Under review as a conference paper at ICLR 2025

MPC-MINIMIZED SECURE LLLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Many inference services based on large language models (LLMs) pose a privacy
concern, either revealing user prompts to the service or the proprietary weights to
the user. Secure inference offers a solution to this problem through secure multi-
party computation (MPC), however, it is still impractical for modern LLM workload
due to the large overhead imposed by MPC. To address this overhead, we propose
MARILL, a framework that adapts LLM fine-tuning to minimize MPC usage during
secure inference. MARILL introduces high-level architectural changes during fine-
tuning that significantly reduce the number of expensive operations needed within
MPC during inference, by removing some and relocating others outside MPC
without compromising security. As a result, MARILL-generated models are more
efficient across all secure inference protocols and our approach complements MPC-
friendly approximations for such operations. Compared to standard fine-tuning,
MARILL results in 2.2—11.3 x better runtime and 2.4 —6.9 x better communication
during secure inference across various MPC settings, while typically preserving
over 90% performance across downstream tasks. Anonymous code is available at
https://anonymous.4open.science/r/MPC—auto—-B100.

1 INTRODUCTION

Transformer-based large language models (LLMs) have revolutionized machine learning (ML).
Since the announcement of ChatGPT, we have seen the release of a plethora of proprietary LLMs
like GPT-4 (OpenAll [2023)), Claude 2 (Anthropicl [2024), and Gemini (Google, [2024), as well as
open-source LLMs like Llama (Touvron et al.,[2023) and Mistral (Jiang et al., [2023)) that are now
competitive against their proprietary counterparts (Chiang et al.l 2024} [Wang et al.,[2023} [Yan et al.|
2024;|Liu et al.| 2024)). Recently, companies have started to finetune these models on domain-specific
data to improve their performance on downstream tasks such as chatbots, virtual assistants, and
copilots (OpenAl, 2023} |[Anyscale} 2023}, |[Coherel, [2024)).

Using these finetuned models to power such user-facing services, however, raises significant privacy
concerns. On one hand, the providers of these finetuned models do not want to expose their models’
weights, as these models are often trained on proprietary data and represent competitive differentiation.
On the other hand, users do not want to send their queries to these providers as these queries might
contain sensitive or proprietary information (e.g. IP-protected code or user data). In fact, some
enterprises prohibit their users from using LLM services, e.g., Samsung recently banned the use of
external LLM services after an employee accidentally leaked sensitive code to ChatGPT (Ray} 2023)).

Secure inference is a promising solution to address this challenge as it can provide privacy for both
parties through secure multi-party computation (MPC) (Goldreich et al.| [1987}|Yao, 1986)). There is a
long line of work on MPC-based secure inference (Mohassel & Zhang} |2017; Mishra et al., [2020;
Rathee et al.,[2020; [2021; [Wagh et al.l 2019; |Tan et al.; 2021} Jawalkar et al.,|2024])) offering different
performance and security tradeoffs, with the recent work focusing on secure transformer inference (L1
et al., [2023b; Wang et al., 2022} Dong et al.| 2023} [Lu et al., 20255 |Hou et al., 2023} |Gupta et al.,
2024). In principle, the service provider can use any of these recent secure inference protocols to
support its privacy-preserving service. However, despite massive strides in efficiency, these protocols
are still impractical for today’s LLMs. For instance, the state-of-the-art solution (Gupta et al., 2024)
requires 23 s and 15.9 GB of communication for the first token generation on a small 137M parameter
model with 1024 input tokens. We expect the runtime and communication to degrade to around 6.5
minutes and 240 GB for a more typical 7B parameter model, which is impractical.

https://anonymous.4open.science/r/MPC-auto-B100

Under review as a conference paper at ICLR 2025

Fine-tuning Inference W

(Public) (Private) Teacher:
Foundational Fine-tuning Fine-tuned :
Model Dataset Model :
% % @@ ® Output @@(@)
1 1 |

—)
\ @ Distillation
—)

@% 5 B

MPC-minimized

Private Input
Student Model @ Public >
Weights User .

Inference Service Provider Il

@ MPC-minimizing
Transformation

% W

Figure 1: End-to-end workflow of our system. The private and public weights are highlighted in
red and blue, respectively. The gray region represents our secure inference fine-tuning framework,
MARILL, run locally at the service provider to output an MPC-minimized inference model. This
model has public and private weights, and it enables secure inference (steps 3—5) that incurs high
MPC costs only for private weights while maintaining security (§ 3)). The provider only inputs the
private part of the model to the MPC engine, and the user locally evaluates the public part of the model
on its private input and feeds the partial inference result to the MPC engine. The model architecture
for the private part is public and also input to the engine by the client, but it is omitted from the figure
for simplicity. Single token generation is shown; subsequent tokens follow similarly since the client
knows prior generated tokens. For clarity, the figure shows two parties running MPC engine instances,
though some protocols include an additional helper party for faster secure inference (Appendix A).

To reduce this overhead, prior work has focused on expensive low-level operations within MPC and
proposed MPC-friendly approximations for those operations (§ 2). In this work, we consider an
orthogonal approach targeting high-level architectural changes, that offer a complementary way to
minimize the MPC overhead. Instead of simplifying operations, such architectural changes reduce
the number of expensive low-level operations needed within MPC. Importantly, this strategy does not
(necessarily) eliminate these operations from the inference process entirely; rather, it relocates them
outside of MPC without compromising security, where their cost is relatively negligible. Our work
is the first to explore this MPC-minimization strategy. Notably, our strategy targets the fine-tuning
phase, which is performed locally by the service provider before deploying the model through a
secure inference API. The key insight is that fine-tuning, when carefully tailored to secure inference,
can unlock significant opportunities for MPC-minimization during inference. Since our focus is on
MPC-minimization, these fine-tuning changes do not accelerate plaintext inference (see
and only serve to reduce secure inference costs.

Building on the above insight, we propose a secure inference fine-tuning framework MARIL which
relies on MPC-guided techniques that diverge from standard fine-tuning to improve the cost of secure
inference. Models produced by MARILL are (i) MPC-minimized without compromising security (§ 3)),
and (ii) achieve ML performance close to that of standard fine-tuned models through knowledge
distillation (§ 3). Crucially, since MARILL essentially compresses the model within MPC during
inference, the resulting models are significantly more efficient across all secure inference protocols
(§ 6.1). Furthermore, MARILL only introduces high-level architectural changes that complement
MPC-friendly approximations. We show that integrating these approximations with MARILL leads to
further efficiency improvements (§ 6.3).

MARILL builds on three techniques, all focused on the shared goal of minimizing a high-level model
component within secure inference MPC via fine-tuning. The first two techniques adapt well-known
fine-tuning methods to the MPC-based secure inference setting, representing a novel application of
these ideas in this context. While these methods have previously also been used to accelerate secure
machine learning in trusted execution environments (TEEs) (Zhang et al., [2024} Huang et al.| |2024)),
their adaptation to MPC involves key distinctions due to the differences in the cost profile of MPC and
TEEs, which we summarize in[Appendix D.2] Our third technique is novel and specifically designed
to optimize for the unique performance characteristics of MPC-based secure inference. Now, we
present a brief overview of our techniques and the model component (underlined) they minimize:

"MARILL stands for MPC-Minimized ARchitecture for Secure Inference of LLMs

Under review as a conference paper at ICLR 2025

* Leveraging open-sourced models: As alluded to earlier, open-source LLMs have become more
powerful and are now competitive against proprietary models (Chiang et al., [2024; [Wang et al.,
2023} [Yan et al., 2024} [Liu et al.| 2024). Consequently, a trend has emerged where an increasing
number of service providers opt to fine-tune these open-source models with their private datasets
instead of pre-training their own proprietary models (Anyscalel |2023}; |(Coherel |2024). Since the
open-source model weights are publicly available, they can be utilized to improve secure inference
cost as they do not have to be kept private from the user. However, standard fine-tuning updates
all the model weights with the private data, thereby necessitating that all weights be private and
precluding any potential benefits of the open-source model weights. In light of this, we adapt two
existing fine-tuning techniques to effectively leverage the public weights and minimize MPC:

— Layer Freezing : We reduce the number of transformer layers that need to be evaluated
within MPC by restricting fine-tuning updates (and thus, private weights) to just the final layers
of the pre-trained model. We resort to such strict demarcation because alternating private and
public layers still require the bottleneck operations in the public layers to run within MPC (§ 4),
and simply pruning the public layers leads to poor task performance (§ 6.4).

- Low-rank Adaptation (LoRA) (§ 5.2): Recent parameter-efficient fine-tuning techniques like
LoRA (Hu et al.,|2022)) have shown that it is possible to achieve comparable task performance by
fine-tuning only a small fraction of the model’s weights. Although LoRA was originally designed
to reduce memory requirements during fine-tuning, we show that it can be repurposed such that
the typical MPC cost of linear layers is incurred only for a smaller weight matrix dimensionality
— a runtime bottleneck in the natural two-party setting as well as during decoding (Appendix B)-
stages in other MPC settings (§ 5.2).

* Modifying self-attention architecture: We analyzed the cost profile of secure LLM inference
under various MPC settings and identified self-attention as the bottleneck in the most efficient
settings (§ 5.3). Fine-tuning can mitigate this overhead by enabling the pruning of certain heads in
the (multi-head) self-attention architecture (Michel et al.| 2019). However, to achieve significant
improvements, we have to prune up to 75% heads (and their corresponding parameters) and this
leads to a large accuracy drop despite fine-tuning (§ 6.4). To address this loss, we propose a novel
head reduction technique that preserves accuracy with fine-tuning even for a large head reduction:

— Head-merging : We reduce the number of attention heads in self-attention by merging
m heads into one, but simultaneously, we also increase the head dimension proportionally to
preserve all the pre-trained parameters. While it seems that we did not gain anything because the
computational FLOPs remain the same, we show that head-merging actually matches the secure
inference cost of head-pruning (§ 6.4). This is based on the key observation that the self-attention
operations that are the bottleneck in MPC only scale with number of heads and not the head
dimension. Our experiments show that if the heads are merged carefully, head-merging achieves
much better accuracy than head-pruning since it preserves all the pre-trained parameters (§ 6.4).

