
Preference-CFR: Beyond Nash Equilibrium for Better Game Strategies

Qi Ju 1 2 Thomas Tellier 3 Meng Sun 1 2 Zhemei Fang 1 2 Yunfeng Luo 1 2

Abstract
Artificial intelligence (AI) has surpassed top hu-
man players in a variety of games. In imperfect
information games, these achievements have pri-
marily been driven by Counterfactual Regret Min-
imization (CFR) and its variants for computing
Nash equilibrium. However, most existing re-
search has focused on maximizing payoff, while
largely neglecting the importance of strategic di-
versity and the need for varied play styles, thereby
limiting AI’s adaptability to different user prefer-
ences.

To address this gap, we propose Preference-CFR
(Pref-CFR), a novel method that incorporates two
key parameters: preference degree and vulnerabil-
ity degree. These parameters enable the AI to ad-
just its strategic distribution within an acceptable
performance loss threshold, thereby enhancing its
adaptability to a wider range of strategic demands.
In our experiments with Texas Hold’em, Pref-
CFR successfully trained Aggressive and Loose
Passive styles that not only match original CFR-
based strategies in performance but also display
clearly distinct behavioral patterns. Notably, for
certain hand scenarios, Pref-CFR produces strate-
gies that diverge significantly from both conven-
tional expert heuristics and original CFR outputs,
potentially offering novel insights for professional
players.

1. Introduction
In machine learning, complex gaming problems are impor-
tant benchmarks for assessing artificial intelligence (AI).
Prominent games such as Chess (Campbell et al., 2002),
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Go (Silver et al., 2016; 2018), StarCraft (Vinyals et al.,
2019), and Texas Hold’em (Moravčı́k et al., 2017; Bowling
et al., 2015; Brown & Sandholm, 2019b) have significantly
influenced both academic research and public interest.

Traditionally, research has focused primarily on identifying
the Nash Equilibrium (NE), as it guarantees that no player
can improve their expected payoff by unilaterally deviat-
ing from their strategy. From the perspective of expected
payoffs, this guarantee makes the NE considered the opti-
mal solution in a game. Consequently, many studies treat a
game problem as resolved once its NE is identified. How-
ever, maximizing expected payoffs is not the sole criterion
for evaluating strategy quality.

First, many practical problems feature multiple NEs. In eco-
nomics, understanding the diversity of NE often holds more
value than simply identifying one. For example, Schelling’s
work on predicting specific NE, which earned him the 2005
Nobel Prize in Economics, exemplifies this significance.

Second, state-of-the-art game-playing AIs (e.g., AlphaGo
and Pluribus) have already surpassed top human players.
However, strategies with maximizing expected payoffs as
the sole objective are typically overly rational, lack diver-
sity, and are difficult for humans to master. For instance,
Lee Sedol, a top human Go expert who competed against
AlphaGo, chose to retire and said, “I can no longer en-
joy the game.” (Wakabayashi & Young, 2024) This high-
lights that competition is not the sole purpose of gameplay;
games should also provide entertainment and spiritual ful-
fillment. Additionally, strategies that incur minor payoff
losses against top AIs may still perform well against hu-
man opponents. For example, in chess, professional players
are highly familiar with common openings recommended
by AI, often resulting in drawn games. To overcome this,
top players deliberately choose unconventional strategies to
lead the game into unexplored scenarios, leveraging their
superior skills to gain an advantage.

To the best of our knowledge, algorithms for incomplete-
information games have not considered the importance of
identifying diverse NEs, nor have they explored how strat-
egy ranges change when some payoff is sacrificed. To ad-
dress these limitations, we propose a novel algorithm called
Preference Counterfactual Regret Minimization (Pref-CFR).
This algorithm introduces two parameters for strategy selec-
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tion from the perspectives of style and diversity: the degree
of preference δ, representing a player’s inclination toward
specific strategy (the style of strategies), and the degree
of vulnerability β, denoting the maximum exploitability a
player is willing to tolerate (the diversity of strategies). In
two-player zero-sum games, setting δ ensures convergence
to a NE aligned with the specified preferences. If the game
has a unique NE, setting δ alone (β = 0) does not affect
the strategy’s convergence. Incorporating β further enables
convergence to an ϵ-NE (ϵ ≤ β), significantly expanding the
selection of preferred actions. The combination of δ and β
can derive a strategy that best suits the user’s style at a given
tolerable loss. In Texas Hold’em experiment, we success-
fully obtained strategies exhibiting Aggressive and Loose
Passive play-styles. Results indicate these strategies exhibit
significant differences from original CFR-trained strategies
while maintaining comparable performance in head-to-head
matches. Notably, Pref-CFR uncovers novel strategies. For
example, in the Aggressive style, it sometimes raises with
weak hands like 82o——a move previously missed by both
human experts and Game Theory Optimal (GTO) solvers,
offering insights for professional players. Our code can be
found at GitHub.

Related Work

The related work in this paper is structured into two in-
terrelated categories. First, we survey the foundational
algorithms for solving game equilibria, focusing on their
convergence properties and limitations. Second, we ex-
plore research that transcends traditional NE and Coarse
Correlated Equilibrium (CCE), examining efforts to define
“better” strategies.

In the realm of normal-form games, the preeminent algo-
rithm is Regret Minimization (RM), along with its vari-
ant, Counterfactual Regret Minimization (CFR) (Zinkevich
et al., 2007), which is applied in extensive-form games.
RM/CFR can converge to the NE in two-player zero-sum
games and to CCE in multi-player general-sum games (Han-
nan, 1957). Noteworthy variants include CFR+ (Tammelin,
2014), Monte-Carlo CFR (MCCFR) (Lanctot et al., 2009),
and Discounted CFR (DCFR) (Brown & Sandholm, 2019a).
In particular, CFR+ and MCCFR have played a pivotal role
in significant AI advancements over the past decade (Brown
& Sandholm, 2019b; Bowling et al., 2015; Brown & Sand-
holm, 2017). Besides the RM algorithm, the Fictitious Play
(FP) algorithm is another commonly-employed approach for
solving games. FP was initially introduced in Brown’s 1951
paper (Brown, 1951), and the treatise The Theory of Learn-
ing in Games (Fudenberg & Levine, 1998) further solidified
previous research, establishing a standardized framework for
FP. In two-player zero-sum games, FP is proven to converge
to the NE. Recently, Qi et al. integrated CFR with the FP
algorithm to propose the CFVFP algorithm (Ju et al., 2024).

However, a common limitation persists: these methods pri-
marily target NE computation, overlooking the applicability
and diversity of equilibria discussed earlier.

