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ABSTRACT

We present SPAR, a framework for self-supervised placement-aware representation
learning in distributed sensing. Distributed sensing spans applications where multi-
ple spatially distributed and multimodal sensors jointly observe an environment,
from vehicle monitoring to human activity recognition and earthquake localization.
A central challenge shared by this wide spectrum of applications, is that observed
signals are inseparably shaped by sensor placements, including their spatial loca-
tions and structural roles. However, existing pretraining methods remain largely
placement-agnostic. SPAR addresses this gap through a unifying principle: the
duality between signals and positions. Guided by this principle, SPAR introduces
spatial and structural positional embeddings together with dual reconstruction
objectives, explicitly modeling how observing positions and observed signals shape
each other. Placement is thus treated not as auxiliary metadata but as intrinsic to rep-
resentation learning. SPAR is theoretical supported by analyses from information
theory and occlusion-invariant learning. Extensive experiments on three real-world
datasets show that SPAR achieves superior robustness and generalization across
various modalities, placements, and downstream tasks.

1 INTRODUCTION

This paper advances the state of the art in self-supervised placement-aware representation learning,
motivated by the broad class of applications we term distributed sensing. By distributed sensing, we
refer to systems where multiple spatially distributed sensing points—potentially spanning diverse
modalities—jointly observe an environment. This definition unifies a wide spectrum of domains,
including seismic and acoustic monitoring for security (L1 et al., 2025} |California Institute of Tech-
nology (Caltech), [1926)), human activity recognition with body-worn sensors (Gu et al., 2021} Sztyler
& Stuckenschmidt, 2016), vehicle monitoring in urban spaces (Bathla et al.| [2022)), environmental
monitoring (Ullo & Sinhal |2020), and smart cities (Syed et al., [2021). These scenarios, though
superficially distinct, share the common challenge of reconstructing or representing an environment
from heterogeneous, distributed vantage points.

Sensor placement lies at the core of distributed sensing. A sensor’s vantage point is determined by
both its spatial location (e.g., GPS coordinates of a seismic station dictating which parts of the crust
it samples) and its structural role (e.g., the body location of an IMU sensor that shapes its motion
patterns). Robust representation learning in this setting requires models that not only capture signal
content but also interpret how those signals are mediated by spatial and structural placement.

Despite rapid progress in sensing pretraining, current approaches—whether contrastive (Ouyang
et al., [2024)), generative reconstruction (Kara et al.,|2024b), or language-model-based (Ouyang &
Srivastaval [2024)—remain largely placement-agnostic, overlooking the fact that distributed sensing
signals are inseparably shaped by sensor placement. This omission limits generalization across
layouts, scales, and tasks.

To address this gap, we introduce SPAR (Self-supervised Placement-Aware Representation learning),
a general-purpose pretraining framework that explicitly incorporates placement into representation
learning for distributed sensing. Our design is guided by a core principle: the duality between
positions and signals. That is, spatial and structural configurations are not auxiliary metadata to
the signals, but stand in an equal and mutually-determining relationship with signals. Together, they



Under review as a conference paper at ICLR 2026

Example Multi-modal Pretraining with Spatial and Structural Awareness
Multi-node Distributed

| : ‘:
i i = !
! "1 Sensing Application E i
' Collected Signal: u1\|lmu L i Latent ] Self-supervised !
U .. Y [y Embeddings S Objectives !
' Spatial Position: (3, b) | \i 6 ¢ a i
1 1

l coccooooooooossooosooon o /'

T Y - Rl mlb bl B il e
i Unique Characteristics: | +\ | | 1 ,rmpTTosooososoosooeo TTTTTTTTTTTTTmmomes N
' : by i ing for Downstream Task b
i+ Distance to Roads RGN JGLNE) Finetuning owns :
i e Environmental Noises . - = G < ]
1« Sensor Orientation Py k=) . ]
v i i L LT © Superwsgd '
i Pt () € @ 3 Embeddings T EREE R i
! Dl Y ¥ x Objectives :
| ® |
& :Learnable : Frozen

Figure 1: An overview of the SPAR workflow applied to a multi-modal multi-node distributed sensing
application. Each node from each modality collects its own signal and is associated with a spatial position, as
well as unique characteristics that influence its signal patterns. During pretraining, SPAR encodes information
from all these aspects to generate latent embeddings, optimized via self-supervised objectives on unlabeled
data. In the fine-tuning stage, the encoder is frozen and used to extract representations, which are then fed into
task-specific heads trained with labeled data for downstream tasks.

define how observations are generated, propagated, and interpreted. This principle is both general
and intrinsic, applying across the full spectrum of distributed sensing applications.

Building on this principle, SPAR introduces three key components: (1) spatial positional embed-
dings encoding sensor locations, (2) structural positional embeddings capturing node-specific
characteristics, and (3) dual reconstruction objectives that enforce the mutual recoverability of
placements and signals with contextual awareness. Together, these elements yield a cohesive,
placement-aware pretraining strategy that is broadly applicable across sensing modalities and layouts.
An overview of the SPAR workflow is illustrated in Figure[T] To our knowledge, this is the first work
to treat placement as a universal inductive bias for distributed sensing systems as a whole, rather than
as an application-specific add-on.

We further provide theoretical analyses grounded in information theory and occlusion-invariant
representation learning (Kong & Zhang} [2023) to elucidate the rationale behind our design. Experi-
ments on three real-world datasets—covering vehicle monitoring (Li et al.l 2025)), human activity
recognition (Sztyler & Stuckenschmidt, [2016)), and earthquake localization (California Institute of]
Technology (Caltech), |1926)—demonstrate that SPAR consistently outperforms existing approaches
across diverse sensing modalities, spatial configurations, and downstream tasks.

In summary, this paper makes the following contributions: (1) We introduce SPAR, a novel, general
pretraining framework for distributed sensing that explicitly models spatial layouts and node-specific
characteristics, guided by the duality between positions and signals. (2) We provide theoretical
analyses from information-theoretic and occlusion-invariant perspectives that explain the effectiveness
of our design. (3) We validate SPAR through extensive experiments on three real-world distributed
sensing datasets, demonstrating superior generalizability and robustness compared to prior methods.

2 RELATED WORK

Pretraining and Foundation Models for Sensing. Pretraining for sensing aims to learn transferable
representations from unlabeled data, enabling scalable downstream learning. Existing approaches
largely fall into three paradigms: contrastive learning, generative (masked reconstruction), and
LLM-based frameworks. Contrastive methods align multi-modal embeddings in a shared space.
Early works such as Cosmo (Ouyang et al.,|2022), Cocoa (Deldari et al.} 2022)), and FOCAL (Liu
et al.| 2023)) focus on intra-sample contrast via modality-specific augmentations, while more recent
models like ImageBind (Girdhar et al., [2023) and MMBind (Ouyang et al.| 2024])) extend to loosely
paired or unpaired modalities. Generative approaches rely on masked reconstruction (Woo et al.,
2024; Das et al.| 2024). Ti-MAE (Li et al., [2023), MOMENT (Goswami et al.l, 2024), and TS-
MAE (Liu et al., [2025)) adapt autoencoding to time series, with TS-MAE using a continuous-time
formulation. Other methods, such as FreqMAE (Kara et al., 2024b) and PhyMask (Kara et al.,
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2024a), introduce frequency-domain masking tailored to sensing signals. LLM-based frameworks
integrate sensor data into language-centric systems (Gruver et al.||[2023}; |Garza et al.,[2023). LIMU-
BERT (Xu et al.,|2021)) adapts masked language modeling for inertial data, while Penetrative Al (Xu
et al.| [2024), LLMSense (Ouyang & Srivastaval, 2024), and [oT-LM (Mo et al., 2024) introduce
prompting, summarization, and modality-specific adapters for cross-task transfer and zero-shot
inference. While effective, these methods do not explicitly account for the spatial layout and node-
specific characteristics critical to distributed sensing. In contrast, SPAR incorporates spatial and
structural information directly into pretraining, enhancing contextual grounding and robustness.

