
Published as a workshop paper at DeLTa Workshop (ICLR 2025)

HIGH-ORDER MATCHING FOR ONE-STEP SHORTCUT
DIFFUSION MODELS

Bo Chen∗ Chengyue Gong† Xiaoyu Li‡ Yingyu Liang§

Zhizhou Sha¶ Zhenmei Shi∥ Zhao Song∗∗ Mingda Wan††

ABSTRACT

One-step shortcut diffusion models [Frans, Hafner, Levine and Abbeel, ICLR
2025] have shown potential in vision generation, but their reliance on first-order
trajectory supervision is fundamentally limited. The Shortcut model’s simplis-
tic velocity-only approach fails to capture intrinsic manifold geometry, leading to
erratic trajectories, poor geometric alignment, and instability-especially in high-
curvature regions. These shortcomings stem from its inability to model mid-
horizon dependencies or complex distributional features, leaving it ill-equipped
for robust generative modeling. In this work, we introduce HOMO (High-Order
Matching for One-Step Shortcut Diffusion), a game-changing framework that
leverages high-order supervision to revolutionize distribution transportation. By
incorporating acceleration, jerk, and beyond, HOMO not only fixes the flaws of
the Shortcut model but also achieves unprecedented smoothness, stability, and
geometric precision. Theoretically, we prove that HOMO’s high-order supervi-
sion ensures superior approximation accuracy, outperforming first-order methods.
Empirically, HOMO dominates in complex settings, particularly in high-curvature
regions where the Shortcut model struggles. Our experiments show that HOMO
delivers smoother trajectories and better distributional alignment, setting a new
standard for one-step generative models.

1 INTRODUCTION

In recent years, deep generative models have exhibited extraordinary promise across various types
of data modalities. Techniques such as Generative Adversarial Networks (GANs) Goodfellow et al.
(2014), autoregressive models Vaswani (2017), normalizing flows Lipman et al. (2022), and diffu-
sion models Ho et al. (2020) have achieved outstanding results in tasks related to image, audio, and
video generation Kalchbrenner et al. (2018); Blattmann et al. (2023). These models have attracted
considerable interest owing to their capacity to create invertible and highly expressive mappings,
transforming simple prior distributions into complex target data distributions. This fundamental
characteristic is the key reason they are capable of modeling any data distribution. Particularly, Lip-
man et al. (2022); Liu et al. (2022a) have effectively unified conventional normalizing flows with
score-based diffusion methods. These techniques produce a continuous trajectory, often referred to
as a “flow”, which transitions samples from the prior distribution to the target data distribution. By
adjusting parameterized velocity fields to align with the time derivatives of the transformation, flow
matching achieves significant experimental gains and retains a strong theoretical foundation.

Despite the remarkable progress in flow-based generative models, such as the Shortcut model Frans
et al. (2025), these approaches still face challenges in accurately modeling complex data distribu-

∗ bc7b@mtmail.mtsu.edu. Middle Tennessee State University.
† cygong17@utexas.edu. The University of Texas at Austin.
‡ xiaoyu.li2@student.unsw.edu.au. University of New South Wales.
§ yingyul@hku.hk. The University of Hong Kong. yliang@cs.wisc.edu. University of

Wisconsin-Madison.
¶ shazz20@mails.tsinghua.edu.cn. Tsinghua University.
∥ zhmeishi@cs.wisc.edu. University of Wisconsin-Madison.

∗∗ magic.linuxkde@gmail.com. The Simons Institute for the Theory of Computing at UC Berkeley.
†† dylan.r.mathison@gmail.com. Anhui University.

1

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

tions, particularly in regions of high curvature or intricate geometric structure Wang et al. (2024a);
Hu et al. (2024d). This limitation stems from the reliance on first-order techniques, which primarily
focus on aligning instantaneous velocities while neglecting the influence of higher-order dynamics
on the overall flow geometry. Recent research in diffusion-based modeling Chen (2023); Hang &
Gu (2024); Lin et al. (2024) has highlighted the importance of capturing higher-order information
to improve the fidelity of learned trajectories. However, a systematic framework for incorporating
high-order dynamics into flow matching, especially in Shortcut models, remains an open problem.

In this work, we propose HOMO (High-Order Matching for One-Step Shortcut Diffusion), a revolu-
tionary leap beyond the limitations of the original Shortcut model Frans et al. (2025). While Short-
cut models rely on simplistic first-order dynamics, often empirically struggling to capture complex
data distributions and producing erratic trajectories in high-curvature regions, HOMO shatters these
barriers by introducing high-order supervision. By incorporating acceleration, jerk, and beyond,
HOMO not only addresses the empirical shortcomings of the Shortcut model but also achieves un-
paralleled geometric precision and stability. Where the Shortcut model falters—yielding suboptimal
trajectories and poor distributional alignment—HOMO thrives, delivering smoother, more accurate,
and fundamentally superior results.

Our primary contribution is a rigorous theoretical and empirical framework that showcases the dom-
inance of HOMO. We prove that HOMO’s high-order supervision drastically reduces approximation
errors, ensuring precise trajectory alignment from the earliest stages to long-term evolution. Empir-
ically, we demonstrate that the Shortcut model’s first-order dynamics fall short in complex settings,
while HOMO consistently outperforms it, achieving faster convergence, better sample quality, and
unmatched robustness. The contributions of our work is summarized as follows: (i) We introduce
high-order supervision into the Shortcut model, resulting in the HOMO framework, which includes
novel training and sampling algorithms. (ii) We provide rigorous theoretical guarantees for the ap-
proximation error of high-order flow matching, demonstrating its effectiveness in both the early and
late stages of the generative process. (iii) We demonstrate that HOMO achieves superior empir-
ical performance in complex settings, especially in intricate distributional landscapes, beyond the
capabilities of the original Shortcut model Frans et al. (2025).

2 PRELIMINARY

We begin with establishing the notations and theoretical foundations for the subsequent analysis in
this section.

2.1 NOTATIONS

We use Pr[·] to denote the probability. We use E[·] to denote the expectation. We use Var[·] to
denote the variance. We use ∥x∥p to denote the ℓp norm of a vector x ∈ Rn, i.e. ∥x∥1 :=

∑n
i=1 |xi|,

∥x∥2 := (
∑n

i=1 x
2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|. We use f(x) = O(g(x)) or f(x) ≲ g(x)
to denote that f(x) ≤ C · g(x) for some constant C > 0. We use N (0, I) to denote the standard
Gaussian distribution.

2.2 SHORTCUT MODEL

Next, we describe the general framework of flow matching and its second-order rectification. These
concepts form the basis for our proposed method, as they integrate first and second-order information
for trajectory estimation.
Fact 2.1. Let a field xt be defined as xt = αtx0 + βtx1, where αt and βt are functions of t, and
x0, x1 are constants. Then, the first-order gradient ẋt and the second-order gradient ẍt can be
manually calculated as ẋt = α̇tx0 + β̇tx1 and ẍt = α̈tx0 + β̈tx1.

In practice, one often samples (x0, x1) from (µ0, π0) and parameterizes xt (e.g., interpolation) at
intermediate times to build a training objective that matches the velocity field to the true time deriva-
tive ẋt.
Definition 2.2 (Shortcut models, implicit definition from page 3 on Frans et al. (2025)). Let ∆t =
1/128. Let xt be current field. Let t ∈ N denote time step. Let u1(xt, t, d) be the network to

2

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

be trained. Let d ∈ (1/128, 1/64, . . . , 1/2, 1) denote step size. Then, we define Shortcut model
compute next field xt+d as follow:

xt+d =

{
xt + u1(xt, t, d)d ifd ≥ 1/128,

xt + u1(xt, t, 0)∆t ifd < 1/128.

3 METHODOLOGY

Training a flow-based model like the Shortcut model using only first-order terms has limitations
compared to incorporating high-order terms. (1) First-order terms provide a less accurate approxi-
mation of the true dynamics, capturing only linear components and missing important nonlinearities,
which can lead to slower convergence. (2) While reducing complexity and overfitting, first-order
terms may limit generalization, especially in highly nonlinear systems. (3) In contrast, higher-order
terms improve accuracy and generalization by capturing complex patterns, though they increase
computational complexity and overfitting risks.

We introduce HOMO (High-Order Matching for One-step Shortcut Diffusion Model) to address
these issues. By leveraging high-order dynamics, HOMO improves the accuracy and stability of
field evolution approximations, capturing nonlinearities and enhancing generalization across various
scenarios.
Definition 3.1 (HOMO Inference). Let ∆t = 1/128. Let xt be the current field. Let t ∈ N
denote the time step. Let u1,θ1(·) and u2,θ2(·) denote the HOMO models to be trained. Let d ∈
(0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. Then, we define the HOMO computation of the
next field xt+d as follows:

xt+d =

{
xt + d · u1(xt, t, d) + d2

2 · u2(u1(xt, t, d), xt, t, d) if d ≥ 1/128,

xt +∆t · u1(xt, t, 0) + (∆t)2

2 · u2(u1(xt, t, 0), xt, t, 0) if d < 1/128.

