
Better Training of GFlowNets with Local Credit and Incomplete Trajectories

Ling Pan 1 Nikolay Malkin 1 Dinghuai Zhang 1 Yoshua Bengio 1 2

Abstract

Generative Flow Networks or GFlowNets are
related to Monte-Carlo Markov chain methods
(as they sample from a distribution specified by
an energy function), reinforcement learning (as
they learn a policy to sample composed objects
through a sequence of steps), generative models
(as they learn to represent and sample from a dis-
tribution) and amortized variational methods (as
they can be used to learn to approximate and
sample from an otherwise intractable posterior,
given a prior and a likelihood). They are trained
to generate an object x through a sequence of
steps with probability proportional to some re-
ward function R(x) (or exp(−E(x)) with E(x)
denoting the energy function), given at the end of
the generative trajectory. Like for other RL set-
tings where the reward is only given at the end, the
efficiency of training and credit assignment may
suffer when those trajectories are longer. With pre-
vious GFlowNet work, no learning was possible
from incomplete trajectories (lacking a terminal
state and the computation of the associated re-
ward). In this paper, we consider the case where
the energy function can be applied not just to ter-
minal states but also to intermediate states. This is
for example achieved when the energy function is
additive, with terms available along the trajectory.
We show how to reparameterize the GFlowNet
state flow function to take advantage of the par-
tial reward already accrued at each state. This
enables a training objective that can be applied to
update parameters even with incomplete trajecto-
ries. Even when complete trajectories are avail-
able, being able to obtain more localized credit
and gradients is found to speed up training conver-
gence, as demonstrated across many simulations.

1Mila – Québec AI Institute and Université de
Montréal 2CIFAR. Correspondence to: Ling Pan
<penny.ling.pan@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Generative Flow Networks (GFlowNets) (Bengio et al.,
2021a;b) are variants of reinforcement learning (RL) meth-
ods (Sutton & Barto, 2018) trained to generate an object
x ∈ X through a sequence of steps, by learning a stochas-
tic policy PF with a training objective that would make it
sample x with probability proportional to a reward function
R(x), with sufficient capacity and training iterations.

GFlowNets are related to MCMC methods (Metropolis et al.,
1953; Hastings, 1970; Andrieu et al., 2003) that approxi-
mately sample from a distribution associated with a given
energy function or unnormalized probability function, but
GFlowNets exploit the ability of machine learning (ML)
to generalize and to amortize the cost of sampling (which
becomes quick), at the expense of training time. Unlike
MCMC methods, they do not suffer from the mixing prob-
lem (Salakhutdinov, 2009; Bengio et al., 2013; 2021a), be-
cause they do not rely on a Markov chain that makes small
local steps1, and instead GFlowNets generate each sample
independently. On the other hand, like RL methods, they
rely on exploration and the generalization power of ML to
guess and discover new modes of the reward function (or
regions of low energy), thanks to underlying regularities in
the given energy function.

They are also related to generative models (Kingma &
Welling, 2013; Goodfellow et al., 2014; 2016; Ho et al.,
2020) as they learn to represent and sample from a distribu-
tion, although they can either learn from a dataset (Zhang
et al., 2022c;a), like typical deep generative models, or from
an energy or reward function, like amortized variational
methods (Kingma & Welling, 2014; Rezende et al., 2014)
as they can be used to learn to approximate and sample
from an otherwise intractable posterior, given a prior and a
likelihood. As shown by Malkin et al. (2022b), GFlowNets
can be seen as variants of amortized variational inference
methods, using training objectives that are different from
the usual KL objectives and enable off-policy learning and
exploration methods that can avoid the factorization assump-
tions, importance reweighting, mode-seeking behavior and

1To mix between two modes, a Markov chain has to make
the right sequences of moves to encounter a new far away and
concentrated mode, and this can be very unlikely since it would
require many low-probability moves.

1

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

other issues with standard variational inference methods.

The sequential process for generating the composite object
is related to reinforcement learning (RL) methods (Sutton
& Barto, 2018; Mnih et al., 2015; Lillicrap et al., 2015;
Fujimoto et al., 2018). However, because they are trained
to sample proportionally to the reward rather than to maxi-
mize it, GFlowNets tend to generate a greater diversity of
solutions, which can be very appealing for tasks where such
diversity is desirable (Jain et al., 2022a;b). Note that they are
related but different from entropy-regularized RL (Haarnoja
et al., 2017; 2018), as we will discuss in Section 3.

Yet, previous learning objectives of GFlowNets (Bengio
et al., 2021a;b; Malkin et al., 2022a; Madan et al., 2022)
only learn from the reward of the terminal state, which is
given only at the end of each trajectory. Due to the de-
layed and possibly sparse feedback from the environment
(especially for the more interesting cases where the target
distribution concentrates probability mass), GFlowNets may
suffer from the problem of inefficient credit assignment,
due to long trajectories and a highly delayed reward. This
paper proposes an approach to take advantage of incom-
plete reward signals that are available before the terminal
state is reached, even allowing to benefit from incomplete
trajectories, that do not reach a terminal state, i.e., without
knowledge of the terminal reward.

