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Figure 1: GeoVideo introduces a geometric consistency loss using predicted depths and camera poses
to enhance multi-view consistency of the output frames, leading a high-quality 3D reconstruction
from the output video frames.

Abstract

Recent advances in video generation have enabled the synthesis of high-quality and
visually realistic clips using diffusion transformer models. However, most existing
approaches operate purely in the 2D pixel space and lack explicit mechanisms
for modeling 3D structures, often resulting in temporally inconsistent geometries,
implausible motions, and structural artifacts. In this work, we introduce geometric
regularization losses into video generation by augmenting latent diffusion models
with per-frame depth prediction. We adopted depth as the geometric representation
because of the great progress in depth prediction and its compatibility with image-
based latent encoders. Specifically, to enforce structural consistency over time, we
propose a multi-view geometric loss that aligns the predicted depth maps across
frames within a shared 3D coordinate system. Our method bridges the gap between
appearance generation and 3D structure modeling, leading to improved spatio-
temporal coherence, shape consistency, and physical plausibility. Experiments
across multiple datasets show that our approach produces significantly more stable
and geometrically consistent results than existing baselines.

1 Introduction

Video generation has recently made significant strides in creating visually impressive and high-quality
clips [4} 128,169, 29| 53], [77]. Powered by diffusion transformer models [39] and large-scale training
datasets [12} 163} (8l |61]], these systems are capable of synthesizing realistic videos conditioned on
various inputs, such as text prompts [26} 135, 26, 62] or images [12, 143} |57, [38]]. Despite these
successes, current video generation models often fail to accurately capture the underlying geometry,
coherent motions, and physical consistency in dynamic scenes. As a result, the generated videos,
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although plausible at first glance, often exhibit temporal artifacts such as shape deformation, structure
flickering, and implausible object interactions.

This limitation stems from the fact that most video generation models operate purely in the 2D
pixel/latent space and rely on temporal attention to promote cross-frame coherence. Although
effective in maintaining short-term consistency, these approaches lack explicit mechanisms to model
3D structures, leading to violations of object permanence, shape integrity, and motion realism.

This shortcoming highlights a deeper insight: realistic video generation demands more than visual
coherence—it requires a structured understanding of the 3D world. After all, videos can naturally
encode spatio-temporal observations of real environments. Viewed through this lens, video generation
can be reframed as a form of world modeling—the construction of continuous, physically grounded
representations of the dynamic world. Emerging research on world generation [4} 5] underscores its
potential in applications such as 3D scene synthesis [34} 70, i44], robotics [64} 120} 56, and embodied
Al [41}, 45| [14]. However, achieving physically plausible world modeling requires the generated
scenes to maintain consistent geometry over time, which current models struggle to enforce.

To address these limitations, we propose GeoVideo, which introduces geometric regularization into
the video generation process. Specifically, we augment the generative model to predict per-frame
depth maps alongside RGB frames and enforce cross-frame depth consistency. This regularization
encourages the model to maintain coherent 3D geometry throughout the video. By aligning predicted
depth across consecutive frames, the model is guided to better capture the underlying scene structure,
resulting in enhanced realism, temporal stability, and physical plausibility. Our key insight is that
depth consistency offers implicit geometric supervision that complements appearance-based learning.
This helps bridge the gap between 2D frame-level synthesis and 3D-consistent scene modeling,
paving the way toward more structured and physically grounded video generation.

The main contributions of this work are:

* Explicit Geometry Modeling in Video Generation. We introduce per-frame depth predic-
tion into latent diffusion-based video generation models, enabling explicit modeling of 3D
scene structure throughout the generation process.

* Geometric Regularization. We propose a cross-frame consistency loss that lifts pre-
dicted depths into a global 3D point cloud and supervises them via multi-view reprojection
alignment, encouraging globally coherent geometry.

* Improved Spatiotemporal Coherence. Our approach significantly enhances structural
consistency, motion stability, and geometric plausibility in generated videos, as demonstrated
on several benchmarks.