The self-consistency target is to ensure that the model’s predictions are consistent across different
time steps. This is crucial for maintaining the stability and accuracy of the model over long-term
predictions.
Definition 3.2 (HOMO Self-Consistency Target). Let u1,θ1 be the networks to be trained. Let xt
be the current field and xt+d be defined in Definition 3.1. Let t ∈ N denote the time step. Let
d ∈ (0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. Then, we define the Self-Consistency target
as follows:

ẋtargett = u1,θ1(xt, t, d)/2 + u1,θ1(xt+d, t, d)/2

The second-order HOMO loss is designed to optimize the model by minimizing the discrepancy
between the predicted and true velocities and accelerations. This loss function ensures that the
model not only captures the immediate dynamics but also the underlying trends and changes in the
system.
Definition 3.3 (Second-order HOMO Loss). Let xt be the current field. Let t ∈ N denote the
time step. Let ẋtargett be defined by Definition 3.2. Let u1,θ1(·) and u2,θ2(·) denote the HOMO
models to be trained. Let d ∈ (0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. Let ẋtruet and
ẍtruet be the observed (or numerically approximated) true velocity and acceleration. Let ẋpredt :=
u1,θ1(xt, t, 2d) denote the model prediction of the first-order term. Then, we define the HOMO Loss
as follows:

L(θ1,θ2) = E[ℓ2,1,θ1(xt, ẋtruet)] + E[ℓ2,2,θ2,θ1(xt, ẍtruet)] + E[∥u1,θ1(xt, t, 2d)− ẋ
target
t ∥2]

We define

ℓ2,1,θ1(xt, ẋ
true
t) := ∥u1,θ1(xt, t, 2d)− ẋtruet ∥2,

ℓ2,2,θ2,θ1(xt, ẍ
true
t) := ∥u2,θ2(ẋ

pred
t , xt, t, 2d)− ẍtruet ∥2

ℓselfc(xt, ẋ
target
t) := ∥u1,θ1(xt, t, 2d)− ẋ

target
t ∥2

and

ℓ(θ1,θ2)(xt, x
true
t) := ℓ2,1,θ1(xt, ẋ

true
t) + ℓ2,2,θ2,θ1(xt, ẍ

true
t) + ℓselfc(xt, ẋ

target
t).

3

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Remark 3.4 (Simple notations). For simplicity, we denote first-order matching as M1, which im-
plies that HOMO is optimized solely by the first-order loss ℓ2,1,θ1(xt, ẋ

true
t). Second-order matching

is denoted as M2, where HOMO is optimized only by the second-order loss ℓ2,2,θ2,θ1(xt, ẍ
true
t). We

refer to HOMO optimized solely by the self-consistency loss as SC, denoted by ℓselfc(xt, ẋ
target
t).

Combinations of M1, M2, and SC are used to indicate HOMO optimized by corresponding com-
binations of loss terms. For example, (M1 + M2) denotes HOMO optimized by both first-order
and second-order terms, while (M1 + M2 + SC) represents HOMO optimized by the first-order,
second-order, and self-consistency terms.

4 THEORETICAL ANALYSIS

In this section, we will introduce our main result, the approximation error of the second order flow
matching. The theory for higher order flow matching is deferred to Section D.

Algorithm 1 HOMO Training

1: procedure HOMOTRAINING(θ,D, p, k)
2: ▷ Parameter θ for HOMO model u1 and u2.
3: ▷ Training dataset D
4: ▷ Stepsize and time index distribution p
5: ▷ Batch size k
6: while not converged do
7: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p
8: βt ←

√
1− α2

t
9: xt ← αt · x0 + βt · x1 ▷ Noise data point

10: for first k batch elements do
11: ṡtruet ← α̇tx0 + β̇tx1 ▷ First-order target
12: s̈truet ← α̈tx0 + β̈tx1 ▷ Second-order target
13: d← 0
14: end for
15: for other batch elements do
16: st ← u1(xt, t, d) ▷ First small step of first order
17: ṡt ← u2(u1(xt, t, d), xt, t, d) ▷ First small step of second order
18: xt+d ← xt + d · st + d2

2 ṡt ▷ Follow ODE
19: st+d ← u1(xt+d, t+ d, d) ▷ Second small step of first order
20: ṡtargett ← stopgrad (st + st+d)/2 ▷ Self-consistency target of first order
21: end for
22: θ ← ∇θ(∥u1(xt, t, 2d)− ṡtruet ∥2 + ∥u2(u1(xt, t, 2d), xt, t, 2d)− s̈truet ∥2

+ ∥u1(xt, t, 2d)− ṡtargett ∥2)
23: end while
24: return θ
25: end procedure

We first present the approximation error result for the early stage of the diffusion process. This
result establishes theoretical guarantees on how well a neural network can approximate the first and
second order flows during the initial phases of the trajectory evolution.

Theorem 4.1 (Approximation error of second order flow matching for small t, informal version
of Theorem D.1). Let N be a value associated with sample size n. Let T0 := N−R0 and T∗ :=

N− κ−1−δ
d whereR0, κ, δ are some parameters. Let s be the order of smoothness of the Besov space

that the target distribution belongs to. Under some mild assumptions, there exist neural networks
ϕ1, ϕ2 from a class of neural networks such that, for sufficiently large N , we have∫

(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22]

4

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Algorithm 2 HOMO Sampling

1: procedure HOMOSAMPLING(θ,M)
2: ▷ Parameter θ for the HOMO model u1 and u2
3: ▷ The number of sampling steps M
4: x ∼ N (0, I)
5: d← 1/M
6: t← 0
7: for n ∈ [0, . . . ,M − 1] do
8: x← x+ d · u1(x, t, d) + d2

2 · u2(u1(x, t, d), x, t, d)
9: t← t+ d

10: end for
11: return x
12: end procedure

holds for any t ∈ [T0, 3T∗]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|),

∥ϕ2(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

Next, we present the approximation error result for the later stages, confirming that the second-order
flow matching remains effective throughout the generative process.

Theorem 4.2 (Approximation error of second order flow matching for large t, informal version of
Theorem D.3). Let N be a value associated with sample size n. Let T0 := N−R0 and T∗ :=

N − κ−1−δ
d where R0, κ, δ are some parameters. Let s be the order of smoothness of the Besov

space that the target distribution belongs to. Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary. Under
some mild assumptions, there exists neural networks ϕ1, ϕ2 from a class of neural networks such
that ∫

(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥22]

holds for any t ∈ [2t∗, 1]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|),
∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Overall, these two results demonstrate the effectiveness across different phases.

5 EXPERIMENTS

This section presents a series of experiments to evaluate the effectiveness of our HOMO method
and assess the impact of each loss component. Our results demonstrate that HOMO significantly
improves distribution generation.

5.1 EXPERIMENT SETUP

We evaluate HOMO on various data distributions and loss combinations. HOMO with first-order
and self-consistency losses is equivalent to the original One-step Shortcut model Frans et al. (2025),
i.e., M1+SC. The methods M1+M2+SC and M1+M2+M3+SC are our proposed approaches. We
implement HOMO with losses defined in Definition 3.3 and we follow Remark 3.4, first-order
matching is denoted as M1, second-order as M2, and self-consistency as SC. For target trans-
port, we follow the VP ODE framework Liu et al. (2022b) with xt = αtx0 + βtx1, where
αt = exp(− 1

4a(1− t)
2 − 1

2b(1− t)), βt =
√

1− α2
t , and hyperparameters a = 19.9, b = 0.1.

5

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

10 0 10
15
10

5
0
5

10
15

Samples from 0 and 1
0

1

(a) Eight-mode Dataset

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

(b) M1

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

(c) M2

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

(d) SC

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

(e) (M1 + M2)

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(f) (M1 + SC) Frans et al.
(2025)

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

(g) (M2 + SC)

10 0 10
15
10

5
0
5

10
15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

(h) (M1+M2+SC) (Ours)

Figure 1: HOMO on a mixture of Gaussian datasets. The first row shows results for the initial
eight-mode dataset (a) and HOMO optimized with first-order loss (M1), second-order loss (M2), and
self-consistency loss (SC) Figures (b-d). The second row presents combinations of losses: M1+M2
(e), M1+SC Frans et al. (2025) (f), M2+SC (g), and M1+M2+SC (Ours) (h). Quantitative results are
shown in Table 1.

Table 1: Euclidean distance loss on Gaussian datasets. Lower values indicate more accurate
distribution matching. Optimal values are in Bold, with Underlined numbers representing second-
best results. For qualitative results, please refer to Figure 1.

Four Five Eight
Losses mode mode mode
M1 2.759 3.281 3.321
M2 11.089 6.554 10.830
SC 6.761 10.893 7.646
M1 + M2 0.941 1.097 0.977
M2 + SC 8.708 9.212 4.801
M1 + SC Frans et al. (2025) 0.820 1.067 1.084
M1 + M2 + SC (Ours) 0.809 0.917 0.778

Table 2: Euclidean distance loss on complex datasets. Lower values indicate better distribution
matching. Optimal results are in Bold, with the second-best marked in Underlined. For qualitative
results of complex distribution experiments, please refer to Figure 2 and Figure 13, 14, 15, 16.

Losses Circle Irregular Spiral Spin
M1 + M2 0.642 0.731 7.233 31.009
M1 + SC 0.736 0.743 3.289 12.055
M2 + SC 7.233 0.975 10.096 50.499
M1 + M2 + SC 0.579 0.678 1.840 10.066

6

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + M2) losses

0
1

Generated

(a) (M1 + M2) / spin

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + SC) losses

0
1

Generated

(b) (M1 + SC) / spin

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M2 + SC) losses

0
1

Generated

(c) (M2 + SC) / spin

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

(d) (M1 + M2 + SC) / spin

Figure 2: HOMO on complex datasets (Spin). Results show HOMO optimized with various loss
combinations: M1+M2 (a), M1+SC Frans et al. (2025) (b), M2+SC (c), and M1+M2+SC (Ours)
(d). Quantitative results are in Table 2.