The end-to-end workflow of MARILL is summarized in[Fig.] Compared to standard fine-tuning,
MARILL-generated models have 2.2 — 11.3x faster runtime and 2.4 — 6.9 lower communication
across state-of-the-art secure inference frameworks in various MPC settings (§ 6.1). We evaluate
the ML performance of MARILL on three different kinds of tasks, namely, code generation (Chen
et al., 2021)), chatbot (Zheng et al., 2023)), and machine translation (Kocmi et al., [2022). Across
these benchmarks, we show that MARILL typically preserves over 90% of the standard fine-tuned

performance (§ 6.2).

2 RELATED WORK

Secure Inference Protocols. In this work, we focus on MPC-based secure inference protocols
for neural networks which started with the seminal work of SecureML (Mohassel & Zhang],|2017)).
SecureML considers the two-party setting that only involves the service provider and the client,
and after many follow-up works in this setting (Mohassel & Zhang} 2017} |Juvekar et al., 2018} Liu
et al., 2017} [Mishra et al.| [2020; |[Rathee et al.,[2020; 2021} [Zhang et al.| 2021; [Huang et al., 2022}
Balla & Koushanfar, 2023; Hao et al., 2022; [Hou et al., {2023} |Lu et al., 2025; |Pang et al., [2024), the
performance has improved by orders of magnitude. Despite these improvements, 2PC still poses very
large overheads. Thus, subsequent works have considered other settings that introduce an additional
helper party such as 3PC with honest majority (Wagh et al.,|2019; Kumar et al., 2020; Riazi et al.,

Under review as a conference paper at ICLR 2025

2018; Mohassel & Rindal, 2018; [Wagh et al.,|2021; Dong et al.|[2023)) and 2PC with trusted dealer
(2PC-Dealer) (Knott et al.| 2020; |Gupta et al.| 2022} |Jawalkar et al., 2024} |Gupta et al.| 2024)). Other
works have accelerated secure inference protocols by leveraging GPU acceleration (Knott et al.| [2020;
Tan et al.|[2021; Watson et al., [2022; Jawalkar et al., 2024} |Gupta et al., 2024).

Recent work (Hao et al., |2022; |Hou et al., 2023} [Lu et al., [2025; [Pang et al., 2024} |Dong et al.,
2023 |Wang et al.| 2022; |Gupta et al.,[2024) in all these settings have focused on secure transformer
inference since they represent the majority of the Al workload today. Our work is orthogonal to these
protocols and can be used to accelerate secure inference with any of them (Appendix H).

MPC-friendly Approximations. Several works (Li et al.l 2023b; Mohassel & Zhang, [2017; Gilad+
Bachrach et al., [2016; |Ghodsi et al.| [2020a; |(Chou et al., [2018; |Chen et al., 2022} Mishra et al., 2020;
Luo et al.} 2024} Jha et al., 2021} |Peng et al., [2023; |Cho et al.,2022bza; |Lou et al., [2020; |Kundu et al.,
2023} [Zhang et al.,[2023)) have proposed approximate implementations for non-linear activations like
softmax and GeLLU to make them more MPC-friendly. These approximations typically introduce a
large drop in model performance. MPCFormer (L1 et al., 2023b)) proposed a two-stage distillation
process to bridge this gap. Majority of these works (Mishra et al.l [2020; [Jha et al.| 2021; |Ghodsi
et al.| 2020b; Peng et al.| 2023} [Cho et al.| 2022bza; |Kundu et al., [2023; [Lou et al.| 2020} |[Zhang et al.}
2023)) also use Neural Architecture Search (NAS) to employ multiple approximations within the same
network depending on the precision level required. We expand on how MARILL is different from

MPC-friendly approximations in[Appendix D.1}

3 THREAT MODEL AND SETTING

In the secure inference setting, there is a user with a private input and a logical server with a private
model. The model architecture is assumed to be public, the service provider only wants to hide the
private model weights, and the user wants to hide its private input.

Traditional threat model. We focus on the threat model commonly considered by prior works on
secure transformer inference: a semi-honest (or passive) adversary that compromises either the user
or the logical server. In settings where the logical server is implemented via a set of MPC participants,
the adversary compromises an unknown subset of these participants (see [Appendix A). MARILL is
not limited to a semi-honest adversary and we discuss malicious security in[Appendix F

Open-source pre-trained model setting. MARILL applies to the emerging open-source pre-trained
model setting where the service provider fine-tunes a (public) open-source model with its private data
to produce an inference model. Unlike prior works, MARILL produces models where not all weights
must be kept private from the user. We now explain why MARILL’s models uphold the principles of
secure inference despite using a mix of public and private weights:

* Public-private architecture does not leak private data: MARILL statically determines which
weights should be kept public or private through simple configurations (layers frozen, LoRA rank),
and this is done independently of the private dataset. The public weights in a MARILL-generated
model are exactly the open-source model weights frozen during fine-tuning, and thus, making them
public does not reveal any extra information about the private weights or the private dataset.

* Public parts of the model evaluated outside MPC do not leak additional data: since MARILL
is black-box in the underlying MPC protocol, all that remains to be proven is that the public parts
MARILL evaluates outside MPC do not leak additional data about the private inputs. The proof is
straightforward (see and we show that evaluating just the private part of the model
within MPC is equivalent to evaluating the whole model within MPC, i.e., client only learns the
output tokens and the server learns nothing. Given just the output tokens, what can be learned about

the private weights is an orthogonal question (see[Appendix D.3|for discussion on recent work).

4 PERFORMANCE CHARACTERISTICS OF SECURE INFERENCE

Secure inference relies on secure multi-party computation (MPC) (Goldreich et al., [1987; Yao, |1986),
a cryptographic primitive that allows mutually distrusting parties to compute any function on their
private inputs without revealing anything beyond the function output. Prior secure inference works,
specifically, have considered three MPC settings (Appendix A)), each making different assumptions

Under review as a conference paper at ICLR 2025

about the participants. In this section, we highlight the unique cost profile of MPC in these settings
and discuss how it motivates the design of our techniques in[§ 5]

Interaction costs. Unlike plaintext computation, most operations within MPC require interaction
among the MPC participants. This imposes two additional performance overheads in addition
to computation size, namely, communication size and rounds of communication. For most MPC
protocols, this cost of interaction ends up being the bottleneck and it is the primary reason why MPC
is orders of magnitude slower than plaintext computation.

Multiplications with public weights come for free. Since MPC operates natively over integers,
recent secure inference works use fixed-point representation to emulate real-number arithmetic.
Additionally, prior works maintain the invariant that the intermediate state after every network layer
is arithmetically secret-shared (ASS) among MPC participants. This approach minimizes the cost of
arithmetic operations, such as integer multiplications and additions, which dominate ML workloads.
In an ASS scheme, a secret value x is split among n MPC participants such that (i) each party P;
receives a share x; and any set of n — 1 shares reveals nothing about x, and (ii) the sum of all shares
reconstructs the secret x = x1 + ... + x,,. The linear nature of this reconstruction function allows
secret-shared values to be added locally (without interaction) by simply adding the corresponding
secret shares, making additions within MPC relatively so inexpensive that they are considered “free".
Similarly, any affine operation with public coefficients on secret-shared values, such as a matrix
multiplication with public weights, also becomes free. In[§ 5.2] we show how low-rank adaptations
can leverage this property to reduce the number of multiplications between secret-shared values.

Non-arithmetic operations are the bottleneck in the most efficient MPC settings. Non-arithmetic
operations are used to implement comparisons in maxpool, activation functions such as ReLU and
GeLU, exponentiation and division in softmax, as well as the truncation operations in fixed-point
multiplications. We analyzed state-of-the-art secure inference frameworks (§ 6.1) in the most efficient
MPC settings, namely, 3PC and 2PC-Dealer (Appendix A), and found that non-arithmetic operations
account for over 88% of the runtime and communication during secure inference with a sequence
length of 2048. This is in stark contrast to plaintext computation where non-arithmetic operations
have a minimal contribution to the total FLOPs and the inference latency. Guided by this insight, we
proposed head-merging in[§ 5.3] a technique that preserves the FLOPs and still yields significant
performance improvements.

A mix of public and private weights typically does not speedup secure inference. Since multi-
plications with public weights come for free, one would expect significant improvements to secure
inference if most of the weights were public. However, to preserve the standard guarantees of the
MPC, an intermediate state that depends on both the private input and any private weight must not
be revealed to any party. Consequently, once the computation involves a single private weight, all
subsequent non-arithmetic operations need to be performed within MPC, which as we just discussed
are the bottleneck in the most efficient MPC settings for secure inference. This restriction motivated
the design of layer-freezing in[§ 5.1 which separates the public and private weights across layers
such that the non-arithmetic operations in public layers are performed outside MPC.

5 TECHNIQUES

In this section, we describe our techniques that minimize the need for expensive operations within
MPC. We start with layer-freezing (§ 5.1)) that reduces the number of layers evaluated within MPC.
Next, we discuss LoRA and head-merging that minimize arithmetic and non-arithmetic
operations, respectively, in the private layers. Distillation details are deferred to

5.1 LAYER FREEZING

We start with the observation that when an open-source model is fine-tuned on a private dataset, only
the fine-tuned weights need to be kept private during inference. To leverage this insight, consider
using a technique from prior work that only fine-tunes a fraction of model weights (Gandhi et al.,
2023). However, as explained in[§ 4] these techniques typically do not significantly speed up inference.
This is because they update weights throughout the network, including near the input, which means
that almost all non-arithmetic operations — typically the bottleneck — must be performed within MPC.

Under review as a conference paper at ICLR 2025

Linear Layer during Inference

Add

4
T Transformer Layer Fine-tuned N .
4 H :

Inference

fN - within MPC
1 Transformer Layer Pre-trained H
7 H

Weight

nxk :
Transformer Layer WeR H
t : -

" Frozen ‘- (Low-rank) update -
Inference
Transformer Layer at Client
t Input
Embeddings X € R™*n

(a) Layer Freezing with fraction f layers fine-tuned (b) Linear layer during inference with LoRA

Figure 2: MARILL’s techniques that leverage public weights (marked in blue).

