into a hidden space RD. In practice, a shared projection head function
RD → RD is often applied upon the output of GNN encoder to improve the model capacity. In
the following sections, we abuse the notation fw to denote both the GNN encoding function and the
projection function. Based on this notation, we can formally calculate the instance-level contrastive
loss as follows:

L(Gn) = − log
exp(sim(fw(A

n
i (Gn)), fw(A

n
j (Gn)))/τ)∑N

n′=1,n′ ̸=n exp(sim(fw(An
i (Gn)), fw(An′

j (Gn′)))/τ)
, (2)

where sim(·, ·) denotes the cosine similarity function and τ is the temperature parameter. By mini-
mizing Eq. 2, it encourages the two augmented views of the same sample graph to have similar rep-
resentations, while enforces the augmented representations of disparate graphs to be highly distinct.
As the sum operation over all graphs G in the denominator of Eq. 2 is computationally prohibitive,
GCL is often trained under minibatch sampling (You et al., 2020), where the negative views are
generated from the augmented graphs within the same minibatch.

Although Eq. 2 looks similar to the traditional contrastive loss, the key difference between them is
that the augmentation operators An

i , A
n
j are closely related to the sample graph Gn in our formu-

lation. That is, the augmentation operators learned by our model vary from one graph to another
according to their own characteristics, which are previously enforced to be the same regardless of
the graph’s diverse nature. Benefiting from considering the graph’s personality, the GCL method
can learn the basic but essential features of graphs and thus achieve more expressive representations
for downstream tasks, as empirically verified in Sec. 4.

3.4 MODEL OPTIMIZATION

Until now, we have illustrated the detailed personalized augmentation selector as well as the down-
stream GCL framework, the remaining question is how to effectively train the two modules. The
naive solution is to first train the personalized augmentation selector separately, and then optimize
the GCL method using the identified personalized augmentations as input. However, such a task-
agnostic approach is sub-optimal, since it does not take the mutual reinforced effect between aug-
mentation and the GCL method into consideration. This is because learning a better GCL method
requires optimal augmentation strategies since they can augment more personalized features to dis-
tinguish it from other objects. Meanwhile, obtaining suitable augmentation strategies also needs the
signals of a better GCL method as guidance for optimization. As a result, without linking the two
modules in a principled way, it is almost infeasible to enforce the personalized augmentation se-
lector to accurately infer optimal augmentation strategy for improving the performance of the GCL
method. To this end, we propose to tackle this problem by jointly training the two modules under a
bi-level optimization, expressed as:

argmin
θ

Lvalid(w
∗(θ), θ)s.t. w∗(θ) = argmin

w
Ltrain(w, θ), (3)
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where θ denotes the trainable parameters of the personalized augmentation selector, and w is the
parameters for the GCL method. The upper-level objective Lvalid(w

∗(θ), θ) aims to find θ that
minimizes the validation rewards on the validation set given the optimal w∗, and the lower-level ob-
jective Ltrain(w, θ

∗) targets to optimize w by minimizing the contrastive loss based on the training
set with θ fixed. We want to remark that GPA only exploits the signals from the self-supervisory
task itself without accessing labels. Thus, compared with conventional supervised methods, the val-
idation set here only contains a set of graphs without label information, which is much easier to
construct, e.g., randomly sampling 10% of the training set.

By optimizing Eq. 3, the personalized augmentation selector and the target GCL model will be
jointly trained to reinforce their reciprocal effects. Since deriving exact solutions for this bi-level
problem is indeed analytically intractable, we adopt the alternating gradient descent algorithm to
solve it as follows.

3.4.1 LOWER-LEVEL OPTIMIZATION.

With θ fixed, we can update w with the standard gradient descent procedure as below.

w′ = w − ξ∇wLtrain(w, θ), (4)

where Ltrain = EGtrainL(Gn) with L(Gn) is instance-level contrastive loss defined in Eq. 2, Gtrain

denotes the training set, and ξ is the learning rate.