5.2 MIXTURE OF GAUSSIAN EXPERIMENTS

We evaluate HOMO on Gaussian mixture datasets Liang et al. (2024e) with varying modes (four,
five, and eight). The eight-mode distribution is the most challenging, where HOMO with all three
losses (M1+M2+SC) yields the best performance, achieving the lowest Euclidean distance. HOMO
with first-order, second-order, and self-consistency losses is the only model that accurately learns the
target distribution, achieving the lowest Euclidean distance among all configurations. The second-
order loss is crucial—without it, the model fails to capture finer details (Figure 1 (f)), but with it,
the model matches the target distribution more closely (Figure 1 (h)). We analyze the contributions
of each loss: (i) The first-order loss captures the general structure but misses finer details (Figures 1
(b) and (g)). (ii) The second-order loss can lead to overfitting, focusing on details at the expense of
the broader distribution (Figure 1 (c)). (iii) The self-consistency loss helps concentrate the learned
distribution (Figure 1 (d)), whereas without it, the distribution becomes sparse (Figure 1 (e)).

Table 3: Euclidean distance loss of three complex distribution datasets under original trajec-
tory setting. Lower values indicate more accurate distribution transfer results. Optimal values are
highlighted in Bold. And Underlined numbers represent the second best (second lowest) loss value
for each dataset (row). For the qualitative results of a mixture of Gaussian experiments, please refer
to Figure 3.

2 Round 3 Round Dot-
Loss terms spin spin Circle

SC 59.490 50.981 89.974
M1 + SC Frans et al. (2025) 17.866 23.606 37.550
M1 + M2 + SC (Ours) 9.417 13.085 30.679
M1 + M2 + SC + M3 (Ours) 7.440 10.679 26.819

5.3 COMPLEX DISTRIBUTION EXPERIMENTS

In this section, we test HOMO on datasets with complex distributions. We begin with the spin
dataset used in Figure 2, where we sample 600 points from a Gaussian distribution with variance
0.3 for both the source and target distributions. The second-order loss is critical for accurate fitting,
particularly for irregular and spiral distributions. As shown in Figure 2 (b) and (d), the second-order
loss enables the model to better align with the outer boundaries of the target distribution. The second-
order loss is key to HOMO’s success in learning complex distributions. Figure 2 (b) shows that the
original shortcut model, using only first-order and self-consistency losses, fails to capture the outer
circle distribution. However, as shown in Figure 2 (d), adding the second-order loss allows HOMO
to accurately model the target distribution, demonstrating its importance in learning more complex
structures. We also conducted experiments with HOMO optimized using each loss individually and
on other datasets. Further details can be found in Sections E.2, E.3, and E.4.

7

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with SC loss

0
1

Generated

(a) SC / 2 Round

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(b) (M1 + SC)) / 2 Round

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(c) (M1 + M2 + SC)) / 2
Round

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(d) (M1+M2+M3+SC))/2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with SC loss

0
1

Generated

(e) SC / 3 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(f) (M1 + SC)) / 3 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(g) (M1 + M2 + SC)) / 3
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(h) (M1+M2+M3+SC))/3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with SC loss

0
1

Generated

(i) SC / DC

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(j) (M1 + SC)) / DC

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(k) (M1 + M2 + SC)) / DC

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(l) (M1+M2+M3+SC)) /
DC

Figure 3: We present the third-order HOMO results in three kinds of complex datasets: 2-round
spiral (2 Round), 3-round spiral (3 Round), and dot-circle (DC) datasets. Left most, Figure (a),
(e), (i), (m): (SC) HOMO optimized with self-consistency loss; Middle left, Figure (b), (f), (j),
(n): (M1+SC Frans et al. (2025)) HOMO optimized with first-order and self-consistency losses;
Middle right, Figure (c), (g), (k), (o): (M1+M2+SC (Ours)) HOMO optimized with first-order,
second-order and self-consistency losses; Right most, Figure (d), (h), (l), (p): (M1+M2+M3+SC
(Ours)) HOMO optimized with first-order, second-order, third-order and self-consistency losses. A
quantitative evaluation of the complex distribution experiments is presented in Table 3.

5.4 THIRD-ORDER HOMO

In this section, we investigate the impact of adding a third-order loss to HOMO. We use three
datasets: 2 Round spin, 3 Round spin, and Dot-Circle. In both the 2 Round spin and 3 Round spin
datasets, we sample 600 points from a Gaussian distribution with a variance of 0.3 for both the
source and target distributions. In the Dot-Circle dataset, we combine 300 points from the center dot
and 300 points from the outermost circle as the source distribution, and sample 600 points from the
2 Round spin distribution as the target. The qualitative results (Figure 3) show that the third-order
loss helps HOMO better capture more complex target distributions. Comparisons between Figures 3
(c) and (d), and (g) and (h) highlight how the third-order loss improves the model’s fit to intricate
distributions. These results are consistent with the quantitative findings in Table 3. The addition
of higher-order loss terms demonstrates the value of higher-order supervision in modeling complex
distribution transformations.

8

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669–22679, 2023.

Song Bian, Zhao Song, and Junze Yin. Federated empirical risk minimization via second-order
method. arXiv preprint arXiv:2305.17482, 2023.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Yang Cao, Xiaoyu Li, and Zhao Song. Grams: Gradient descent with adaptive momentum scaling.
arXiv preprint arXiv:2412.17107, 2024.

Yuefan Cao, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Jiahao Zhang.
Dissecting submission limit in desk-rejections: A mathematical analysis of fairness in ai confer-
ence policies. manuscript, 2025.

YF Chang and George Corliss. Atomft: solving odes and daes using taylor series. Computers &
Mathematics with Applications, 28(10-12):209–233, 1994.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit com-
plexity bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602, 2024a.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent. arXiv
preprint arXiv:2410.11268, 2024b.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024c.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhao Song, and Zhizhou Sha. Nrflow: Towards noise-robust
generative modeling via second-order flow matching. manuscript, 2025.

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ting Chen. On the importance of noise scheduling for diffusion models. arXiv preprint
arXiv:2301.10972, 2023.

Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gradient
computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316, 2024d.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational
limits of state-space models and mamba via the lens of circuit complexity. arXiv preprint
arXiv:2412.06148, 2024e.

Zirui Cheng, Jingfei Xu, and Haojian Jin. Treequestion: Assessing conceptual learning outcomes
with llm-generated multiple-choice questions. Proceedings of the ACM on Human-Computer
Interaction, 8(CSCW2):1–29, 2024.

9

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

George Corliss and YF Chang. Solving ordinary differential equations using Taylor series. ACM
Transactions on Mathematical Software (TOMS), 8(2):114–144, 1982.

Maximilian Dax, Jonas Wildberger, Simon Buchholz, Stephen R Green, Jakob H Macke, and
Bernhard Scholkopf. Flow matching for scalable simulation-based inference. arXiv preprint
arXiv:2305.17161, 2023.

Yichuan Deng, Zhao Song, Yitan Wang, and Yuanyuan Yang. A nearly optimal size coreset algo-
rithm with nearly linear time. arXiv preprint arXiv:2210.08361, 2022.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arXiv preprint arXiv:2304.04397,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2019.

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Taylor-Lagrange
Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs.
arXiv:2201.05715, 2022.

Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for proba-
bilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11979–11987, 2024a.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
Jiaxuan You. How far are we from agi. arXiv preprint arXiv:2405.10313, 2024b.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ODE: the world of Jacobian and kinetic regularization. In International conference on
machine learning, pp. 3154–3164. PMLR, 2020.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations, 2025.

Kenji Fukumizu, Taiji Suzuki, Noboru Isobe, Kazusato Oko, and Masanori Koyama. Flow matching
achieves minimax optimal convergence. arXiv preprint arXiv:2405.20879, 2024.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023a.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing, 2021a.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing, 2021b.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023b.

10

https://dl.acm.org/doi/10.1145/355993.355995
https://arxiv.org/abs/2201.05715
https://arxiv.org/abs/2201.05715
http://proceedings.mlr.press/v119/finlay20a.html
http://proceedings.mlr.press/v119/finlay20a.html

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023c.

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023d.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023e.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Tiankai Hang and Shuyang Gu. Improved noise schedule for diffusion training. arXiv preprint
arXiv:2407.03297, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Funda-
mental limits of prompt tuning transformers: Universality, capacity and efficiency. arXiv preprint
arXiv:2411.16525, 2024a.

Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao Huang, Minshuo Chen, and Han Liu. On
statistical rates of conditional diffusion transformers: Approximation, estimation and minimax
optimality. arXiv preprint arXiv:2411.17522, 2024b.

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024c.

Vincent Hu, Di Wu, Yuki Asano, Pascal Mettes, Basura Fernando, Björn Ommer, and Cees Snoek.
Flow matching for conditional text generation in a few sampling steps. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 380–392, 2024d.