To this end, our solution effectively leverages public weights by deferring fine-tuning to only
the final layers of the transformer, thereby also deferring MPC to these final layers. During inference,
the client receives the weights for the bottom layers (identical to the open-source pre-trained model)
from the server, computes the output of these layers locally, and then engages in MPC with the server
for the top layers. Consequently, if only a fraction f of the layers are fine-tuned, all MPC overheads
are reduced by a factor of % X l| Although delegating the computation of the bottom layers to
the client might seem like a limitation, this approach actually reduces client overheads by the same
factor, since the MPC overhead on the client in secure inference protocols is orders of magnitude
higher than the overhead of plaintext inferenceﬂ

5.2 LORA ADAPTATION

In[§ 4 we discussed how multiplication with public weights is free during secure inference. Here, we
demonstrate how LoRA (Hu et al.| [2022), a technique developed for parameter-efficient fine-tuning,
can be repurposed to minimize integer multiplications during inference. These operations account for
up to 95% of the runtime in the state-of-the-art 2PC work Bumblebee (Lu et al., 2025). Beyond the
2PC setting, we found that multiplications also dominate the decoding (see[Appendix B) runtime in
3PC and 2PC-Dealer settings, which are otherwise bottlenecked by non-arithmetic operations (§ 4).
This occurs because the linear layers during decoding perform matrix-vector multiplications instead
of matrix multiplications, making key matrix-multiplication optimizations from |Mohassel & Zhang
(2017) no longer applicable.

A LoRA adapter on a weight matrix W € R™*¥ is a product of two low-rank matrices A € R"*" and
B € R™*, where r < min(n, k). During fine-tuning, only the low-rank matrices are updated, and
at inference time, A x B is merged into the pre-trained weight W to minimize inference overhead.
This approach updates all the model weights and we do not get any benefit from the public pre-trained
weights. In our solution, we crucially do not merge the product A x B with the pre-trained model
weights and keep the matrices separate as shown in[Fig. 2b To see why this reduces multiplications,
consider the evaluation of a LoRA-adapted linear layer: for input X € R™*" the evaluation function
can be written as X x (W + A x B). Naively, the complexity of this expression is O(mnk).
However within MPC, the product X x W comes for free (§ 4). To evaluate the remaining expression
X x A x B, instead of computing A x B first, we can first evaluate X x A and then multiply it with
B. This reduces the overall complexity to O(mr(n + k)); for n = k = 3200 and r = 64, this idea
reduces the number of multiplications by 25x.

5.3 HEAD MERGING

The most efficient secure inference works (Dong et al., 2023} [Knott et al., [2020; |Gupta et al., |[2024)
operate in the 3PC and the 2PC-Dealer settings (Appendix A). In these settings, non-arithmetic
operations are the bottleneck. Among these operations, those in the self-attention module are

The overhead on MPC participants, including the client, is nearly identical in all secure inference protocols,
and even the state-of-the-art protocol has a 73 x overhead over plaintext inference (Gupta et al.} 2024).

Under review as a conference paper at ICLR 2025

of particular interest because: (i) the self-attention mechanism is the only component that scales
quadratically with sequence length b, (ii) the state-of-the-art works in both 3PC (Dong et al., 2023)
and 2PC-Dealer (Gupta et al., 2024; Knott et al., 2020) settings exhibit a super linear blowup in
runtime when b > 1024, highlighting that self-attention is indeed the bottleneck for large b, and (iii)
applications such as chatbots and copilots which have real-time requirements require a large sequence
length. Thus, we focus on minimizing the non-arithmetic operations in the self-attention module.

Reducing number of heads. Only the scaled
dot-product attention (SDPA) module within the Eﬁ
self-attention mechanism has non-arithmetic op- Concat

erations that scale quadratically with b. These
operations are softmax and truncations (from
fixed-point multiplications), and the complex-

ity for both is O(b?h), where h is the #heads. [%Q‘)”Q' @K‘)”K' @V””V' B Z’_=42
Hence, we seek to reduce h by a factor m to e N

I
('scaled Dot-Product Attention]} h=2

reduce both operations proportionally. The stan- Head Me,.‘_;irz,:g m=2

dard technique for minimizing heads is head- HE

pruning (Michel et al., 2019), which analyzes @Qo @Ko @Vo h=4
the importance of each head over the training d=2
dataset, and prunes the insignificant heads. This we wf wy

achieves our goal, but we have to prune 75% of
the heads (and their parameters) for m = 4, and
this results in a large accuracy loss (§ 6.4).

Preserving the pre-trained parameters. To Figure 3: Head merging (m — 2) example for seq-
this end, we observe that unlike plaintext infer- |en § = 3, #heads h = 4, and head-dim d = 2.

ence, FLOPs do not dictate the secure inference After merging, h reduces to &’ = 2 and d increases

cost (§ 4) and it is possible to achieve similar (o ¢/ = 4. The red matrices represent that head-

speedups as head-pruning despite preserving all - merging is only performed in private layers.
the parameters (§ 6.4). This is also evident in

the complexity of non-arithmetic operations in self-attention, which are independent of the head-
dimension d. Thus, we propose a technique called head-merging that reduces the number of heads h
by mx, while simultaneously increasing the head dimension d proportionally, thereby preserving
all parameters from the pre-trained model. Specifically, i heads are divided into groups of m, and
the QKV matrices for heads within the same group are concatenated as shown in[Fig. 3] Concretely,
given matrices {Q;, K;, Vi }ie () of dimension R®*<, the head attention outputs {head;}je (s /m) after
(G+1)m T

merging are as follows: head; = softmax(z’zzjmi\/mﬁ?m") (Vimll -+ IV(j1ym) € REX™,
Merging similar heads. In the expression above, adjacent heads are grouped such that heads jm to
(j + 1)m belong to group j. This strategy does not consider the similarity among heads, resulting
in minimal accuracy improvement over head-pruning (§ 6.4). To group heads based on similarity,
we follow the strategy from (Bian et al.}2021)) that computes the pairwise Jensen-Shannon distance
between all heads within the same layer. Once we have the pairwise distances, we perform K-Medoid
clustering (Kaufmanl |1990) to organize heads into h/m groups. Finally, to get groups of the same
size, we redistribute heads based on a linear sum assignment that minimizes the sum of distances
from the medoid within each group. We found that merging similar heads using this method performs
significantly better, leading to up to 8% gain in accuracy

6 EVALUATION

In this section, we first evaluate the secure inference cost (§ 6.1) of MARILL-generated models and
their ability to preserve ML performance (§ 6.2). Next, we perform the same analysis for prior
MPC-friendly approximations integrated with MARILL (§ 6.3). Finally, we do an ablation study in
[§ 6.4]that considers alternative designs for MARILL’s techniques.

Secure Inference Setup. We perform secure inference experiments on the state-of-the-art (SOTA)
secure inference frameworks: SPU (Ma et al.,|2023)), which supports SOTA protocols for 2PC (Lu
et al.l 2025) and 3PC (Dong et al., [2023), and Crypten (Knott et al., [2020) which is a popular
framework in the 2PC-Dealer setting. Additionally, we evaluate SIGMA (Gupta et al.} [2024), the

Under review as a conference paper at ICLR 2025

Il Bascline [LF=0.5 [l HM=4 [LoRA=64 [EE LF+{HM/LoRA}

X X
i 3 3 &
= “ Lo P
X X X X N X % o X o>é
L XX xS L3 xS S 4 i e = X
o T a a9 & o™ — —
2PC 3PC 2PC-Dealer 2PC 3PC 2PC-Dealer
(a) Pre-filling Time (b) Decoding Time
x X X
3 E . 2
©o
i o X H A
N o b N N & = é i & oy & x
b A Es
2PC 3PC 2PC-Dealer 2PC 3PC 2PC-Dealer
(c) Pre-filling Communication (d) Decoding Communication

Figure 4: Secure inference performance of MARILL vs standard fine-tuning for openllama-3b—-v2
in the LAN setting. The sequence length is b = 64 for 2PC and b = 2048 for 3PC and 2PC-Dealer.
Bar labels show improvement factors over the baseline. The final bar in each plot represents the
combination of layer-freezing with head-merging or LoRA, whichever performs better independently.

SOTA 2PC-Dealer protocol and defer its results to The experiments were run on two
or three machines (depending on the MPC setting) in two network settings: a LAN connection (16
Gbps bandwidth, 0.1 ms latency) and a WAN connection (400 Mbps bandwidth, 40 ms latency).
Each machine was equipped with an Intel Xeon Platinum 8173M Processor with 16 vCPUs, 128 GB
RAM, and a V100 GPU with 16 GB memory. Since the 2PC-Dealer framework (Knott et al., 2020)
supports GPU acceleration, we ran it on the V100. Experiments on other MPC frameworks were run
on CPU. All experiments were multi-threaded. All reported numbers consider end-to-end costs.

Models and Datasets. We consider three privacy-sensitive tasks for LLMs: chatbot, coding, and
machine translation. For the chatbot task, we fine-tune open—11ama3b-v2 on the ShareGPT
dataset and evaluate it on the MTBench dataset, following |Zheng et al.| (2023); |Li et al.| (2023a).
OpenLLaMA is a popular open-source model that replicates the LLaMA model (Geng & Liul 2023}
Touvron et al., 2023)). For the coding task, we fine-tune deepseek—-coder—-1.3b-base on the
MagiCoder dataset (Wei et al., 2023) and evaluate it on the HumanEval benchmark (Chen et al.| 2021)).
For the machine translation task, we fine-tune open—11lama3b—-v2 on the ParroT dataset (Jiao
et al.,|[2023) and evaluate it on the WMT22 (De=-En) benchmark (Kocmi et al., 2022).