Pretraining with Different Notions of ''Spatial'' Context. Several works incorporate spatial context,
though definitions of “spatial” differ. In vision, it typically refers to grids of pixels or patches, as in
video (Feichtenhofer et al.| [2022; 'Wu et al.| [2023a), remote sensing (Lin et al., 2023} Reed et al.,
2023; Irvin et al.| [2023)), and 3D medical imaging (Gu et al., [2024). Beyond vision, "spatial" often
denotes discrete symbolic entities, e.g., joints in SkeletonMAE (Wu et al.;|2023b), EEG channels in
MV-SSTMA (Li et al., [2022a) and MMM (Y1 et al., 2023), or sensor identities in Gao et al. (Gao
et al.| [2023) and Miao ef al. (Miao et al.,|2024). By contrast, our method integrates continuous node
coordinates into pretraining, enabling modeling of arbitrary sensor layouts that depart from token
sequences or regular grids, and generalization to unseen configurations. A related but distinct line
is scene reconstruction and novel view synthesis (Mildenhall et al., 2021} [Kerbl et al., 2023} Wu
et al.| [2024), which also exploits spatial layouts but targets synthesis quality, rather than transferable
representations for sensing.

Pretraining via Positional Reconstruction Objectives. A third line of work, often without using the
term “spatial,” incorporates positional reconstruction objectives. In vision, Doersch et al. (Doersch
et al., 2015) proposed predicting relative patch positions, extended by jigsaw (Noroozi & Favaro|
2016) and content restoration (Kim et al.| |2018)). DeepPermNet (Santa Cruz et al., [2017) learns
permutation structures, MP3 (Zhai et al.}[2022) predicts absolute patch locations, and LOCA (Caron
et al., [2024) predicts relative positions of clustered patches. In NLP, StructBERT (Wang et al.| [2019),
ALBERT (Lan et al.| 2019)), and SLM (Lee et al., 2020) use sentence order prediction and sequence
restoration, while Nandy et al. (Nandy et al.| 2024) extend to permutation-based objectives. Beyond
vision and language, GeoMAE (Tian et al.,2023) reconstructs geometric features of masked point
clouds, and LEGO (Sun et al., 2024) recovers perturbed molecular geometries. While conceptually
related, these methods operate on discrete, domain-specific positional targets (e.g., patch indices,
sentence order). By contrast, our approach reconstructs continuous physical positions of sensor nodes,
naturally aligning with distributed sensing.

3 METHOD

To develop a pretraining method that effectively utilizes the unique placement characteristics of sens-
ing nodes, we propose SPAR, which explicitly leverages the duality between observer placement
and signals in the distributed sensing data. Specifically, we extend the traditional MAE framework
by introducing spatial positional embeddings to represent device locations, and structural posi-
tional embeddings to encapsulate effects of other placement characteristics (such as orientation).
Furthermore, we propose to optimize our model with novel dual reconstruction objectives to
enhance its ability to retain both signal and spatial information in its learned representations. The
overall architecture of SPAR is shown in Figure 2] with each component detailed below. Importantly,
SPAR is grounded in solid theoretical foundations from both information theory and the study of
occlusion-invariant representations, offering deep insights into our design.

For clarity, we adopt the following notation convention throughout the paper: scalars are denoted by
lowercase or uppercase letters (e.g., k, K), matrices by bold uppercase letters (e.g., R, S), tensors
by bold calligraphic letters (e.g., R, S), and random tensor variables by sans-serif uppercase letters
(e.g., R,S). We use F with appropriate subscripts to denote the forward operations of various
transformer-based modules. A summary of notations is provided in Table[9]in Appendix[C]

3.1 EMBEDDING FOR SIGNALS, SPATIAL POSITIONS, AND STRUCTURAL POSITIONS

We consider a multi-modality distributed sensing system with K modalities, where the k-th modality
(k € {1,...,K}) consists of n(*) sensing nodes. The signals collected from these nodes are first
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Figure 2: Architectural overview of SPAR. Each node is assigned a continuous learnable structural position
to capture its unique characteristics. The signals, spatial positions, and structural positions of all nodes are
projected into a shared embedding space, combined, and encoded into latent embeddings. The latent embeddings
are optimized with dual reconstruction objectives, encouraging the model to effectively utilize and retain both
signal and positional information in a self-supervised and context-aware manner.

tokenized to be compatible with transformer encoders. The tokenization strategy is task-specific and
flexible—for example, IMU time-series data can be divided into temporal segments, while acoustic

. . . : ) 4B
spectrograms can be split into patches. We denote the tokenized signals as X’ (k) g R xm®xdy ,

where m(¥) is the number of tokens and d(xk) is the token dimension. We then project these tokens

~ (k
into the transformer embedding space using a learnable linear layer, as X E j)7: = S(i];)_emb ca(X z(.?,:),

k
yielding signal embeddings X( ) c R xm® xd

, where d is the transformer model dimension.

A distinguishing aspect of distributed sensing data is the availability of spatial positions of the

nodes, reflecting their physical layout in the field, which can be denoted as S*) R xds  For
instance, in Figure 2] the spatial positions are two-dimensional, indicating longitudinal and lateral
node locations. Unlike the discrete ordinal indices typically used in NLP (Vaswani et al.| 2017) or
CV (Dosovitskiy et al., 2020), spatial positions in distributed sensing data are continuous vectors,
making classical positional embedding strategies unsuitable (Vaswani et al., 2017} |[Dosovitskiy et al.|
2020; |Su et al., 2024} |Press et al., 2021). To address this, we propose to continuously project the

~(k
spatial positions into the embedding space as S;j)’: = .7-'5(5_)embed(8 ,(I;)), where S (l;) = 8" is the

spatial positions broadcasted to match the dimension of the tokenized signals. The spatial positional

~(k
embeddings S * are then added to the signal embeddings to incorporate spatial context into the
model.

However, two challenges arise in practice. First, spatial positions may vary widely in absolute
locations and scales. For the example in Figure 2] data may be collected in different cities, with some
layouts covering small parking lots and others spanning large open areas. To ensure consistency, we
normalize the spatial positions of each sample to have zero mean and unit variance. Second, existing
datasets often contain only a limited number of distinct spatial layouts for which data were collected,
leading the spatial embeddings (and the model) to overfit in pretraining, reducing generalizability
to potentially unseen spatial arrangements during fine-tuning or testing. To mitigate this, we apply
geometric augmentation during pretraining by randomly rotating and translating the normalized
spatial positions, improving robustness to unseen layouts.

While spatial positions capture physical layout, they do not fully represent structural placement
conditions, such as the body part a sensor is attached to, or the orientation used for a directional
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measurement device (e.g., front-facing versus rear-facing camera on an autonomous car). Manually
labeling these characteristics for all nodes is often costly and non-scalable. To address this, we assign
each node a continuous learnable vector, called structural position. The structural positions for

all nodes are denoted as R*®) ¢ R*" *dr where we typically choose the dimension of structural
position dr < d to ensure training efficiency and scalability to large-scale sensing applications.

As with spatial positions, we broadcast R*) to form R*) ¢ gr® xm® xdy , project it into the
embedding space via T\’,( ) ]-"5(t )embed(’R(k) ), and add it to the signal embeddings. These

learnable structural posmons are trained Jomtly with the rest of the model in the pretraining stage,
enabling it to automatically capture node-specific information.