As a motivating example, consider the possibility of us-
ing GFlowNets to sample abstract compositional objects
akin to thoughts, as previously suggested (Bengio et al.,
2021b; 2022). The human brain’s working memory can
only hold around a handful of symbols at a time, and al-
though a sequence of such memory contents can correspond
to a probabilistic inference (Baddeley, 1992; Cowan, 1999)
(e.g., an interpretation for an image or a video in terms of
latent variables that can explain it), this working memory
bottleneck – see the work on the global workspace the-
ory (Baars, 1993; Dehaene et al., 1998; Shanahan & Baars,
2005; Shanahan, 2006; 2010; 2012; Dehaene et al., 2017) –
generally prevents us from forming a complete description
of the full explanation of the input. This suggests that the
brain can learn from partial inferences that do not contain
a full specification of the latent variables that explain the
given input.

However, variational methods and current GFlowNet train-
ing objectives (Bengio et al., 2021a; Malkin et al., 2022a;
Madan et al., 2022; Bengio et al., 2021b) require complete
specification of the latent explanation (i.e., a complete tra-
jectory in the case of GFlowNets) before receiving a reward
(such as how well the generated explanation fits the observed
data and the prior). To perform the kind of computation as-
sociated with working memory and forming sequences of
thoughts, GFlowNets would need to be modified to accom-
modate training trajectories that do not reach a terminal

state. How could that even be possible if no reward is avail-
able before a terminal state is reached, i.e., before a full
specification of the latent explanation is constructed?

In many cases, the reward function can actually be decom-
posed into a product of factors, where some of these factors
can be accrued along the trajectory. A natural case is where
the reward R(x) = exp(−E(x)) corresponds to an energy
function E(x) =

∑
t Et that is additive with terms that can

be obtained along the trajectory (e.g., at transitions t of the
trajectory), as in GFlowNets over sets (Bengio et al., 2021b).
In the case of a sparse factor graph that models the joint
of latents and observed variables, each time the variables
associated to a clique of the graph are specified, we can
compute an energy term (Bengio et al., 2021b).

In this paper, we focus on the underlying technical ques-
tion: how to train GFlowNets with incomplete trajectories?
We find that the proposed solution also accelerates training
even when complete trajectories are available. We propose
Forward-Looking GFlowNets (FL-GFN), a novel formula-
tion that exploits the ability to compute an energy value
(even if incomplete) for intermediate states, in order to de-
liver a local credit signal and gradient as soon as a local
reward factor is accrued. The code is publicly available at
https://github.com/ling-pan/FL-GFN.

The main contributions are summarized as follows:

• We propose a novel GFlowNets formulation, FL-GFN,
that can exploit the existence of a per-state or per-
transition energy function.

• We show that with FL-GFN, we can still guarantee con-
vergence, to fit and match the distribution corresponding
to the given reward function, while credit information is
available early. We show how FL-GFN can be trained
from incomplete trajectories without access to terminal
states.

• We conduct extensive experiments on the set generation
and bit sequence generation tasks, which demonstrates the
effectiveness of FL-GFN. It is also found to be scalable
to the more complex and challenging molecule discovery
task.

2. Background
2.1. GFlowNet Preliminaries

Let G = (S,A) be a directed acyclic graph (DAG), where
S is the set of vertices (states), and A ⊂ S × S is the set
of edges (called actions). A unique initial state s0 ∈ S is
defined, without incoming edges. States without outgoing
edges are called terminal,2 and the set of terminal states is

2The alternative convention of Bengio et al. (2021b) defines
terminal states as those with an outgoing edge to a designated sink
state sf . The two conventions are equivalent, as noted by Malkin

2

https://github.com/ling-pan/FL-GFN

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

denoted by X ⊂ S. A sequence τ = (s0 → s1 → · · · →
sn), with sn ∈ X and (si → si+1) ∈ A for all i, is called a
complete trajectory.

Let R : X → R≥0 be a nonnegative reward function on the
set of terminal states. The goal of GFlowNets is to learn
a stochastic policy PF , specified as a distribution over the
children of every nonterminal state in G, such that complete
trajectories starting at s0 and taking actions sampled from
PF terminate at x ∈ X with likelihood proportional to the
reward R(x). That is, if P⊤

F (x) is the marginal likelihood
that a complete trajectory s0 → s1 → · · · → sn sampled
from PF has sn = x, then we desire P⊤

F (x) ∝ R(x). Note
that P⊤

F (x) is a sum of likelihoods of all trajectories leading
to x:

P⊤
F (x)

def
=

∑
τ=(s0→···→sn=x)

PF (τ) =
∑
τ

n∏
i=1

PF (si|si−1),

which may be an intractably large sum. The GFlowNet
forward policy PF constructs objects sequentially, by mod-
ifying the partial object at each timestep, and transitions
sampled from PF should be thought of as incremental con-
struction actions: unlike in standard RL, G has no cycles,
which means that the same state cannot be visited twice
within a trajectory. This can easily be achieved by including
a time stamp in the state (Bengio et al., 2021b).

The action policy PF – parameterized as a neural network
PF (si|si−1; θ) taking a state si−1 as input and producing a
distribution over the children si of si−1 – is the main object
of GFlowNet training.