3.4.2 UPPER-LEVEL OPTIMIZATION.

Since it is not intuitive to directly calculate the gradient w.r.t. θ over all augmentation options, we
first define the upper-level objective based on Eq. 2 as below:

Lvalid(w
∗(θ), θ) =

∑
Ai,Aj∈A

∑
Gn∈Gvalid

α̂n
i,jL(Gn), (5)

where α̂n
i,j is the selecting score computed by the score function gθ with parameter θ defined in

Eq. 1. Gvalid denotes the validation set. Based on the above loss function, we can update θ by fixing
w, expressed as:

θ′ = θ − ξ∇θLvalid(w
∗(θ), θ). (6)

However, evaluating the gradient w.r.t. θ exactly is intractable and computationally expensive, since
it requires solving for the optimal w∗(θ) whenever θ gets updated. To approximate the optimal
solution w∗(θ), we propose to take one step of gradient descent update for w, without solving the
lower-level optimization completely by training until convergence. To further compute the gradient
of θ, we apply chain rule to differentiate Ltrain(w

′(θ), θ) with respect to θ via w′, where w′ is
defined in Eq. 4. The full derivation is left in Appendix C. Here, we directly present the final result:

∇θLvalid(w
∗(θ), θ) ≈ ∇θLvalid(w

′, θ)− ξ
∇θLtrain(w

+, θ)−∇θLtrain(w
−, θ)

2ϵ
. (7)

By alternating the update rules in Eq. 4 and Eq. 6, we are able to progressively learn the two modules.
Although an optimizer with the theoretical guarantee of convergence for the bi-level problem in Eq. 3
remains an open challenge, alternating gradient descent algorithm has been widely adopted to solve
similar objectives in Bayesian optimization (Snoek et al., 2012), automatic differentiation (Shaban
et al., 2019), and adversarial training (Wang et al., 2019a). The complete optimization procedure of
our model and some level of empirical convergence are shown in Appendix D.

3.5 MORE DISCUSSIONS ON GPA

In addition to augmentation selection, another line of research focuses on generating views via a
trainable generator, such as AutoGCL (Yin et al., 2022) and AD-GCL (Suresh et al., 2021). Specif-
ically, the augmented view is obtained by sampling the original one based on the edge or node
probabilities predicted by the generator. As such, these methods could limit their applications to
simple augmentation strategies (e.g., edge dropping and node masking) and cannot be adopted for
applications that require complex augmentation strategies, such as subgraph sampling and motif-
based augmentations (e.g., graphon (Ruiz et al., 2020)). In contrast, as an augmentation selection
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Table 1: An overview of graph contrastive learning methods. Our GPA model is the first automated
GCL effort that supports personalized augmentation in terms of various augmentation types.

Auto Simple Augmentation Complex Augmentation Applicability Personalized
GraphCL - ✓ ✓ ✓ -

JOAO ✓ ✓ ✓ ✓ -
AD-GCL ✓ ✓ - - ✓
AutoGCL ✓ ✓ - - ✓

Ours ✓ ✓ ✓ ✓ ✓

method, GPA has broad applicability, i.e., it is flexible to incorporate new augmentation strategies
created by domain experts that might be useful by modifying the augmentation pool without extra
effort. We summarize the difference in Table 1

4 EXPERIMENTS

We evaluate the performance of GPA on multiple graph datasets with various scales and types. We
focus on exploring the following research questions. Q1: How effective is GPA in performing graph
representation learning against state-of-the-art GCL methods in unsupervised and semi-supervised
evaluation tasks? Q2: How effective is the proposed personalized augmentation selector in identi-
fying augmentations across various datasets? Q3: Compared with random selection, how effective
is our proposed personalized augmentation selector? Besides, what are the impacts of hyperparam-
eters on GPA, such as the embedding dimension d of the score function? We leave the introduction
of datasets, baselines, and experiment setting in Appendix E.