Beyond this learnable formulation, we further explore leveraging Large Language Models (LLMs)
to derive structural positional embeddings from free-form textual metadata describing each sensor’s
placement, modality, and signal characteristics. These LLM-derived embeddings, obtained by
encoding textual descriptions, are projected and fused with the other embeddings but kept frozen
during pretraining. This metadata-driven variant, which we denote as SPAR+LLM, encourages
generalization to previously unseen sensors and placements.

Structural positions bear an interesting mathematical interpretation: if we assume the influence of
a node’s unique characteristics on its signal embedding can be summarized as an additive vector,

which lies within a specific subspace of the embedding space, then the weight matrix of }'b(t )embe d
can be understood as a learned set of basis vectors spanning this subspace. The structural position of
each node can then be viewed as the coordinate of the corresponding additive vector in this subspace,

thereby substantiating its meaning as an abstract “position”.
3.2 MASKED AUTOENCODING WITH DUAL RECONSTRUCTION OBJECTIVES

~ (k ~(k
After combining the signal embeddings X ( ), spatial positional embeddings S ( ), and structural

~ (k
positional embeddings R ) (as well as any additional task-specific positional embeddings, such as
2D patch positions in a spectrogram, which we omit in the rest of this paper for clarity), we apply

a binary mask M*) ¢ {0, 1}"(k) xm™ over the combined embeddings to randomly mask out a
fraction of tokens. The unmasked tokens are then fed into a per-modality transformer encoder to
produce latent embeddings Z*):
~ k) =k =k
Z® = 7O mask(Z™ + 8% + Y, M®y), 0
where mask(-; -) denotes the masking operation. To enable cross-modal interactions, we then apply
a joint transformer encoder over the concatenated latent embeddings from all modalities:

(Z(l) Z(K)) ‘7:Jomt cnc(concat(z(l)’ ctt Z(K)))’ (2)

where concat (-) denotes contatenation, and Z Z %) denotes the post-fusion latent embeddings for the
k-th modality. In the fine-tuning stage, the encoders are frozen, and the post-fusion latent embeddings
are extracted and passed into a task-specific prediction head, which is trained using appropriate
supervised objectives.

During the pretraining stage, however, the post-fusion latent embeddings are decoded, enabling the
encoders to be optimized with self-supervised objectives. In the standard MAE framework, a single
decoder is typically used to reconstruct the masked signals, which overlooks the rich spatial and
structural context inherent in distributed sensing data. To address this, we introduce two decoders
with dual reconstruction objectives, explicitly exploiting the duality between positions and signals.
Specifically, the signal decoder is tasked with reconstructing the masked signals, using both the
latent embeddings and the masked spatial and structural positional embeddings:

~(k ~ ~(k ~ (k) —
2" = FB) | (concat(Z® mask(3" + R 21 M))), 3)
. ~(k
where M (k) =1— MW is the complement mask, and X ) denotes the reconstructed signals.

In parallel, the spatial decoder is responsible for reconstructing the masked spatial positions,
conditioned on the latent embeddings and the masked signal and structural positional embeddings:
~(k ~
S( ) =F® (concat(Z(k),mask(X( )—i-R( ) M(k)))) (€]

sp_dec
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(k) . o . .
where &~ denotes the reconstructed spatial positions. The loss L used to train our model combines
the Mean Squared Error (MSE) reconstruction losses over both decoders:

K
L=Y|nask(x® - 2" 2")|2 4+ mask(s® - 8% ™)z 5)
k=1

Our dual reconstruction objectives compel the model to extract, utilize, and preserve the full spectrum
of signal, spatial, and structural information.

A practical challenge in multi-modal, multi-node distributed sensing systems is the frequent occur-
rence of missing data due to hardware failures or unreliable communication links. To mitigate their
impact, we pad missing entries with zeros and exclude them from the reconstruction loss by setting
their corresponding loss terms to zero.

3.3 THEORETICAL ANALYSES

In this subsection, we provide theoretical support for the design of SPAR, drawing from principles
in both information theory and occlusion-invariant representation learning. These insights help
illuminate the rationale behind SPAR’s design.

Analysis from the Perspective of Information Theory. We first analyze SPAR in comparison to
classical MAE through the lens of information theory, as formalized in the following proposition:

Proposition 3.1. Ler X(*) Z(k), S®) R¥) denote the random variables corresponding to the signals,
the post-fusion latent embeddings, the spatial positions, and the structural positions, for k &€
{1,..., K}, respectively. Let E[L'] and E[L] denote the expected losses of classical MAE and
SPAR over the data distribution, respectively, and let C' and C be constants independent of model
parameters. Then, under certain assumptions, for classical MAE, we can have the following bound:

K
~E[L]+C" <> 1(x®;Z20), ©6)
k=1

where 1(-;-) denotes mutual information. In contrast, for SPAR, we can have
K
—E[L] + € <> 1(X®);Z0sk) RE)) 4 1(sK), 7R x k) R(KD), (7)
k=1

where 1(-;-|-) denotes conditional mutual information.

The proof is detailed in Appendix [D.I} This result highlights a key distinction between classical MAE
and SPAR. In classical MAE, minimizing the expected loss encourages latent embeddings to retain
information about the input signals, but without explicitly incorporating spatial or structural context.
In contrast, SPAR is designed to promote embeddings that capture signal information beyond what is
explained by structural and spatial cues, and similarly, to retain spatial information conditioned on the
signal and structural characteristics. This encourages the embeddings to be context-aware and jointly
informative of both signals and spatial layout, while avoiding memorizing redundant information.

Analysis from the Perspective of Occlusion-invariant Representation. We next analyze SPAR
through the lens of occlusion-invariant representation learning. For clarity and readability, we
present the analysis for a single modality by omitting the superscript (k); the generalization to the
multi-modality case is straightforward. The core result is formalized in the following proposition:

Proposition 3.2. As shown by Kong et al. (Kong & Zhang, 2023)), classical MAE can be viewed as a
form of contrastive learning, where the positive pair consists of two complementary masked views of
the signals: L

[mask(X; M), mask(X;M)]. (8)
In contrast, SPAR can be interpreted as performing contrastive learning over two types of enriched
positive pairs: 1) complementary masked views of signals with shared spatial and structural context:

[(mask(k’;M)7S,7'\’,)7 (mask(X;M),S,’R)] , 9)
and 2) complementary masked views of spatial positions with shared signal and structural context:
[(X,mask(S;M),'R,)7 (X,mask(S;M),’R,)] . (10)
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Table 1: Comparison of the MSE and averaged Distance Error between SPAR and baselines on M3N-VC
single-vehicle localization task. The label ratio during fine-tuning varies from 1.0 to 0.2.