Yitong Jiang, Zhaoyang Zhang, Tianfan Xue, and Jinwei Gu. Autodir: Automatic all-in-one image
restoration with latent diffusion. In European Conference on Computer Vision, pp. 340–359.
Springer, 2025.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural
audio synthesis. In International Conference on Machine Learning, pp. 2410–2419. PMLR, 2018.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Advancing the understanding
of fixed point iterations in deep neural networks: A detailed analytical study. arXiv preprint
arXiv:2410.11279, 2024.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational
limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity
analysis. arXiv preprint arXiv:2501.04377, 2025a.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Circuit complexity bounds for
visual autoregressive model. arXiv preprint arXiv:2501.04299, 2025b.

11

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differential
equations that are easy to solve. Advances in Neural Information Processing Systems, 33:4370–
4380, 2020.

Leon Klein, Andreas Kramer, and Frank Noe. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024.

Peter E Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 1992.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing. Association for
Computational Linguistics, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024b.

Xiaoyu Li, Jiangxuan Long, Zhao Song, and Tianyi Zhou. Fast second-order method for neural
network under small treewidth setting. In 2024 IEEE International Conference on Big Data
(BigData). IEEE, 2024c.

Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellipsoid.
arXiv preprint arXiv:2408.14018, 2024d.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the com-
putational capability of graph neural networks: A circuit complexity bound perspective. arXiv
preprint arXiv:2501.06444, 2025.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approxi-
mations: A novel pruning approach for attention matrix, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may be
all you need as practical programmable computers. arXiv preprint arXiv:2410.09375, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024e.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 5404–5411, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Chengyi Liu, Jiahao Zhang, Shijie Wang, Wenqi Fan, and Qing Li. Score-based generative diffusion
models for social recommendations. arXiv preprint arXiv:2412.15579, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022a.

12

https://proceedings.neurips.cc/paper/2020/hash/2e255d2d6bf9bb33030246d31f1a79ca-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2e255d2d6bf9bb33030246d31f1a79ca-Abstract.html

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-foley: Synchronized video-to-audio
synthesis with latent diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, 2022.

Maxwell Nye, Anders Johan Andreassen, Gur AriGuy, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distri-
bution estimators. In International Conference on Machine Learning, pp. 26517–26582. PMLR,
2023.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. Introducing ChatGPT, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch cou-
plings. arXiv preprint arXiv:2304.14772, 2023.

Lianke Qin, Zhao Song, and Baocheng Sun. Is solving graph neural tangent kernel equivalent to
training graph neural network? arXiv preprint arXiv:2309.07452, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9472–
9481, 2024.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
arXiv preprint arXiv:2412.12444, 2024a.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
arXiv preprint arXiv:2412.12444, 2024b.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A Rossi, Hao Tan, Tong
Yu, Xiang Chen, et al. Numerical pruning for efficient autoregressive models. arXiv preprint
arXiv:2412.12441, 2024c.

13

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A Rossi, Hao Tan, Tong
Yu, Xiang Chen, et al. Numerical pruning for efficient autoregressive models. arXiv preprint
arXiv:2412.12441, 2024d.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2023.

Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. A theoretical analysis of nearest neighbor
search on approximate near neighbor graph. arXiv preprint arXiv:2303.06210, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Zhao Song, Weixin Wang, and Junze Yin. A unified scheme of resnet and softmax. arXiv preprint
arXiv:2309.13482, 2023.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning. PMLR, 2022.

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
optimal rate and curse of dimensionality. In International Conference on Learning Representa-
tions, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Hans Triebel. Theory of Function Spaces II, volume 84 of Monographs in Mathematics. Birkhäuser,
1992.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning. PMLR, 2023.

Xiaofei Wang, Sefik Emre Eskimez, Manthan Thakker, Hemin Yang, Zirun Zhu, Min Tang, Yufei
Xia, Jinzhu Li, Sheng Zhao, Jinyu Li, et al. An investigation of noise robustness for flow-
matching-based zero-shot tts. arXiv preprint arXiv:2406.05699, 2024a.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu. Dolfin:
Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305, 2023a.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7436–7448, 2024b.

Yuntao Wang, Zirui Cheng, Xin Yi, Yan Kong, Xueyang Wang, Xuhai Xu, Yukang Yan, Chun Yu,
Shwetak Patel, and Yuanchun Shi. Modeling the trade-off of privacy preservation and activity
recognition on low-resolution images. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–15, 2023b.

14

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Grounding
diffusion with token-level supervision. arXiv preprint arXiv:2312.03626, 2023c.

Jerry Wei, Le Hou, Andrew Kyle Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen,
Yifeng Lu, Denny Zhou, Tengyu Ma, and Quoc V Le. Symbol tuning improves in-context learn-
ing in language models. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and Dacheng Tao. Gmflow: Learning
optical flow via global matching. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 8121–8130, 2022.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Yin Li, and Yingyu Liang. Improving foundation models
for few-shot learning via multitask finetuning. In ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2023.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Conference
on Learning Representations, 2024.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng
Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init atten-
tion. arXiv preprint arXiv:2303.16199, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning.
PMLR, 2021.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
LIMA: Less is more for alignment. In Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023.

15

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Appendix
Roadmap. In Section A, we introduce the Shortcut Model Training and Sampling Algorithm. Sec-
tion B discusses related works that inspire our approach. Section C states the tools from Fukumizu
et al. (2024) used in our analysis. Section D explores the theory behind Higher-Order Flow Match-
ing. Section E investigates the impact of different optimization terms through empirical ablation
studies. Section F examines model performance on complex distribution experiments. Section G
extends HOMO to third-order dynamics and evaluates its effectiveness on complex tasks. Section H
quantifies the computational and optimization costs associated with different configurations. In Sec-
tion I, we conclude our paper.

A ORIGINAL ALGORITHM

Here we introduce Shortcut Model Training and Sampling Algorithm from Page 5 of Frans et al.
(2025)

Algorithm 3 Shortcut Model Training from page 5 of Frans et al. (2025)

1: while not converged do
2: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p(d, t)
3: xt ← (1− t)x0 + tx1 ▷ Noise data point
4: for first k batch elements do
5: starget ← x1 − x0 ▷ Flow-matching target
6: d← 0
7: end for
8: for other batch elements do
9: st ← u1(xt, t, d) ▷ Fitst small step

10: xt+d ← xt + std ▷ Follow ODE
11: st+d ← u1(xt+d, t+ d, d) ▷ Second small step
12: starget ← stopgrad (st + st+d)/2 ▷ Self-consistency target
13: end for
14: θ ← ∇θ∥u1(xt, t, 2d)− starget∥2
15: end while

Algorithm 4 Shortcut model. Sampling from page 5 of Frans et al. (2025)

1: x ∼ N (0, I)
2: d← 1/M
3: t← 0
4: for n ∈ [0, . . . ,M − 1] do
5: x← x+ d · u1(x, t, d)
6: t← t+ d
7: end for
8: return x

B RELATED WORK

In this section, we discuss more related work which inspire our work.

Diffusion Models. Diffusion models have garnered significant attention for their capability to gen-
erate high-fidelity images by incrementally refining noisy samples, as exemplified by DiT Peebles &
Xie (2023) and U-ViT Bao et al. (2023). These approaches typically involve a forward process that
systematically adds noise to an initial clean image and a corresponding reverse process that learns to
remove noise step by step, thereby recovering the underlying data distribution in a probabilistic man-
ner. Early works Song & Ermon (2019); Song et al. (2020) established the theoretical foundations
of this denoising strategy, introducing score-matching and continuous-time diffusion frameworks

16

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

that significantly improved sample quality and diversity. Subsequent research has focused on more
efficient training and sampling procedures Lu et al. (2022); Shen et al. (2024b;d), aiming to re-
duce computational overhead and converge faster without sacrificing image fidelity. Other lines of
work leverage latent spaces to learn compressed representations, thereby streamlining both training
and inference Rombach et al. (2022); Hu et al. (2024c). This latent learning approach integrates
naturally with modern neural architectures and can be extended to various modalities beyond im-
ages, showcasing the versatility of diffusion processes in modeling complex data distributions. In
parallel, recent researchers have also explored multi-scale noise scheduling and adaptive step-size
strategies to enhance convergence stability and maintain high-resolution detail in generated content
in Lovelace et al. (2024); Feng et al. (2024a); Rout et al. (2024); Jiang et al. (2025); Luo et al. (2024).
There are more other works also inspire our work Xu et al. (2022); Dax et al. (2023); Pooladian et al.
(2023); Wang et al. (2023c;a); Shen et al. (2024a;c); Wang et al. (2024b); Chen & Lipman (2024);
Klein et al. (2024); Chen et al. (2025); Cao et al. (2025); Cheng et al. (2024); Wang et al. (2023b);
Feng et al. (2024b); Liu et al. (2024); Hu et al. (2024b).

Flow Matching. Generative models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020) and flow-matching (Lipman et al., 2022; Liu et al., 2022a) operate by learning
ordinary differential equations (ODEs) that map noise to data. To simplify, this study leverages the
optimal transport flow-matching formulation (Liu et al., 2022a). A linear combination of a noise
sample x0 ∼ N (0, I) and a data point x1 ∼ D defines xt:

xt = (1− t)x0 + tx1, vt = x1 − x0,

with vt representing the velocity vector directed from x0 to x1. While vt is uniquely derived
from (x0, x1), knowledge of only xt renders it a random variable due to the ambiguity in select-
ing (x0, x1). Neural networks in flow models approximate the expected velocity v̄t = E[vt | xt],
calculated as an average over all valid pairings. Training involves minimizing the deviation between
predicted and empirical velocities:

v̄θ(xt, t) ∼ Ex0,x1∼D [vt | xt]
LF(θ) = Ex0,x1∼D

[
∥v̄θ(xt, t)− (x1 − x0)∥2

]
. (1)

Sampling involves first drawing a noise point x0 ∼ N (0, I) and iteratively transforming it into a
data point x1. The denoising ODEs, parameterized by v̄θ(xt, t), governs this transformation, and
Euler’s method approximates it over small, discrete time steps.