2 Related Work

2.1 Diffusion Models for Video Generation

The remarkable success of diffusion models in image generation [42}47,46]] has recently inspired their
extension to video generation [25} 165 [13]], where they have quickly become the dominant paradigm.
In particular, latent diffusion [55, 46| has emerged as a widely adopted strategy: a VAE [27] module
first encodes video data into a compact latent space, and the diffusion process is performed within
this lower-dimensional representation. Current state-of-the-art methods [69, 29, [76] utilize a 3D
Variational Autoencoder [69]] in combination with a Diffusion Transformer (DiT) [39] backbone,
achieving highly realistic and high-fidelity video synthesis. Despite these advances, existing diffusion-
based video generation models [18, [3]] often struggle to accurately capture geometric structures,
coherent temporal motions, and physical consistency. To mitigate these limitations, recent research
has explored the introduction of additional priors to guide the generation process toward better
alignments with real-world dynamics.

For example, Track4Gen [22] jointly models video generation and point tracking across frames
within a single network, providing enhanced spatial supervision over diffusion features and improving
both motion and structural consistency. Similarly, VideoJAM [6] learns a joint appearance-motion
representation that instills an effective motion prior to the video generator. Other contemporary
approaches have also taken advantage of motion representations to improve motion coherence in
image-to-video generation tasks [50,59]. Meanwhile, OmniVDiff [66] models appearance, depth,



Canny edges, and semantic segmentation simultaneously, enabling multi-modal video generation and
multi-modal conditional generation. However, it does not explicitly impose priors on the generated
auxiliary signals. IDOL [73] proposes a human-centered joint video-depth generation framework,
but it does not introduce explicit priors and is limited to human-centered scenarios. WVD [75]]
supports the simultaneous generation of appearance and point representations but is restricted to
image-to-video translation in small static environments. Complementary to these efforts, Yue et
al. [72] proposed to lift the semantic characteristics of each frame into a 3D Gaussian representation,
demonstrating that fine-tuning a foundation model with these 3D-aware characteristics leads to better
performance across downstream tasks. Building on these insights, our work seeks to jointly model
geometry during video generation and introduce an explicit geometric regularization loss to further
improve the quality, consistency, and realism of synthesized videos.

2.2 Geometry-Related Tasks with Pretrained Diffusion Models

Another line of work uses pre-trained generative models [46, 3| 67] for geometry-related tasks.
A pioneering effort in this direction is Marigold [24]], which first proposed treating depth as an
image-like modality. By encoding depth maps into the same latent space as RGB images using
a latent diffusion VAE, Marigold demonstrated that image generation models can be repurposed
into depth estimators. This idea has inspired a series of subsequent works [[10, [1]] that exploit the
strong priors of diffusion models to estimate geometric properties such as depth and surface normals.
Following this direction, DepthCrafter [[19] and Depth Any Video [68] adapt video generation models
to perform video-based depth estimation, effectively extending Marigold’s latent-space strategy from
images to videos. Similarly, DiffusionRender [32] leverages video generation models for inverse
rendering tasks, jointly recovering not only scene geometry but also materials and lighting from video
sequences. Building on these advancements, Geo4D [23]] further expands the use of video generators
to tackle 4D scene reconstruction, capturing dynamic scene structures over time.

2.3 3D Scene Generation

The generation of 3D content has also emerged as a highly active area of research. The early text-
to-3D scene generation methods [17, 9] mainly relied on image generation inpainting models and
progressively completed a scene through multiple iterations, resulting in limited efficiency and quality.
Subsequent methods design specialized models for text-to-3D scene generation. Director3D [30]
proposes a text-to-3D generation framework capable of synthesizing both real-world 3D scenes
and adaptive camera trajectories. Recently, some methods like SplatFlow [11]] and Bolt3D [52]
have also leveraged intermediate 3D representations to directly generate scenes in the form of 3D
Gaussian Splatting, either through multiview diffusion or flow matching models. Prometheus [71]
introduces a multiview diffusion model based on an RGB-D latent space to generate 3D Gaussian
scenes. However, since Prometheus relies primarily on image-based models, the quality and fidelity
of the generated 3D content remain limited. Apart from the methods mentioned above, LDM3D [51]
is a previous work similar to ours that re-trains Stable Diffusion, but its scope is limited to the latent
space of RGB-D images. Our method incorporates geometric regularization into the video generation
model, enabling the direct extraction of high-quality 3D scenes from the generated videos.

3 Approach

We begin by reviewing the preliminaries of the video diffusion models in Section Section
and Section [3.3]then describe the proposed RGB-D video generation model and our novel geometric
regularization loss, respectively. Finally, Section introduces the training procedure.