MB3N-VC Single-vehicle Localization

Method

Label Ratio 1.0 Label Ratio 0.5 Label Ratio 0.2
MSE (m?) (|) Dist. Err. (m) (1) MSE (m?) () Dist. Err. (m) () MSE (m?) () Dist. Err. (m) (1)
CMC 51.11 + 14.67 6.76 + 0.75 71.81 £ 15.32 7.99 + 0.64 111.37 £ 8.02 11.05 + 0.57
Cosmo 38.40 +4.14 6.03 +£0.21 53.12 +9.75 7.19 +0.40 97.08 +9.49 10.95 + 0.57

SimCLR 34.40 &+ 4.47 5.64 +0.25 45.14 £7.34 6.57 £0.08 7453 £3.13 9.48 £0.17
AudioMAE  22.36 4 0.49 540 £0.11 30.12 £2.97 6.33 £0.28 41.75 £3.30 747 £0.28
CAV-MAE 18.85 £ 0.41 5.06 £ 0.04 22.90 £0.82 558 +0.12 24.84 £0.33 5.78 £0.10
FOCAL 3243 +4.68 5.37+0.22 40.84 £2.82 6.20 £0.19 69.62 £ 5.62 8.50 + 0.35
FreqMAE 29.61 +2.85 536 £0.16 42.06 + 14.44 6.25 +0.70 91.40 £ 35.32 9.15 £ 1.27
PhyMask 28.02 £591 529+0.33 33.74 +£2.18 5.85+0.12 64.36 £4.70 8.44 +0.36

SPAR 12.98 + 0.11 4.20 + 0.07 15.07 + 1.03 4.51 4+ 0.09 21.36 £ 0.62 5.40 + 0.04

The proof is detailed in Appendix[D.2] This formulation highlights another key distinction: by treating
masked views of the signal embeddings as positive pairs, classical MAE promotes occlusion-invariant
representations solely within the signal domain, without accounting for spatial or structural positions.
In contrast, SPAR encourages representations to be invariant to occlusion in both the signal and
spatial domains, while preserving the presence of each other and the structural characteristics, leading
to more robust and context-aware learned representations.

4 EVALUATION

In this section, we present our experimental evaluation of SPAR on three multiple multi-modal,
multi-node distributed sensing datasets spanning diverse sensing modalities and spatial scales. To
ensure a fair comparison, all baseline methods and our model use the same ViT backbone architec-
ture (Dosovitskiy et al., 2020) and identical task-specific prediction heads. Pretraining and fine-tuning
are conducted for the same number of epochs across all methods. All reported results are aggregated
over three random seeds. The prediction heads are designed to be lightweight and straightforward,
tailored to the needs of each downstream task. Detailed descriptions of each task setup can be found
in Appendix [E]

Datasets. We conducted experiments on three real-world distributed sensing datasets: (1) the M3N-
VC dataset(Li et al., [2025)), which includes acoustic and seismic signals from moving vehicles,
collected across six distinct outdoor scenes; (2) the Ridgecrest Seismicity Dataset(California Institute
of Technology (Caltech), |1926)), containing multi-modal seismic waveform recordings of earthquake
events in the Ridgecrest region of California; and (3) the RealWorld-HAR dataset(Sztyler & Stucken
schmidt, 2016)), comprising accelerometer, gyroscope, and magnetometer readings for human activity
recognition. Further dataset details are available in Appendix

Baselines. We compare SPAR against eight state-of-the-art baseline methods: CMC (Tian et al.,
2020), Cosmo (Ouyang et al.,2022), SimCLR (Chen et al., 2020), AudioMAE (Huang et al., 2022),
CAV-MAE (Gong et al., [2022), FOCAL (L1u et al., 2023), FreqMAE (Kara et al., 2024b)), and
PhyMask (Kara et al.| 2024a)). Among these, CMC, Cosmo, SimCLR, and FOCAL are contrastive
learning-based methods, while AudioMAE, CAV-MAE, and FreqMAE follow the masked autoencod-
ing (MAE) paradigm. Please see Appendix [E.I|for a detailed description of each baseline.

4.1 EVALUATION ON M3N-VC DATASET

We begin with the M3N-VC dataset, focusing on the task of single-vehicle localization, where the
goal is to predict the position of a vehicle within the monitored area. We pretrain on the full dataset
and finetune only the prediction head (a single transformer layer) on scene "H24," which contains a
single moving vehicle. To test robustness under limited supervision, we vary the ratio of labeled data
from 100% to 20%. As shown in Table[I] SPAR consistently achieves the lowest MSE and Distance
Error across all label ratios, demonstrating resilience to scarce supervision. Example localization
visualizations are provided in Figure [3a] (Appendix [B).
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Table 2: Comparison of the mAP@r metric (r is the distance threshold varying across {2,4,6,8} meters) between
SPAR and baselines on M3N-VC multi-vehicle joint classification and localization task.

M3N-VC Multi-vehicle Joint Classification and Localization

Method
mAP@4m (%) (1) mAP@6m (%) (1) mAP@8m (%) (1) mAP@10m (%) (1)

CMC 0.06 &+ 0.05 0.48 +0.36 1.61 = 1.10 3.62+2.19
Cosmo 0.16 £ 0.05 1.66 £+ 0.23 477 £ 0.72 9.52 +£1.20
SimCLR 0.31 +£0.14 2.22 +£0.58 6.53 +1.24 13.07 +2.08
AudioMAE 1.39 +£0.48 6.96 + 1.42 17.11 = 3.24 28.98 + 4.01
CAV-MAE 22.12 +£2.94 52.08 £ 4.16 7341 £3.24 85.36 +1.78
FOCAL 0.08 &+ 0.05 0.82 +0.40 2.94 4+ 1.04 6.82 +1.99
FreqMAE 0.24 £+ 0.01 1.67 £0.32 5.34 £+ 0.99 11.31 +1.49
PhyMask 0.08 = 0.03 0.88 - 0.24 3.04 £0.74 6.64 = 1.46
SPAR 41.57 + 2.69 71.82 + 3.69 86.28 + 1.77 92.99 + 0.79

Table 3: Comparison between SPAR and baselines across three tasks: (1) M3N-VC single-vehicle classification,
(2) Ridgecrest Seismicity Dataset earthquake localization, and (3) RealWorld-HAR activity recognition. Each
block reports task-specific metrics.

Method M3N-VC Classification Ridgecrest Earthquake Localization RealWorld-HAR Recognition
Accuracy (%) (1) F1(%) (1)  MSE (km?)(}) Dist. Brr. (km) (}) Accuracy (%) (1)  F1 (%) ()
CMC 89.53 +7.62 89.33 £7.78 9425 £6.67 10.38 £+ 0.63 74.97 £ 1.23 74.82 £ 2.18
Cosmo 94.21 £+ 0.50 94.04 £0.54  98.24 £ 13.77 10.44 +0.83 84.37 £ 0.33 85.30 £ 0.43
SimCLR 95.53+£0.73 9541 +0.74 99.87 £11.31 10.29 + 0.52 84.36 + 0.47 85.49 + 0.36
AudioMAE 99.06 £ 0.23 99.03 £0.24  33.65 £ 3.51 5.65 £ 0.29 89.18 +0.32 90.11 +0.53
CAV-MAE 98.97 + 0.04 98.94 +£0.04  31.58 +3.57 5.48 +0.37 88.12+0.24 89.05 £ 0.35
FOCAL 93.62 +£0.75 9346 £0.76  131.50 + 1.48 12.53 +0.09 84.98 +£0.73 86.24 +0.77
FreqMAE 92.72 £0.75 9255+£0.79  54.08 £5.44 7.14 £0.25 83.43 £ 0.56 84.07 + 0.50
PhyMask 83.38 £2.33 82.68 £2.27 5639 £3.27 7.67 + 0.39 84.79 +3.23 82.15+9.13
SPAR 99.27 £+ 0.07 99.26 +0.07  23.46 £ 2.77 5.37 + 0.24 89.63 + 0.57 90.45 + 0.63

The second task is single-vehicle classification, where the model distinguishes among four vehicle
types and a background class. The setup mirrors that of localization. As reported in Table[3] SPAR
attains the highest accuracy and F1 score among all methods. The confusion matrix (Figure [3])
and T-SNE plot (Figure 4)) confirm that the learned embeddings cleanly separate all five classes,
underscoring their discriminative power.