While equilibrium-solving algorithms have advanced, game
theory research has also diversified into non-NE equilib-
rium concepts. The 2005 Nobel Prize in Economics rec-
ognized Aumann and Schelling for refining equilibrium
theory: Aumann demonstrated that correlated equilibria
yield fairer and more efficient outcomes than NE (Aumann,
1974), while Schelling analyzed equilibrium selection in
multi-equilibrium scenarios (Schelling, 1980). Fudenberg et
al. contended that stable states reached during the learning
(or evolutionary) process can also be regarded as equilib-
rium (Fudenberg & Levine, 1998). Recently, Ganzfried
introduced a novel concept called safe equilibrium, which
takes into account the irrationality of opponents and enables
more flexible responses to various adversaries (Ganzfried,
2023). Despite these innovations, a critical void remains:
existing studies rarely address the computational methods
for solving these novel equilibria. This methodological
gap motivates our synthesis of algorithmic and conceptual
research streams.

This paper integrates algorithmic rigor in equilibrium solv-
ing with conceptual advances in non-NE research to bridge
theory and computation. We aim to define novel stylized
equilibrium strategies and demonstrate how learning the-
ory enables their precise computation, uniting theoretical
innovation with algorithmic practice.

2. Notion and Preliminaries
2.1. Game Theory

2.1.1. NORMAL-FORM GAME

The normal-form game is the fundamental model in game
theory. Let N = {1, 2, . . . , i, . . . } denote the set of
players, where player i has a finite action set Ai. The
strategy σi of player i is defined as a |Ai|-dimensional
probability distribution over Ai (where | · | represents the
number of elements in the set), with σi(a′) indicating
the probability of player i choosing action a′. Strategies
can be categorized into pure strategies and mixed strate-
gies: a pure strategy involves taking a specific action with
100% probability, while all strategies other than pure strate-
gies are considered mixed strategies. A strategy profile
σ = ×

i∈N
σi is a collection of strategies for all players, and

σ−i = (σ1, . . . , σi−1, σi+1, . . . ) refers to all strategies in
σ except for player i. The set of all strategy profiles is de-
noted as Σ = ×

i∈N
Σi. We define the finite payoff function

ui : Σ → R, where ui(σi, σ−i) represents the payoff re-
ceived by player i when player i selects strategy σi and all
other players follow the strategy profile σ−i. Finally, we
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define L = maxσ∈Σ,i∈N ui(σ)−minσ∈Σ,i∈N ui(σ) as the
payoff interval of the game.

2.1.2. EXTENSIVE-FORM GAMES

In extensive-form games, which are commonly depicted
as game trees, the set of players is represented as N =
{1, 2, . . . }. The nodes s within the game tree signify pos-
sible states, collectively forming the state set s ∈ S, while
leaf nodes z ∈ Z denote terminal states. For each state
s ∈ S, the successor edges delineate the action set A(s)
accessible to either a player or chance events. The player
function P : S → N ∪ {c} specifies which entity acts at a
particular state, where c represents chance.

Information sets I ∈ Ii comprise collections of states that
player i cannot distinguish from one another. The payoff
function R : Z → R|N | assigns a payoff vector for the
players based on the terminal states. The behavioral strategy
σi(I) ∈ R|A(I)| is defined as a probability distribution over
each information set I for all I ∈ Ii. We also define πσ(I)
as the probability of encountering information set I when
all players select actions according to the strategy profile σ.

2.1.3. NASH EQUILIBRIUM

The best response (BR) strategy for player i in relation to
the strategy profile σ−i is defined as:

bi(σ−i) = argmaxa∗∈Aiui(a∗, σ−i). (1)

The BR strategy can either be a pure strategy or a mixed
strategy; yet, identifying a pure BR strategy is generally
more straightforward. For the purposes of our analysis, we
will assume that b(σ) is a pure strategy. In this context,
argmax denotes the action that produces the highest pay-
off within a given set. If there are multiple actions that
yield this maximum payoff, the strategy that appears first in
lexicographic order will be selected.

In a two-player zero-sum game, the deviation incentive of
player i for a strategy profile σ is defined as:

ϵi = ui(bi(σ−i), σ−i)− ui(σ), (2)

while the overall exploitability ϵ across all players is calcu-
lated as:

ϵ =
1

|N |
∑

i∈N
ϵi, (3)

if ϵ = 0, the strategy profile σ is a NE; otherwise, it is termed
an ϵ-NE. If an algorithm ensures that the exploitability of
the game meets the condition ϵ ≤ CT−1 after T iterations
(where C is a constant), then the convergence rate of this
algorithm is O(T−1). This formula can still serve as a basis
for strategy convergence in multiplayer games. However,
since more than one player may deviate from the strategy
simultaneously, it is no longer termed exploitability but
NashConv.

2.2. Counterfactual Regret Minimization

In normal-form games, let σi
t be the strategy used by player

i at iteration t, and the regret of player i for not choosing
action a ∈ Ai is defined as:

R̄i
T (a) =

1

T

T∑
t=1

ui
(
ait, σ

−i
t

)
− ui (σt) , (4)

the new strategy is generated as follows:

σi
T+1(a) =


R̄i,+

T (a)∑
a∈Ai R̄i,+

T (a)
if R̄i,+

T (a′) ̸= 0
1

|Ai| otherwise,
(5)

where R̄i,+
T (a) = max

(
R̄i

T (a), 0
)

and 0 denotes the zero
vector. Since the probability of taking action σi

t+1(a) is pro-
portional to the regret value R̄i,+

T (a), this strategy is called
the regret matching strategy. Define σ̄i

T = 1
T

∑T
t=1 σ

i
t as

the average strategy of player i. When T → ∞, σ̄i
T con-

verges to NE in two-player zero-sum games with a conver-
gence rate of O

(
T−1/2

)
.

In extensive-form games, we define the counterfactual value
u(I, σ) as the expected value conditioned on reaching the
information set I while all players adopt the strategy σ,
with the exception that player i plays in a way that allows
reaching I . For every action a ∈ Ai(I), we denote σ|I→a

as the strategy profile that is identical to σ except that player
i always selects action a when in information set I . The
average counterfactual regret defined as:

R̄i
T (I, a) =

1

T

T∑
t=1

π−i
σt
(I)

(
ui (I, σt|I→a)− ui (I, σt)

)
,

(6)
where π−i

σt
(I) is the probability of information set I oc-

curring given that all players (including chance, except
for player i) choose actions according to σt. We define
R̄i,+

T (I, a) = max(R̄i
T (I, a), 0). The strategy for player i

at time T + 1 is given by:

σi
T+1(I, a) =


R̄i,+

T (I,a)∑
a∈A(I) R̄

i,+
T (I,a)

if R̄i,+
T (I) ̸= 0

1
|A(I)| otherwise.

(7)

The average strategy σ̄i
T (I) for an information set I after T

iterations is defined as:

σ̄i
T (I) =

∑T
t=1 π

i
σt
(I)σi

t(I)∑T
t=1 π

i
σt
(I)

. (8)

Ultimately, as T → ∞, σ̄T will converge to a NE.