Fine-Tuning Hyperparameters. We set the fine-tuning hyperparameters according to the papers that
curated the corresponding fine-tuning dataset: |[Zheng et al.| (2023) for MTBench, |Wei et al.[(2023)) for
HumanEval, andJiao et al.[(2023) for WMT22. We only vary the batch size and number of training
epochs to better suit some techniques. For instance, we observed that LoRA favors a smaller batch

size in our setting. We include the detailed hyperparameters in[Appendix 1}

6.1 SECURE INFERENCE PERFORMANCE

In this section, we compare the secure inference performance of MARILL-generated models vs
the baseline — a fully fine-tuned model. We focus on LAN performance in this section and defer
the discussion on WAN performance to [Appendix K| [Fig. 4] summarizes the LAN results for
openllama-3b-v2 as the pre-trained model. We first analyze the improvements from head-

merging and LoRA (§ 5.2) in the three MPC settings from prior work, and then discuss
layer-freezing improvements.

2PC: LoRA improves the pre-filling runtime by 4.9 x as 92% of the 2PC runtime is spent in
performing multiplications for openllama—-3b-v2 inference. Decoding runtime is improved by
2.2x, which is less pronounced because the 2PC framework (Lu et al.||2025) does not amortize well
over the smaller decoding computation. In terms of communication, non-arithmetic operations are
the bottleneck in 2PC, accounting for 72.5% of the total communication. Still, we do not see a large

Under review as a conference paper at ICLR 2025

B Zeroshot EMEEM Finetuned [N LF=05 M HM=4 [LoRA—64 [LF+HM [LF+LoRA
S S QA P)
P Q > > SN o o
w A v N ® o qoT R w

o ;
> “ »
Nl IR ko

MTBench (score/10)

HumanEval (pass@1) WMT22 (BLEU)

Figure 5: MARILL vs (fully) fine-tuned and zero-shot baselines.

improvement with head merging (Figures fic| & [4d) because it is designed for large sequence lengths
and we could only run 2PC on small sequence lengths (64) due to its large memory requirements.

3PC and 2PC-Dealer: Since non-arithmetic operations in the self-attention module become the
bottleneck in these settings at large sequence lengths (§ 5.3), head-merging leads to runtime and
communication improvements of 2.1 — 2.4x and 2.6 — 2.8 x (Fig. 4c), respectively, in the
pre-filling stage. During decoding, integer multiplications are the runtime bottleneck instead (§ 5.2),
and hence, LoRA helps in this stage and we get 1.8 — 1.9 decoding runtime improvement.
In terms of decoding communication (Fig. 4d), 3PC exhibits a similar improvement as in pre-filling.
The communication improvement from LoRA for 2PC-Dealer is an implementation artefacﬂ

Layer Freezing (§ 5.1): We fine-tune half of the 26 transformer layers in openllama-3b-v2.
This leads to around 2x improvement across settings, metrics, inference stages, and in combination
with both techniques. In some cases, layer freezing leads to a greater than 2x improvement due to
the omission of the embedding layer within MPC in addition to half of the transformer layers. In
general, we show in that layer freezing leads to 1 x improvement in all metrics for a wide
range of f values. Overall, including WAN results , MARILL leads to 2.2 — 11.3x
better runtime and 2.4 — 6.9 better communication across secure inference scenarios.

6.2 ML PERFORMANCE

summarizes the ML performance of MARILL, the pre-trained model and the fully fine-tuned
model on our three benchmarks. First, we note that full fine-tuning significantly improves the
performance of the pre-trained model across all three tasks. MARILL’s layer-freezing (LF=0.5)
is also effective on all three tasks, preserving 93 — 100% of the full fine-tuning performance (see
for ablation on number of layers frozen). On WMT and HumanEval benchmark, head-
merging (HM=4) preserves 92 — 95% performance, while on MTBench, it achieves 87% performance.
The combination of layer-freezing and head-merging works well, incurring an additional loss of
at most 4% compared to head-merging alone. For scenarios requiring higher accuracy, the HM=2
configuration offers significantly improved accuracy while still outperforming the baseline (Table TD).
LoRA preserves over 95% performance on all benchmarks. While combining LoRA with layer
freezing sometimes leads to a big drop in performance (MTBench and HumanEval), we note that
using LoRA alone provides significant speed-ups, ranging from 2.2 to 4.9x. Overall, we observe
that MARILL’s techniques typically preserve over 90% of the fully fine-tuned performance.

6.3 INTEGRATION OF PRIOR MPC-FRIENDLY APPROXIMATIONS WITH MARILL

In this section, we analyze the performance of MARILL when combined with prior MPC-friendly

approximations, namely, Quad (Li et al., |2023b) and ReLU (Chen et al., 2022} [Zeng et al., [2023)

as GeLU/SiLU approximations, and 2Quad 2023b), L2Quad (Zhang et al., 2023) and
2ReL.U (Mohassel & Zhang},[2017) as softmax approximation. First, we analyzed the ML performance

of each approximation independently and found that the quadratic approximations from recent works
led to a catastrophic loss on our benchmarks. Specifically, on the HumanEval benchmark, Quad only

3We had to employ matrix decomposition on all linear layers in the 2PC-Dealer setting to fit secure inference
of (fully) fine-tuned LLaMA-3B on the V100 GPU.

Under review as a conference paper at ICLR 2025

Table 1: HumanEval pass@1 performance of various techniques. The time and comm. improvements
are averaged over the prefilling stage in the 3PC and 2PC-Dealer settings on a LAN network.

(a) 2ReLU approximation for softmax combined with (b) Adjacent/similar head-merging vs head-pruning

MARILL (LF=0.5, HM=4) (HP). Parameter denotes the head reduction factor.
Improvement Improvement
pass@1 Time Comm. pass@1 Time Comm.
HM=4 57.9 2.25x 2.7 HP=4 494 2.45x 2.75%
2ReLU + HM 54.9 3.25x 4.25x HP=2 56.7 1.7x 1.8%
LF=0.5 + HM=4 55.5 4.8% 5.4x HM=4 (adj.) 50.0 2.25% 2.7x
2ReLU + LF + HM 56.7 6.9x 8.5 HM=4 (sim.) 57.9 2.25% 2.7x

HM=2 (sim.) 60.4 1.55x 1.8x

achieves 31.7% accuracy compared to 61% of the baseline, and the fine-tuning diverges for L2Quad
and 2Quad, resulting in 0% accuracy. In contrast, ReLU-based approximations work very well, with
ReLU achieving the same accuracy as the baseline, and 2ReLU achieving 59.8% accuracy. Out of the
two, only 2ReL.U leads to significant efficiency improvements, with ReLU only improving the secure
inference cost by at most 10%. Thus, we only evaluate the combination of 2ReL U with MARILL.

summarizes the accuracy results on the HumanEval benchmark and the corresponding
secure inference improvements. For the latter results, we focus on the 3PC and 2PC-Dealer settings
because all prior approximations target non-arithmetic operations that are the bottleneck in these
settings. Our experiments show that 2ReLU works well with MARILL, incurring at most 3% further
accuracy loss on top of MARILL. In exchange, 2ReLU improves MARILL’s time and communication
by 1.4 — 1.6x. For reference, 2ReLU independently results in 1.95 — 2.15x improvement over the
baseline. Overall, we get 6.9 — 8.5x improvement in runtime and communication compared to the
baseline, while still preserving over 90% of the baseline ML performance.

6.4 ABLATION STUDY

Layer-freezing vs layer-pruning. In layer-freezing, we froze the bottom layers of the transformer
to move some layers outside of MPC. An alternative strategy to minimize layers within MPC is to
simply prune some layers. We experimented with layer-pruning on the HumanEval benchmark and
evaluated the best-performing strategy from Sajjad et al.|(2020), namely, top-layer pruning. For half
of the layers pruned, we found that the accuracy drops from 61% for the baseline to just 49.4% post
layer-pruning. In contrast, layer-freezing achieved an accuracy of 56.7%, a 12% increase in relative
performance, highlighting the importance of preserving the pre-trained weights of the pruned layers.

Head-merging vs head-pruning. We compared head-pruning (Michel et al. 2019) and head-
merging[§ 5.3]on HumanEval, configuring head-pruning to prune an equal number of heads from each
layer to avoid additional leakage about the private dataset. summarizes the results for both
techniques when the heads are reduced by 2x and 4 x. First, we note that head-merging achieves
similar efficiency improvements to head-pruning for both head reduction factors, with head-pruning
being at most 10% faster and 2% more communication efficient. ML performance of head-merging,
on the other hand, is much better since it preserves all the head parameters. In particular, head-merging
has up to 8% better accuracy than head-pruning, and HM= 4 even outperforms HP=2 in both ML
and secure inference performance. Note that these improvements only apply to similar head-merging,
not adjacent head-merging, which naively combines adjacent heads. These results demonstrate the
significance of preserving head parameters as well as merging heads based on similarity.

7 CONCLUSION

In this work, we designed a framework MARILL, that leverages open-sourced LLMs and introduces
high-level architectural changes through fine-tuning to minimize MPC usage during secure inference.
We demonstrated that MARILL is effective in minimizing secure inference costs across MPC settings
in exchange for a reasonable accuracy tradeoff. In particular, MARILL-generated models are 2.2 —
11.3x more efficient for secure inference compared to a standard fine-tuned model, and they typically
preserve over 90% relative performance across multiple challenging LLM tasks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist,
and Olivier Bachem. On-Policy Distillation of Language Models: Learning from Self-Generated
Mistakes. In ICLR, 2024.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news
/claude-3-family), 2024.

Anyscale. Fine-Tuning Llama-2: A Comprehensive Case Study for Tailoring Models to Unique
Applications. https://www.anyscale.com/blog/fine-tuning-1llama-2-a-c
omprehensive-case-study-for-tailoring-models—-to-unique—-applica
tions, 2023.

Shashank Balla and Farinaz Koushanfar. HELiKs: HE Linear Algebra Kernels for Secure Inference.
In CCS, pp. 2306-2320. ACM, 2023.

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan, and Kenneth Church. On attention redundancy:
A comprehensive study. In NAACL-HLT, pp. 930-945. Association for Computational Linguistics,
2021.