2.2. Training Criteria for GFlowNets

There are several auxiliary quantities that can be either intro-
duced in the training process or computed after a policy has
been trained, depending on the training objective chosen.
We summarize three objectives that are relevant in this paper
as follows:

Detailed balance (DB). Two auxiliary quantities are
learned: a scalar state flow function F (s; θ) and a back-
ward policy PB(s|s′; θ), which is a distribution over the
parents s of every noninitial state s′. We set F (x) = R(x)
for terminal states x. The DB constraint (that will only
be approximately achieved, thanks to a training objective)
enforces that for any action s → s′, we have

F (s; θ)PF (s
′|s; θ) = F (s′; θ)PB(s|s′; θ). (1)

For a given forward policy PF , there is a unique backward
policy PB and state flow function F that satisfy Eq. (1)
(Bengio et al., 2021b). In practice, the constraint is enforced

et al. (2022a), but ours has the advantage of allowing simpler
notation for the expressions needed in this paper.

by taking gradient steps with respect to θ on the square of
the log-ratio between the two sides of Eq. (1), where the
edge s → s′ is chosen from a training policy. To improve ex-
ploration and prevent the agent from getting trapped around
a few modes of R (Jain et al., 2022a; Pan et al., 2022), the
training policy is usually chosen as a tempered version of
the forward policy or its mixture with a uniform policy, i.e.,
πθ = ϵU+(1−ϵ)PF that resembles ϵ-greedy exploration in
RL. Bengio et al. (2021a) prove that if the training policy πθ

has full support and the expected loss is minimized globally,
then P⊤

F (x) ∝ R(x).

Trajectory balance (TB). With this GFlowNet objective,
the learned auxiliary quantities are a backward policy PB ,
as above, and a scalar Zθ (typically parametrized in the log-
domain as logZθ). For any complete trajectory τ = (s0 →
s1 → · · · → sn = x, the TB constraint is

Zθ

n∏
i=1

PF (si|si−1; θ) = R(x)

n∏
i=1

PB(si−1|si; θ). (2)

Satisfaction of this constraint for all complete trajectories
also implies that P⊤

F (x) ∝ R(x) (Malkin et al., 2022a). The
constraint can again be enforced by optimizing the squared
log-ratio between the left and right hand sides of Eq. (2).

Subtrajectory balance (SubTB). The parametrization is
the same as in DB. The subtrajectory balance (SubTB) con-
straint applies to partial trajectories sm → · · · → sn, where
sm and sn are not necessarily initial and final:

F (sm; θ)

n∏
i=m+1

PF (si|si−1; θ)

=F (sn; θ)

n∏
i=m+1

PB(si−1|si; θ). (3)

Special cases for this constraint are DB (when the partial
trajectory has length 1) and TB (when the trajectory is com-
plete, noting that F (x; θ) = R(x) when x is terminal). Sat-
isfaction of the SubTB constraint for all partial trajectories
of a given length does not necessarily imply sampling pro-
portionally to the reward, but its satisfaction for partial tra-
jectories of all lengths (thus including complete trajectories
and terminal states) implies both the DB and TB constraints
hold and is thus sufficient to guarantee P⊤

F (x) ∝ R(x).
Madan et al. (2022) empirically tested the training objective
based on the SubTB constraint, which reduces the gradient
variance of the TB objective.

3. Related Work
GFlowNets. There have been many recent efforts in ap-
plying GFlowNets in a number of settings, e.g., molecule
discovery (Bengio et al., 2021a), sequence design (Jain

3

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

et al., 2022a), Bayesian structure learning (Deleu et al.,
2022; Nishikawa-Toomey et al., 2022), and providing theo-
retical understandings of GFlowNets (Bengio et al., 2021b;
Malkin et al., 2022b; Zimmermann et al., 2022; Zhang et al.,
2022a; Lahlou et al., 2023). Given its practical importance,
several studies also emerged (Bengio et al., 2021b; Malkin
et al., 2022b; Madan et al., 2022) to improve the learn-
ing efficiency of GFlowNets since the proposal of the flow
matching learning objective initially proposed by Bengio
et al. (2021a). It can also be jointly trained with an energy
or reward function (Zhang et al., 2022c). Pan et al. (2022)
introduce intrinsic exploration rewards into GFlowNets in
an additive way to help exploration in sparse reward tasks.
There have also been recent efforts in extending GFlowNets
to stochastic environments with stochasticity in transition
dynamics (Pan et al., 2023) and rewards (Zhang et al., 2023).
Yet, GFlowNets could suffer from inefficient credit assign-
ment since they only learn from a trajectory reward provided
at terminal states, which poses a critical challenge to the
attribution of credit on each of the actions in a trajectory,
especially those in the early parts of the trajectory. Previous
learning objectives of GFlowNets require access to termi-
nal states and need to be trained with complete trajectories,
which can be infeasible when the composite terminal states
x have considerably large sizes.

Reinforcement Learning (RL). RL agents typically aim
to learn a reward-maximizing policy, instead of learning
to sample in proportion to the reward function. Soft Q-
learning (Haarnoja et al., 2017) introduces entropy regular-
ization in its objective (Haarnoja et al., 2018; Zhang et al.,
2022b) and learns a stochastic energy-based policy. How-
ever, it can perform badly in general (non-tree) DAGs as
shown in Bengio et al. (2021a), since there can be a po-
tentially large number of trajectories leading to the same
terminal state, and some terminal states (corresponding to
longer trajectories) may thus have exponentially more tra-
jectories into them, which biases learning in favor of longer
trajectories. In episodic RL settings such is the case with
GFlowNets, the agent only receives a trajectory feedback
at the end of each trajectory, which can hinder learning
efficiency in long-horizon problems (Ren et al., 2022).