3. Motivation
3.1. Style and Diversity of Strategies in the Game

This paper re-examines strategy selection through the lenses
of “diversity” and “style”, an aspect that has been relatively
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unexplored in existing research. To formalize this perspec-
tive, we first define these two metrics in the context of
game theory. Specifically, diversity refers to the size of
the acceptable strategy space Σacc, while style quantifies
the similarity between a given strategy distribution and a
preferred strategy σ∗.

The definition of Σacc is relatively straightforward. If a
player is a professional competitor aiming solely to max-
imize their probability of winning, the acceptable strat-
egy space should coincide with the NE strategy set, i.e.,
Σacc = ΣNE. In contrast, if the game is played casually
among friends, where entertainment takes precedence over
optimal strategy, then the acceptable strategy space is the
set of all possible strategies, Σacc = Σ.

In comparison, defining “style” is more intricate. In real-
world settings, styles are often measured by macroscopic
statistical indicators. Roughly speaking, in football, pos-
session percentage is commonly used to characterize Tiki-
taka style——when possession exceeds a certain thresh-
old, the playing style is classified as such. However, such
statistical indicators are difficult to integrate directly into
game training. As game training is inherently a sparse re-
ward problem—where payoffs are only obtained at terminal
nodes—incorporating macro-style indicators (e.g., the entry
rate in Texas Hold’em) would require numerous games to
generate meaningful style signals. This effectively exacer-
bates the sparsity issue, making learning more challenging.
To address this, we map style-related measurements from
the macroscopic level to the decision-making level within in-
formation sets. We define style as the distance Dis(σ̄T , σ

∗)
between the final learned strategy σ̄T and the preferred strat-
egy σ∗. For instance, if a ball possession rate exceeding
70% is defined as characteristic of the Tiki-taka style, and
the corresponding strategy set is ΣTiki-taka with centroid strat-
egy σ∗

Tiki-taka, then the degree to which σ̄T adheres to the
Tiki-taka style can be measured by Dis(σ̄T , σ

∗
Tiki-taka).

Given these definitions, we seek a final strategy σ̄T that min-
imizes the distance to the preferred style while remaining
within the acceptable strategy space:

σ̄T = min
σ∈Σacc

Dis(σ, σ∗). (9)

The choice of Σacc can be guided by different criteria. In this
paper, we constrain it based on the worst-case performance
loss relative to NE strategies, which we term the vulner-
ability degree. Specifically, we introduce a vulnerability
parameter β during training, ensuring that the final learned
strategy satisfies σ̄T ∈ Σϵ−NE where ϵ ≤ β.

3.2. Controlling the Convergence of RM Iteration

Extensive experiments (Section 5.1 provides an example)
on two-player zero-sum games reveal that even when multi-
ple equilibria exist and the RM/CFR algorithm starts from

different initial strategies, it typically converges to a unique
equilibrium point. Formally, we propose the following con-
jecture:

Conjecture 3.1. In a two-player zero-sum game, if the set
of Nash equilibrium ΣNE forms a convex polyhedron, then
for any initial strategy σt=0, the RM iteration converges to
a unique fixed point σRM ∈ ΣNE.

This conjecture suggests that modifying the initialization
of RM alone is insufficient to steer convergence towards
different equilibria. Instead, altering the final strategy σ̄T

requires intervention during the iterative process. While RM
lacks prior research in this direction, insights can be drawn
from the Generalized Weakened Fictitious Play (GWFP)
algorithm, whose update rule is:

σ̄t+1 = (1− αt+1)σ̄t + αt+1(bϵt(σ̄t) +Mt+1), (10)

where {Mt}t≥1 is a sequence of perturbation terms, and
bϵt(σ̄t) is a sub-BR strategy with a gap of ϵt from the BR
strategy, that is:

ui(b(σ̄−i
t ), σ̄−i

t )− ui(bϵt(σ̄
−i
t ), σ̄−i

t ) ≤ ϵt. (11)

GWFP converges to the NE when the following three condi-
tions are met. First, ϵt → 0 as t → ∞. Second, αt → 0 as
t → ∞ and

∑
t≥1 αt = ∞. Finally:

lim
t→∞

sup
k

{∥∥∥∥∥
k−1∑
i=t

αi+1Mi+1

∥∥∥∥∥ :

k−1∑
i=t

αi+1 ≤ T

}
= 0.

(12)

We first establish that RM can be interpreted as a special
case of GWFP (see Appendix D). Based on this, we pro-
pose three methods to influence RM’s convergence behav-
ior: (i) Adjusting the learning rate αt; (ii) Modifying the
exploitability parameter in bϵt(σ̄t); (iii) Introducing a per-
turbation sequence Mt.

Among these, the most effective approach is modifying ϵt,
as we have already defined Dis(σ, σ∗) as the style metric.
Moreover, ϵt directly corresponds to the vulnerability pa-
rameter β. Therefore, our subsequent improvements will all
be centered around bϵt(σ̄).

4. Method
4.1. Preference CFR

We now introduce the Pref-CFR algorithm. For each infor-
mation set, we define a preference degree δ(I) ∈ R|A(I)|,
where δ(I, a) ≥ 1. Note that in our setting, ∀a ∈ A(I)
δ(I, a) = 1 is not allowed. The strategy for the next itera-
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tion T + 1 is calculated as:

σi
T+1(I, a) =


δ(I,a)R̄i,+

T (I,a)∑
a∈A(I) δ(I,a)R̄

i,+
T (I,a)

if R̄i,+
T (I) ̸= 0

δ(I,a)−1∑
a∈Ai(I) δ(I,a)−1 otherwise.

(13)
Alternatively, we can also adopt the BR strategy for the next
iteration:

σi
T+1(I) = argmaxa∈Ai(I)δ(I, a)R̄

i
T (I, a). (14)

In this paper, we denote Pref-CFR(RM) to indicate that the
next strategy follows the regret minimization approach, as
shown in Equation 13, while Pref-CFR(BR) signifies that
the next strategy is based on the BR approach, as presented
in Equation 14.

We prove in the Appendix B.2 that the convergence of the
Pref-CFR algorithm is consistent with the original CFR.
Specifically, it can converge to the NE in two-player zero-
sum games and to the CCE in multi-player general-sum
games. The action preference degree δ(a) is related to the
preferred strategy σ∗(a); a larger proportion of a′ in σ∗(a′)
warrants a higher δ(a′). How to define a suitable δ(a) will
be discussed in the next section.

Introducing δ drives the strategy toward convergence to
different-style equilibria. However, with δ alone (β = 0),
the acceptable strategy set is Σacc = ΣNE. In many cases,
the adjustments are small or have almost no macroscopic dif-
ference from non-δ strategies. As highlighted in Section 1,
competition is not the sole dimension of a game. To address
this, we introduce the vulnerability degree β(I). Define:

B̄i
T (I, a) = R̄i

T (I, a)− β(I), (15)

the strategy for time T + 1 is determined as follows:

σi
T+1(I, a) =

argmax
a∈Ai

B̄i
T (I, a) if B̄i,+

T (I, a) ̸= 0

δ(I,a)−1∑
a∈Ai(I) δ(I,a)−1 otherwise,

(16)
where B̄i,+

T (I, a) = max{B̄i
T (I, a), 0}. In Appendix B.3,

we prove that in normal-form games, the vulnerability de-
gree β ensures the final strategy is an ϵ-NE strategy with
ϵ ≤ β. By integrating preference and vulnerability, we
devise a strategy that not only aligns with desired stylistic
requirements but also minimizes potential losses.