3.1 Preliminaries: Video Diffusion Models

Our method is based on latent diffusion-based video generation models, particularly those with
3D VAE backbones such as CogVideoX [69], and transformer-based denoisers such as DiT [39].
These models encode video frames into a compact latent space and apply denoising diffusion
to synthesize temporally coherent video sequences. Formally, let x;.7 denote a video clip of T’
frames, and let z = E'(x1.7) be its latent representation encoded by a VAE. Latent diffusion models
define a forward noising process over z by gradually adding Gaussian noise: q(z(t) \ z(t’l)) =
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Figure 2: Overview of the proposed method. The orange-yellow modules are additionally added
components. D, D., and Dy respectively denote the heads for decoding motion probability, camera
pose, and depth from the generated features. We use their outputs to define a geometric consistency
loss to regularize the video generative model.

N(z®; Jfayz=V (1 — a;)I), where t = 1,...,S indexes the diffusion timestep and « is a
variance schedule. The model learns a reverse process to sample denoised latents: py(z(*=1) | z(1)) =
N (2 1g(2") 1), Sg(t)), which is parameterized by a spatio-temporal transformer (DiT). After
obtaining the denoised latent z(©) the final RGB video is reconstructed via the VAE decoder.

3.2 RGBD Video Modeling

To incorporate explicit geometric structure into the video generation process, we choose to represent
scene geometry using per-frame depth maps. This choice is motivated by two key factors. First,
recent advances [7,|19] in video depth estimation have yielded robust and high-quality predictions,
making it feasible to obtain reliable depth supervision even in unconstrained settings. Second, depth
maps have a natural image-like structure and can be efficiently encoded into the same latent space
as RGB frames using a shared VAE encoder. This design has been validated in prior works such as
Marigold [24] and DepthCrafter [19]. Using this modality compatibility, we can extend existing latent
video diffusion models to jointly generate RGB and depth with minimal architectural modifications.

As shown in Figure [2| given a pair of RGB and depth frames (xX38 xD ), we encode them in a

shared latent space:
z = [2°%% 2" = [E(17); E(xr)],

where E(-) denotes the VAE encoder and [-; -] denotes channel-wise concatenation. The diffusion
model operates on the latent sequence z;.7 and learns to jointly denoise both modalities. The
generated latent is then decoded by the VAE decoder into video frames and depth maps.

We model the joint distribution over RGB and depth frames as:

P(xF, x0r) = P(z) [ [ P, %P | 2),
t=1

where each pair is generated from the same underlying latent representation. This formulation enables
a tight coupling between appearance and geometry throughout the generation process.

3.3 Introducing Geometric Regularization

Although per-frame depth maps provide localized 3D cues, they do not guarantee cross-frame
consistency. To enforce coherent 3D structure over time, we introduce a geometric regularization
loss that lifts predicted depths into world coordinates using known camera intrinsics and extrinsics.
Since depth and appearance are decoded from the same underlying features, applying supervision on
the depth prediction allows us to enhance the geometric consistency of the underlying shape without
needing to account for view-dependent appearance differences across views.



Global point cloud construction. Since the built-in 3D VAE in video generation models is
computationally heavy, we additionally train a lightweight decoder Dy to convert the depth latent zP°
into depth map D € R *W of the same resolution as the RGB frame, enabling more fine-grained
and accurate geometric regularization. In parallel, and inspired by VGGT [58]], we also predict the
camera intrinsics and extrinsics for each frame using a camera head from generated zZRCB. Let D; be
the predicted depth map for frame i, and P; € SE(3) its camera pose. Using the intrinsic matrix K,
we backproject depth into the camera space and transform it into the world space:

X; =P; -7 (D;, K), (1

where 7! denotes backprojection from depth to 3D coordinates. The global point cloud is then
obtained by aggregating:

T
Xglobal = U X;. 2
=1

We denoise Xgiopa using voxel grid downsampling and statistical outlier removal to improve robust-
ness and computational efficiency.