4. Proposed Method
Previous GFlowNets learning objectives, e.g., detailed
balance (DB) (Bengio et al., 2021b), trajectory balance
(TB) (Malkin et al., 2022a), and sub-trajectory balance
(SubTB) (Madan et al., 2022) therefore require learning
with complete trajectories. This is because they only learn
from the energy of the terminal state, i.e., E(x), and there-
fore need to visit terminal states x to obtain informative
learning signals, as illustrated in Figure 1(a). The require-
ment of learning from complete trajectories is a critical

limitation when the trajectory length is long or the final
composite object is complex, as motivated from the above
working memory bottleneck (Baars, 1993) example and the
situation of inferring the latent explanation for a rich input
such as a complex image or a video (Bengio et al., 2022). In
addition, learning from a highly delayed reward also makes
it challenging for agents to properly associate their actions
to future rewards, and thus hinders the efficiency of learning
and credit assignment (Ren et al., 2022).

In this section, we introduce our approach, Forward-looking
GFlowNets or FL-GFN for short to take advantage of the
computability of energy at intermediate states, or equiva-
lently, an additive energy decomposition. FL-GFN can take
intermediate reward signals into account, and thus obtains
faster learning and enables learning from incomplete trajec-
tories. We also theoretically justify the proposed learning
objective and discuss its connections to existing approaches.
FL-GFN relies on the following assumption:
Assumption 4.1. The terminal state energy function E :
X → R can be extended to the set of all states, i.e., there
exists E : S → R.

As a consequence, we can also define an energy function
over transitions:

E(s → s′)
def
= E(s′)− E(s). (4)

Similarly, we can define the energy differential associated
with all trajectories from s to x as

E(s → x)
def
= E(x)− E(s). (5)

We obtain that the energy of a state st (terminal or not)
can be written additively over transitions for any trajectory
s0 → s1 → · · · → sn if we define E(s0)

def
= 0:

E(st) =
n∑

i=1

E(si−1 → si). (6)

4.1. Sources of Partial Energies

We now describe two common settings where energies for
incomplete states may arise.

Purely additive energies. We can start from a given per-
transition energy function E(s → s′) and apply the above to
define a per-state energy function. For example, this applies
to the construction of a set whose log-reward is a sum of
terms depending on its elements (cf. the Set-GFN construc-
tion in Bengio et al. (2021b), where a state corresponds to a
set of elements, a transition corresponds to inserting a new
element in the current set, and an energy term is associated
with each element in s). Another scenario is the sampling
of posteriors over latent variables with compositional struc-
ture (Hu et al., 2023), where our proposed methodology
is applied to parse trees under probabilistic context-free
grammars.

4

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

State spaces extending the target space. A second mo-
tivating example is the case where all states belong to the
same space (e.g., a vector space or a space of structured
objects that can be processed by a neural network) and the
energy can be calculated for any state s using the same
function that is applied in the computation of the reward for
terminal states x. In this case, the energy E(s → s′) mea-
sures the stepwise marginal improvement in the log-reward.
Note that this formulation applies even if s and s′ are not
complete objects from which termination is allowed, as long
as an extension of the reward function to nonterminal states
can be evaluated (e.g., the molecule generation domain as
studied in Section 5.3).

4.2. Forward-looking GFlowNets (FL-GFN)

Consider the flow at s and exploit Assumption 4.1 to rewrite
the terminal energy E(x) as E(s) + E(s → x):

F (s) =
∑
x≥s

PB(s|x)e−E(x) (7)

= e−E(s)
∑
x≥s

PB(s|x)e−E(s→x). (8)

Here PB(s|x) denotes the probability of reaching the inter-
mediate state s from the terminal state x via the one-step
backward policy PB(s|s′). The idea is to take advantage of
the fact that we already know E(s) when we have reached
state s and that we can thus factor it out of the right-hand
side, as above. With this in mind, we define the forward-
looking flow as

F̃ (s)
def
= eE(s)F (s) =

∑
x≥s

PB(s|x)e−E(s→x), (9)

i.e., F̃ (s) only contains a sum over terms with energies of
transitions to come (hence the name of forward-looking
flow). Using this, we can write a variant of the detailed
balance constraint (Eq. (1)), called the FL-DB constraint,
expressed in terms of forward-looking flows:

F̃ (s)PF (s
′|s) = F̃ (s′)PB(s|s′)e−E(s→s′). (10)

Note that this constraint can be extended in the same way
that DB was extended to SubTB (as we will study in Sec-
tion 5.1.3). Based on the resulting dense supervision (where
actual energy/reward signals are available at intermediate
steps), we can hypothesize that more efficient credit assign-
ment is achieved. In addition, it also makes it possible
for GFlowNets to learn based on incomplete trajectories
without access to terminal states, so long as the training
sequences of intermediate energies over incomplete trajec-
tories contain enough information to generalize over the
energies to be expected downstream.

Algorithm 1 Training Step of FL-GFN

1: Initialize forward and backward policies PF , PB , and
the energy-to-go flow F̃ with parameters θ

2: for each transition s → s′ sampled from a training
trajectory do

3: Measure the transition energy E(s → s′)
4: Update θ by θ − η∇θL(st, st+1) as per Eq. (11)
5: end for

Implementation. In practice, we train the FL-GFN based
on the FL-DB constraint in Eq. (10), following Algorithm 1,
to minimize the corresponding loss function over transitions
s → s′ in the log-space:

L(s, s′) =
(
log F̃ (s; θ) + logPF (s

′|s; θ)

− log F̃ (s′; θ)− logPB(s|s′; θ) + E(s → s′)
)2

.

(11)

An alternative implementation is to make the following
substitution and optimize for the DB constraint Eq. (1):

logF (s) = −E(s) + log F̃ (s; θ), (12)

where log F̃ (s; θ) is a learned model.