4.2. Analysis of Pref-CFR Algorithm

Pre-CFR offers a method for converging to different strate-
gies. Nevertheless, during actual training, the settings for
δ(I) and β still require careful configuration by experts.

1. Setting larger values for δ(I, a) and β(I) can enhance
the distinctiveness of the final strategy’s style. How-
ever, this may result in slower convergence speeds and

a strategy that deviates significantly from the NE, mak-
ing it susceptible to astute opponents.

2. While we can adjust δ(I, a) and β(I) at the micro
level, translating macro-level style characteristics rec-
ognized by the public into parameter settings for each
information set is challenging.

To address the first problem, setting appropriate parameters
for δ(I, a) and β(I) can help the final strategy converge to a
reasonable interval. For the parameter δ(I, a), experiments
indicate that when δ(I, a) ≤ 5, the convergence speed re-
mains acceptable, significantly increasing the likelihood of
the preferred action being adopted in the final output strat-
egy. Regarding β(I), it can be determined based on the
specifics of different games and the experience of human
experts. For instance, an error margin of 25 mbb/h in Texas
Hold’em is typically inconspicuous.

The second problem is more complex. Fortunately, for
common games like Texas Hold’em, there is ample expert
knowledge to draw upon. If a player has a narrow range
of hands when entering the pot, their style is classified as
“tight”; conversely, a wider range is termed “loose.” For
definitions of these Texas Hold’em terms, please refer to
Appendix A. If a player exhibits a relatively high proportion
of 3-bets after entering the pot, they are labeled as “aggres-
sive.” These styles exhibit strong consistency. Thus, we
can apply the same set of δ values across all information
sets. For example, to make the AI more aggressive, we
could increase δ(I,Raise) for all raising actions across all
information sets.

However, for more extensive-form games that lack extensive
expert analysis, the design of δ(I, a) and β(I) remains an
area requiring further research.

5. Experiments
Our experiments are conducted using Kuhn poker (Kuhn,
1950), Leduc poker (Shi & Littman, 2001) as well as two-
player and three-player Texas Hold’em poker. A brief
introduction to the rules of these games can be found in
Appendix A. The experimental codes for Kuhn poker and
Leduc poker have been made publicly available on GitHub.

In our Kuhn poker experiments, we used the vanilla Pref-
CFR while Texas Hold’em experiments utilized a variant
of the multi-valued state technique (Brown et al., 2018).
Solutions were computed in under 10 minutes with a 24-
core CPU; subgames included 35k states and the full game
used for leaf estimates had 25M states. In Heads-Up play,
this setup achieved exploitability below 4 mBB/h in our
Texas Hold’em experiments. These settings are comparable
to previous experiments (Brown et al., 2018).

5

https://github.com/Zealoter/PrefCFR


Preference-CFR: Beyond Nash Equilibrium for Better Game Strategies

5.1. Pref-CFR Converges to Different Nash Equilibria

Before analyzing the Pref-CFR algorithm, it is crucial to
first elucidate the scenarios where CFR fails to converge to
distinct NEs. We will use Kuhn poker as an example. In this
game, player 1 faces multiple equilibria. The equilibrium
strategy for player 1 in Kuhn poker is detailed in Table 1.

Table 1. The equilibrium strategy of player 1 in Kuhn poker, where
α ∈ [0, 1/3]. It can be considered that player 1 has countless
equilibrium strategies in this game.

The equilibrium strategy for Player 1 can be defined by the
parameter α, which corresponds to the probability of choos-
ing to bet in the information set J . After iterating through
107 nodes, the exploitability of the strategy is reduced to
below 0.001. At this point, we approximate the equilibrium
strategy with α = σ(J , Bet).

We initialize the CFR training with a randomly distributed
strategy. As depicted in Figure 1, although Kuhn poker
admits multiple NEs, CFR converges to a single equilibrium
at α = 0.2, irrespective of the initial strategy. This behavior
is not exclusive to Kuhn poker; as Conjecture 3.1 posits,
altering the initial state of RM does not affect its final con-
vergence point. Furthermore, the strategies generated by
the CFR algorithm closely resemble traditional “machine
strategies,” which are complex, stable, and lacking distinct
characteristics. In practical gameplay, human players can
readily recognize and memorize simpler strategies, such as
α = 0 and α = 1/3. For example, when α = 0, player
1 always selects Pass, embodying a cautious and conser-
vative playstyle. Conversely, Pref-CFR can identify these
characteristic equilibria.

The parameter configurations for these experiments are de-
tailed in Appendix C. As shown in Figure 2, the convergence
rates across all settings remain comparable to that of the
original CFR. However, all variants of Pref-CFR yield equi-
librium that deviate from α = 0.2, with higher preference
degree settings resulting in more pronounced deviations.
Moreover, the performance of Pref-CFR(RM) is notably in-
ferior to that of Pref-CFR(BR). Consequently, we advocate
for the use of the Pref-CFR(BR) method, which was also
utilized in all subsequent experiments.

Kuhn poker, a game with multiple NEs, allows PrefCFR
to converge to different NEs when β = 0. In contrast,
as Fig. 3 shows, in the Leduc poker experiment, with
δ(raise) = 10, β = 0 and δ(call) = 10, β = 0, both eventu-
ally converge like the original CFR. Only by introducing β
can the strategy deviate stably from the standard one, sug-

gesting Leduc poker may have a single NE. As analyzed
in Appendix B.2, setting β = 0 implies Σacc = ΣNE, so
different δ values lead to convergence to the unique NE.

Users then face a trade-off: sacrifice some utility (com-
pared to the NE strategy) to diversify the strategy. Fig. 4
reveals that a larger β increases the Raise probability in the
final strategy, making it more aggressive, but at the expense
of higher exploitability. It is also noteworthy that in the
Leduc poker experiments, the difference between setting
δ(raise) = 10 and δ(raise) = 5 is negligible. Therefore, we
set δ(a) = 5 in subsequent experiments.

5.2. Pref-CFR Converges to Different Styles in Texas
Hold’em

The traditional CFR algorithm does not account for goals
beyond expected payoffs. In Texas Hold’em, two significant
“style demands” have consistently emerged, yet the previous
CFR algorithm was unable to address them.