Depth reprojection consistency. To supervise consistency, we reproject the global point cloud
back to each frame and compare its depth with the predicted depth map. For frame 7, we project:

ﬁl(u) = 7rZ(P_1 ‘X), XE€ Xelobal, 3)

i

where 7 (-) denotes depth value after projection into image coordinates u. We then compute the loss:

Laeo= 3 77 O LIDu(w) = Diw)] < ) [D; ) ~ Dy(u)]. @

uey;

where V; is the set of valid pixels and J is a tolerance threshold set to 0.05. This encourages global
shape consistency by penalizing depth discrepancies only when local reprojections are reliable. When
multiple points project to the same pixel, we use the average of these points to compute loss. For
dynamic videos, we introduce an additional head D,, that predicts an object movement probability
map [31]] from the generated video features zRCB, representing pixels that correspond to dynamic
content based on multi-frame information. For dynamic pixels identified in the probability map, we
only align them with points of similar probability in adjacent frames.

3.4 Parameters Initialization and 2-stage Fine-tuning with Geometric Regularization

Parameters Initialization. To enable the pretrained video generation model to support dual-modality
inputs (RGB and Depth), we modify the input and output projection layers of the transformer. Let
Wi, € R *C" be the input projection matrix, where C,, is the input feature dimension and C; is the
transformer token dimension. Inspired by ControlNet [[74], we extend it by vertically concatenating a
zero matrix of the same shape, resulting in VVI:' € R2¢vxC  The associated input bias by, € R
is left unchanged. On the output side, let W, € R€*%> denote the output projection matrix. To
accommodate dual outputs, we horizontally concatenate a cocp of Wy, resulting in Wi, € RC+*2C0,
The output bias by, € R is duplicated to form b, € R?“>. The initialization is summarized as:

(%)
W+

out

= Wour Wou] € RO pE = {I;Ht] R
out

This initialization ensures that the depth modality is initially a zero-influence pathway, allowing the
model to begin fine-tuning from the pretrained RGB state without disrupting performance. During
fine-tuning, the model progressively learns to represent depth channels.
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Figure 3: Comparisons on the down-stream 3D reconstruction task. The detailed prompt inputs
are provided in the supp. materials. The top three rows show samples of video generation results of
each method, while the corresponding 3D reconstructions are show in the bottom row.The videos
generated by our method offer complete and high-quality 3D reconstructions.

Stage 1: RGB-D Joint Generation. In the first stage, we fine-tune the model to generate RGB and
depth frames simultaneously. To ensure stable learning, we apply a gradually increasing weight to
the depth loss:

Adepin () = min(1.0,0.1 + «t), 6)

where ¢ is the training step and « is set to 0.0001. This gradual increase allows the model to adapt to
the new depth supervision without destabilizing RGB generation. The loss for this stage is:

Liage-1 = L + Adepn(t) - Ligie- ©)

Here, £8P and LD, are formulated using the v-prediction 48] strategy.

Stage 2: Geometric Regularization. Once the model can generate perceptually and structurally
coherent depth maps, we introduce the geometric regularization term Lg, (described in Section 3).
This loss encourages cross-frame depth consistency via reprojection-based supervision.

The final training objective becomes:

ACto'[al = Ede(fi”B + )\depth . Eleff + )\geo . ACgeo‘ (8)

Here, Ageo is set to 0.5. This staged training process allows the model to gradually learn to incorporate
geometry without sacrificing visual fidelity.

4 Experimental Results

Implementation details. Our experiments are primarily based on CogVideoX-5B [69], a popular
and advanced diffusion-based video generation model built on the DiT architecture. We conducted
experiments for both text-to-video (T2V) and image-to-video (I2V) generation tasks. The experiments



Table 1: Multi-view geometric consistency evaluation on the DL3DV dataset. We use VGGT to
predict multi-frame depth and pose, and evaluate consistency using our proposed Multi-View Consis-
tency Score (MVCS) and reprojection error. MVCS measures frame-to-frame depth consistency, 1:
higher is better; while Reprojection Error evaluates how well the globally reconstructed 3D structure
aligns with original views, |: lower is better.

Method MVCS 1 Reproj. Error |
CogVideoX-5B (T2V) 61.2 4.58
CogVideoX-5B (T2V, finetuned on DL3DV) 66.4 3.91
Ours wW/0 Lge, (T2V) 71.3 3.36
Ours (T2V) 77.2 2.52

LucidDreamer  Director3D  SplatFlow GeoVideo LucidDreamer ~ Director3D  SplatFlow GeoVideo

Figure 4: Comparisons with text to 3d scene generation methods. The detailed prompt inputs are
provided in the supp. materials.