Theoretical justification. We now theoretically justify that
if we reach a global minimum of the expected value of the
FL-GFN loss (Eq. (11)), then the FL-GFN samples from the
target reward distribution correctly. The proof can be found
in Appendix A.

Proposition 4.2. Suppose that Assumption 4.1 is satisfied,
which makes it possible to define a forward-looking flow
as per Eq. (9). If L(s, s′) = 0 for all transitions, then the
forward policy PF (s

′|s; θ) samples proportionally to the
reward function.

Next, we discuss its connection with existing methods in
the GFlowNets literature.

Connection with existing methods. The forward-looking
flow F̃ (s; θ) in Eq. (9) can also be interpreted as a new
parametrization of the state flow function as in Eq. (12).
The case of E(s) ≡ 0 for non-terminal states s corresponds
to regular DB (or SubTB) training, in which learning signals
come only from the reward at the end of a trajectory and
the flow function is learned directly as a neural network,
since F (s) = F̃ (s). However, in many cases, there is a
natural E(s) available as discussed above and shown in the
experiments below.

If termination is permitted from any state s (into terminal
state s⊤) with reward e−E(s) and the GFlowNet constraints
are satisfied, we have F (s)PF (s

⊤|s) = R(s⊤) = e−E(s).

5

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

(a) (b)

Figure 1. (a) Reward propagation in previous learning objectives of GFlowNets and (b) in FL-GFN, with additive energy terms for each
transition. Note that (a) requires learning based on complete trajectories since it only learn from the terminal energy E(x), while (b)
makes it possible to learn from short incomplete trajectories.

Substituting Eq. (12), this simplifies to log F̃ (s; θ) =
− logPF (s

⊤|s). The loss introduced by Deleu et al. (2022)
can be considered as the DB loss with the parametrization in
Eq. (12) and directly setting log F̃ (s; θ) = − logPF (s

⊤|s).

5. Experiments
We conducted extensive experiments to investigate the fol-
lowing key questions and understand the effectiveness of
the proposed approach: i) How does the forward-looking ap-
proach compare against previous GFlowNet learning objec-
tives in terms of learning efficiency and final performance?
ii) Can it learn given incomplete trajectories only when it
does not have access to terminal states? iii) Can it be applied
to different GFlowNet learning objectives? iv) How does it
work on more complex and challenging tasks?

5.1. Set Generation

5.1.1. EXPERIMENTAL SETUP

We first conducted a series of experiments on a didactic set
generation task with set GFlowNets (Bengio et al., 2021b) to
understand the effect of the forward-looking approach. The
agent generates a set of size |S| from |U | distinct elements
sequentially. At each timestep, the agent chooses to add an
element from U to the current set s (the GFlowNet state)
without repeating elements, and gets an energy term for
adding the element (a fixed value for each element). The
task terminates when there are exactly |S| elements in the
set s, and the total energy for constructing s is E(x) =∑

t∈τ E(t), where τ is the sampled trajectory and t ∈ τ is a
transition. We consider different scales of the set generation
task including small, medium, and large with increasing
sizes of |S| and |U |. More details of the experimental setup
can be found in Appendix B.1.

5.1.2. PERFORMANCE COMPARISON

Following Bengio et al. (2021a), we evaluate the methods in
terms of the average reward of the unique top-100 sampled

candidates (from all the samples generated during training)
and the number of modes discovered by each algorithm, so
as to measure both performance and diversity. We compare
FL-GFNs with previous GFlowNets learning objectives in-
cluding detailed balance (DB), trajectory balance (TB), and
subtrajectory balance (SubTB).

0 2000 4000 6000 8000 10000
Update

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Small

DB
TB
SubTB
FL GFN

(a)

0 2000 4000 6000 8000 10000
Update

0

20

40

60

80

100

120

of

 m
od

es
 w

ith
 R

>
R t

hr
es

ho
ld

Small

DB
TB
SubTB
FL GFN

(b)

0 2000 4000 6000 8000 10000
Update

0

100000

200000

300000

400000

500000

600000

700000

800000

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Medium

DB
TB
SubTB
FL GFN

(c)

0 2000 4000 6000 8000 10000
Update

0

100

200

300

400

500

of

 m
od

es
 w

ith
 R

>
R t

hr
es

ho
ld

Medium

DB
TB
SubTB
FL GFN

(d)

0 2000 4000 6000 8000 10000
Update

0

100000

200000

300000

400000

500000

600000

700000

800000

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Large

DB
TB
SubTB
FL GFN

(e)

0 2000 4000 6000 8000 10000
Update

0

200

400

600

800

1000

of

 m
od

es
 w

ith
 R

>
R t

hr
es

ho
ld

Large

DB
TB
SubTB
FL GFN

(f)

Figure 2. Comparison on the set generation task with (a, b) small,
(c, d) medium, and (c, d) large sets. The first column shows the
advantage of FL-GFN in terms of the average reward of the unique
top-100 sets, the second column in terms of the number of modes
discovered by each method, i.e., diversity.