1. Aggressive strategy A prominent feature of this strat-
egy is its higher probability of raising. For some am-
ateur players with an abundance of chips, sensitivity
to chip loss is minimal. Their primary motivation for
participating in Texas Hold’em is not necessarily to
win more chips but rather to seek novel experiences
or enhance the atmosphere at social gatherings. As a
result, these players often look forward to engaging
in games with larger pot amounts. In training, we set
δ(I, raise) = 5 and β = 0.05 at the first decision
node of player 1.

2. Loose passive strategy A significant characteristic of
this strategy is that the probability of folding is lower
than that of a typical strategy. This phenomenon arises
from the difficulty many players with a small number
of chips experience when it comes to folding. After in-
vesting a considerable amount of chips during the flop
or turn stages, these players often feel uncomfortable
quitting the game without knowing their opponent’s
hole cards. The discomfort is especially pronounced
when they suspect they have been successfully bluffed.
By minimizing folds, this strategy provides psycholog-
ical comfort for these players, helping them avoid the
frustration of being outplayed by an opponent’s bluff.
In training, we set δ(I, call) = 5 and β = 0.05 at the
first decision node of Player 1.

Before analyzing style variations among AI models, we first
compare their performance. Our goal is to develop AIs with
distinct play styles without sacrificing significant payoffs.
Given the challenge of evaluating strategy effectiveness in
large-scale games, we use head-to-head matches to assess
different algorithms. As shown in Table 2, performance

6



Preference-CFR: Beyond Nash Equilibrium for Better Game Strategies

Figure 1. Convergence rate of CFR in Kuhn poker (left) and fluctuation of α in CFR algorithm iterations (right). Thirty experiments were
performed for each setting, and the shaded area indicates the 90% confidence interval of these trials (the settings remain unchanged in
subsequent experiments). It can be seen that regardless of the initial strategy, all CFR iterations converge to α = 0.2.

Figure 2. Convergence rate of CFR/Pref-CFR in Kuhn poker (left) and the fluctuation of the α value during CFR/Pref-CFR iterations
(right). It is evident that the Pref-CFR algorithm can still converge to equilibrium, with a convergence speed comparable to that of the
original CFR. Additionally, the right figure clearly shows that in Pref-CFR, strategies converge to results deviating from the NE, and these
deviations become larger with higher values of β.

Table 2. The battle results between different AIs in two-player
Texas Hold’em. In Texas Hold’em, mBB/h represents the thou-
sandth of a big blind won or lost per hand, used to accurately
measure a player’s profit or loss for each individual hand.

differences across styles remain minimal in both two-player
and three-player games, staying within 10mBB/h. Prior re-
search suggests that a training error below 1mBB/h indicates
convergence to NE (Bowling et al., 2015). For reference,
Pluribus achieved a 32mBB/h win rate against top human
players (Brown & Sandholm, 2019b). Thus, the observed
10mBB/h difference suggests these AIs are of comparable

skill levels.

Our experiments clearly demonstrate how the algorithm
influences the final strategies in the first row of Figure 5. In
standard CFR training for two-player Texas Hold’em, the
average preflop strategy distribution is [5.4%, 52.7%, 42.0%,
0.0%, 0.0%] for folding, calling, raising to 2, raising to 3,
and going all-in, respectively. In contrast, the loose AI’s
strategy distribution shifts to [0.3%, 73.3%, 21.7%, 4.7%,
0.0%], while the aggressive AI shows [4.2%, 64.8%, 9.8%,
21.1%, 0.0%]. As expected, the loose AI exhibits a much
lower folding probability, dropping from 5.4% to 0.3%—a
94.4% decrease. The differences between aggressive and
standard strategies are also pronounced, with the aggressive
AI raising to 3 at a 21.1% rate compared to 0% in the
standard strategy.

We believe these AI strategies provide valuable insights
for human players. For example, traditional human ex-

7
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Figure 3. Convergence rates of ES-MCCFR/Pref-ES-MCCFR in Leduc poker (left) and the fluctuations in the probability of choosing
Call during ES-MCCFR/Pref-ES-MCCFR iterations (right). This figure shows that in Leduc poker, strategies will converge to different
equilibria only when β > 0 is set.

Figure 4. Convergence rates of ES-MCCFR/Pref-ES-MCCFR in Leduc poker (left) and the fluctuations in the probability of choosing
Call during ES-MCCFR/Pref-ES-MCCFR iterations (right). Obviously, the larger β is, the higher the probability of choosing to Call and
the more obvious the strategy style is.

perts and GTO-based AIs typically fold weak hand com-
binations like 82o and 72o, considered poor due to low
straight potential, unsuitedness, and low card ranks. In con-
trast, our loose-passive AI opts to call almost 100% of the
time, while the aggressive AI may even raise with these
hands. Such stylized strategies cleverly adjust hand dis-
tributions to obscure hand strength, akin to “hiding a leaf
in the forest.” The loose-passive AI’s higher calling rates
make it difficult for opponents to distinguish between a
weak-hand bluff or a strong-hand slow-play. Similarly, the
aggressive AI increases raising frequency across all hands,
potentially challenging conventional Texas Hold’em tactics.
While loose-passive play was historically deemed subop-
timal, our results show it can be a viable strategy when
balanced across all hand combinations, offering a fresh tac-
tical perspective. The results of three-player AI matches,

Table 3. The battle results between different AIs in three-player
Texas Hold’em.

displayed in Table 3 and the second row of Figure 5, show
that our algorithm achieves even more pronounced effects
in three-player scenarios. In standard three-player training,
the average strategy distribution is [61.4%, 0.0%, 38.6%,
0.0%]. This example illustrates why the loose-passive style
was previously considered ineffective: according to GTO
calculations, it is typically not recommended. However, our
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(a) 2P Loose passive AI (b) 2P Normal AI (c) 2P Aggressive AI

(d) 3P Loose passive AI (e) 3P Normal AI (f) 3P Aggressive AI

Figure 5. Strategy display for Texas Hold’em. In the top left corner of each image, the current player’s information and available actions
are displayed. The central area showcases the strategies for different hand combinations at this stage. In Texas Hold’em poker, there are
13 ranks across 4 suits, with no distinction in value between suits, resulting in 169 unique hand combinations. These are represented
in a 13×13 matrix, where the lower left displays offsuit hands and the upper right shows suited hands. Each matrix element’s color
indicates the strategic choice for the corresponding hand: blue for folding, green for calling, red shades for raising (with deeper red shades
indicating higher raises), and black-red for going all-in. The bottom row provides an overview of the average strategies across all hands,
allowing for a visual understanding of the overall strategy distribution.

experiments reveal that the Loose-Passive strategy not only
avoids any loss in earnings but actually gains an advantage
of 0.2mBB/h compared to the Normal strategy, while sig-
nificantly increasing the calling probability from 0.0% to
23.9%. We speculate that the added complexity of three-
player poker compared to two-player games accentuates the
impact of style changes.