are categorized into two types: videos of static scenes and videos of dynamic scenes. For static
scenes, we train on the DL3DV-10K [33]) dataset. For dynamic videos, we collect a large-scale dataset
of approximately 200,000 videos from online sources such as Pexels [40]. We use 544 and 1000
videos from the two datasets for evaluation, respectively. We train the model with a learning rate of
2e-5 on 8 H20 GPUs for 20,000 steps. The batch size is 1 per GPU, with 15K steps for stage 1 and
5K steps for stage 2. The video resolution is set to 768x1360 with 81 frames, following the standard
configuration supported by CogVideoX. The depth labels for videos are estimated using Video Depth
Anything [[7]], while for dynamic videos, we estimate camera poses using MegaSaM [31]]. For video
captions, we use CogVLM [[60]], as adopted in CogVideo. D,, D., and Dy are distilled from the
corresponding outputs of MegaSaM [31]], VGGT [58]], and Video Depth Anything [[7]], respectively.
After distillation, their parameters are kept fixed during fine-tuning to provide supervision.

Scene generation results. The original video generation model already possesses some ability
to generate coherent scenes. However, due to the typically small range of viewpoint changes, it
is difficult to extract sufficient multi-view information from the generated videos to reconstruct a
meaningful 3D scene (as shown in the first row of Figure 3. To specialize the model for scene-level
video generation, we fine-tune the video generation model on the DL3DV dataset [33]. However,
since the base model relies purely on 2D modeling, it struggles to maintain geometric consistency
under rapid camera viewpoint changes. The second row of Figure [3]shows the results of CogVideoX
after being fine-tuned on DL3DV, where such inconsistencies are still apparent. In contrast, after
integrating our proposed geometric modeling framework, we are able to maintain consistent multi-
view structures even under complex viewpoint variations (Figure 3] third row). To further demonstrate
the geometric consistency of the generated results, we perform structure-from-motion (SfM)
reconstruction on videos generated by different methods. The original CogVideoX outputs fail for
reconstruction due to a lack of sufficient multi-view cues. The fine-tuned model only achieves partial



Table 2: Quantitative results on the DL3DV dataset for text-to-3D scene generation. We compare
our method against Director3D, LucidDreamer, and SplatFlow across multiple perceptual metrics. 1:
higher is better; |: lower is better.

Method FID | CLIPScore T NIQE | BRISQUE |

LucidDreamer 9] 79.96 31.25 11.23 44.52

Director3D [30] 90.20 30.04 13.79 51.67

SplatFlow [[11] 86.77 3142 14.15 48.85

Ours 72.78 33.84 8.53 36.41
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Figure 5: Comparison with original video generation method & ablation study. The original
video generation model, as well as naive joint modeling of depth, struggle to maintain geometric
consistency of objects throughout their motion.

reconstruction with limited consistency among a few consecutive frames. In contrast, our method
enables high-quality and structurally complete 3D scene reconstructions.

To further evaluate 3D consistency across frames, we introduce two metrics based on VGGT [58]]:
the Multi-View Consistency Score (MVCS) and the Reprojection Error. Given the predicted
depth maps and camera poses from VGGT, we project each frame into a shared 3D space to compute
cross-view consistency. MVCS measures the alignment of depth maps across views by warping each
depth map to neighboring frames and comparing it against the corresponding predicted depth. In
contrast, Reprojection Error evaluates the pixel-wise distance between original image coordinates
and those reprojected from the reconstructed global point cloud, serving as a direct indicator of
geometric alignment accuracy. Table[T|reports MVCS and Reprojection Error for different models on
the DL3DV dataset. Our method significantly outperforms CogVideoX-5B and its finetuned variant.
Notably, removing the geometric loss Ly, leads to a clear performance drop, demonstrating the
effectiveness of our geometric regularization in preserving 3D structural consistency across views.

Furthermore, we compare our method with three representative text-to-3D scene generation baselines:
Director3D [30]], LucidDreamer [9], and SplatFlow [11]. The qualitative comparison of generation
results can be found in Figure ] We then follow Director3D and use the following metrics for quanti-
tative evaluation. We use CLIPScore [15] to assess the alignment between the generated content and
the text prompt. For perceptual evaluation, we adopt the Fréchet Inception Distance (FID)[16], a
standard metric for assessing visual fidelity and diversity. In addition, we use two no-reference image
quality metrics—Natural Image Quality Evaluator (NIQE)[37] and Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [36] to directly assess perceptual quality based on image
statistics, without relying on ground truth references. Table [2[summarizes the quantitative results in
the DL3DV dataset. Our method consistently outperforms all baselines in all metrics. In particular,
we achieve the lowest FID and the highest CLIPScore, demonstrating superior semantic consistency



Table 3: Quantitative comparison with CogVideoX-5B on T2V and I2V tasks. We evaluate
on CLIPScore, FVD (Fréchet Video Distance), and metrics from VBench: Subject Consistency
(SC), Background Consistency (BC), Motion Smoothness (MS), Spatial Relationship (SR), and
Video-Image Subject Consistency (VISC). 1: higher is better; |: lower is better.