6

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

0 2000 4000 6000 8000 10000
Update

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Small

SubTB
FL GFN (SubTB)

(a)

0 2000 4000 6000 8000 10000
Update

0

100000

200000

300000

400000

500000

600000

700000

800000

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Medium

SubTB
FL GFN (SubTB)

(b)

0 2000 4000 6000 8000 10000
Update

0

100000

200000

300000

400000

500000

600000

700000

800000

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Large

SubTB
FL GFN (SubTB)

(c)

Figure 3. Performance comparison of FL-GFN (SubTB) and SubTB in the set generation task with different problem sizes including (a)
small (b) medium (c) large. FL-GFN (SubTB)converges faster and to better solutions, especially for larger sets.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Small

DB (partial)
SubTB (partial)
FL GFN (partial)
FL-GFN
Random (partial)

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (×106)

0

100000

200000

300000

400000

500000

600000

700000

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Medium

DB (partial)
SubTB (partial)
FL GFN (partial)
FL-GFN

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps (×106)

0

100000

200000

300000

400000

500000

600000

700000

Av
er

ag
e

R
of

 u
ni

qu
e

to
p-

10
0

se
ts

Large

DB (partial)
SubTB (partial)
FL GFN (partial)
FL-GFN

(c)

Figure 4. Performance comparison of baselines trained with incomplete trajectories in the set generation task with different scales
including (a) small (b) medium and (c) large. The advantage of FL-GFN increases with the length of trajectories.

The first column in Figure 2 demonstrates the quality of
generated sets in the set generation task with different prob-
lem sizes including small, medium, and large in each row.
As shown, the forward-looking approach significantly out-
performs previous baselines including DB, TB, and SubTB
in training efficiency and quality of the solutions, with a
more significant gap in larger-scale environments, presum-
ably because of FL-GFN’s more efficient credit assignment
mechanism. We also observe that the performance of TB
degrades with longer trajectories in the larger-scale set gen-
eration tasks, presumably due to the larger variance (Madan
et al., 2022), and SubTB performs closely to DB. The sec-
ond column in Figure 2 illustrates the number of modes
with rewards above a threshold discovered by each method,
diversity of the good solutions, and FL-GFN discovers many
more high-reward modes faster.

5.1.3. APPLICABILITY TO OTHER OBJECTIVES

FL-GFN is versatile and can be applied to different learning
objectives of GFlowNets except for TB, so long as Assump-
tion 4.1 is satisfied. Here, we investigate the applicabil-
ity of FL-GFN with the SubTB constraint (Madan et al.,
2022), yielding the following FL-SubTB constraint (and the

corresponding training objective) as in Eq. (13) following
Section 4 and the constraint of SubTB in Eq. (3), where F̃
denotes the forward-looking flow, and E(s → s′) denotes
the intermediate transition energy.

F̃ (si; θ)

j−1∏
t=i

PF (st+1|st; θ)

=F̃ (sj ; θ)

j−1∏
t=i

PB(st|st+1; θ)

j−1∏
t=i

e−E(st→st+1)

(13)

As demonstrated in Figure 3, FL-GFN (SubTB) consistently
outperforms SubTB with an improved average reward of
unique top-100 sets.

5.1.4. LEARNING WITH INCOMPLETE TRAJECTORIES

We now investigate the ability of FL-GFN when given only
incomplete trajectories, without access to terminal states.
Here, the length of incomplete trajectories is uniformly dis-
tributed in [1, |S| − 1], with |S| the length of complete tra-
jectories. We compare the performance of FL-GFN trained
with incomplete trajectories only with its counterpart that is
learned with complete trajectories. We include ordinary DB
and SubTB approaches in the comparison for completeness

7

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Training steps

0

5

10

15

20

25

30

Nu
m

be
r o

f m
od

es

DB
TB
FL GFN

(a)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Training steps

0

5

10

15

20

25

30

Nu
m

be
r o

f m
od

es

DB
TB
FL GFN

(b)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Training steps

0

2

4

6

8

10

12

14

Nu
m

be
r o

f m
od

es

DB
TB
FL GFN

(c)

Figure 5. The number of modes discovered by each method in the bit sequence generation task with increasing lengths of the sequences.
Different problem sizes are presented from left to right: (a) normal (b) long (c) very long. The advantage of FL-GFN increases with the
size of the problem.

(a)

0.0 0.5 1.0 1.5 2.0 2.5

States visited (×105)
6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

Av
er

ag
e

R
of

 u
ni

qu
e

to
p

10
0

DB
TB
FL GFN

(b)

0.0 0.5 1.0 1.5 2.0 2.5

States visited (×105)

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Ta
ni

m
ot

o
sim

ila
rit

ie
s

DB
TB
FL GFN

(c)

DB TB FL GFN
Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ea

rm
an

 c
or

re
la

tio
n

(d)

Figure 6. Results on molecule generation task. (a) Illustration of the GFlowNet generation pipeline. (b) Average reward of the top-100
molecule candidates, showing faster and better training of FL-GFN. (c) The Tanimoto similarity which quantifies diversity (lower is
better), showing greater diversity with FL-GFN. (d) The correlation between model log likelihood and the log rewards computed on a
held-out set, larger with FL-GFN.

(with the “partial” tag in the figure), although they cannot
achieve informative learning signals without access to ter-
minal states and rewards (and the apparent improvements
in the small set generation in Figure 4(a) are only due to
randomly sampling more trajectories and finding some good
ones). Note that TB cannot be implemented with incom-
plete trajectories, as the learning objective of TB involves
the terminal reward.

Figure 4 shows the average reward of unique top-100 sets
discovered by each method when learned with incomplete
trajectories, where the x-axis corresponds to the number of
state transitions (interactions with the environment). Unlike
the earlier training methods, FL-GFN (partial) is able to
learn well at different scales. More interestingly, it performs
closely to its counterpart trained with full trajectories, vali-
dating the ability to learn from only incomplete trajectories.