6. Conclusion and Prospect
The Pref-CFR algorithm proposed in this study addresses a
key limitation of traditional CFR by enabling the discovery
of diverse equilibria. Our experiments demonstrate suc-
cessful training of Texas Hold’em AIs with distinct strategic
profiles. For example, in three-player games, the Aggressive
AI increased its 3-bet probability from 0.0% to 16.0% with
only a 10mBB/h performance decrement, while the Loose
AI raised its calling rate from 0.0% to 23.9%. Notably,
the algorithm maintains training efficiency and supports
real-time strategic guidance for human players.

However, the current framework requires manual calibration

of preference degrees for actions in each information set,
restricting its adaptability to varied player styles. Given
the game’s complexity, human users face challenges in
implementing context-dependent strategies. To enhance
practical utility, we propose automating the translation of
user-specified metrics (e.g., betting frequencies or pot en-
try rates) into information-set-specific preference weights,
streamlining the customization workflow. Additionally, ex-
tending this framework to interdisciplinary domains—such
as behavioral economics or market dynamics—presents an
intriguing avenue for bridging game-theoretic algorithms
with real-world decision systems.
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A. Game introduction
A.1. Kuhn poker

Kuhn poker is a simple poker game. Here is a detailed rules introduction to it:

• Card composition: Kuhn poker uses only three cards: J, Q, and K. Each player can only get one card at a time.

• Action sequence: Usually, two players participate in the game. At the beginning of each round, each player places a
blind bet first. Then each player will randomly receive a card. Subsequently, players take actions in turn. The action
options are Bet and Pass. If one player bets, the other player can choose to call(Bet) or fold(Pass).

• Winning determination: Finally, if a player calls, both players show their cards and compare the sizes. The player
with the larger card wins and takes the chips in the pot. In Kuhn poker, K > Q > J.

Kuhn poker is a classic model in game theory research. Due to its simple rules and limited card types and action choices, it
is convenient for mathematical analysis and theoretical derivation.

A.2. Leduc poker

Leduc poker is a simplified poker game that extends Kuhn poker with additional complexity, making it a key model for
game theory research. Here is a detailed introduction to its rules:

• Card composition: Leduc poker uses six cards from two suits (e.g., spades and hearts), specifically J, Q, K of each
suit. Each player is dealt one hole card, and one community card is placed face up.

• Action sequence: The game involves two players and two betting rounds:

1. First round: Players post blinds, then receive hole cards. Actions include Bet or Check (pass). If a player bets,
the opponent can Call or Fold.

2. Second round: A community card is dealt, and players act again. Actions remain Bet, Check, Call, or Fold, with
betting limits typically set to standardize stakes.

• Winning determination: If both players call by the end of the second round, they reveal their hole cards. Hand
strength is determined by:

1. Pair: Hole card and community card of the same rank (e.g., J-J) is the strongest.
2. High card: If neither pair nor flush, compare the higher card (K ¿ Q ¿ J); if tied, spades suit prevails over hearts.

Leduc poker bridges the gap between simple and complex games, featuring two betting rounds and community cards
that introduce strategic depth. Its structured complexity—more intricate than Kuhn poker but less complex than Texas
Hold’em—makes it ideal for testing algorithms in extensive-form games and studying equilibrium strategies in partial-
information scenarios. Our experiments used a 12-card (6-pair) setup.

A.3. Texas Hold’em

Texas Hold’em is a poker game that has a large player population and extensive influence globally. In terms of tournaments,
numerous international Texas Hold’em competitions draw significant attention. High prize money attracts many top players
to participate. Socially, it is a popular activity for people to enhance communication during leisure gatherings. The following
is an introduction to some basic Texas Hold’em poker terminology. For more content, you can refer to Wikipedia.

• Preflop: The stage before the community cards are dealt. Decisions are made based on hands, position, etc., like
raising, calling or folding.

• Flop: The first three community cards dealt. Evaluate competitiveness combined with hands and decide strategies.

• Turn: The fourth community card after the flop.
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• River: The last community card. Decides the final decision.

• Big blind (BB): The big blind is a forced bet made by one of the players before the cards are dealt. It is typically twice
the size of the small blind.

• Small blind (SB): The small blind is also a forced bet made by a player before the cards are dealt.

• Button: The button indicates which player is the dealer for that hand. The player on the button has certain advantages
in terms of position and play order.

• mBB/h: In Texas Hold’em, mBB/h represents the thousandth of a big blind won or lost per hand, used to accurately
measure a player’s profit or loss for each individual hand.

• Loose: Play many hands with a low entry criterion. Often participate even with weak hands. High risk but may win
with weak hands against strong ones.

• Aggressive: Actively bet or raise to put pressure on opponents and control the game to win the pot. The hand may not
be strong.

• 3 Bet: Raise again after someone has raised. Often indicates a strong hand or wanting to pressure opponents and
increase the pot.

• All-in: Bet all chips. Due to confidence in the hand or having few chips and wanting to pressure.

• Call: Follow by betting the same amount of chips as the opponent. Want to continue to see the cards and compete.

• Fold: Give up the hand and not participate in the pot. Due to weak hands or high risk from large bets by opponents.

• Bluff: When having a weak hand, make large bets and let opponents think the hand is strong so they fold to win the pot.
High risk.

B. Proof of Convergence of Pref-CFR
B.1. Blackwell Approachability Game

Definition B.1. A Blackwell approachability game in normal-form two-player games can be described as a tuple
(Σ, u, S1, S2), where Σ is a strategy profile set, u is the payoff function, and Si = R|Ai|

≤0 is a closed convex target cone. The

Player i’s regret vector of the strategy profile σ is Ri(σ) ∈ R|Ai|, for each component Ri(σ, ax) = ui
(
ax, σ

−i
)
− ui (σ) ,

ax ∈ Ai the average regret vector for players i to take actions at T time a is R̄i
T

R̄i
T =

1

T

T∑
t=1

Ri(σt), (17)

at each time t, the two players interact in this order:

• Player 1 chooses a strategy σ1
t ∈ Σ1;

• Player 2 chooses an action σ2
t ∈ Σ2 , which can depend adversarially on all the σt output so far;

• Player 1 gets the vector value payoff R1(σt) ∈ R|A1|.

The goal of Player 1 is to select actions σ1
1 , σ

1
2 , . . . ∈ Σ1 such that no matter what actions σ2

1 , σ
2
2 , . . . ∈ Σ2 played by Player

2, the average payoff vector converges to the target set S1.

min
ŝ∈S1

∥∥ŝ− R̄1
T

∥∥
2
→ 0 as T → ∞. (18)

Before explaining how to choose the action σt to ensure this goal achieve, we first need to define the forceable half-space:
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Definition B.2. Let H ⊆ Rd as half-space, that is, for some a ∈ Rd, b ∈ R, H =
{
x ∈ Rd : a⊤x ≤ b

}
. In Blackwell

approachability games, the halfspace H is said to be forceable if there exists a strategy σi∗ ∈ Σi of Player i that guarantees
that the regret vector Ri(σ) is in H no matter the strategy played by Player −i, such that

Ri
(
σi∗, σ̂−i

)
∈ H ∀σ̂−i ∈ Σ−i, (19)

and σi∗ is forcing action for H.