Table 2: Unsupervised learning performance for graph classification in TUdatasets (Averaged accu-
racy ± std. over 10 runs). The bold numbers denote the best performance and the numbers in blue
represent the second best performance

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B Avg.Rank

InfoGraph 76.20± 1.06 74.44± 0.31 72.85± 1.78 89.01± 1.13 70.65± 1.13 82.50± 1.42 53.46± 1.03 73.03± 0.87 4.75
GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.34 71.36± 1.15 89.53± 0.84 55.99± 0.28 71.14± 0.44 3.88
JOAO 78.07± 0.47 74.55± 0.41 77.32± 0.54 87.35± 1.02 69.50± 0.36 85.29± 1.35 55.74± 0.63 70.21± 3.08 5.00
JOAOv2 78.36± 0.53 74.07± 1.10 77.40± 1.15 87.67± 0.79 69.33± 0.34 86.42± 1.45 56.03± 0.27 70.83± 0.25 4.50

AD-GCL 69.67± 0.51 73.59± 0.65 74.49± 0.52 88.62± 1.27 73.32± 0.61 85.52± 0.79 53.00± 0.82 71.57± 1.01 5.13
AutoGCL 82.00± 0.29 75.80± 0.36 77.57± 0.60 88.64± 1.08 70.12± 0.68 88.58± 1.49 56.75± 0.18 73.30± 0.40 2.38

GPA 80.42± 0.41 75.94± 0.25 79.90± 0.35 89.68± 0.80 76.17± 0.10 89.32± 0.38 53.70± 0.19 74.64± 0.35 2.38

Table 3: Semi-supervised learning performance for graph classification
Dataset NCI1 PROTEINS DD RDT-B RDT-M5K GITHUB ogbg-molhiv Avg.Rank

GAE 74.36± 0.24 70.51± 0.17 74.54± 0.68 87.69± 0.40 53.58± 0.13 63.89± 0.52 - 6.67

InfoGraph 74.86± 0.26 72.27± 0.40 75.78± 0.34 88.66± 0.95 53.61± 0.31 65.21± 0.88 - 4.50
GraphCL 74.63± 0.25 74.17± 0.34 76.17± 1.37 89.11± 0.19 52.55± 0.45 65.81± 0.79 55.48± 1.32 4.29
JOAO 74.48± 0.25 72.13± 0.92 75.69± 0.67 88.14± 0.25 52.83± 0.54 65.00± 0.30 56.83± 1.39 5.71
JOAOv2 74.86± 0.39 73.31± 0.48 75.81± 0.73 88.79± 0.65 52.71± 0.28 66.60± 0.60 57.39± 1.39 4.00

AD-GCL 75.18± 0.31 73.96± 0.47 77.91± 0.73 90.10± 0.15 53.49± 0.28 67.13± 0.52 - 2.33
AutoGCL 73.75± 2.25 75.65± 2.40 77.50± 4.41 79.80± 3.47 49.91± 2.70 62.46± 1.51 - 5.83

GPA 75.50± 0.14 74.27± 1.11 76.68± 0.81 89.99± 0.32 54.92± 0.35 68.31± 0.13 60.76± 1.01 1.57

4.1 COMPARISON WITH BASELINES

We start by comparing the performance of GPA with the state-of-the-art baseline methods under
two settings (Q1). Table 2 & Table 3 report the results of all methods on diverse datasets under
unsupervised and semi-supervised settings, respectively. We have the following Observations.

Obs.1. With personalized augmentations for each graph, GPA outperforms vanilla GCL meth-
ods with fixed augmentation per dataset. By identifying different augmentations for different
sample graphs, GPA performs generally better than vanilla GCL methods on two evaluation sce-
narios (Table 2 and Table 3). Specifically, in the semi-supervised evaluation task, GPA consistently
outperforms GAE, InfoGraph, GraphCL, JOAO, and JOAOv2 on all datasets. In the unsupervised
setting, GPA outperforms the vanilla GCL methods on 6 out of 8 datasets. In particular, GPA im-
proves 7.8%, 9.9%, 9.6%, and 6.7% over InfoGraph, JOAOv2, JOAO, and GraphCL on COLLAB
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in Table 2, respectively. This observation validates the effectiveness of performing personalized
augmentation in GCL training.