High-order ODE Gradient in Diffusion Models. Higher-order gradient-based methods like
TTMs Kloeden & Platen (1992) have applications far exceeding DDMs. For instance, solvers Djeu-
mou et al. (2022) and regularization frameworks Kelly et al. (2020); Finlay et al. (2020) for neural
ODEs Chen et al. (2018); Grathwohl et al. (2018) frequently utilize higher-order derivatives. Be-
yond machine learning contexts, the study of higher-order TTMs has been extensively directed to-
ward solving stiff Chang & Corliss (1994) and non-stiff Chang & Corliss (1994); Corliss & Chang
(1982) systems.

Large Language Models. Neural networks built upon the Transformer architecture Vaswani et al.
(2017) have swiftly risen to dominate modern machine learning approaches in natural language pro-
cessing. Extensive Transformer models, trained on wide-ranging and voluminous datasets while
encompassing billions of parameters, are often termed large language models (LLM) or foun-
dation models Bommasani et al. (2021). Representative instances include BERT Devlin et al.
(2019), PaLM Chowdhery et al. (2022), Llama Touvron et al. (2023), ChatGPT OpenAI (2024),
GPT4 OpenAI (2023), among others. These LLMs have showcased striking general intelligence
abilities Bubeck et al. (2023) in various downstream tasks. Numerous adaptation methods have
been developed to tailor LLMs for specific applications, such as adapters Hu et al. (2022); Zhang
et al. (2023); Gao et al. (2023a); Shi et al. (2023), calibration schemes Zhao et al. (2021); Zhou et al.
(2023), multitask fine-tuning Gao et al. (2021a); Xu et al. (2023); Von Oswald et al. (2023); Xu
et al. (2024), prompt optimization Gao et al. (2021b); Lester et al. (2021), scratchpad approaches
Nye et al. (2021), instruction tuning Li & Liang (2021); Chung et al. (2022); Mishra et al. (2022),
symbol tuning Wei et al. (2023), black-box tuning Sun et al. (2022), and reinforcement learning
from human feedback (RLHF) Ouyang et al. (2022). Additional lines of research endeavor to boost
model efficiency without sacrificing performance across diverse domains, for example in Deng et al.

17

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

(2022); Song et al. (2023); Gao et al. (2023c;e;d); Bian et al. (2023); Deng et al. (2023); Gao et al.
(2023b); Shrivastava et al. (2023); Qin et al. (2023); Chen et al. (2024c); Li et al. (2024d); Chen
et al. (2024b); Liang et al. (2024c); Chen et al. (2024a); Liang et al. (2024b;d;a); Li et al. (2024a;c);
Cao et al. (2024); Li et al. (2024b); Chen et al. (2024e;d); Ke et al. (2024; 2025a;b); Li et al. (2025);
Hu et al. (2024a).

C TOOLS FROM PREVIOUS WORKS

We state the tools in Fukumizu et al. (2024) that we will use to prove our main results.

C.1 DEFINITIONS OF BESOV SPACE

Definition C.1 (Modulus of Smoothness). Let Ω be a domain in Rd. For a function f ∈ Lp′
(Ω)

with p′ ∈ (0,∞], the r-th modulus of smoothness of f is defined by

wr,p′(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥p′ ,

where the finite difference operator ∆r
h(f)(x) is given by

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh), ifx+ jh ∈ Ωforallj,

0, otherwise.

Definition C.2 (Besov Seminorm). Let 0 < p′, q′ ≤ ∞, s > 0, and set r := |s| + 1. The Besov
seminorm of f ∈ Lp′

(Ω) is defined as

|f |Bs
p′,q′

:=


(∫∞

0
(t−swr,p′(f, t))q

′ dt
t

) 1
q′
, q′ <∞,

supt>0 t
−swr,p′(f, t), q′ =∞.

Definition C.3 (Besov Space). The Besov space Bs
p′,q′(Ω) is the function space equipped with the

norm

∥f∥Bs
p′,q′

:= ∥f∥p′ + |f |Bs
p′,q′

,

It consists of all functions f ∈ Lp′
(Ω) such that

Bs
p′,q′(Ω) := {f ∈ Lp′

(Ω) | ∥f∥Bs
p′,q′

<∞}.

Remark C.4. The parameter s governs the degree of smoothness of functions in Bs
p′,q′(Ω). In

particular, when p′ = q′ and s is an integer, the Besov space Bs
p′,q′(Ω) coincides with the standard

Sobolev space of order s. For further details on the properties and applications of Besov spaces, see
Triebel (1992).

C.2 B-SPLINE

Definition C.5 (Indicator Function). Let N (x) be the characteristic function defined by

N (x) =

{
1, x ∈ [0, 1],

0, otherwise.

Definition C.6 (Cardinal B-Spline). For ℓ ∈ N , the cardinal B-spline of order ℓ is defined by

Nℓ(x) :=N ∗N ∗ · · · ∗ N︸ ︷︷ ︸
ℓ+1times

(x),

where ∗ denotes the convolution operation. Explicitly, the convolution of two functions f, g : R→ R
is given by

(f ∗ g)(x) =
∫
R
f(x− y)g(y)dy.

Thus, Nℓ(x) is obtained by convolving N with itself (ℓ+ 1) times.

18

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Definition C.7 (Tensor Product B-Spline Basis). For a multi-index k ∈ N d and j ∈ Zd, the tensor
product B-spline basis in Rd of order ℓ is defined as

Md
k,j(x) :=

d∏
i=1

Nℓ(2
kixi − ji).

This basis is constructed as the product of univariate B-splines, scaled and translated according to
the parameters k and j.
Definition C.8 (B-Spline Approximation in Besov Spaces in Suzuki (2019); Oko et al. (2023)). A
function f in the Besov space can be approximated using a superposition of tensor product B-splines
as

fN (x) =
∑
(k,j)

αk,jM
d
k,j(x),

where the summation is taken over appropriate index sets (k, j), and the coefficients αk,j are real
numbers that determine the contribution of each basis function.

C.3 CLASS OF NEURAL NETWORKS

Definition C.9 (Neural Network Class in Fukumizu et al. (2024)). Let L ∈ N denote the depth
(number of layers), W = (W1,W2, . . . ,WL+1) ∈ NL+1 the width configuration of the network,
S ∈ N a sparsity constraint, andB > 0 a norm bound. The class of neural networksM(L,W, S,B)
is defined as

M(L,W,S,B) := { ψA(L),b(L) ◦ · · · ◦ ψA(2),b(2)(A
(1)x+ b(1))m|A(i) ∈ RWi+1×Wi , b(i) ∈ RWi+1 ,

L∑
i=1

(∥A(i)∥0 + ∥b(i)∥0) ≤ S, max
1≤i≤L

{∥A(i)∥∞ ∨ ∥b(i)∥∞} ≤ B}.

Here, the function ψA,b : RWi → RWi+1 represents the affine transformation with ReLU activation,
given by

ψA,b(z) = A · ReLU(z) + b, where ReLU(z) = max{0, z}.
The sparsity constraint ensures that the total number of nonzero entries in all weight matrices and
bias vectors does not exceed S, while the norm constraint limits their maximum absolute values to
B.

C.4 ASSUMPTIONS

Remark C.10. We introduce a small positive constant δ > 0 and denote by N the number of basis
functions in the B-spline used to approximate pt(x). The value of N is determined by the sample
size n, specifically following the relation N = n

d
2s+d , which balances the approximation error and

the complexity of both the B-spline and the neural network.
Definition C.11 (Stopping Time). As we introduce in Remark C.10, we define the stopping time as
T0 = N−R0 , whereR0 is a parameter to be specified later, and consider solving the ODE backward
in time from t = 1 down to t = T0.
Definition C.12 (Reduced Cube). Let Id = [−1, 1]d denote the d-dimensional cube. To mitigate
boundary effects when N is large, we define the reduced cube as

IdN := [−1 +N−(1−κδ), 1−N−(1−κδ)]d,

where the parameter κ > 0 will be specified later in Assumption C.15.
Assumption C.13 (Smoothness and support of p0). The target probability P0 has support contained
in Id, and its probability density function p0 satisfies

p0 ∈ Bs
p′,q′(I

d) and p0 ∈ Bs̃
p′,q′(I

d \ IdN) with s̃ ≥ max{6s− 1, 1}.
Assumption C.14 (Boundedness away from 0 and above). There exists a constant C0 > 0 such that

C−1
0 ≤ p0(x) ≤ C0 forall x ∈ Id.

19

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Assumption C.15 (Form of (αt, βt) and their bounds). There are constants κ ≥ 1
2 , b0 > 0, κ̃ > 0,

and b̃0 > 0 such that, for sufficiently small t ≥ T0,

αt = b0, t
κ, and 1− βt = b̃0, t

κ̃.

Moreover, there exist D0 > 0 and K0 > 0 such that ∀t ∈ [T0, 1], we have

D−1
0 ≤ α2

t + β2
t ≤ D0, |α̇t|+ |β̇t| ≤ NK0 .