Method CLIPScoret FVD| SCt BCt MSt SR{ VISC 1t
CogVideoX-5B (T2V) 32.30 1453 938 951 932 794 -
Ours w/o Lgeo (T2V) 33.25 1342 943 960 954 874 -
Ours w/o MP (T2V) 33.83 131.6 958 963 967 882 -
Ours (T2V) 34.25 1227 972 978 981 903 -
CogVideoX-5B (I12V) 33.42 1398 946 964 959 805 952
Ours w/o Lgeo (12V) 34.13 1280 950 97.1 963 863 963
Ours w/o MP (12V) 34.77 1265 969 976 969 888 968
Ours (I12V) 35.02 1205 981 985 986 911 976

and perceptual quality. Moreover, our NIQE and BRISQUE scores are also lower, indicating a closer
match to natural image distributions compared to prior methods. Compared to these 3D generation
methods, our approach achieves higher visual fidelity by leveraging the strong priors from pretrained
video generation models.

Video generation results. Table [3| presents a quantitative comparison between our method and
CogVideoX-5B on both text-to-video and image-to-video generation using the 1000 evaluation videos.
We report CLIPScore [15] to measure semantic alignment, FVD [54] to assess overall visual quality
and temporal consistency, and multiple metrics from VBench [21], including Subject Consistency
(SC), Background Consistency (BC), Motion Smoothness (MS), Spatial Relationship (SR), and
Video-Image Subject Consistency (VISC). Our method achieves superior performance across all
metrics, clearly outperforming CogVideoX-5B in both settings. Notably, we observe substantial
improvements in motion quality (MS), subject coherence (SC), and Spatial Relationship (SR).

Ablation Studies. Our method is based on two core components: (1) explicitly modeling depth
and (2) applying supervision on the jointly generated depth. We conduct ablation studies targeting
these two aspects. As shown in Figure[5] we present an image-to-video (I2V) result demonstrating
that simply modeling both depth and appearance already improves the video quality to some extent.
This is because the temporal consistency of the depth labels themselves imposes a form of constraint
across frames. However, this alone is insufficient to ensure global geometric consistency throughout
the video. When our proposed geometric loss Ly, is added, the generated videos exhibit significantly
improved frame-to-frame continuity and structural coherence. The corresponding metric improve-
ments are shown in Table [3]and Table[I] In addition, we also study the impact of incorporating the
motion probability (MP) map in dynamic videos. Table [3|shows that ignoring the MP map leads to
noticeable performance drops, particularly in the T2V setting.

5 Conclusions

In this work, we proposed to augment pre-trained video generation models with geometric regulariza-
tion by introducing a per-frame depth prediction and enforcing cross-frame depth consistency. This
approach leverages the natural spatio-temporal cues encoded in video to guide the model toward
learning stable and physically grounded scene representations. Our method provides implicit geomet-
ric supervision through depth alignment, allowing for more accurate modeling of object permanence,
spatial relationships, and scene dynamics. Through extensive experiments, we demonstrate that our
framework significantly improves the geometric fidelity and temporal stability of generated videos,
outperforming prior baselines in both qualitative and quantitative evaluations. We believe that this
represents an important step toward bridging video generation and 3D world modeling, opening new
possibilities for downstream applications in simulation, robotics, and embodied intelligence.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly explain how our method introduces
geometric regularization into video generation models.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss this issue in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our method does not make strong theoretical contributions.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed implementation information in Section 4.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: At this stage, we do not release the code but provide generated video results
from our model.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, these details are thoroughly discussed in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, please refer to the tables in the main text.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, these details are thoroughly discussed in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have complied with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we addressed this in the introduction.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We do not identify such a risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we have added explanations in the relevant sections.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our method does not rely on large language models (LLMs) at its core.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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