Obs.2. Across diverse datasets, GPA performs better than (or on par with) the view-generated
GCL methods on two evaluation settings. On all datasets originating from diverse domains, GPA
generally performs better or sometimes on par with the state-of-the-art AD-GCL and AutoGCL
methods, as shown in the average rank. In unsupervised setting, GPA outperforms AD-GCL on
all datasets while GPA beats AutoGCL on 6 out of 8 datasets. In semi-supervised setting, GPA
outperforms both AD-GCL and AutoGCL on NCI1, RDT-B, RDT-M5K, and GITHUB datasets and
achieves the second best on PROTEINS.

Obs.3. GPA scales well on large datasets. To study the scalability of our model, we further
conduct experiment on the large-scale OGB dataset: ogbg-molhiv. View-generated GCL methods
are excluded for this dataset since they are not officially tested on OGB datasets. From the Table 3,
GPA consistently performs better than GraphCL and JOAO. To be specific, GPA improves 9.5% and
5.9% over GraphCL and JOAOv2 on ogbg-molhiv, respectively.

Figure 3: Augmentation distribution learned by GPA over molecules, bioinformatics, and social
networks, in terms of the unsupervised setting.

4.2 PERSONALIZED AUGMENTATION ANALYSIS

To study the effectiveness of our model in identifying informative augmentation types for various
graphs (Q2), we visualize the learned augmentation distribution on Fig. 3. By comparing across
different types of datasets, we observe the following.

Obs.4. By learning from the data, GPA can effectively assign different augmentations for var-
ious datasets. Our model GPA can identify different augmentations for different sample graphs,
and allow different datasets to have their own augmentation distributions (see Fig. 3). Specifi-
cally, on MUTAG, 19 graphs prefer (Identical, NodeDrop) augmentations, while 30 graphs favor
(Subgraph, Subgraph) augmentation combinations. Notice that (Subgraph, Subgraph) will generate
two different subgraph-perturbation-induced augmented views, owning to sample randomness. Be-
sides, COLLAB more likes the (AttMask, AttMask) augmentation pair, while DD prefers (EdgePert,
EdgePert) operations. These observations empirically echo the necessity of performing personalized
augmentation for GCL methods.

Another promising observation is that our model can assign (Identical, Identical) choice (i.e., two
identical views) to some portion of graphs over all datasets. Given that the mutual information
between two identical views (i.e., representations) is always maximized, such pure identical aug-
mentations can be regarded as a skip operation. That is, these graphs abandon themselves during the
GCL model training. The possible reason is that the existing augmentation strategies are not suitable
to capture their characteristics or damage their semantic meanings. In this case, blindly selecting any
combination of other augmentation types may incur huge performance degradation or noise. This
observation sheds light on designing more advanced augmentation strategies beyond the current ba-
sic augmentations. On the other hand, it verifies the effectiveness of the proposed augmentation
selector in skipping noisy graphs during model training by providing identical augmentations.

4.3 ABLATION STUDY

To further investigate the effectiveness of the proposed personalized augmentation selector (Q3),
we compare it with a random-search based variant, i.e., GPA-random. GPA-random replaces the
personalized augmentation selector with a random mechanism. Specifically, it assigns one random
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Table 4: Ablation study of GPA under unsupervised setting in terms of mean classification accuracy
NCI1 PROTEINS DD MUTAG IMDB-B

GPA-random 77.71± 0.60 74.21± 0.39 77.25± 0.69 86.08± 2.93 71.80± 1.13
GPA 80.42± 0.41 75.94± 0.25 79.90± 0.35 89.68± 0.80 74.64± 0.35

augmentation pair to each graph. Noticed that GPA-random still assigns different augmentations
to each graph while GraphCL assigns one pre-defined pair of augmentation strategies to the whole
dataset. Table 4 shows the results in terms of unsupervised setting. From the table, we can observe
that GPA consistently performs better than GPA-random in all cases. In particular, GPA improves
3.5%, 2.3%, 3.4%, 4.2%, and 4.0% over GPA-random on NCI1, PROTEINS, DD, MUTAG, and
IMDB-B, respectively. This comparison validates our motivation to develop a tailored and learnable
personalized augmentation selector for GCL methods. We leave the analysis for the impacts of
hyperparameter d on GPA in Appendix F

5 RELATED WORK

In this section, we briefly review some related works in the automated graph contrastive learning
and leave graph representation learning and conventional GCL in Appendix A. For comprehensive
review, please refer to (Liu et al., 2021) and (Wu et al., 2020). Recently, some automated GCL
methods have been proposed to seek optimal augmentation without repetitive trials. These methods
can be roughly categorized into two types.