‘We next consider the more challenging task of multi-vehicle joint classification and localization,
where multiple vehicles move simultaneously, generating overlapping signals. We pretrain on the full
dataset and finetune on scene "I122," which includes multiple vehicles. A 2-layer transformer head
with a DETR-style loss (Carion et al.l [2020)) is used. To evaluate performance, we adopt mAP@r
from object detection (Lin et al.,|2014), where predictions are correct only if both class and location
are accurate within radius r. As shown in Table[2] SPAR significantly outperforms all baselines across
thresholds, including strict ones (e.g., 4m), despite noisy 1Hz smartphone GPS labels. This highlights
its strong spatial reasoning under complex conditions. Additional visualizations of predictions are
included in Figure[6] (Appendix B).

Finally, we conduct three complementary evaluations (details in Appendix [A): (1) Lossy Commu-
nication: SPAR remains robust under random node-level data dropout, outperforming baselines
(Table[6). (2) Unseen Sensor Placements: The pretrained, frozen encoders of SPAR generalize well
to unseen placement, confirming placement-aware robustness (Table[7). (3) Ablations: The ablation
studies indicate that each design component in SPAR contributes meaningfully and synergically, and
SPAR maintains robust to varing hyperparameters (Table ).

4.2 EVALUATION ON RIDGECREST SEISMICITY DATASET

We next evaluate SPAR on the Ridgecrest Seismicity Dataset for earthquake event localization.
Here, the goal is to predict 3D earthquake coordinates from multi-modal seismic waveforms collected
across 16 monitoring stations. Compared to vehicle monitoring, this task involves a much larger
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Table 5: Impact of data compression on SPAR across three tasks: (1) M3N-VC single-vehicle classification, (2)
Ridgecrest Seismicity Dataset earthquake localization, and (3) RealWorld-HAR activity recognition.

M3N-VC Single-vehicle Localization ~ Ridgecrest Earthquake Localization RealWorld-HAR Recognition

Method

Traffic (%) | MSE| Dist. Err. | Traffic (%) MSE| Dist. Err. | Traffic(%)] Acc.t FI17
SPAR 100.00 12.12 4.12 100.00 22.17 5.10 100.00 90.23  91.11
SPAR w. Compression 10.70 12.26 4.13 6.30 22.18 5.10 24.03 90.00  90.91

spatial scale (tens of kilometers) and a 20.38% inherent missing-data rate, as weak seismic waves often
fail to reach distant stations. Despite these challenges, SPAR achieves the lowest MSE and Distance
Error among all methods (Table [3), demonstrating strong spatial reasoning in large-scale, partially
observed environments. Visualizations of predictions are provided in Figure [3b| (Appendix [B).

4.3 EVALUATION ON REALWORLD-HAR DATASET

Finally, we evaluate SPAR on the RealWorld-HAR
dataset for human activity recognition using IMU
the RealWorld-HAR human activity recognition signals. This task differs from the above in operating
task. An example text metadata is "Sensor 0: a at@ smaller spatial scale but involving highly diverse
smartphone-mounted accelerometer on the Head, Placements: _Sensors mou.nted. on the wrist, gnlfle,
capturing low-amplitude time-series signals along ~ chest, etc., yield signals with distinct characteristics.
the x, y, and z axes reflecting subtle head motions Despite this heterogeneity, SPAR achieves the best

Table 4: Comparison of the Accuracy and
F1 score between SPAR and SPAR+LLM on

and posture shifts." accuracy and F1 among all baselines (Table [3)), un-
derscoring its robustness to placement diversity. The
Method RealWorld-HAR Recognition confusion matrix (Figure[5) and t-SNE visualizations

Accuracy (%) (1) F1 (%) () (Figure ) show that predicted activity patterns align
SPAR 8963 £ 057 9045+ 063  Well with the conceptual separability of classes.

SPAR+LLM 90.40 + 0.68 9113 +0.59  Wwe also evaluate SPAR+LLM, elaborated in Sec-
tion 3.1} which replaces learnable structural positions
with LLM-derived embeddings from textual sensor

metadata. On this dataset, where we can create rich natural language descriptions of sensor placement,
SPAR+LLM yields additional gains over SPAR (Table[d). This highlights the benefit of combining
spatial priors with semantic context for placement-aware learning.

4.4 ROBUSTNESS UNDER COMMUNICATION CONSTRAINTS

Distributed sensing often operates under limited bandwidth, restricting the transmission of raw sensor
data. To test SPAR in such settings, we compress raw inputs using standard formats, such as JPEG
for M3N-VC and Ridgecrest, and WebP for RealWorld-HAR. As shown in Table [5] compression
reduces communication traffic by up to 90% with negligible performance loss across all tasks. This
demonstrates that SPAR is robust to severe bandwidth constraints, making it practical for real-world
deployments.

5 CONCLUSION

This paper presents SPAR, a general self-supervised pretraining framework designed for the whole
spectrum of multi-modal, multi-node distributed sensing. By introducing spatial and structural
positional embeddings alongside dual reconstruction objectives, SPAR leverages the inherent duality
between observer positions and observed signals to enable placement-aware representation learning.
Theoretical analyses grounded in information theory and occlusion-invariant learning offer principled
support for the framework. Extensive experiments across three real-world datasets, spanning diverse
sensing modalities, placement configurations, and task types, demonstrate the superior generalizability
and robustness of SPAR. We hope SPAR inspires broader efforts toward integrating spatial and
structural context into foundational representation learning paradigms for the wide range of distributed
sensing applications.
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REPRODUCIBILITY STATEMENT

We have taken concrete steps to ensure the reproducibility of our results. Detailed descriptions of
datasets, preprocessing procedures, and training protocols are provided in Appendix [E] Formal proofs
of our theoretical results are included in Appendix [D} In addition, we release our implementation and
scripts athhttps://anonymous.4open.science/r/SPAR-4C74/,
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APPENDIX

A ADDITIONAL EXPERIMENTS RESULTS

Beyond the primary experiments in Section[4.1} we conduct additional studies to further evaluate the
robustness and generalization of SPAR.

Lossy Communication. We first examine SPAR’s resilience to missing data caused by message
drops, a common challenge in real-world sensor networks. Each node’s data is independently dropped
with probabilities of 5%, 10%, or 20%. As shown in Table @ SPAR consistently achieves the
lowest mean squared error and distance error across all settings, demonstrating strong localization
performance even under substantial input loss.

Table 6: Comparison of the MSE and Distance Error between SPAR and baselines on M3N-VC single-vehicle
localization task, under various message drop rates.

M3N-VC Single-vehicle Localization

Method

Message Drop Rate 0.05 Message Drop Rate 0.1 Message Drop Rate 0.2
MSE (m?) (1) Dist. Err. m) (1) MSE (m?)(}) Dist. Err. (m) () MSE (m?) () Dist. Err. (m) (1)
CMC 50.13 £ 17.69 6.48 £0.91 50.27 £ 18.03 6.60 = 1.17 55.38 £22.01 691 £1.29
Cosmo 29.97 £2.30 5.44 £0.12 29.37 +£2.43 5.44 £0.10 33.19 £2.67 5.61 £0.12
SimCLR 26.77 £2.55 5.16 £0.07 25.65 + 1.28 5.15 £0.07 28.31 £3.94 5.4 +0.18
AudioMAE  19.29 4+ 1.42 491 £0.17 18.25 £1.23 4.77 £0.10 19.03 +1.14 4.77 £0.05
CAV-MAE 16.28 £0.17 4.68 +0.03 15.85 £ 0.81 4.57 +0.10 1598 £ 1.67 444 +0.12
FOCAL 26.62 £ 1.02 5.21+£0.17 27.42 +£2.33 5.32+£0.20 33.03 £2.28 5.70 £ 0.15

FreqMAE 27.48 +£1.43 5.14 £0.11 28.32 £ 1.22 5.17+0.14 28.68 £ 6.96 532+£0.24
PhyMask 23.18 £4.96 4.98 £0.32 24.09 £3.31 5.03+£0.27 27.37 £2.04 531+£0.21

SPAR 12.65 + 0.61 4.09 + 0.11 12.48 + 0.68 4.07 £+ 0.02 14.56 + 2.47 4.27 £ 0.07

Unseen Sensor Placements. Next, we assess generalization to unseen sensor placements. All models
are pretrained on the full dataset excluding scenes HO8 and H24 (which share similar configurations),
then finetuned and evaluated on H24. To simulate transfer, nodes in H24 are assigned structural
position vectors randomly drawn from those learned during pretraining. As reported in Table[7, SPAR
continues to outperform baselines, underscoring its placement-aware generalization ability.