Isaac A. Canales-Martinez, Jorge Chdvez-Saab, Anna Hambitzer, Francisco Rodriguez-Henriquez,
Nitin Satpute, and Adi Shamir. Polynomial time cryptanalytic extraction of neural network models.
In EUROCRYPT (3), volume 14653 of Lecture Notes in Computer Science, pp. 3—33. Springer,
2024.

Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols. J. Cryptology, 2000.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A. Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, Eric Wallace,
David Rolnick, and Florian Tramer. Stealing part of a production language model. In /CML.
OpenReview.net, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou,
Jianxin Li, and Furu Wei. THE-X: privacy-preserving transformer inference with homomorphic
encryption. In ACL (Findings), pp. 3510-3520. Association for Computational Linguistics, 2022.

Yi Chen, Xiaoyang Dong, Jian Guo, Yantian Shen, Anyu Wang, and Xiaoyun Wang. Hard-label
cryptanalytic extraction of neural network models, 2024. URL https://arxiv.org/abs/
2409.11646.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael 1. Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot
arena: An open platform for evaluating 1lms by human preference. In /JCML. OpenReview.net,
2024.

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: A deep
neural network design for private inference. IEEE Secur. Priv., 20(5):22-34, 2022a.

Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective network
linearization for efficient private inference. In International Conference on Machine Learning, pp.
3947-3961. PMLR, 2022b.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. CoRR, abs/1811.09953, 2018.

Cohere. Introducing Command R Fine-Tuning: Industry-Leading Performance at a Fraction of the
Cost. https://cohere.com/blog/commandr—-fine-tuning, 2024.

11

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anyscale.com/blog/fine-tuning-llama-2-a-comprehensive-case-study-for-tailoring-models-to-unique-applications
https://www.anyscale.com/blog/fine-tuning-llama-2-a-comprehensive-case-study-for-tailoring-models-to-unique-applications
https://www.anyscale.com/blog/fine-tuning-llama-2-a-comprehensive-case-study-for-tailoring-models-to-unique-applications
https://arxiv.org/abs/2409.11646
https://arxiv.org/abs/2409.11646
https://cohere.com/blog/commandr-fine-tuning

Under review as a conference paper at ICLR 2025

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation. In NDSS, 2015.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Chen. PUMA: secure inference of llama-7b in five minutes. CoRR,
abs/2307.12533, 2023.

Tarek Elgamal and Klara Nahrstedt. Serdab: An iot framework for partitioning neural networks
computation across multiple enclaves. In CCGRID, pp. 519-528. IEEE, 2020.

Hanna Foerster, Robert Mullins, Ilia Shumailov, and Jamie Hayes. Beyond slow signs in high-fidelity
model extraction, 2024. URL https://arxiv.org/abs/2406.10011.

Sanchit Gandhi, Patrick von Platen, and Alexander M Rush. Distil-whisper: Robust knowledge
distillation via large-scale pseudo labelling. arXiv preprint arXiv:2311.00430, 2023.

Xinyang Geng and Hao Liu. OpenLLaMA: An Open Reproduction of LLaMA. https://gith
ub.com/openlm-research/open_1llama, May 2023.

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas: Private
inference on a relu budget. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), NeurIPS, 2020a.

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas: Private
inference on a relu budget. Advances in Neural Information Processing Systems, 33:16961-16971,
2020b.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pp. 201-210.
JMLR.org, 2016.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority. In STOC, 1987.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, pp. 291-304. ACM, 1985.

Google. Gemini. https://blog.google/technology/ai/google—gemini-ai/,
2024.

Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, and Divya Gupta. LLAMA: A low latency
math library for secure inference. Proc. Priv. Enhancing Technol., 2022(4):274-294, 2022.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar,
and Rahul Sharma. SIGMA: secure GPT inference with function secret sharing. Proc. Priv.
Enhancing Technol., 2024(4):61-79, 2024.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron:
Private inference on transformers. In NeurIPS, 2022.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015.

Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang Li. Model protec-
tion: Real-time privacy-preserving inference service for model privacy at the edge. IEEE Trans.
Dependable Secur. Comput., 19(6):4270-4284, 2022.

Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, and Kui Ren. Ciphergpt:
Secure two-party GPT inference. JACR Cryptol. ePrint Arch., pp. 1147, 2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In /CLR. OpenReview.net,
2022.

12

https://arxiv.org/abs/2406.10011
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://blog.google/technology/ai/google-gemini-ai/

Under review as a conference paper at ICLR 2025

Wei Huang, Yinggui Wang, Anda Cheng, Aihui Zhou, Chaofan Yu, and Lei Wang. A fast, performant,
secure distributed training framework for LLM. In ICASSP, pp. 4800—4804. IEEE, 2024.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
two-party deep neural network inference. In USENIX Security Symposium (to appear), 2022.

Neha Jawalkar, Kanav Gupta, Arkaprava Basu, Nishanth Chandran, Divya Gupta, and Rahul Sharma.
Orca: Fss-based secure training and inference with gpus. In SP, pp. 597-616. IEEE, 2024.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu reduction
for fast private inference. In International Conference on Machine Learning, pp. 4839—4849.
PMLR, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Wenxiang Jiao, Jen-tse Huang, Wenxuan Wang, Zhiwei He, Tian Liang, Xing Wang, Shuming Shi,
and Zhaopeng Tu. Parrot: Translating during chat using large language models tuned with human
translation and feedback. In Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 15009-15020, 2023.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low latency
framework for secure neural network inference. In USENIX Security Symposium, 2018.

Leonard Kaufman. Partitioning around medoids (program pam). Finding groups in data, 344:68—-125,
1990.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. CrypTen: Secure multi-party computation meets machine learning. In Workshop
on Privacy Preserving Machine Learning at NeurIPS, 2020.

Tom Kocmi, Rachel Bawden, Ondfej Bojar, Anton Dvorkovich, Christian Federmann, Mark Fishel,
Thamme Gowda, Yvette Graham, Roman Grundkiewicz, Barry Haddow, et al. Findings of the
2022 conference on machine translation (wmt22). In Proceedings of the Seventh Conference on
Machine Translation (WMT), pp. 1-45, 2022.

Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul
Sharma. Cryptflow: Secure tensorflow inference. In IEEE S&P, 2020.

Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Tiffany Liu, and Peter A. Beerel. Learning to
linearize deep neural networks for secure and efficient private inference. In /ICLR. OpenReview.net,
2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can opensource llms truly promise on context length,
2023a.

Dacheng Li, Hongyi Wang, Rulin Shao, Han Guo, Eric P. Xing, and Hao Zhang. MPCFORMER:
fast, performant and provate transformer inference with MPC. In ICLR. OpenReview.net, 2023b.

Yun Li, Yufei Duan, Zhicong Huang, Cheng Hong, Chao Zhang, and Yifan Song. Efficient 3pc
for binary circuits with application to maliciously-secure DNN inference. In USENIX Security
Symposium, pp. 5377-5394. USENIX Association, 2023c.

Yehuda Lindell. How to simulate it — a tutorial on the simulation proof technique. Tutorials on the
Foundations of Cryptography, 2017.

13

Under review as a conference paper at ICLR 2025

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural Network Predictions via MiniONN
Transformations. In CCS, 2017.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural network
inference. In International Conference on Learning Representations, 2020.

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong, Kui Ren, Tao Wei, and
Wenguang Chen. BumbleBee: Secure Two-party Inference Framework for Large Transformers.
In 32nd Annual Network and Distributed System Security Symposium, NDSS 2025. The Internet
Society, 2025.

Jinglong Luo, Yehong Zhang, Jiaqi Zhang, Xin Mu, Hui Wang, Yue Yu, and Zenglin Xu. Sec-
former: Towards fast and accurate privacy-preserving inference for large language models. CoRR,
abs/2401.00793, 2024.

Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu, Wenjing Fang, Jin Tan, Chaofan
Yu, Benyu Zhang, and Lei Wang. Secretflow-spu: A performant and user-friendly framework
for privacy-preserving machine learning. In USENIX Annual Technical Conference, pp. 17-33.
USENIX Association, 2023.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In NeurIPS,
pp.- 14014-14024, 2019.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In USENIX Security Symposium,
2020.

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias Leontiadis, Andrea
Cavallaro, and Hamed Haddadi. Darknetz: towards model privacy at the edge using trusted
execution environments. In MobiSys, pp. 161-174. ACM, 2020.

Payman Mohassel and Peter Rindal. ABY3: A Mixed Protocol Framework for Machine Learning. In
CCS, 2018.

Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy-Preserving Machine
Learning. In IEEE S&P, 2017.

OpenAl. New models and developer products announced at devday. https://openai.com/b
log/new—-models—and-developer—-products—announced—-at—-devday, 2023.

Qi Pang, Jinhao Zhu, Helen Mollering, Wenting Zheng, and Thomas Schneider. BOLT: privacy-
preserving, accurate and efficient inference for transformers. In IEEE S&P, 2024.

Hongwu Peng, Shanglin Zhou, Yukui Luo, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao, Shaoyi
Huang, Xi Xie, Chenghong Wang, et al. Rrnet: Towards relu-reduced neural network for two-party
computation based private inference. arXiv preprint arXiv:2302.02292, 2023.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. CrypTFlow2: Practical 2-Party Secure Inference. In CCS, 2020.

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma, Nishanth
Chandran, and Aseem Rastogi. SIRNN: A math library for secure inference of RNNs. In /EEE
S&P, 2021.

Siladitya Ray. Samsung bans chatgpt among employees after sensitive code leak. Forbes, 2023.

M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori, Thomas Schneider,
and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for machine learning
applications. In AsiaCCS, pp. 707-721. ACM, 2018.

14

https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday

Under review as a conference paper at ICLR 2025

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. Poor man’s BERT: smaller and faster
transformer models. CoRR, abs/2004.03844, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, Shixiong Zhao, Sen
Wang, Li Chen, Xiapu Luo, Fengwei Zhang, and Heming Cui. SOTER: guarding black-box
inference for general neural networks at the edge. In USENIX ATC, pp. 723-738. USENIX
Association, 2022.

Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E. Gonzalez,
and Ion Stoica. Fairness in serving large language models. In OSDI, pp. 965-988. USENIX
Association, 2024.

Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu, and Somesh Jha.
Shadownet: A secure and efficient on-device model inference system for convolutional neural
networks. In SP, pp. 1596-1612. IEEE, 2023.

Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. Cryptgpu: Fast privacy-preserving machine
learning on the GPU. In IEEE S&P, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware. In /ICLR. OpenReview.net, 2019.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-party secure computation for
neural network training. PoPETs, 2019.

Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin.
Falcon: Honest-majority maliciously secure framework for private deep learning. PoPETs, 2021.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan
Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li. Decodingtrust: A
comprehensive assessment of trustworthiness in GPT models. In NeurIPS, 2023.

Yongqin Wang, G. Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott, Murali Annavaram,
and Hsien-Hsin S. Lee. Characterization of mpc-based private inference for transformer-based
models. In ISPASS, pp. 187-197. IEEE, 2022.

Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A GPU platform for secure
computation. In USENIX Security Symposium, pp. 827-844. USENIX Association, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, 2023.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.berke
ley.edu/blogs/8_berkeley_function_calling_leaderboard.html, 2024.

Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Extended Abstract). In FOCS, 1986.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 521-538, 2022.

15

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

Under review as a conference paper at ICLR 2025

Wenxuan Zeng, Meng Li, Wenjie Xiong, Tong Tong, Wen-jie Lu, Jin Tan, Runsheng Wang, and
Ru Huang. Mpcvit: Searching for accurate and efficient mpc-friendly vision transformer with
heterogeneous attention. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5052-5063, 2023.

Qiao Zhang, Chunsheng Xin, and Hongyi Wu. GALA: greedy computation for linear algebra in
privacy-preserved neural networks. In NDSS. The Internet Society, 2021.

Yuke Zhang, Dake Chen, Souvik Kundu, Chenghao Li, and Peter A Beerel. Sal-vit: Towards
latency efficient private inference on vit using selective attention search with a learnable softmax

approximation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp- 5116-5125, 2023.

Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and Xiangqun
Chen. No privacy left outside: On the (in-)security of tee-shielded DNN partition for on-device
ML. In SP, pp. 3327-3345. IEEE, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In NeurIPS, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

16

Under review as a conference paper at ICLR 2025

A MPC SETTINGS

* 2-party computation (2PC): this setting assumes two MPC participants who do not trust each
other, and thus, it is the most natural setting for secure inference.

* Honest-majority 3-party computation (3PC): this setting has an additional helper party that also
participates in MPC, and the adversary can corrupt at most any one of the three parties. Prior works
considered this setting because having this helper party improves the MPC performance by orders
of magnitude.

* 2PC with trusted dealer (2PC-Dealer): in this setting, there is an additional trusted dealer that is
only responsible for distributing input-independent correlated randomness to the computing parties
in a pre-processing phase. The parties can then use this randomness to accelerate 2PC on their
private inputs.

B LLM INFERENCE STAGES - PREFILLING AND DECODING

In this section, we briefly describe the two stages in LLM inference. Firstly, users provide a prompt
in natural language to the system. The system then uses tokenizers to map the natural language into
a vector x1, ...z, through a process called tokenization (Sennrich et al.| [2015). Then the system
performs the main inference process using LLMs. The inference process consists of two phases -
the pre-filling phase and the decoding phase. Formally, the pre-filling phase computes probablity
of the first token conditioned on the previous n tokens P(Z,+1|21,...25) (Sheng et al., [2024). Tt
then samples from the distribution and predicts the first token x,,1 ;. The decoding phase iteratively
computes the next token based on the same logic. For instance, the first step in the decoding computes
P(zp42|21,...-2n41) and samples to obtain x,, 2. The decoding phase terminate when the new
token is an ending token, often referred to as the “end-of-sentence" token (EOS). Interestingly, the
left-to-right decoding nature has made the computation characteristics different (Kwon et al.} 2023}
Yu et al.| 2022 |Sheng et al.,|2024)) in these two stages. Thus, we distinguish between the two phases
when evaluating our techniques in this work.

C MARILL DOES NOT ACCELERATE PLAINTEXT INFERENCE

MARILL introduces changes during fine-tuning that minimize MPC usage during secure inference.
In this section, we argue that these changes are specifically tailored to reduce secure inference costs
and do not accelerate plaintext inference:

* Layer freezing (§ 5.1I): although layer freezing restricts the private weights to just the final layers,
plaintext inference still has to evaluate all the layers, resulting in no performance improvement.
Secure inference also evaluates all the layers, however, the expensive MPC overhead is only paid
for the layers with private weights.

* LoRA (§5.2): LoRA introduces low-rank matrices A and B to every weight matrix W of the
model such that the linear layer computation on input X becomes (W + A x B) x X, as opposed to
W x X without LoRA. Thus, running plaintext inference with LoRA actually increases overhead.
Again, secure inference also evaluates (W + A x B) x X for all linear layers, however, the
expensive MPC overhead is only paid for computing A x B x X since multiplication with public
weights comes for free in MPC (§ 4).

* Head merging (§ 5.3): head-merging reduces the number of heads h but also proportionally
increases the head-dimension d such that ¢ = h * d remains the same. Plaintext inference cost is
dictated by the FLOP count, which for self-attention is O((b? + bc) - ¢) where b is the sequence
length. Note that head merging does not change the FLOP count, and thus the plaintext inference
cost remains the same. Secure inference benefits from head merging because it reduces non-
arithmetic operations that have a negligible contribution to FLOP count but are the bottleneck in
MPC due to its unique cost profile (§ 4).

17

Under review as a conference paper at ICLR 2025

D RELATED WORK

D.1 MARILL VS MPC-FRIENDLY APPROXIMATIONS.

MARILL is complementary to MPC-friendly approximations as it makes high-level changes to the
architecture, as opposed to the underlying operations. Additionally, MARILL differs from these works
in two key aspects: (i) while these works output models where all weights are private, MARILL
produces models that have a mix of public and private weights, and (ii) the model architecture in
NAS-based works depends on the private training data and leaks additional information, whereas
MARILL is statically configured independent of the training data. We show in [§ 6.3 that these
approximations can be combined with MARILL to yield further performance improvements. We
do not include NAS-based approximations here because they leak information beyond the standard
secure inference guarantees, which conflicts with the strict security requirements we aim to preserve.

D.2 LAYER-FREEZING AND LORA IN TEE-BASED SECURE ML

Both MARILL and prior work on TEE-based secure ML (Zhang et al.| [2024}; [Huang et al., 2024)
divide the model weights into public and private components to optimize computation (either for
secure training or inference), and the specific techniques of interest are LoRA and layer freezing. In
this section, we highlight the key differences in how these techniques are adapted in each setting.

* LoRA: In TEE-based works, LoRA is used to shift computations involving public weights outside
the TEE during inference, provided these computations are preprocessed securely within the TEE
during an equally expensive inference-specific preprocessing phase (Tram&r & Bonehl 2019). In
constrast, MARILL performs all LoRA-related computations (on both public and private weights)
within the MPC environment, leveraging the observation that arithmetic operations on public
weights have the same cost as the corresponding plaintext operation (§ 4). As a result, MARILL
can accelerate secure inference with LoORA without requiring a preprocessing phase.

 Layer-Freezing: Prior work on TEE-based secure inference (Zhang et al.,[2024}; Mo et al.,[2020;
[Elgamal & Nahrstedt, [2020; [Hou et all, 2022} [Shen et all, [2022; |Sun et al 2023) has adopted
alternating public and private layers. While effective for TEE-based secure inference (where
arithmetic operations are the bottleneck), this approach offers limited benefits in MPC-based
settings (e.g., 2PC-Dealer and 3PC) since the bottleneck in these settings lies in non-arithmetic
operations that must still occur within MPC (§ 4). Instead, MARILL introduces a strict separation
between public and private components to optimize secure inference. Finally, while the recent work
on TEE-based secure federated learning (Huang et al.| [2024)) employs (split) layer-freezing like
MARILL, and this idea can be extended to TEE-based secure inference, we employ this technique
in the MPC-based secure inference context for the first time and provide new and comprehensive
results on its accuracy (in the traditional non-federated setting) and MPC performance (Table 2J).

D.3 MODEL EXTRACTION.

So far, the state-of-the-art model extraction attacks (Canales-Martinez et al., [2024}; [Carlini et al.,
[2024}; [Chen et al ,[2024; [Foerster et all,[2024)) that can benefit from some weights being public have
major limitations: they (i) make assumptions that do not apply to our setting, (ii) only scale to orders
of magnitude fewer parameters than the private weights in any configuration of MARILL we evaluate,
and (iii) require a very large number of queries which are infeasible to perform given the high cost of
secure inference.

E SECURITY PROOF

In this section, we prove that secure inference on MARILL-generated models satisfies the standard
guarantee of secure inference, i.e., the user only learns the output tokens and the server learns
nothing from a secure inference execution. Since MARILL is black-box in the underlying secure
inference protocol and the model architecture itself does not leak private data, all we need to prove
is that evaluating public parts of MARILL-generated model outside MPC does not reveal additional
information. We prove the same by showing that evaluating just the private part of the model within
MPC is equivalent in terms of security to evaluating the whole model within MPC.

18

Under review as a conference paper at ICLR 2025

First, we describe the ideal functionality that models the black-box functionality provided by a secure
inference protocol. Then, we discuss how we model the public-private architecture of MARILL’S
models in the proof. Finally, we explain the high-level intuition of our proof, and conclude with a
formal proof.

Secure Inference Ideal Functionality F 4
This functionality is parameterized by the model architecture A.
* Client Prompt: Receive prompt p for A from client C, and store p internally.
* Server Weights: Receive model weights W for A from server S, store W internally.
* Pre-filling: Perform pre-filling on p to get state st < A.prefill(W, p). Set yprev + L.