One is GCL with view generation, which targets to train a view generator to predict the edge
or node probabilities of the original graph and then generate augmented views by sampling edges
or nodes based on the possibilities (You et al., 2022). Two SOTA models in this type are AD-
GCL (Suresh et al., 2021) and AutoGCL (Yin et al., 2022). Despite its effectiveness, this type of
work is limited to simple augmentation strategies, i.e., edge dropping or node masking, and further
loses its applicability to complex graphs and scenarios. Notably, in our experiments, we only include
AD-GCL and AutoGCL for comparison because their empirical results are generally better than the
work in (You et al., 2022).

The other type, GCL with augmentation selection, avoids the limitation of applicability by adopt-
ing predefined augmentation strategies. Specifically, the predefined augmentation strategies include
simple ones such as node dropping and edge masking and complicated ones like sampling subgraph
and motif-based augmentation. Thus, instead of training view generators, this category of work fo-
cuses on selecting optimal strategies. A typical model in this category is JOAO (You et al., 2021).
It automatically selects the ideal augmentation strategies for each dataset via learning the strategies’
importance.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we study the augmentation selection problem for graph contrastive learning. Existing
GCL efforts mainly focus on employing two shared augmentation strategies for all graphs in the
dataset based on the assumption that they contain similar nature. Here, we argue that such collective
augmentation selection is suboptimal in practice due to the heterogeneity of graph structure data.
Different graphs should have different augmentation preferences. To bridge the gap, we propose a
novel graph contrastive learning framework with personalized augmentation termed as GPA. GPA
not only allows each graph to select its optimal augmentation types, but also automates the selec-
tion via a personalized augmentation selector, which can be jointly trained with downstream GCL
models under a bi-level optimization. Empirical results on the graph classification task demon-
strate the superiority of GPA against state-of-the-art GCL methods in terms of unsupervised and
semi-supervised settings, across multiple benchmark datasets with various types such as molecules,
bioinformatics, and social networks.
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Bengio. Graph attention networks. In ICLR, 2018.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
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Table 5: Distinct graph augmentation pairs.
Ai,j Ai, Aj Augmentation Augmentation
A1,1 A1,A1 Identical Identical
A1,2 A1, A2 Identical Node Dropping
A1,3 A1, A3 Identical Edge Perturbation
A1,4 A1, A4 Identical Subgraph
A1,5 A1, A5 Identical Attribute Masking
A2,2 A2, A2 Node Dropping Node Dropping
A2,3 A2, A3 Node Dropping Edge Perturbation
A2,4 A2, A4 Node Dropping Subgraph
A2,5 A2, A5 Node Dropping Attribute Masking
A3,3 A3, A3 Edge Perturbation Edge Perturbation
A3,4 A3, A4 Edge Perturbation Subgraph
A3,5 A3, A5 Edge Perturbation Attribute Masking
A4,4 A4, A4 Subgraph Subgraph
A4,5 A4, A5 Subgraph Attribute Masking
A5,5 A5, A5 Attribute Masking Attribute Masking

A RELATED WORK

A.1 GRAPH REPRESENTATION LEARNING

With the rapid development of graph neural networks (GNNs), a large number of GNN-based graph
representation learning frameworks have been proposed (Wu et al., 2020; Wang et al., 2019b; Iyer
et al., 2021; Wang et al., 2022; Tan et al., 2019), which exhibit promising performance. Typically,
these methods can be divided into supervised and unsupervised categories. While supervised meth-
ods (Chen et al., 2018; Ding et al., 2018; Kipf & Welling, 2017; Veličković et al., 2018) achieve
empirical success with the help of labels, reliable labels are often scarce in real-world scenarios.
Thus, unsupervised graph learning approaches (Kipf & Welling, 2016; Garcia Duran & Niepert,
2017; Hamilton et al., 2017; Hou et al., 2022) have broader application potential. For example, one
of the well-known methods is GAE (Kipf & Welling, 2016) which learns graph representations by
reconstructing the network structure under the autoencoder approach. Another popular approach
GraphSAGE (Hamilton et al., 2017) aims to train GNNs by a random-walk based objective.