Table 7: Comparison of the MSE and Distance Error between SPAR and baselines on M3N-VC single-vehicle
localization task. SPAR and baselines are finetuned and evaluated on a placement unseen in the pretraining.

M3N-VC Single-vehicle Localization

Method (Finetuned and Evaluated on Unseen Placement)
MSE (m?) () Dist. Err. (m) (1)
CMC 61.78 +17.68 7.23 +0.78
Cosmo 63.43 +12.85 7.22 +£0.63
SimCLR 35.82 +7.57 5.92 +£0.39
AudioMAE  41.25 +4.60 6.64 +0.31
CAV-MAE  37.01 +0.68 6.27 +£0.04
FOCAL 41.79 £ 11.04 591 +£0.41
FreqMAE 30.65 + 1.14 5.51 +£0.19
PhyMask 34.83 + 8.81 5.60 £+ 0.38
SPAR 21.76 + 1.00 5.09 + 0.10

Ablations. Finally, we conduct ablations to quantify the contribution of each design choice (Table g).
Removing geometric augmentation, the spatial reconstruction objective, or spatial embeddings all
leads to comparable performance drops, highlighting their complementary roles. Excluding structural
embeddings results in the most severe degradation, underscoring their critical role in modeling node-
specific characteristics. We also test alternative masking strategies: Node-Drop Masking (masking
entire nodes) reduces performance, while Node-Balanced Masking (ensuring a minimum number of
unmasked tokens per node) offers slight gains over random masking. We further vary the mask ratio
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(0.85 and 0.5) and observe only minor performance changes relative to the default 0.75, indicating
the robustness of the framework.

Table 8: Comparison of the MSE and Distance Error between SPAR and ablations on M3N-VC single-vehicle
localization task.

M3N-VC Single-vehicle Localization

Method
MSE (m?) () Dist. Err. (m) (})

SPAR 12.98 £ 0.11 4.20 £ 0.07
w/o Geometric Augmentation in Pretrain ~ 15.59 4 0.56 4.67 £0.04
w/o Reconstructing Spatial Positions 14.73 + 0.35 4.62 +0.03
w/o Spatial Positional Embedding 15.12 + 0.58 4.67 + 0.07
w/o Structural Positional Embedding 22.55 +£2.98 5.08 £0.13
+ Node-Drop Masking 17.71 £ 3.17 4.82 £0.33
+ Node-Balanced Masking 12.54 + 1.63 4.14 +£0.21
+ Mask Ratio 0.85 13.89 £2.17 4.35+0.24
+ Mask Ratio 0.5 14.81 £2.57 445 +£0.31

B  QUALITATIVE VISUALIZATIONS

To complement the quantitative results, we provide qualitative visualizations that illustrate SPAR’s
spatial reasoning and representation quality across tasks. These examples highlight its ability
to accurately localize targets, distinguish between classes, and learn well-structured embeddings
compared to baselines.

Visualization of Single-Vehicle Localization Visualization of Earthquake Localization

= ground truth

Ties (C) i Esi Delorme, NAVTEQ, TomTom, ntermap, PC, USGS, FAO, NPS, REAN, L Ordnance Survey, Exr Japan, METI,
(€)0pensireetitan contrbutors 25m ooty 25 km

(a) Single-vehicle localization in the M3N-VC dataset,  (b) Earthquake localization in the Ridgecrest region of
overlaid on an OpenStreetMap basemap (© contribu-  California, overlaid on a topographic basemap © Esri,
tors, ODbL). HERE, Garmin, FAO, NOAA, USGS, EPA, NPS.

Figure 3: Visualization of localization results. Blue dots denote ground truth locations (vehicle or earthquake
epicenter), red dots are predictions by SPAR, and yellow triangles represent the spatial positions of deployed
sensor nodes/stations. SPAR produces predictions that closely align with ground truth locations, demonstrating
its robust spatial reasoning capability.
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Figure 4: t-SNE plot of SPAR and FreqMAE on the M3N-VC Single-vehicle classification task and on the
Realworld-HAR activity recognition task. SPAR produces clearly structured clusters: each vehicle class is distinct
and separable from the background, and most activity classes (e.g., Walking, ClimbingUp, ClimbingDown)
are well differentiated, with only minor overlap between semantically similar classes like Standing and Sitting.
In contrast, FreqMAE yields less structured embeddings, where vehicle classes mix more heavily and activity
classes such as Walking, ClimbingUp, and ClimbingDown collapse into broad clusters, indicating weaker
fine-grained semantic alignment.
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Figure 5: Confusion matrix of SPAR for the M3N-VC single-vehicle classification task (left) and the RealWorld-
HAR activity recognition task (right). The classes are mostly separated by SPAR, and the confusion patterns
generally align with the conceptual closeness of the classes.
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Figure 6: Representative examples from the multi-vehicle localization task. Each subplot displays the ground
truth vehicle classes and locations, the predicted classes and locations, and the spatial positions of sensor nodes.
A 4-meter radius is drawn around each ground truth vehicle to represent the spatial threshold used for metric
mAP@4m during evaluation. Predictions that correctly match both the class and fall within this radius are
labeled as true positives (TP). Predictions with incorrect class labels or those that fall outside the threshold are
labeled as false positives (FP), while ground truth vehicles with no matching predictions are considered false
negatives (FN). The top row shows scenarios where predictions are accurate in both class and location. The
bottom row illustrates challenging cases where mismatches in class or location lead to evaluation errors. These

illustrations demonstrate SPAR’s ability to produce accurate predictions under strict matching criteria.
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C NOTATION TABLE

For the reader’s convenience, we provide a summary of the notations used throughout the paper,

along with their corresponding dimensions and definitions, in Table 9]

Table 9: Summary of the notations and their corresponding dimensions and definitions.

Notation | Dimension(s) | Definition
K N Number of modalities
n®) mk), mg\]fl) N Number of nodes, tokens, and masked tokens
d, d(Xk) N Model dimension, tokenized signal dimension
ds,dr N Spatial and structural position dimensions
L, L N Loss function of SPAR and classical MAE
x® R xm® xdy Signals
.i’(k) R xm® xdf) Reconstructed signals
X () R xm® xdf) Signals random variable
x® Rn xm® xd Signal embeddings
S(k) Rn™" xds Spatial positions
s Rn® xm® xds Spatial positions (broadcasted)
S ® R xm® xds Reconstructed spatial positions
Sk) R xm® xds Spatial positions random variable
S * R xm® xd Spatial positional embeddings
R®) R xdr Structural positions
R*) R* xm ™ xdr Structural positions (broadcasted)
R() R xm® xdr Structural positions random variable
’f{(k) R xm®xd Structural positional embeddings
M® {0, 1} xm™® Mask
M"Y {0, 1} >xm™® Complement mask
AR R™a7 Xd Pre-fusion latent embeddings
AQ R ar xd Post-fusion latent embeddings
yAQ) R™w xd Post-fusion latent embeddings random variable
D PROOFS

D.1

PROOF OF PROPOSITION [3.1]

Proof. n this proof we use C and C” to denote generic constants independent of model parameters,
whose specific values may change from Equation to Equation.