Assumption C.16 (Additional bound in the critical case κ = 1
2). If κ = 1

2 , then there exist b1 > 0
and D1 > 0 such that, for all 0 ≤ γ < R0,∫ N−γ

T0

{(α̇t)
2 + (β̇t)

2}dt ≤ D1(logN)b1 .

Assumption C.17 (Lipschitz bound on the first moment). There is a constant CL > 0 such that, for
all t ∈ [T0, 1],

∥ ∂
∂x

∫
ypt(y|x)dy∥op ≤ CL.

C.5 APPROXIMATION ERROR FOR SMALL t

Lemma C.18 (Theorem 7 in Fukumizu et al. (2024)). Under Assumptions C.13 C.14 C.15 C.16 and
C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN)).

Then there exists a neural network ϕ ∈M(L,W, S,B) such that, for sufficiently large N , we have∫
∥ϕ(x, t)− ẋtruet ∥22pt(x)dx ≲ (α̇2

t logN + β̇2
t)N

− 2s
d ,

holds for any t ∈ [T0, 3T∗]. In addition, ϕ can be taken so we have

∥ϕ(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

C.6 APPROXIMATION ERROR FOR LARGE t

Lemma C.19 (Theorem 7 in Fukumizu et al. (2024)). Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary,
under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N)

• S = O(t−dκ
∗ Nδκ)

• B = exp(O(logN log logN)).

Then there exist a neural network ϕ ∈M(L,W,S,B) such that∫
∥ϕ(x, t)− ẋtruet ∥2pt(x)dx ≲ (α̇2

t logN + β̇2
t)N

−η.

holds for any t ∈ [2t∗, 1]. In addition, ϕ can be taken so we have

∥ϕ(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

20

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

D THEORY OF HIGHER ORDER FLOW MATCHING

We use dk

dtk
xtruet to denote the k-th order derivative of xtruet with respect to t. Note that ẋtruet :=

d
dtx

true
t , and ẍtruet := d2

dt2x
true
t .

D.1 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR SMALL t

Theorem D.1 (Approximation error of second order flow matching for small t, formal version of
Theorem 4.1). Under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN)).

Then there exists neural networks ϕ1, ϕ2 ∈ M(L,W, S,B) such that, for sufficiently large N , we
have ∫

(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22]

holds for any t ∈ [T0, 3T∗]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t|
√
log n+ |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t|

√
log n+ |β̇t|).

Proof. Suppose that t ∈ [T0, 3T∗]. By Lemma C.18, there is ϕ1 ∈M(L,W, S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22pt(x) ≲ (α̇2

t logN + β̇2
t)N

− 2s
d . (2)

Next, we can show that there exists some ϕ2 ∈M(L,W, S,B) such that∫
∥ϕ2(x, t)− ẍtruet ∥22pt(x)dx =

∫
∥ϕ2(x, t)− ẋtruet + ẋtruet − ẍtruet ∥22pt(x)dx

≤
∫

(∥ϕ2(x, t)− ẋtruet ∥2 + ∥ẋtruet − ẍtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ2(x, t)− ẋtruet ∥22 + ∥ẋtruet − ẍtruet ∥22)pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2

∫
∥ẋtruet − ẍtruet ∥22pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ẋtruet − ẍtruet ∥22

≲ (α̇2
t logN + β̇2

t)N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22] (3)

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a+ b)2 ≤ 2a2 +2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma C.18.

Finally, by Eq. (2) and Eq. (3), for any t ∈ [T0, 3T∗], we have∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22].

21

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Moreover, by Lemma C.18, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

Thus, the proof is complete.

D.2 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR SMALL t

Theorem D.2 (Approximation error of higher order flow matching for small t). Under Assump-
tions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN))

• K = O(1)

Then there exists neural networks ϕ1, ϕ2, . . . , ϕK ∈M(L,W, S,B) such that, for sufficiently large
N , we have

∫
(

K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

K−1∑
k=1

E
x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

holds for any t ∈ [T0, 3T∗]. In addition, for any k ∈ [K], ϕk can be taken so we have

∥ϕk(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

Proof. We first show that for any k ≥ 2, for any t ∈ [T0, 3T∗], there exists ϕ ∈ M(L,W, S,B)
such that

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (4)

We prove this by mathematical induction.

Base case. The statements hold when k = 2 because of Lemma D.1.

22

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Induction step. We assume that the statement hold for k ≥ 2. We would like to show that it holds
for k + 1. We can show that, for any t ∈ [T0, 3T∗], there exists ϕ ∈M(L, S,W,B) such that∫

∥ϕ(x, t)− dk+1

dtk+1
xtruet ∥22pt(x)dx

=

∫
∥ϕ(x, t)− dk

dtk
xtruet +

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

≤
∫
(∥ϕ(x, t)− dk

dtk
xtruet ∥2 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ(x, t)− dk

dtk
xtruet ∥22 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22)pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2

∫
∥ d

k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22] + E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

= (α̇2
t logN + β̇2

t)N
− 2s

d +

k+1∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22], (5)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (4).

Hence, there exists ϕ1, ϕ2, . . . , ϕK ∈ M(L,W, S,B) such that for k ∈ [K], for any t ∈ [T0, 3T∗],
we have ∫

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (6)

Taking the summation over k ∈ [K], we have for any t ∈ [T0, 3T∗],∫ K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲K · (α̇2
t logN + β̇2

t)N
− 2s

d +

K∑
k=1

(k · E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22])

≲ ((α̇t)
2 logN + (β̇t)

2)N− 2s
d +

K∑
k=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]

where the first step follows from Eq. (6), and the second step uses K = O(1).

Moreover, by Lemma C.19, ϕ1, ϕ2, . . . , ϕK can be taken so we have for k ∈ [K],

∥ϕk(·, t)∥∞ = O(|α̇t| log
√
n+ |β̇t|).

Thus, the proof is complete.

D.3 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR LARGE t

Theorem D.3 (Approximation error of second order flow matching for large t, formal version of
Theorem 4.2). Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary, under Assumptions C.13 C.14 C.15 C.16
and C.17, and if the following holds

23

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• L = O(log4N).

• ∥W∥∞ = O(N)

• S = O(t−dκ
∗ Nδκ)

• B = exp(O(logN log logN)).

Then there exist neural networks ϕ1, ϕ2 ∈M(L,W,S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥22]

holds for any t ∈ [2t∗, 1]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Proof. Suppose that t ∈ [2t∗, 1]. By Lemma C.19, there is ϕ1 ∈M(L,W, S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22pt(x)dx ≲ (α̇2

t logN + β̇2
t)N

−η. (7)

Next, we can show that there exists some ϕ2 ∈M(L,W, S,B) such that∫
∥ϕ2(x, t)− ẍtruet ∥22pt(x)dx =

∫
∥ϕ2(x, t)− ẋtruet + ẋtruet − ẍtruet ∥22pt(x)dx

≤
∫

(∥ϕ2(x, t)− ẋtruet ∥2 + ∥ẋtruet − ẍtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ2(x, t)− ẋtruet ∥22 + ∥ẋtruet − ẍtruet ∥22)pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2

∫
∥2ẋtruet − ẍtruet ∥22pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ẋtruet − ẍtruet ∥22

≲ (α̇2
t logN + β̇2

t)N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥22] (8)

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a+ b)2 ≤ 2a2 +2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma C.19.

Finally, by Eq. (7) and Eq. (8), we have∫
(∥ϕ1(x, t)− ẋtruet ∥2 + ∥ϕ2(x, t)− ẍtruet ∥2)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥2].

Moreover, by Lemma C.19, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Thus, the proof is complete.

D.4 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR LARGE t

Theorem D.4 (Approximation error of higher order flow matching for large t). Fix t∗ ∈ [T∗, 1] and
let η > 0 be arbitrary, under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

24

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• ∥W∥∞ = O(N)

• S = O(t−dκ
∗ Nδκ)

• B = exp(O(logN log logN))

• K = O(1)

Then there exist neural networks ϕ1, ϕ2, . . . , ϕK ∈M(L,W,S,B) such that,∫
(

K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥2)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η +

K−1∑
k=1

E
x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥2]

holds for any t ∈ [2t∗, 1]. In addition, for any k ∈ [K], ϕk can be taken so we have

∥ϕk(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Proof. We first show that for any k ≥ 2, for any t ∈ [2t∗, 1], there exists ϕ ∈ M(L,W,S,B) such
that ∫

∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥2]. (9)

We prove this by mathematical induction.

Base case. The statements hold when k = 2 because of Lemma D.3.

Induction step. We assume that the statement hold for k ≥ 2. We would like to show that it holds
for k + 1. We can show that, for any t ∈ [2t∗, 1], there exists ϕ ∈M(L, S,W,B) such that∫

∥ϕ(x, t)− dk+1

dtk+1
xtruet ∥22pt(x)dx

=

∫
∥ϕ(x, t)− dk

dtk
xtruet +

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

≤
∫
(∥ϕ(x, t)− dk

dtk
xtruet ∥2 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ(x, t)− dk

dtk
xtruet ∥22 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22)pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2

∫
∥ d

k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

≲ (α̇2
t logN + β̇2

t)N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22] + E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

= (α̇2
t logN + β̇2

t)N
−η +

k+1∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22], (10)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (9).