A.2 GRAPH CONTRASTIVE LEARNING

Graph contrastive learning (GCL) has attracted significant attention in the past two years for self-
supervised graph learning (Wu et al., 2021). It learns GNN encoder by maximizing the agreement
between representations of a graph in its different augmented views, so that similar graphs are close
to each other, while dissimilar ones are spaced apart. Many GCL efforts have been devoted to
node level (Wan et al., 2020; Peng et al., 2020; Hu et al., 2020b), subgraph level (Qiu et al., 2020;
Jiao et al., 2020), and graph level (You et al., 2020; Zeng & Xie, 2021) scenarios, where the key
challenge lies in designing effective graph augmentations. Recently, GraphCL (You et al., 2020)
introduced four types of graph augmentations, including node dropping, edge perturbation, sub-
graph sampling, and node attribute masking, and showed that different graph applications may favor
different augmentation combinations. However, the optimal augmentation configuration for a given
dataset is mainly determined by either domain experts or extensive trial-and-errors, thus limiting the
boarder applications of GCL in practice.

B DETAILS OF AUGMENTATION STRATEGIES

The graph augmentation pairs are summarized in Table 5. The details of augmentation strategies are
listed below.

• NodeDrop. Given the graph Gn, NodeDrop randomly discards a fraction of the vertices
and their connections. The dropping probability of each node follows the i.i.d. uniform
distribution. The underlying assumption is that missing part of vertices does not damage
the semantic information of Gn.
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• EdgePert. The connectivity in Gn is perturbed through randomly adding or dropping a
certain portion of edges. We also follow the i.i.d. uniform distribution to add/drop each
edge. The underlying prior is that the semantic meaning of Gn is robust to the variance of
edges.

• AttMask. AttMask masks the attributes of a certain proportion of vertices. Similarly,
each node’s masking possibility follows the i.i.d. uniform distribution. Attribute masking
implies that the absence of some vertex attributes does not affect the semantics of Gn.

• Subgraph. This augmentation method samples a subgraph from the given graph Gn based
on random walk. It believes that most of the semantic meaning of Gn can be preserved in
its local structure.

C APPROXIMATE GRADIENT

We show the full derivation of calculating the gradient w.r.t. θ as follows. When optimizing θ, we
fix the optimal w∗(θ) and update θ as follows:

θ′ = θ − ξ∇θLvalid(w
∗(θ), θ), (8)

where ξ is the learning rate for one step. As illustrated in the main body, we adopt w′ as w∗(θ).
Therefore, the gradient of θ can be approximated as:

∇θLvalid(w
∗(θ), θ) ≈ ∇θLvalid(w

′, θ)

≈ ∇θLvalid(w − ξ∇wLtrain(w, θ), θ).
(9)

Applying chain rule to Eq. 9, we further obtain the gradient of θ as:

∇θLvalid(w
∗(θ), θ) ≈ ∇θLvalid(w

′, θ)

− ξ∇2
θ,wLtrain(w, θ)∇w′Lvalid(w

′, θ)
(10)

Since the computation cost of the second term in Eq. 10 is still high, it can be further approximated
by the finite difference method:

ξ∇2
θ,wLtrain(w, θ)∇w′Lvalid(w

′, θ)

≈ ∇θLtrain(w
+, θ)−∇θLtrain(w

−, θ)

2ϵ

(11)

where w± = w ± ϵ∇w′Lvalid(w
′, θ) and ϵ denotes a small scalar.

D OPTIMIZATION

The complete optimization procedure of GPA is shown in the Algorithm 1. We also show some level
of empirical convergence in Figure 4.