* Decoding: If ypev # L, receive token x from the client C. If £ = yprev, update the state
st < A.update(st, z); else abort. Perform a decoding step on st to get an output token
y < A.decode(st), update yprev < ¥, and send y to the client C.

Figure 6: Ideal functionality for secure inference

Ideal functionality of secure inference. The secure functionality provided by a secure inference
protocol can be described using a (simplified) ideal functionality F4 that is parameterized
by a model architecture A. Note that 74 does not leak any information to the server, and the client
learns nothing beyond the output tokens. The ideal functionality allows the client to choose the latest
token z, but the ideal functionality makes sure that this token must match the previously generated
token ¥prey. It is important to note this ideal functionality is simplified for exposition and there are
some additional considerations when it is realized with a secure inference protocol in practice:

 Secure inference protocols typically emulate real-number arithmetic with fixed-point arithmetic
which incurs numerical errors. Thus, the functionality needs to be modified to faithfully perform
each operation according to the fixed-point schema used by the specific secure inference protocol.

* Many of the secure inference protocols (Demmler et al., 2015} [Knott et al., 2020; Mohassel &
/hang|, |2017}; |Wagh et al.}|2019; Lu et al., [2025} |Dong et al., 2023} [Mishra et al.,|2020; |Tan et al.}
2021, [Wagh et al., 2021; |Huang et al., [2022) we cite employ probabilistic truncation to boost
efficiency, and it was shown in [Li et al.|(2023c]) that these protocols can not be proved secure w.r.t.
any ideal functionality. Thus, our proof only applies to protocols that do not have this limitation.

Modelling the public-private architecture of MARILL’s models. MARILL introduces three
techniques that make the following modifications to the model architecture:

* Layer freezing: it splits the model into public and private layers, where the bottom layers are all
public and the top layers are all private.

* LoRA: it makes the majority of weights in the private layers public.

* Head-merging: it changes the number of heads in the private layers.

It is straightforward to argue that LoRA and head merging satisfy the standard secure inference
guarantee because they only impact the private layers which are entirely run within MPC. Even
for LoRA, the public weights just make the MPC much more efficient (§ 4) but the computation
is still run entirely within MPC. The changes they make can simply be seen as running a different
architecture within MPC, and MPC ensures that only the output of the private layers (i.e., the output
tokens) is revealed. Thus, we only need to prove that splitting the model into public and private
layers is secure because this actually moves operations outside MPC. To this end, we model the
public-private architecture as follows: M, denotes the public layers run outside MPC, and M,
denotes the private layers run within MPC. From our layer-freezing strategy, M = M| M, denotes
the complete inference architecture, which is basically a concatenation of the public layers with the
private layers. Now, we look at the security proof which proves that only evaluating M, within MPC
has the same security as running M entirely within MPC.

High-level proof strategy. MARILL’s secure inference protocol (Fig. 7) evaluates M, within MPC
by making black-box calls to a prior secure inference framework. Our proof shows that MARILL ’s

19

Under review as a conference paper at ICLR 2025

MARILL’s Secure Inference Protocol in the F-hybrid model

Let M, My, and M, denote the model architecture components as defined in[Appendix E] Let
Wb and W, denote the corresponding weights for these parts. Client C has prompt p and server
S has weights ;.. Both parties have Wy,. Let n be the number of tokens to be generated.

1. Both parties initialize an instance of F M, and the server S sends Wy, to F. Mo+

2. The client locally evaluates the public part of the model on its prompt to get the hidden state
for the prompt h < Mpp.evaluate(Wpp, p), and sends h to Fay,, . Note that this is the input
that M, expects to perform pre-filling on the prompt.

3. C receives y1 from Fay, .
4. Fori=2,...,n:

(a) C locally evaluates the public part of the model on its prompt to get h <
Mp.evaluate(Wpp, yi—1), and sends h to F. M, - Note that this is the input M, expects
to update its context state with y; 1.

(b) C receives y; from Fa,.

5. Coutputs (Y1, .., Yn)-

Figure 7: Our secure inference protocol.

secure inference protocol, which makes calls to Fyy,, and does the rest of the inference computation
outside MPC, securely realizes F,;. That is, its security is equivalent to performing the entire
inference computation within MPC. Note how this security argument is only concerned with the API
provided by F and does not need to get into the proof specifics of each inference stage. Our proof
strategy follows the standard simulation-based proof paradigm in the hybrid model (Canetti, [2000;
Goldreich et al.l |1987; [Lindell, [2017)) where a protocol II securely realizes an ideal functionality
F if whatever an adversary A can learn about the private inputs of honest parties from II can also
be learned by interacting with F which is secure by definition. This is proved by constructing a
simulator Sim that can simulate the adversary’s view in II by only interacting with the adversary .4
and F. In[Fig. 8] we describe a simulator for MARILL ’s secure inference protocol which
rigorously proves the following theorem. The proof follows trivially given the simulator.

Theorem 1. In the presence of a semi-honest adversary, the protocol in[Fig. 7| securely realizes Fy
in the F, Mpr-hybrid model where M and M, are defined above.

Simulator for MARILL’s Secure Inference Protocol

The simulator Sim internally runs the adversary .4, has access to its input prompt p (since A is
semi-honest), interacts with ideal functionality F»; on behalf of the party controlled by the
adversary, and simulates My in the ideal-world.

If client C is corrupted:

1. Sim sends prompt p to Fas and receives y; from it.
2. As Fu,» Sim receives h from .A, ignores it, and sends y1 to A as the output.
3. Fort =2,...,n:
(a) Sim sends y;—1 to Fas and receives y; from it.
(b) As F, My s Sim receives h from .A, ignores it, and sends y; to A as the output.

If server S is corrupted:

1. Receive model weights Wy, from A, append it to the public weights Wy, to get W =
Wob||Wpr and forward W to Fas. There is nothing else to simulate since the server does not
receive any messages in our protocol in the F-hybrid model.

Figure 8: Simulator for MARILL’s secure inference protocol.

20

Under review as a conference paper at ICLR 2025

F MALICIOUS SECURITY

Our work is not limited to a semi-honest adversary and can also support a malicious adversary
that deviates from the protocol arbitrarily. Given a maliciously-secure protocol, our work inherits
malicious security against the server directly as the server does not have any additional capabilities in
our system. The simulator for a corrupted server also remains the same. Security against client needs
careful assessment because the client in our system inputs a hidden state (output of a transformer
layer), as opposed to a sequence of tokens in traditional secure LLM inference. This does not impact
semi-honest security because the client will follow the protocol and input the right hidden state.
However, a malicious client can input a state that doesn’t correspond to any sequence of input tokenﬂ
to potentially learn the model weights, or input a different token from what was generated to deviate
the generation process. This issue can be fixed by making the following changes to the protocol:

* In step 2, the client additionally provides a zero-knowledge proof-of-knowledge (ZKPoK) (Gold/
wasser et al.| [1985) proving that the hidden state it is secret-sharing corresponds to an actual
sequence of tokens of the appropriate length.

» The secure inference protocol will output the token as well as a hiding commitment and its
randomness to the client. Now, when the client will secret-share the hidden state for the latest token
yi—1 in step 4a, it’ll additionally provide a ZKPoK proving that this state is consistent with the
commitment received during the previous token generation.

o If either proof fails, the protocol will be aborted.
To complete the argument for malicious security, the simulator will be updated as follows:

* Since the adversary is now malicious, the simulator does not have direct access to its input. Instead,
the simulator will receive ZKPoK proofs in addition to the hidden states from the adversary A. It
will extract the adversary’s input from these proofs. The rest of the simulation follows exactly the
same way.

G DISTILLATION

The modifications we make to the model for MPC-minimization change its learned knowledge during
pre-training, and simply fine-tuning it leads to a large accuracy loss. To bridge this accuracy gap, we
turn to knowledge distillation (KD) (Hinton et al., 2015)) in this work.

summarizes our distillation workflow. First, we take the pre-trained model and apply the
transformations that lead to an MPC-minimized architecture; the model thus obtained is the student.
Then, we take the pre-trained model and fully fine-tune it to get the teacher model, representing the
performance baseline we want to match. Finally, we use KD to ease the fine-tuning of the student
model by matching its intermediate states with the teacher model. The student model thus obtained
can then be used for secure inference.

For layer-freezing and LoRA, we have a one-shot distillation procedure because they preserve the
pre-trained knowledge. Head-merging, on the other hand, requires a two-stage distillation process,
similar in spirit to the strategy from MPCFormer (L1 et al., 2023b). Now, we describe the two stages
of distillation. The configurations without head-merging only perform the second stage.

1. Stage I - Attention and Hidden States KD: to accommodate head-merging, we match the student
and teacher outputs of MHA in each (trainable or private) transformer layer using the following

loss function: Logn = 1 sn MSE(af, a]), where af' and a] are the MHA outputs in the i-th

transformer layer of the student and teacher, respectively, f is the fraction of layers fine-tuned
during training, and NV is the number of transformer layers. Similarly, we compute the distillation

loss over hidden states after every (private) transformer layer: Lidden = Zivz N MSE(hiS , th)
where hiS and h! are the hidden layer outputs in the i-th transformer layer of the student and

“The possible input token combinations are exponentially larger than the possible hidden states, even
concretely at sequence lengths as small as b = 6, but we do not know if transformer layers represent an onto
function.

21

Under review as a conference paper at ICLR 2025

teacher, respectively. For all experiments, we adopt coefficients carn and apidden for these two
losses, and set them to a,en = 0.1, apigden = 5.0. We choose this value so that the two losses
have similar magnitude, and we empirically observe that this brings the best accuracy. We skip
this stage in experiments that do not use head-merging.