25

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Hence, there exists ϕ1, ϕ2, . . . , ϕK ∈M(L,W, S,B) such that for k ∈ [K], for any t ∈ [2t∗, 1], we
have ∫

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (11)

Taking the summation over k ∈ [K], we have for any t ∈ [2t∗, 1],∫ K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲ ((α̇t)
2 logN + (β̇t)

2)N−η +

K∑
k=1

(k · E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22])

≲ (α̇2
t logN + β̇2

t)N
−η +

K∑
k=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]

where the first step follows from Eq. (11), and the second step uses K = O(1). Moreover, by
Lemma C.19, ϕ1, ϕ2, . . . , ϕK can be taken so we have for k ∈ [K],

∥ϕk(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Thus, the proof is complete.

E EMPIRICAL ABLATION STUDY

In Section E.1, we introduce the three Gaussian mixture distribution datasets—four-mode, five-
mode, and eight-mode—used in our empirical ablation study, along with their configurations for
source and target modes. The subsequent subsections analyze the impact of different optimization
terms. Section E.2 evaluates the performance of HOMO optimized solely with the first-order term.
Section E.3 examines the effect of using only the second-order term. Section E.4 assesses results
when optimization is guided by the self-consistency term. Section E.5 explores the combined effect
of first- and second-order terms, while Section E.6 investigates the combination of second-order and
self-consistency terms. Through these analyses, we aim to dissect the contributions of individual
and combined loss terms in achieving effective transport trajectories.

E.1 DATASET

Here we introduce three datasets we use: four-mode, five-mode, and eight-mode Gaussian mixture
distribution datasets; each Gaussian component has a variance of 0.3. In the four-mode Gaussian
mixture distribution, four source mode(brown) positioned at a distance D0 = 5 from the origin,
and four target mode(indigo) positioned at a distance D0 = 14 from the origin, each mode sample
200 points. In five-mode Gaussian mixture distribution, five source mode(brown) positioned at a
distanceD0 = 6 from the origin, and five target mode(indigo) positioned at a distanceD0 = 13 from
the origin, each mode sample 200 points. And in eight-mode Gaussian mixture distribution, eight
source mode(brown) positioned at a distanceD0 = 6 from the origin, and eight target mode(indigo)
positioned at a distance D0 = 13 from the origin, each mode sample 100 points.

E.2 ONLY FIRST ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100

26

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

10 0 10

15
10

5
0
5

10
15

Samples from 0 and 1
0

1

10 0 10
15
10

5
0
5

10
15

Samples from 0 and 1
0

1

10 0 10
15
10

5
0
5

10
15

Samples from 0 and 1
0

1

Figure 4: The four-mode Gaussian mixture distribution (Left), five-mode Gaussian mixture distribu-
tion (Middle), and eight-mode Gaussian mixture distribution (Right). Our goal is to make HOMO
learn a transport trajectory from distribution π0 (brown) to distribution π1 (indigo).

points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

Figure 5: (A) The distributions generated by HOMO are only optimized by first-order term in four-
mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The source dis-
tribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the generated
distribution (pink).

E.3 ONLY SECOND ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.

E.4 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose

27

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

Figure 6: (B) The distributions generated by HOMO are only optimized by second-order term in
the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

αt = exp(− 1
4a(1 − t)2 − 1

2b(1 − t)) and βt =
√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 50 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 50 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 50 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

Figure 7: (C) The distributions generated by HOMO are only optimized by self-consistency term
in the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

E.5 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 2000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 2000 training steps.

28

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

Figure 8: (A + B) The distributions generated by HOMO, optimized by first-order term and second-
order term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

E.6 SECOND ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

Figure 9: (B + C) The distributions generated by HOMO, optimized by second-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown,
along with the generated distribution (pink).

E.7 FIRST ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam

29

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

Figure 10: (A + C) The distributions generated by HOMO, optimized by first-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown,
along with the generated distribution (pink).

E.8 HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

Figure 11: (A + B + C) The distributions generated by HOMO in four-mode dataset (Left), five-
mode dataset (Middle), and eight-mode dataset (Right). The source distribution, π0 (brown), and
the target distribution, π1 (indigo), are shown, along with the generated distribution (pink).

F COMPLEX DISTRIBUTION EXPERIMENT

In Section F.1, we introduce the datasets used in our experiments. The analysis of results with first-
order and second-order terms in Section F.2, and we evaluate the performance with first-order and
self-consistency terms in Section F.3, assess the impact of second-order and self-consistency terms
in Section F.4. Finally, we present the overall results of HOMO with all loss terms combined in
Section F.5.

30

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

F.1 DATASETS

Here, we introduce four datasets we proposed: circle dataset, irregular ring dataset, spiral line
dataset, and spin dataset. In the circle dataset, we sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In the irregular ring dataset,
we sample 600 points from Gaussian distribution with 0.3 variance for both source distribution and
target distribution. In the spiral line dataset, we sample 600 points from Gaussian distribution with
0.3 variance for both source distribution and target distribution. In the spin dataset, we sample
600 points from the Gaussian distribution with 0.3 variance for both source distribution and target
distribution.

15 10 5 0 5 10 1515

10

5

0

5

10

15Samples from 0 and 1
0

1

15 10 5 0 5 10 1515

10

5

0

5

10

15Samples from 0 and 1
0

1

200 100 0 100 200200
150
100

50
0

50
100
150
200Samples from 0 and 1

0

1

400 200 0 200 400400
300
200
100

0
100
200
300
400Samples from 0 and 1

0

1

Figure 12: The circle dataset(Left most), irregular ring dataset (Middle left), spiral line dataset
(Middle right), and spin dataset (Right most). Our goal is to make HOMO to learn a transport
trajectory from distribution π0 (brown) to distribution π1 (indigo).

F.2 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + M2) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + M2) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized
with (M1 + M2) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + M2) losses

0
1

Generated

Figure 13: (M1+M2) HOMO results on complex datasets with two kinds of loss: first-order and
second-order terms. The distributions generated by HOMO, in circle dataset(Left most), irregular
ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

31

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

F.3 FIRST ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + SC) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + SC) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized
with (M1 + SC) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + SC) losses

0
1

Generated

Figure 14: (M1+SC) HOMO results on complex datasets with two kinds of loss: first-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

F.4 SECOND ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 100 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 100 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 100 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

F.5 HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-

32

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M2 + SC) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M2 + SC) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized
with (M2 + SC) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M2 + SC) losses

0
1

Generated

Figure 15: (M2+SC) HOMO results on complex datasets with two kinds of loss: second-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

Figure 16: (M1+M2+SC) HOMO results on complex datasets with three kinds of loss: first-
order, second-order, and self-consistency terms. The distributions generated by HOMO in circle
dataset(Left most), irregular ring dataset (Middle left), spiral line dataset (Middle right), and spin
dataset (Right most). The source distribution, π0 (brown), and the target distribution, π1 (indigo),
are shown, along with the generated distribution (pink).

G THIRD-ORDER HOMO

This section extends HOMO to third-order dynamics and analyzes its performance on complex syn-
thetic tasks. Section G.1 introduces the training and sampling algorithms incorporating third-order
dynamics. Section G.2 compares two trajectory parameterization strategies for high-order systems.
Section G.3 describes the 2 Round Spin, 3 Round Spin, and Dot-Circle datasets designed to test
complex mode transitions. Section G.4 provides quantitative analysis through Euclidean distance
metrics between generated and target distributions. Section G.5 evaluates the isolated impact of self-
consistency constraints. Section G.6 examines first-order dynamics coupled with self-consistency
regularization. Section G.7 studies the combined effect of first-, second-order dynamics and self-
consistency. Finally, Section G.8 demonstrates full third-order HOMO with all optimization terms,
analyzing trajectory linearity and mode fidelity under different trajectory settings.

G.1 ALGORITHM

Here we first introduce the training algorithm of our third-order HOMO:

Then we will discuss the sampling algorithm in third-order HOMO:

33

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Algorithm 5 Third-Order HOMO Training

1: while not converged do
2: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p(d, t)
3: βt ←

√
1− α2

t
4: xt ← αt · x0 + βt · x1 ▷ Noise data point
5: for first k batch elements do
6: ṡtruet ← α̇tx0 + β̇tx1 ▷ First-order target
7: s̈truet ← α̈tx0 + β̈tx1 ▷ Second-order target
8:

...
s true
t ← ...

αtx0 +
...
βtx1 ▷ Third-order target

9: d← 0
10: end for
11: for other batch elements do
12: st ← u1(xt, t, d) ▷ First small step of first order
13: ṡt ← u2(u1(xt, t, d), xt, t, d) ▷ First small step of second order
14: s̈t ← u3(u2(u1(xt, t, d), xt, t, d), u1(xt, t, d), xt, t, d) ▷ First small step of third order
15: xt+d ← xt + d · st + d2

2 ṡt +
d6

3 s̈t ▷ Follow ODE
16: st+d ← u1(xt+d, t+ d, d) ▷ Second small step of first order
17: ṡtargett ← stopgrad (st + st+d)/2 ▷ Self-consistency target of first order
18: end for
19: θ ← ∇θ(∥u1(xt, t, 2d)− ṡtruet ∥2

+∥u2(u1(xt, t, 2d), xt, t, 2d)− s̈truet ∥2
+∥u3(u2(u1(x, t, d), x, t, d), u1(x, t, d), x, t, d)−

...
s true
t ∥2

+∥u1(xt, t, 2d)− ṡtargett ∥2
20: end while

Algorithm 6 Third-Order HOMO Sampling

1: x ∼ N (0, I)
2: d← 1/M
3: t← 0
4: for n ∈ [0, . . . ,M − 1] do
5: x ← x + d · u1(x, t, d) + d2

2 · u2(u1(x, t, d), x, t, d) + d3

6 ·
u3(u2(u1(x, t, d), x, t, d), u1(x, t, d), x, t, d)

6: t← t+ d
7: end for
8: return x

G.2 TRAJECTORY SETTING

We have trajectory as:

zt = αtz0 + βtz1

In original trajectory, we choose αt = exp(− 1
4a(1 − t)

2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with
hyperparameters a = 19.9 and b = 0.1. And new trajectory as αt = 1 − (3t2 − 2t3) and βt =
3t2 − 2t3.