Figure 4: Empirical training curves of approximate gradient scheme in GPA on datasets PROTEINS
and NCI1 with different GNN encoders.
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Algorithm 1: The framework of GPA
Input: A graph dataset G, the personalized augmentation selector gθ(·), and a GCL model

fw(·);
Output: The well-trained GCL model;

1 Split the input graph dataset G into train Gtrain and validation Gvalid set;
2 Initialize the selector parameter θ and the GCL model parameter w;
3 while not converge do
4 Randomly sample a minibatch of graphs from the training set;
5 Infer the optimal augmentation pairs for sampled graphs using the personalized

augmentation selector gθ(·);
6 Update parameters w of the GCL learner based on the sampled graphs and the identified

augmentation types according to Eq. 4;
7 Randomly sample a batch of graphs from validation set;
8 Compute the rewards based on the sampled validation graphs using the updated w′

according to Eq. 5;
9 Update parameters θ of the personalized augmentation selector according to Eq. 6 and

Eq. 7;
10 Return The well-trained GCL model.

Table 6: Statistics of the datasets.
| G | Avg.Nodes Avg.Edges #Label

NCI1 4, 110 29.87 32.30 2
PROTEINS 1, 113 39.06 72.82 2

DD 1, 178 284.32 715.66 2
MUTAG 188 17.93 19.79 2
COLLAB 5, 000 74.49 2, 457.78 3

IMDB-BINARY 1, 000 19.77 96.53 2
REDDIT-BINARY 2, 000 429.63 497.75 2

REDDIT-MULTI-5K 4, 999 508.52 594.87 5
GITHUB 12, 725 113.79 234.64 2

ogbg-molhiv 41, 127 25.5 27.5 2

E EXPERIMENT SETTINGS

E.1 DATASETS

For a comprehensive comparison, we evaluate the performance of GPA on eleven widely used bench-
mark datasets. Specifically, we include two small molecules networks (NCI1 and MUTAG), two
bioinformatics networks (DD and PROTEINS), and five social networks (COLLAB, REDDIT-
BINARY, REDDIT-MULTI-5K, IMDB-BINARY, and GITHUB) from TUDatasets (Morris
et al., 2020). To evaluate the scalability of our model, we also use one large-scale OGB (Hu et al.,
2020a) dataset ogbg-molhiv. The data statistics are summarized in Table 6.

E.2 BASELINES

To validate the effectiveness of GPA, we compare against three categories of state-of-the-art com-
petitors. First, to evaluate the effectiveness of contrastive learning, we include one traditional net-
work embedding method GAE (Kipf & Welling, 2016). Second, to study why we need personalized
augmentation, we include classic GCL methods that assign identical augmentation strategies for all
graphs InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), JOAO (You et al., 2021) and its
variant JOAOv2 (You et al., 2021). Note that JOAO and JOAOv2 are two sample-based automated
GCL methods that focus on selecting the most suitable predefined augmentation strategies for each
dataset. They are the most relevant baselines to our proposed GPA.
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Figure 5: Personalized augmentation selector dimension analysis of GPA

E.3 LEARNING PROTOCOLS

Following common protocols (Sun et al., 2020; You et al., 2020), we aim to evaluate the performance
of GPA in unsupervised and semi-supervised settings. In our model training phase, we randomly
split 10% of graphs in each dataset into the validation set and use the remaining for training. After
the model is trained, in unsupervised setting, we train an SVM classifier on the graph representations
generated by the trained GCL model, and apply 10-fold cross-validation to evaluate the performance.
For semi-supervised setting, we finetune the GCL model (its GNN encoder) with a logistic regres-
sion layer for semi-supervised learning, where the labeled sample ratio is 0.1. To avoid randomness,
we repeat the process for ten times and report the averaged results.

E.4 IMPLEMENTATION DETAILS

Our model is built upon Pytorch and PyG (PyTorch Geometric) library (Fey & Lenssen, 2019). We
train our model with Adam optimizer using a fixed batch size of 128. Similar to GraphCL (You
et al., 2020), the default augmentation ratio is set to 0.2 for all augmentation types. In unsupervised
setting, we adopt a three-layer GIN (Xu et al., 2018) encoder with hidden dimension 128 for all
datasets. In semi-supervised scenarios, we employ a five-layer ResGCN (Ting Chen, 2019) encoder
with dimension 128 for TUDatasets (Morris et al., 2020), while a five-layer GIN (Xu et al., 2018)
encoder with dimension 300 for OGB datasets as suggested in (Hu et al., 2020a). There is one
hyper-parameter in our model, i.e., the hidden dimension d of score function gθ. We search d within
the set {128, 256, 512}. The impact of the hidden dimension is analyzed in Appendix F.