5.2. Bit Sequence Generation

We consider the bit sequence generation task from Malkin
et al. (2022a). At each time step, the agent chooses to ap-
pend a k-bit “word” (with k = 4). The reward function has
modes at a predefined fixed set M of sequences (Malkin
et al., 2022a): E(x) = miny∈M d(x, y), where d is the edit
distance. Intermediate transition energies for FL-GFN are

obtained by applying the above energy function on inter-
mediate states as well. We consider increasing sequence
lengths, as detailed in Appendix B.2. We find that FL-GFN
learns more efficiently in more complex tasks by comparing
it with DB and TB, which are the most competitive baselines
in this task as shown by Malkin et al. (2022a), and evaluate
the methods in terms of the number of modes discovered.

Results. Figure 5 shows the number of modes discovered
by each method during training in bit sequence generation
with different lengths. FL-GFN outperforms baselines in
learning efficiency and also discovers more modes, with a
more significant gap for longer sequences, suggesting that
this is due to more efficient credit assignment.

5.3. Molecule Generation

We apply FL-GFN to the more challenging and larger-scale
molecule generation task (Bengio et al., 2021a; Malkin
et al., 2022a) as illustrated in Figure 6(a), with a large state
space (about 1016) and action space (from 100 to 2000). A
molecule is represented by a graph whose nodes are taken
from a vocabulary of molecular building blocks. We want to
discover diverse and high-quality molecules with low bind-
ing energy to the soluble epoxide hydrolase (sEH) protein,
where the binding energy is computed by a pretrained proxy

8

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

model, which can be applied to intermediate graphs. Ac-
tions consist of adding a molecular block at a selected node
in a molecular graph, or going to a terminal state to stop
generation. TB and DB baselines are implemented based on
existing GFlowNet open-source code3. We report the mean
and standard variance for each algorithm with three random
seeds as in Malkin et al. (2022a). More details of this setup
are in Appendix B.3.

Results. Figure 6(b) shows the advantage of FL-GFN in
terms of faster and better training, with the average reward
of the top-100 unique molecules discovered by each method,
which evaluates the quality of generated solutions, while
Figure 6(c) highlights diversity (as measured by the Tani-
moto similarities, lower is better), following Bengio et al.
(2021a). Visualization of the top-3 molecules (and their
diversity) discovered by each method in a run is shown in
Appendix (Figure 7). Figure 6(d) shows the improvement
brought by FL-GFN to the Spearman correlations between
the log-reward logR(x) and the log-sampling probability
logP⊤

F (x) (following the methodology from Bengio et al.
(2021a)) on a set of test molecules. The results demon-
strate consistent and significant performance improvement
and faster training of FL-GFN in the more complex and
challenging molecule generation task.

6. Conclusion
In this paper, we propose Forward-looking GFlowNets (FL-
GFN), a new GFlowNet formulation which exploits the
computability of a per-state or per-transition energy function.
FL-GFN can be trained to sample proportionally from the
target reward distribution, while speeding up training due
to its more efficient credit assignment mechanism. It can
even be trained given incomplete trajectories when it does
not have access to terminal states, which was a requirement
for previous GFlowNet learning objectives. We conduct
extensive experiments to demonstrate the effectiveness of
FL-GFN, which can scale to complex and challenging tasks,
such as molecular graph generation.

Acknowledgments
The authors acknowledge funding from CIFAR, Genentech,
Samsung, and IBM. We would also like to thank Moksh
Jain, Edward Hu, Cristian Dragos Manta, and Hadi Nekoei
for valuable discussions.

References
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.

An introduction to mcmc for machine learning. Machine

3https://github.com/GFNOrg/gflownet/tree/
trajectory_balance/mols

learning, 50(1):5–43, 2003.

Baars, B. J. A cognitive theory of consciousness. Cambridge
University Press, 1993.

Baddeley, A. Working memory. Science, 255(5044):556–
559, 1992.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021a.

Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. Better
mixing via deep representations. International Confer-
ence on Machine Learning (ICML), 2013.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E., Tiwari, M.,
and Bengio, E. GFlowNet foundations. arXiv preprint
2111.09266, 2021b.

Bengio, Y., Malkin, N., and Jain, M. The GFlowNet Tuto-
rial. https://milayb.notion.site/The-GFlowNet-Tutorial-
95434ef0e2d94c24aab90e69b30be9b3, 2022.

Cowan, N. An embedded-processes model of working mem-
ory. 1999.

Dehaene, S., Kerszberg, M., and Changeux, J.-P. A neuronal
model of a global workspace in effortful cognitive tasks.
Proceedings of the national Academy of Sciences, 95(24):
14529–14534, 1998.

Dehaene, S., Lau, H., and Kouider, S. What is conscious-
ness, and could machines have it? Science, 358(6362):
486–492, 2017.

Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Neural Information Process-
ing Systems (NIPS), pp. 2672–2680, 2014.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
International Conference on Machine Learning (ICML),
2017.

9

https://github.com/GFNOrg/gflownet/tree/trajectory_balance/mols
https://github.com/GFNOrg/gflownet/tree/trajectory_balance/mols

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. 1970.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Hu, E. J., Malkin, N., Jain, M., Everett, K., Graikos, A.,
and Bengio, Y. GFlowNet-EM for learning composi-
tional latent variable models. International Conference
on Machine Learning (ICML), 2023.