Classical MAE. We begin with the case of classical MAE. We assume, following prior works (Li
et al.l|2022b; Kong & Zhang, 2023)), that duE to the high dimension of the latent embeddings relative to
the original signal, the latent embeddings Z(*) may contain the full information about the unmasked

part of the signals mask(X ®) pr (k)), which can be reconstructed by the decoder from the latent
embeddings with negligible loss. As a result, we consider the reconstruction loss calculated on the
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masked signals to be equivalent to the reconstruction loss calculated on the full signals:

(k) —
L' = Z [mask(x® — X( ); M(k))Hg

k=1
K ~ (k)

=> [la® - 23 (11)
k=1
K

_ (k)
k=1

where L'(F) is the reconstruction loss calculated for the k-th modality.

Like in the analysis for general regression tasks, the likelihood Paec(X®)|Z*) = Z*®)) implicitly
~(k

modeled by the decoder is defined as a fully factorized Gaussian distribution with mean X’

(k) 1

pdec(x(k)‘Z(k) - Z(’f)) ";*N(‘;’e i
V2

T). (12)

Then, we can interpret the MSE loss L'(*) as proportional to the negative log-likelihood:

—1og Pacc(X®) = 2®|Z0) = Z(1) — IIX(“ B S ENe
— L/ _|_ C/

13)

Since the prior probability P(X*) = x (k)) is also a constant independent of the model parameters
(only determined by the dataset distribution), we can further have

Piee(X®) = x 8 Z7(k) = Z (k)
og .

L' Lo =1
+ p(X(k) — X(k))

(14)

Taking expectation over the data distribution and applying the standard mutual information decompo-
sition, we can have:

Pace(X®)[Z(4)
P(X®)
p(x(k)ﬁ(k)) p(x(k)|2(k))
POX®) % b (xB]Z0)
= —I(X®;Z0) + KL(PXMZ0) || Pace(XMZ))
> —1(x®). 70y,

E[L'®] + ¢’ = E[-log

=E[-log (15)

where P(X(*) |Z(k)) denotes the non-tractable ground truth conditional distribution determined by
the data distribution and the encoders, and K L(+||-) denotes Kullback-Leibler divergence.

Summing over all modalities, we can prove:

K
L'+C' < Z I(X®), 7)), (16)

SPAR. For SPAR, the signal decoder takes additional inputs: masked spatial and structural positional
embeddings (Equation. Let S%’j[) and RE\IZ) denote the masked spatial and structural positions. Let

Lg;) denote the signal reconstruction loss for modality k. Then, adjusting our reasoning above, we
can modify Equation[T3]to:

LY 4 C = —log Pyec (X®) = x W20 = Zz®) s — s gM) — W)y (17)

sig
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Since in SPAR, the latent embeddings Z®) are calculated not only from unmasked signals, but also
from unmasked spatial and structural positional embeddings, we can re-use our assumption above

that the latent embeddings Z™® retain the full information of them. As a result, we can equivalently
condition the likelihood on full spatial and structural positions:

k . Sk ~ k k k k
L% 4 C = —log Paec(X® = 2®Z0 = 70 58 — 50 RE) = RY)) (18)
— log Paee(X®) = X7 — Z(8) 5k) — gk R(K) — RK))

As the reasoning above, since the prior probability P(X(*) = x®)|5(k) = s*) Rr(k) — RK)) g
also independent of the model parameters, we can adjust Equation [T5]to:

E[L)] + C > —1(X®); Z(0)|5k) R, (19)

51g]

Since SPAR treats spatial positions symmetrically to signals. We can apply the same reasoning on

signal reconstruction loss to the spatial reconstruction loss Lé’;>, yielding:

E[LY)] + C > —1(S®); ZMX®) RK)). (20)

Summing over all modalities and both reconstruction losses, we can prove:

+C’<ZI Sk RE)Y 4 (k) 7R | x(R) R(F)Y, (21)

D.2 PROOF OF PROPOSITION[3.2]

Proof. Classical MAE. Kong et al. (Kong & Zhang| [2023)) provided a rigorous interpretation of
classical MAE as a special case of contrastive learning, where the positive pair consists of two
complementary masked views of the same input signals. For completeness and clarity, we briefly
restate their reasoning here using our notation. For clarity, we focus on a single modality by
omitting the superscript (k) and the joint encoder Fjoint_enc; the extension to multiple modalities is
straightforward.

Let F{ 1eq enc denote the composition of the embedding layer and encoder in classical MAE, and
let 7). denote the decoder. Then, the reconstruction process can be written as:

X ‘Fdec( embed enc(maSk(X; M))) (22)

Accordingly, the reconstruction loss of classical MAE can be rewritten as
— [Imask(X — X; )3
— mask(X; M) (23)
— mask(Fec(Fe mask(X; M))); M)|3.

= |mask(X; M)
= ”maSk( M) embed enc(

Kong et al. (Kong & Zhang, [2023) assumes that due to the high dimension of the latent embeddings

relative to the original signals, the latent embeddings produced by the F/ .4 n. May approximately

preserve all the information of the input. This implies the existence of an alternative decoder f(’icc
that can satisfy:

mask(X; M) ~ mask(Fie.(F. mask(X;M))); M), (24)

embed_enc (

where F . can be optimized as:

L=

7, = |Imask(X; M) — mask(Feo(Fe mask(X; M))); M)|I3

embed enc(

]—‘deC =argminE[Lz |. (25)

dec
]:/

dec

21



Under review as a conference paper at ICLR 2026

Using this approximation, the classical MAE loss can be rewritten as:

L'~ |[mask(Feo(Fe (mask(X; M))); M)

embed_enc

— mask(Faec(F (mask(X; M))); M)]J3.

embed_enc

(26)

To draw a connection to contrastive learning, we define the following similarity measure:
G'(Zy,Z5) S Hmask(féec(zl);ﬁ) —mask(Fiee(Za); M)||2. 27

Then the classical MAE loss can be rewritten as:

L'~ G (F, (mask(X; M)), F. (mask(X; M))), (28)

embed_enc » Y embed_enc

where F’

embed_enc

is ensured non-trivial by Equation

This reveals the contrastive learning view of classical MAE: L’ encourages the encoder F_ , 4 enc

to produce similar latent representations from two complementary masked views of the same input
signals:

[mask(X;M), mask(X;M)] , (29)

which explicitly promotes the learning of occlusion-invariant representations in the signal domain.

SPAR. We now turn to SPAR. To unify the components used in encoding, we define an extended

encoder fenc that encapsulates the signal, spatial, and structural embeddings, along with the encoder
Fembed_enc and additional pre-decoder inputs:

fenc(mask(é\f;M),S,R) S (fenc(mask(.;c' +S+ 7~?,; M)),mask(g' + ’k,ﬁ)) . (30)

By the same logic as for classical MAE, we can assume the existence of a decoder ]?Sig_dec that
reconstructs mask (X'; H) almost losslessly from the output of Fe.:

mask(X; M) ~ mask(Fsig_dec(Fenc(mask(X; M),S,R)); M). (31)
We now define another similarity measure:
Geig(Z1, Z2) = |mask(Fuig_aec(Z1); M) — mask(Fuig_aec(Z2); M)|3. (32)

Let Lgig denote the signal reconstruction loss in SPAR. Then we have the approximation similar to
Equation 28}

Lgig = Gsig(Fenc(mask(X; M),8,R), Fonc(mask(X; M),S,R)). (33)

Following the same argument of Kong et al. (Kong & Zhang, [2023), this shows that Lg;, in SPAR
can be viewed as a contrastive loss between two masked views of the signal, enriched with shared
spatial and structural context:

[(mask(k’;M)7S,7'\’,)7 (mask(X;M),S,’R)] ) (34)

Since SPAR treats spatial positions symmetrically with signals—both in embedding and reconstruc-
tion—we can apply the same reasoning to the spatial reconstruction loss L. This yields another
type of contrastive pair:

[(X,mask(S;M),’R)7 (X7mask(8;ﬁ),72)] ) (35)

O
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E ADDITIONAL EXPERIMENTAL SETUP

E.1 BASELINE METHODS DESCRIPTIONS

Below, we provide detailed elaborations on the baseline methods introduced in Section 4}

CMC (Tian et al,[2020) Learns shared representations by maximizing mutual information between
views, enabling view-agnostic and scalable contrastive learning across multiple modalities.