F PARAMETER SENSITIVITY ANALYSIS

We now study the impact of the parameter, i.e., the hidden dimension d of the score function. Specif-
ically, we search d from the set {64, 128, 256, 512} and plot the results of GPA on three represen-
tative datasets in Fig. 5. Similar observations are obtained by other datasets. From the figure, we
can see that GPA generally performs stably across various dimension choices. In experiments, we
fix d = 128 for all datasets.

G COMPLEXITY ANALYSIS OF GPA

We analyze the complexity of GPA and illustrate its impact on the GCL backbone –GraphCL (You
et al., 2020). Given a graph G = (V, E) and the GNN encoder fw. The time complexity for
the GNN backbones used in common graph learning tasks is O(|V| + |E|). Since the proposed
GPA method is built upon GraphCL (You et al., 2020) and the personalized augmentation selector
gθ, the additional cost is mainly caused by the selector. For GraphCL, it performs two encoder
computations per iteration plus a prediction head. If we assume the backward cost is similar to that
of the forward pass, the complexity of GraphCL is 4Cencoder(|V| + |E|) + 2Chead(Nbatch) + Closs +
2Caug, where C. are constants rely on the neural architectures, and Nbatch is the batch size. For
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the selector gθ, it takes K encoder computations per iteration to generate graph representations and
simple multilayer perceptrons (MLPs) to estimate the sampling probability. Thus its complexity
is KCencoder(|V| + |E|) + Cselector(Nbatch) + KCaug. Therefore, the total complexity for GPA and
GraphCL are (2K+4)Cencoder(|V|+|E|)+(2K+2)Caug and 4Cencoder(|V|+|E|)+2Caug, respectively,
since the costs of GNN encoder and data augmentation are significantly higher than others. Assume
the time cost for data augmentation is 5 times of GNN encoder, i.e., Caug = 5Cencoder, then the time
complexity of GPA is 2K+4+(2K+2)∗5

4+2∗5 = 12K+14
14 times that of GraphCL. Given that K = 5 in

our experiments, the complexity of GPA is around 6 times of GraphCL in theory. However, due to
the inefficient implementation of our current code (e.g., for loop in the loss function and perform
K augmentations in series), the empirical complexity of GPA is less than 7 times of GraphCL. It is
noteworthy that parallel techniques such as multiprocessing could be used to accelerate the training.

H COMPARISON OF GPA AND JOAO

While JOAO and GPA all focus on training GraphCL in an automated fashion, they differ in two
crucial ways: 1) The research problem is different. JOAO aims to learn a shared sampling distri-
bution for a given dataset, but GPA targets to learn a sampling vector for each instance (i.e., graph)
in the dataset. Notably, due to randomness, JOAO can sample different augmentations to different
graphs to some extent. However, since the sampling distribution is fixed, it is “fake” personalization
because it does not consider the characteristics of different graphs. In contrast, GPA could explicitly
generate personalized sampling distribution to each graph, which is tailored and more challenging as
the augmentation space grows exponentially to the dataset size. 2) The sampler optimization process
is different. JOAO adopts a sampling-based approach to directly train a K-dimensional sampling
distribution parameters. However, such a solution cannot be applied to our personalized scenarios
because i) the total trainable parameters will be linear to the size of the dataset, i.e., K×|V|, where V
is the dataset; and ii) it is restricted to transductive settings and cannot generate distribution vectors
for new graphs, i.e., unseen graphs during training. To this end, we adopt a new approach to achieve
personalized augmentation allocation by parameterizing the sampler as a neural network taking the
topological and node attributes of a graph as input. It reduces the trainable parameters of the sampler
to be independent with the size of the dataset.
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