2. Stage II - Logits KD: following stage I distillation, we employ supervised KD (Hinton et al.,
2015; Sanh et al, 2019) to match the student’s token-level probability distribution (or logits)
with that of the teacher. We use forward KL divergence (KLD) to measure the similarity of
the distributions (Agarwal et al., 2024)). In addition to the distillation loss, we also minimize
the negative log-likelihood (NLL) of the student’s output on labels from the fine-tuning dataset.
Overall, we use the following loss function in this stage: Liogits = kLD - KLD(zS7 ZT) + anLL -
NLL(zS ,Y), where z° and zT are the logits of the student and the teacher model, resp., y is the
label from the fine-tuning dataset, and ok p and apy are scalar weights for the KLD and NLL
terms, respectively. For all experiments, we set ak p = 0.5, ay. = 0.5.

Combining head-merging with other techniques. When using head-merging independently, we
initialize the student weights with that of the teacher, perform a head similarity analysis on the
teacher, and then perform the two-stages of distillation. When head-merging is combined with
layer-freezing, we perform the same procedure, except we replace teacher weights with the weights
of the layer-freezing fine-tuned student.

Other experiments. Head-pruning and MPC-friendly approximations follow the same recipe as
head-merging and require two-stage distillation. When combining MPC-friendly approximations
with head-merging, we introduce them at the same time before stage I distillation.

H MARILL CONFIGURATION PER SECURE INFERENCE PROTOCOL

MARILL’s techniques target various potential bottlenecks that occur in secure inference protocols.
In this section, we discuss which combination of techniques is the most suitable for a given secure
inference protocol.

* If the protocol is bottlenecked on arithmetic operations, one should use LoRA because it provides
an asymptotic reduction in these operation

* If the protocol is bottlenecked by non-arithmetic operations, consider the sequence length of
the inference task. If the sequence length is large, prefilling will dominate the overall cost and
self-attention will be the bottleneck. Head-merging will reduce all the non-arithmetic operations in
self-attention and provide significant runtime and communication improvements. If the sequence
length is small, decoding is likely to dominate the cost, and LoRA will present better runtime
improvements.

* If there is no specific bottleneck, use layer-freezing and it will reduce overheads irrespective of the
cost profile of the underlying protocol. For half the layer frozen, layer-freezing alone offers 2x
improvements across all inference scenarios and protocols. Otherwise, first apply one of the other
two techniques, and then add layer-freezing on top.

I DETAILED HYPERPARAMETERS FOR EXPERIMENTS

We performed a best-effort hyperparameter optimization under our compute budget by varying the
number of training epochs and batch sizes while keeping the other hyperparamters the same across ex-
periments for a given benchmark. [Table 3|reports the best configuration we found for each experiment.
We use the same configuration for the ablations, i.e., layer-pruning uses the same hyperparameters as
layer-freezing, and head-pruning uses the same parameters as head-merging. Experiments combining
2ReL.U with MARILL use the same parameters as the corresponding MARILL experiments
without 2ReLU.

SInteger additions are also arithmetic but they have relatively negligible cost and can thus be ignored, leaving
integer multiplications as the only arithmetic operation.

22

Under review as a conference paper at ICLR 2025

Table 2: Secure inference performance vs fraction of layers fine-tuned f.

Setting [f=26/26 [f=13/26 [f=9/26 [f=6/26 [f=5/26 [f=4/26

Prefilling Time

2PC 1.0x 2.1x 2.9x% 4.3%x 5.1x 6.3 %

3PC 1.1x 2.1x 3.1x 4.6x 5.5% 6.9x

2PC-Dealer 1.0x 2.0x 2.9x 4.3 5.1x 6.4x
Prefilling Comm

2PC 1.0x 2.0x 2.9 4.3x 5.2x 6.4x

3PC 1.0x 2.0x 2.9x 4.3 5.2x 6.5

2PC-Dealer 1.0x 2.0x 2.9x% 4.3%x 5.2% 6.4x
Decoding Time

2PC 1.0x 2.0x 2.8% 4.1x 4.9 5.9%

3PC 1.0x 2.0x 2.8% 4.0x 4.7x 5.7x

2PC-Dealer 1.0x 2.0x 2.8% 4.0x 4.7x 5.7X
Decoding Comm

2PC 1.0x 2.0x 2.8% 4.3 5.1x 6.1x

3PC 1.0x 2.0x 2.8% 4.3x 4.9x 6.4x

2PC-Dealer 1.0x 2.0x 2.8% 4.1x 4.8 5.8%

Table 3: Batch size and number of epochs for all experiments.

MTBench HumanEval WMT22
epochs bsz epochs bsz epochs bsz

Fine-tuned 3 128 2 128 1.5 128
LF 5 128 4 64 1.5 128
LoRA/LF+LoRA 5 8 4 8 1.5 128
HM/LF+HM - Stage 1 3 8 2 64 1.5 128
HM/LF+HM - Stage 2 5 128 2 64 1 128

J MARILL SECURE INFERENCE PERFORMANCE OVER SIGMA

We evaluated SIGMA (Gupta et al.}|2024) on three NVIDIA A100 GPUs linked by a LAN connec-
tion (see setup in[§ 6). SIGMA’s implementation does not include decoding, so we only evaluated
MARILL’s improvements for the prefilling stage. For this evaluation, we considered the LF=0.5 and
HM=4 configuration of MARILL as the non-arithmetic operations are the bottleneck in SIGMA, and
found that MARILL improved SIGMA’s runtime and communication by 3.2x and 3.3 X, respectively.

K MARILL SECURE INFERENCE PERFORMANCE OVER WAN

We conduct the same experiment from [Fig. 4 on a WAN connection with 400 Mbps bandwidth and
40 ms latency (emulated using Linux traffic control tc). summarizes these results. Here P
and D denote prefilling and decoding runtime, respectively; we do not report communication because
it remains the same as in the LAN setting (Fig. 4). It is evident that layer-freezing and head-merging
have similar improvements over the WAN and LAN settings. On the other hand, LoRA improvements
are smaller because network costs dominate the WAN runtime, which LoRA does not improve. These
results show that MARILL also improves the secure inference costs in network-constrained scenarios.

L LAYER FREEZING PERFORMANCE ABLATION

We perform an ablation study of the layer freezing technique on the MTBench bench-
mark (Zheng et al|2024). The results show that the MTBench score remains relatively consistent
up to LF=0.5 (13 layers frozen out of 26). However, beyond this point, there is an almost linear
decline in score as fewer layers are fine-tuned. Based on these observations and a strong performance

23

Under review as a conference paper at ICLR 2025

Table 4: MARILL’s secure inference improvement over a WAN network. See Elg 4:capti0n for details
of the experiment. P and D denote the prefilling and decoding runtime respectively.

Variant P-2PC P-3PC P-2PC-Dealer D-2PC D-3PC D-2PC-Dealer
LF=0.5 2% 2.1x 2% 2% 2% 2%
HM=4 1.2x 2.4x 2.2% 1.1x 1.1x 1x
LoRA=64 2.2% 1x 1x 1.1x 1x 1.2
LF+HM/LoRA 4.5% 5.1x 4.3%x 2.2% 2.2x 2.4x

Table 5: Layer freezing ablation on MTBench (Zheng et al., [2024).

layers fine-tuned MTBench Score

LF=26/26 5.02
LF=22/26 4.95
LF=18/26 4.97
LF=13/26 4.77
LF=8/26 3.39
LF=4/26 221

of this configuration on other benchmarks, we chose to freeze half the layers (LF=0.5) across our
experiments to strike an effective balance between accuracy and secure inference cost.

M LIMITATIONS

Availability of open-source pre-trained model. In this work, we introduce a novel paradigm that
shows how the publicly available weights of an open-source pre-trained model can be leveraged to
accelerate secure inference. This makes sense in many settings because the provider doesn’t have to
go through a very expensive pre-training process, and the best open-source models are among the
best models out there |Chiang et al.[(2024); [Liu et al.| (2024)); Yan et al.|(2024); [Wang et al.| (2023)).
However, there could be domains that require specialized knowledge which does not benefit from
the pre-trained knowledge of the available open-source models. In such cases, the provider has to
pre-train their own model, and layer-freezing and LoRA improvements will no longer apply. We note
that if there is significant relevant public data available for that domain, the provider also has the
option to open-source its own pre-trained model to leverage our techniques.

Delegation setting. In this work, we focus on the secure inference threat models considered by prior
work. These works assume that client is one of the MPC participants, and thus, having it evaluate
a part of the network locally with layer-freezing actually reduces its overhead. This is because the
MPC overhead on each participant is orders higher than plaintext inference |Gupta et al.| (2024); [Li
et al. (2023b). However, one could also imagine a weaker threat model for all of these settings where
the client does not participate in the MPC at all. Rather, an additional server is introduced to the
MPC with the additional trust assumption that it will not collude with the other servers involved in
the MPC. In this case, our layer freezing technique is indeed adding additional overhead on the client,
which might not be acceptable in some cases.

N SoOCIAL IMPACT

This paper presents work that enables privacy-preserving inference, where both the user’s input as
well as the service provider’s model weights stay private. While user privacy is needed in many
applications and desirable in general, there is a potential concern of model misuse through malicious
user prompts. This is not a fundamental issue though, as the checks that the services perform
today on user prompts can also be performed within MPC without revealing them to the service
provider. Alternatively, at the cost of additional client overhead, the client could be asked to create a
zero-knowledge proof (Goldwasser et al.,|1985) proving that its input satisfies some criteria.

24

	Introduction
	Related Work
	Threat Model and Setting
	Performance Characteristics of Secure Inference
	Techniques
	Layer Freezing
	LoRA Adaptation
	Head Merging

	Evaluation
	Secure Inference Performance
	ML Performance
	Integration of prior MPC-friendly approximations with Marill
	Ablation Study

	Conclusion
	MPC Settings
	LLM Inference Stages - Prefilling and Decoding
	Marill Does Not Accelerate Plaintext Inference
	Related Work
	Marill vs MPC-friendly approximations.
	Layer-freezing and LoRA in TEE-based secure ML
	Model extraction.

	Security Proof
	Malicious Security
	Distillation
	Marill Configuration per Secure Inference Protocol
	Detailed Hyperparameters for Experiments
	Marill secure inference performance over SIGMA
	Marill secure inference performance over WAN
	Layer freezing performance ablation
	Limitations
	Social Impact