Cosmo (Ouyang et al.,[2022) Integrates contrastive feature alignment with attention-based selective
fusion to effectively capture shared and distinctive patterns from multimodal data under scarce
labeling.

SimCLR (Chen et al.l|2020) Forms discriminative visual embeddings by aligning augmented image
pairs through a nonlinear projection and optimizing the NT-Xent contrastive loss.

AudioMAE (Huang et al.,2022)) Applies masked autoencoding to audio by operating on spectrogram
patches, using a Transformer to reconstruct masked regions and capture time-frequency patterns
without relying on external modalities.

CAV-MAE (Gong et al.,[2022)) Combines masked autoencoding and contrastive learning in a unified
audio-visual framework, using modality-specific encoders and a joint decoder to learn both fused and
aligned representations from spectrogram and image patches.

FOCAL (Liu et al.| 2023)) Separates multimodal time-series signals into shared and private latent
spaces, enforcing orthogonality and applying contrastive and temporal constraints to capture both
modality-consistent and modality-exclusive features.

FreqMAE (Kara et al.,|2024b)) Enhances masked autoencoding for multimodal sensing by incorpo-
rating frequency-aware transformers, factorized fusion of shared and private features, and a weighted
loss that prioritizes informative frequency bands and high-SNR samples.

PhyMask (Kara et al.,2024a) Improves masked autoencoding by adaptively selecting time-frequency
patches based on energy and coherence metrics, enabling efficient and informative masking tailored
to physical sensing signals.

E.2 SETTINGS FOR MULTI-MODAL MULTI-NODE VEHICLE CLASSIFICATION DATASET

The Multi-Modality Multi-Node Vehicle Classification Dataset (M3N-VC) (Li et al.| |2025) (CC
BY 4.0) comprises synchronized audio and vibration recordings of four vehicle types, along with
background noise, collected from March 2023 to October 2024. Data were gathered across six distinct
real-world scenes, each featuring diverse terrain types (asphalt, dirt, gravel, and concrete) and varying
weather conditions (sunny, rainy, and windy).

Each scene is instrumented with a spatially distributed sensor network composed of 6 to 8 nodes.
Every node includes a co-located microphone (sampled at 16 kHz) and a geophone (sampled at 200
Hz). Vehicle GPS trajectories were recorded at a rate of 1 Hz. All recordings are segmented into
non-overlapping 2-second clips, resulting in a total of 21,694 samples. These clips are transformed
into mel-scale spectrograms for model input. GPS coordinates are converted into meter-level spatial
positions using the Local Tangent Plane approximation (Agency, |1987).

The dataset follows the official temporal split for training and validation (approximately 3:1). Unless
otherwise noted, all models—including ours and the baselines—are pretrained on all six scenes.

We evaluate model performance on three downstream tasks:

Single-Vehicle Classification. For this task, we use scene H24 for both fine-tuning and testing. A
simple linear classifier is employed as the task head, trained using standard cross-entropy loss.

Single-Vehicle Localization. This task also uses scene H24 for fine-tuning and testing. A single
transformer layer is used as the task head and optimized with the mean squared error (MSE) loss.

Multi-Vehicle Joint Classification and Localization. For multi-vehicle settings, we use scene 122,
which contains multiple moving vehicles. A two-layer transformer serves as the task head, trained
with a DETR-style loss function (Carion et al.| 2020) to handle set-based predictions.
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Additionally, we conduct a fine-tuning on unseen placement experiment, where models are pre-
trained on all scenes except HO8 and H24 (which share similar placements). We then finetune and
evaluate on scene H24.

E.3 SETTINGS FOR RIDGECREST SEISMICITY DATASET

This dataset contains seismic waveform recordings from 31,452 earthquake events (M > -0.5)
occurring between January 1, 2020, and December 31, 2024, within an 80 km radius of (35.9°,
-117.6°) in the Ridgecrest region of California. The data collection and processing procedures largely
follow the methodology outlined by Si et al. (Si et al., [2024).

We obtained the earthquake event catalog by querying the Southern California Seismic Network
(SCSN) (California Institute of Technology (Caltech),|1926) via the Southern California Earthquake
Data Center (SCEDC) (Center, |2013) online catalog. The selected events include magnitudes higher
than -0.5 and depths larger than than -5 km. For each event, we collected three-component (East,
North, Vertical) waveform data from 16 stations in the California Integrated Seismic Network, using
two modalities: high-gain broadband seismometers and high-gain accelerometers. All data are
sampled at 100 Hz and retrieved in miniSEED format from the SCEDC Open Data repository.

For each event, we extract a 30.72-second window from all channels as model input. During
preprocessing, we detrend the waveforms and apply the Short-Time Fourier Transform (STFT) to
generate spectrograms. A 2-35-Hz band-pass filter is applied to remove low-frequency noise (e.g.,
oceanic and atmospheric microseisms) and high-frequency instrumental or environmental noise. We
convert spatial positions of each station from GPS signals to kilo-meter-level positions using Local
Tangent Plane projection (Agencyl 1987).

We split the dataset temporally: events from 2020 and 2021 are used for training, while events from
2022 to 2024 form the validation set. This results in 22,360 events in the training set and 9,092 events
in the validation set.

For the downstream task of earthquake localization, we employ a two-layer transformer as the task
head, optimized using the mean squared error (MSE) loss.

E.4 SETTINGS FOR REALWORLD-HAR DATASET

The RealWorld Human Activity Recognition (HAR) dataset (Sztyler & Stuckenschmidt, 2016)
comprises multi-modal activity signals collected from 15 participants. The dataset captures eight
common activity types: walking, sitting, lying, climbing down, running, standing, climbing up, and
jumping.

Sensor data were collected from seven body-mounted nodes, located at the chest, forearm, head,
shin, thigh, upper arm, and waist. For our study, we focus on three sensing modalities: acceleration,
gyroscope, and magnetic field. Due to substantial data loss in the forearm sensor, we exclude that
position and retain six body locations for analysis. As the dataset does not provide explicit spatial
coordinates, we manually assign approximate 3D spatial positions to each sensor based on standard
anatomical placement on a standing person.

All sensor signals are resampled to S0Hz and segmented into non-overlapping 4-second windows,
resulting in a total of 13,351 samples. To evaluate generalization to unseen individuals, we adopt
a subject-based split: data from the first 10 participants are used for training, while data from the
remaining 5 participants form the validation set.

For the downstream task of human activity recognition, we use a simple linear layer as the task head,
trained with standard cross-entropy loss.

F LLM USAGE STATEMENT

LLMs were used in a supportive role for polishing the writing and providing occasional coding
assistance, with all outputs carefully verified by the authors. Technical ideas, experimental designs,
and theoretical analyses were developed by the authors. The authors take full responsibility for the
final content of this paper.
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