Blackwell’s approachability theorem states the following.
Theorem B.3. Goal 18 can be attained if and only if every halfspace Ht ⊇ S is forceable.

The relationship between Blackwell approachability and no-regret learning is:
Theorem B.4. Any strategy (algorithm) that achieves Blackwell approachability can be converted into an algorithm that
achieves no-regret, and vice versa (Abernethy et al., 2011).

If the algorithm achieves Blackwell approachability, the average strategy σ̄i
T will converge to equilibrium with T → ∞.

The rate of convergence is ϵiT ≤ R̄i
T ≤ L

√
|Ai|/

√
T .

B.2. Pref-CFR Achieves Blackwell Approachability

Figure 6. The differences in the selected forcing actions and forcing half-spaces of RM, FP and Pref-RM in the two-dimensional plane.

The proof concept for the Pref-CFR algorithm is as follows:

If an algorithm guarantees that the regret value converges to zero in normal-form games, applying this algorithm to two-player
zero-sum games will converge to the NE and to the CCE in multi-player general-sum games. Furthermore, Theorem B.4
indicates that any algorithm satisfying Blackwell approachability is equivalent to a no-regret algorithm. Additionally, as
shown in paper (Zinkevich et al., 2007), if an algorithm ensures that regret converges to zero in normal-form games, then
its application in extensive-form games leads to the convergence of counterfactual regret to zero (i.e., behavioral strategy
convergence to NE in two-player zero-sum games). Thus, to demonstrate that Pref-CFR converges to NE in two-player
zero-sum extensive-form games, we need only establish that it satisfies Blackwell approachability.

In this proof, we primarily show that Pref-CFR(BR) meets the criteria for Blackwell approachability, while Pref-CFR(RM)
can derive similar results through a relatively straightforward conversion.

Let R̄i,∗
t represent any component of the vector R̄i

t such that R̄i,∗
t > 0. Next, we identify the point ψt = R̄i

t − R̄i,∗
t ∈ R|Ai|

on the axis (noting that this point is not necessarily located on the surface of the target cone Si). We can define the normal
vector as R̄i

t−ψt

|R̄i
t−ψt| , which allows us to determine the half-space defined by this normal vector and point ψt:

HP
t =

{
z ∈ R|A−i| : (R̄i

t −ψt)
⊤z ≤ (R̄i

t −ψt)
⊤ψt

}
. (20)
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Since R̄i
t −ψt = R̄i,∗

t and (R̄i
t −ψt)

⊤ψt = 0, we can simplify this to:

HP
t =

{
z ∈ R|A−i| :

〈
R̄i,∗

t , z
〉
≤ 0

}
, (21)

for any point s′ ∈ Si there is
〈
R̄i,∗

t , s′
〉
≤ 0. Then we need to find the forcing action that matches HP

t . According to

Definition B.2, we need to find a σi∗
t+1 ∈ Σi that achieves Ri

(
σi∗
t+1, σ̂

−i
t+1

)
∈ Hi,P

t+1 for any σ̂−i
t+1 ∈ Σ−i. For simplicity, let

ℓ= [ui
(
a1, σ

−i
)
, . . . ]⊤ ∈ R|Ai|, we rewrite the regret vector as Ri

(
σi∗
t+1, σ̂

−i
t+1

)
= ℓ−

〈
ℓ, σi∗

t+1

〉
1, we are looking for a

σi∗
t+1 ∈ Σi such that:

Ri
(
σi∗
t+1, σ̂

−i
t+1

)
∈ HP

t

⇐⇒
〈
R̄i,∗

t , ℓ−
〈
ℓ, σi∗

t+1

〉
1
〉
≤ 0

⇐⇒
〈
R̄i,∗

t , ℓ
〉
−

〈
ℓ, σi∗

t+1

〉 〈
R̄i,∗

t ,1
〉
≤ 0

⇐⇒
〈
R̄i,∗

t , ℓ
〉
−

〈
ℓ, σi∗

t+1

〉 ∥∥∥R̄i,∗
t

∥∥∥
1
≤ 0

⇐⇒

〈
ℓ,

R̄i,∗
t∥∥∥R̄i,∗
t

∥∥∥
1

〉
−

〈
ℓ, σi∗

t+1

〉
≤ 0

⇐⇒

〈
ℓ,

[
R̄i

t

]∗∥∥∥[R̄i
t

]∗∥∥∥
1

− σi∗
t+1

〉
≤ 0.

(22)

Therefore, the strategy σi∗
t+1 =

R̄i,∗
t

∥R̄i,∗
t ∥

1

can guarantee HP
t+1 to be forceable half-space. Figure 6 intuitively shows the

relationship between these points, half-spaces and the target set in a two-dimensional plane.

It should be noted that the half-space HP
t+1 can only prove that the distance from the average regret value R̄i

t to the point
ψt converges to 0, but ψt is not necessarily on the target cone Si. So it cannot be shown that R̄i

t will converge to Si. The
projection of R̄i

t to the target cone Si is point γi
t =

[
R̄i

t

]−
, R̄i,−

t = min{0, R̄i
t}. We need to keep the distance from the R̄i

t

to point ψt and point γi
t within a certain range, and preference degree δ(a) just plays this role.

Define aBR = argmaxa∈Ai R̄i
t(a), a

P = argmaxa∈Ai δ(a)R̄i
t(a). The distance from the average regret value R̄i

t to γi
t is

∥R̄i,+
t ∥2, and the distance from R̄i

t to the point ψt is δi(aP )R̄i
t(a

P ). Define dist(x, y) as the distance between points x and
y.

dist(R̄i
t,γt) = ∥R̄i,+

t ∥2 ≤
√

|Ai|R̄i,+
t (aBR), (23)

at the same time,
dist(R̄i

t,ψt) = δi(aP )R̄i,+
t (aP ) ≥ δi(aBR)R̄i,+

t (aBR), (24)

since δi(aBR) ≥ 1, so:

dist(R̄i
t,γt) ≤

√
|Ai|δi(aP )
δi(aBR)

dist(R̄i
t,ψt). (25)

Define δ∗ = maxa∈Ai(δi(a)). Therefore, from Blackwell’s approachability, we know that dist(R̄i
t,ψt) ≤ L

√
|Ai|δ∗√
t

.
Finally, we get:

dist(R̄i
t,γt) =

L|Ai|δ∗√
t

. (26)

The convergence speed will linearly slow down as δ∗ increases. As long as δ∗ is set within a reasonable range, it will not
significantly reduce the convergence speed of Pref-CFR.