G.3 DATASET

Here, we introduce three datasets we use: 2 Round spin, 3 Round spin, and Dot-Circle datasets. In 2
Round spin dataset and 3 Round spin dataset, we both sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In Dot-Circle datasets, we
sample 300 points from the center dot and 300 points from the outermost circle, combine them as
source distribution, and then sample 600 points from 2 round spin distribution.

34

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

400 200 0 200 400400
300
200
100

0
100
200
300
400Samples from 0 and 1

0

1

600 400 200 0 200 400 600
600

400

200

0

200

400

600
Samples from 0 and 1

0

1

400 200 0 200 400

400

200

0

200

400

Samples from 0 and 1
0

1

Figure 17: The 2 Round spin dataset(Left), 3 Round spin dataset(Middle), and Dot-Circle
datasets(Right). Our goal is to make HOMO learn a transport trajectory from distribution π0
(brown) to distribution π1 (indigo).

G.4 EUCLIDEAN DISTANCE LOSS

Here, we present the Euclidean distance loss performance of four different loss terms combined
under the original trajectory setting and the new trajectory setting.

Table 4: Euclidean distance loss of three complex distribution datasets under new trajectory
setting. Lower values indicate more accurate distribution transfer results. Optimal values are high-
lighted in Bold. And Underlined numbers represent the second best (second lowest) loss value for
each dataset (row). For the qualitative results of a mixture of Gaussian experiments, please refer to
Figure 1.

2 Round 3 Round Dot-
Loss terms spin spin Circle
SC 41.265 48.201 87.407
M1 + SC 14.926 18.376 30.027
M1 + M2 + SC 11.435 12.422 24.712
M1 + M2 + SC + M3 4.701 9.261 21.968

G.5 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. In the Dot-Circle dataset, we sample 600 points from both source
distribution and target distribution, 300 points of source points from the circle, and another 300 from
the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 180 training steps.
In 3-round spin dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 180 training steps. In
Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 180 training steps.

G.6 FIRST ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points in both
source distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from

35

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with SC loss

0
1

Generated

(a) (original)SC / 2 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with SC loss

0
1

Generated

(b) (original)SC / 3 Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with SC loss

0
1

Generated

(c) (original)SC / DotPlus-
Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with SC loss

0
1

Generated

(d) (new)SC / 2 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with SC loss

0
1

Generated

(e) (new)SC / 3 Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with SC loss

0
1

Generated

(f) (new)SC / DotPlusCir-
cle

Figure 18: (SC) The distributions generated by HOMO are only optimized by self-consistency loss.
Upper row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

both source distribution and target distribution, 300 points of sources points from the circle, and an-
other 300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 train-
ing steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training
steps. And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.7 FIRST ORDER PLUS SECOND ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer, with
2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 training
steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training steps.
And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer
MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

36

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(a) (original)(M1+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(b) (original)(M1+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(c) (original)(M1+SC) /
Dot-Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(d) (new)(M1 + SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(e) (new)(M1 + SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(f) (new)(M1+SC) / Dot-
Circle

Figure 19: (M1+SC) The distributions generated by HOMO are only optimized by first-order loss
and self-consistency loss. Upper row(original trajectory setting): Figure (a), in 2 Round spin
dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new tra-
jectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f),
in Dot-Circle dataset. The source distribution, π0 (brown), and the target distribution, π1 (indigo),
are shown, along with the generated distribution (pink).

G.8 THIRD-ORDER HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from Liu et al. (2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both
source distribution and target distribution. In the Dot-Circle dataset, we sample 600 points, both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000
training steps. In 3-round spin dataset training, we also use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 2000
training steps. In Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training
steps.

H COMPUTATIONAL COST AND OPTIMIZATION COST

We profile computational efficiency on the Apple MacBook Air (M1 8GB) with an 8-core CPU.
Through systematic analysis, we observe three critical tradeoffs: (1) The M2 configuration demon-
strates an 8.15× FLOPs increase over M1 while achieving 4.07× parameter expansion, revealing
the fundamental FLOPs-parameters scaling relationship. (2) The self-consistency (SC) term in-
troduces minimal computational overhead, with the M2+SC configuration maintaining 144.73 it/s
versus vanilla M2’s 146.34 it/s (1.1% throughput reduction). (3) Architectural innovations yield

37

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(a) (original)
(M1+M2+SC) / 2 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(b) (original)
(M1+M2+SC) / 3 Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(c) (original)
(M1+M2+SC) / Dot-
Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(d) (new) (M1+M2+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(e) (new) (M1+M2+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(f) (new) (M1+M2+SC) /
Dot-Circle

Figure 20: (M1+M2+SC) The distributions generated by HOMO are only optimized by first-order
loss and second order loss, and self-consistency loss. Upper row(original trajectory setting):
Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle
dataset. Lower row(new trajectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3
Round spin dataset. Figure (f), in Dot-Circle dataset. The source distribution, π0 (brown), and the
target distribution, π1 (indigo), are shown, along with the generated distribution (pink).

substantial gains - the Shortcut Model (M1+SC) achieves 33.6% faster iterations than vanilla M1
(283.20 vs 477.03 it/s) with comparable parameter counts. Table 5 quantifies these effects through
comprehensive benchmarking:

Table 5: Computational Cost Analysis of Different Configurations

Configuration FLOPs (M) Params (K) Training Speed (it/s)
M1 8.400 10.702 477.03
M2 68.480 43.608 146.34
M3 8.400 10.702 357.45
M1 + M2 16.960 21.604 248.15
M2 + SC 68.480 43.608 144.73
(Shortcut Model) M1 + SC 8.480 10.802 283.20
M1 + M2 + SC 68.480 43.608 136.46
M1 + M2 + M3 + SC 103.680 66.012 122.18

Notably, our architecture maintains practical viability even for high-order extensions - the third-
order HOMO configuration (M1+M2+M3+SC) sustains 122.18 it/s despite requiring 12.34× more
FLOPs than the base M1 model. This demonstrates our method’s ability to balance computational
complexity with real-time performance requirements.

38

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(a) (original)
(M1+M2+M3+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(b) (original)
(M1+M2+M3+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(c) (original)
(M1+M2+M3+SC) /
Dot-Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(d) (new)
(M1+M2+M3+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(e) (new)
(M1+M2+M3+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(f) (new)
(M1+M2+M3+SC) /
Dot-Circle

Figure 21: (M1+M2+M3+SC) The distributions generated by Third-Order HOMO, optimized
by first-order loss and second-order loss, third-order loss and self-consistency loss. Upper
row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

I CONCLUSION

In this work, we introduced HOMO (High-Order Matching for One-Step Shortcut Diffusion), a
framework that incorporates high-order dynamics into Shortcut models. By leveraging high-order
supervision, HOMO improves the geometric consistency and precision of learned trajectories.

Theoretical analyses show that high-order supervision ensures stability and generalization across
different stages of the generative process. Experiments demonstrate that HOMO outperforms the
original Shortcut models Frans et al. (2025), achieving better distributional alignment and fewer
suboptimal trajectories.

The integration of high-order terms sets a new standard for geometrically-aware generative model-
ing, emphasizing the importance of capturing higher-order dynamics for accurate transport learning.
Our results highlight the potential of high-order supervision to enhance the fidelity and robustness
of flow-based generative models.

39

	Introduction
	Preliminary
	Notations
	Shortcut model

	Methodology
	Theoretical Analysis
	Experiments
	Experiment setup
	Mixture of Gaussian experiments
	Complex distribution experiments
	Third-order HOMO

	Original Algorithm
	Related work
	Tools from Previous Works
	Definitions of Besov Space
	B-spline
	Class of Neural Networks
	Assumptions
	Approximation error for small
	Approximation error for large

	Theory of Higher Order Flow Matching
	Approximation Error of Second Order Flow Matching for Small
	Approximation Error of Higher Order Flow Matching for Small
	Approximation Error of Second Order Flow Matching for Large
	Approximation Error of Higher Order Flow Matching for Large

	Empirical Ablation Study
	Dataset
	Only First Order Term
	Only Second Order Term
	Only Self-Consistency Term
	First Order Plus Second Order
	Second Order Plus Self-Target
	First Order Plus Self-Target
	HOMO

	Complex Distribution Experiment
	Datasets
	First Order Plus Second Order
	First Order Plus Self-Consistency Term
	Second Order Plus Self-Consistency Term
	HOMO

	Third-Order HOMO
	Algorithm
	Trajectory setting
	Dataset
	Euclidean distance loss
	Only Self-Consistency Term
	First Order Plus Self-Consistency
	First Order Plus Second Order Plus Self-Consistency
	Third-Order HOMO

	Computational Cost and Optimization Cost
	Conclusion