B.3. Vulnerability CFR Will Converge to an ϵ-NE

The proof for the Vulnerability CFR algorithm is more straightforward. In the original scenario, the historical strategy σ̄i
t

converging to a NE is equivalent to the regret R̄i
t converging to the convex target cone Si = R|Ai|

≤0 . This holds true because,
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Figure 7. The differences in the selected forcing actions and forcing half-spaces of RM and β vulnerability RM in the two-dimensional
plane.

given the opponent’s strategy σ̄−i
t , player i identifies a strategy σ̄i

t such that regardless of which pure strategy player i selects,
their payoff will not increase (since R̄i

t(a) ≤ 0 for all a ∈ Ai as t → ∞), thus satisfying the conditions for NE.

However, what if our target cone is not Si = R|Ai|
≤0 , but instead Si = R|Ai|

≤β for some β ≥ 0? This means that the regret of
any pure strategy will not exceed β, indicating that we have identified a β-NE.

In the iteration, we only need to adjust the translation. The original projection point is γt = R̄i,−
t , and the distance that

needs to be reduced is given by:
dist(R̄i

t,γt) = ∥R̄i
t − γt∥2 = ∥R̄i,+

t ∥2. (27)

Now, the projection point becomes γβ
t = R̄i,−β

t , where R̄i,−β
t = min{R̄i

t, β}. At this point, the distance that needs to be
reduced is:

dist(R̄i
t,γ

β
t ) = ∥R̄i

t − γ
β
t ∥2 = ∥R̄i,+

t − β∥2. (28)

Thus, in the CFR iteration, we simply need to replace R̄i
t(a) with B̄i

t(a) = R̄i
t(a) − β to ensure that the final strategy

converges to a β-NE. Figure 7 intuitively illustrates the relationship between these points, the half-spaces, and the target set
in a two-dimensional plane.

Strictly speaking, in many of our subsequent experiments, both Pref-CFR and Vulnerability CFR are used simultaneously.
However, Pref-CFR is the more critical component of the algorithm. Using Vulnerability CFR alone does not produce
meaningful results. Therefore, even though Vulnerability CFR is utilized, it will not be mentioned in the name of the
algorithm.

C. Kuhn Poker Experiment Setup
The settings in the experiment are as follows:

1. Pref-CFR(BR) with δ(J ,Bet), δ(Q ,Bet), δ(K ,Bet) = 10.

2. Pref-CFR(BR) with δ(J ,Bet), δ(Q ,Bet), δ(K ,Bet) = 5.

3. Pref-CFR(RM) with δ(J ,Bet), δ(Q ,Bet), δ(K ,Bet) = 5.

4. Pref-CFR(RM) with δ(J ,Pass), δ(Q ,Pass), δ(K ,Pass) = 5.

5. Pref-CFR(BR) with δ(J ,Pass), δ(Q ,Pass), δ(K ,Pass) = 5.

6. Pref-CFR(BR) with δ(J ,Pass), δ(Q ,Pass), δ(K ,Pass) = 10.

In Kuhn poker, there are 12 information sets. For all actions in all information sets except for those on the information sets
specified here, δ(I, a) = 1.
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D. The RM Algorithm is a GWFP Process
The final strategy of RM is:

σ̄T =
1

T

T∑
t=1

σt,RM, (29)

where

σt,RM =


R̄i,+

T (a)∑
a∈Ai R̄i,+

T (a)
if R̄i,+

T (a′) ̸= 0

1
|Ai| otherwise,

(30)

Compared with Formula 10, in the GWFP process, it is equivalent to αt = 1/t, Mt = 0, and bϵt = σt,RM. Therefore, in a
two-player zero-sum game, we only need to prove

lim
T→∞

ϵT = 0, (31)

where
ϵT = ui(bi(σ̄−i

T ), σ̄−i
T )− ui(σi

T,RM, σ̄−i
T ), (32)

to show that the RM algorithm is a GWFP process.

First, recall that in the FP process, the essence is to find a BR strategy to the historical strategy.

σ̄t+1 =
t

t+ 1
σ̄t +

1

t+ 1
b(σ̄t). (33)

In a two-player zero-sum normal-from game, this means performing a matrix multiplication. Let the pay-off matrix of the
game be U ∈ R|A1|×|A2|. Then, to find b(σ̄t), we need to calculate

b1(σ̄2
t ) = argmax

a∈A1

Uσ̄2
t . (34)

Here, we start from the perspective of player 1, and the calculation method for player 2 is symmetric. Specifically:

b1(σ̄2
t ) = argmax

a∈A1

Uσ̄2
t =

1

t
argmax

a∈A
U

t∑
k=1

σ2
k

=
1

t
argmax

a∈A1

t∑
k=1

Uσ2
k.

(35)

Define qit(a) = ui(a, σ−i
t ) and Qi

T =
∑T

t=1 qt, then

bi(σ̄−i
t ) = argmax

a∈Ai

Qi
t. (36)

Define Q̄i
T = 1

T Q
i
T , and the value obtained is:

ui(b(σ̄−i
T ), σ̄−2

T ) = Q̄i
T (b(σ̄

−i
T )), (37)

the value obtained by the RM strategy is:

ui(σi
T,RM, σ̄−i

T ) =
∑
a∈Ai

σi
T,RM(a)Q̄i

T (a). (38)

When R̄i,+
T (a′) = 0, it means that all Q̄i

T (a) are equal, and naturally:

ui(b(σ̄−i
T ), σ̄−i

T )− ui(σi
T,RM, σ̄−i

T ) = 0. (39)

When R̄i,+
T (a′) ̸= 0, in the RM process, define V̄ i

T =
∑T

t=1 u
i(σt). The regret of each action can be rewritten as:

R̄i
T (a) = Q̄i

T (a)− V̄ i
T , (40)
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Formula 32 can be rewritten as:

ϵiT = ui(b(σ̄−i
T ), σ̄−i

T )− ui(σi
T,RM, σ̄−i

T )

= Q̄i
T (b(σ̄

−i
T ))−

∑
a∈Ai and R̄i,+

T (a)>0

σi
T,RM(a)Q̄i

T (a)

=
∑

a∈Ai and R̄i,+
T (a)>0

σT,RM(a)
(
Q̄i

T (b(σ̄
−i
T ))− Q̄i

T (a)
)

=
∑

a∈Ai and R̄i,+
T (a)>0

σT,RM(a)
(
R̄i

T (b(σ̄
−i
T ))− R̄i

T (a)
)
.

(41)

Since R̄i,+
T (a) > 0, so:

0 < R̄i
T (a) ≤ R̄i

T (b(σ̄
−i
t )), (42)

in a two-player zero-sum game, limT→∞ maxa∈Ai R̄i
T (a) = 0. We have:

ϵit =
∑

a∈Ai and R̄i,+
T (a)>0

σT,RM(a)
(
R̄i

T (b(σ̄
−i
T ))− R̄i

T (a)
)
= 0, (43)

holds for all i ∈ N . Therefore, RM satisfies all the conditions of GWFP, and RM is a GWFP process. Q.E.D.
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