Jain, M., Bengio, E., Hernandez-Garcia, A., Rector-Brooks,
J., Dossou, B. F., Ekbote, C., Fu, J., Zhang, T., Kilgour,
M., Zhang, D., Simine, L., Das, P., and Bengio, Y. Bio-
logical sequence design with GFlowNets. International
Conference on Machine Learning (ICML), 2022a.

Jain, M., Raparthy, S. C., Hernandez-Garcia, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective gflownets. arXiv preprint arXiv:2210.12765,
2022b.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations (ICLR), 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. International Conference on Learning Represen-
tations (ICLR), 2014.

Lahlou, S., Deleu, T., Lemos, P., Zhang, D., Volokhova,
A., Hernández-Garcı́a, A., Ezzine, L. N., Bengio, Y.,
and Malkin, N. A theory of continuous generative flow
networks. International Conference on Machine Learning
(ICML), 2023.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A., Bosc, T., Bengio, Y., and Malkin, N.
Learning GFlowNets from partial episodes for improved
convergence and stability. arXiv preprint 2209.12782,
2022.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in

GFlowNets. Neural Information Processing Systems
(NeurIPS), 2022a.

Malkin, N., Lahlou, S., Deleu, T., Ji, X., Hu, E., Everett,
K., Zhang, D., and Bengio, Y. Gflownets and variational
inference. arXiv preprint arXiv:2210.00580, 2022b.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. Equation of state calculations
by fast computing machines. The journal of chemical
physics, 21(6):1087–1092, 1953.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nishikawa-Toomey, M., Deleu, T., Subramanian, J., Bengio,
Y., and Charlin, L. Bayesian learning of causal structure
and mechanisms with GFlowNets and variational bayes.
arXiv preprint 2211.02763, 2022.

Pan, L., Zhang, D., Courville, A., Huang, L., and Bengio,
Y. Generative augmented flow networks. arXiv preprint
2210.03308, 2022.

Pan, L., Zhang, D., Jain, M., Huang, L., and Bengio, Y.
Stochastic generative flow networks. Uncertainty in Arti-
ficial Intelligence (UAI), 2023.

Ren, Z., Guo, R., Zhou, Y., and Peng, J. Learning long-term
reward redistribution via randomized return decomposi-
tion. International Conference on Learning Representa-
tions (ICLR), 2022.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. International Conference on Machine
Learning (ICML), 2014.

Salakhutdinov, R. Learning in markov random fields using
tempered transitions. Neural Information Processing
Systems (NIPS), 2009.

Shanahan, M. A cognitive architecture that combines inter-
nal simulation with a global workspace. Consciousness
and cognition, 15(2):433–449, 2006.

Shanahan, M. Embodiment and the inner life: Cognition and
Consciousness in the Space of Possible Minds. Oxford
University Press, USA, 2010.

Shanahan, M. The brain’s connective core and its role
in animal cognition. Philosophical Transactions of the
Royal Society B: Biological Sciences, 367(1603):2704–
2714, 2012.

10

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

Shanahan, M. and Baars, B. Applying global workspace
theory to the frame problem. Cognition, 98(2):157–176,
2005.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT Press, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. Neural Information Processing Systems
(NIPS), 2017.

Zhang, D., Chen, R. T. Q., Malkin, N., and Bengio, Y. Uni-
fying generative models with GFlowNets. arXiv preprint
2209.02606, 2022a.

Zhang, D., Courville, A. C., Bengio, Y., Zheng, Q., Zhang,
A., and Chen, R. T. Q. Latent state marginalization as
a low-cost approach for improving exploration. ArXiv,
abs/2210.00999, 2022b.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville,
A., and Bengio, Y. Generative flow networks for dis-
crete probabilistic modeling. International Conference
on Machine Learning (ICML), 2022c.

Zhang, D., Pan, L., Chen, R. T., Courville, A., and Bengio,
Y. Distributional gflownets with quantile flows. arXiv
preprint arXiv:2302.05793, 2023.

Zimmermann, H., Lindsten, F., van de Meent, J.-W., and
Naesseth, C. A. A variational perspective on generative
flow networks. arXiv preprint 2210.07992, 2022.

11

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

A. Proof of Proposition 4.2
Proposition 4.2 Suppose that Assumption 4.1 is satisfied, which makes it possible to define a forward-looking flow as
per Eq. (9). If L(s, s′) = 0 for all transitions, then the forward policy PF (s

′|s; θ) samples proportionally to the reward
function.

Proof. We give a simple proof by reduction to the DB training theorem (Bengio et al., 2021b), which states that if for some
state flow function F and policies PF and PB the DB constraint as in Eq. (1) holds for all transitions s → s′, then PF

samples proportionally to the reward.

Suppose F̃ , PF , and PB satisfy Eq. (10). Define a state flow function F̂ by F̂ (s)
def
= e−E(s)F̃ (s). By direct algebraic

manipulation of Eq. (10), we obtain, for all transitions s → s′,

F̂ (s)PF (s
′|s) = e−E(s)

e−E(s′) F̂ (s′)PB(s|s′)e−E(s→s′)

= F̂ (s′)PB(s|s′).

Therefore, the triple (F̂ , PF , PB) satisfies DB, implying that PF samples proportionally to the reward.

B. Experimental Details
All baseline methods are implemented based on the open-source implementation as described in the following sections by
following the default hyperparameters and setup. The code will be released upon publication of the paper.

B.1. Set Generation

We study the set generation task with increasing scales including small, medium, and large. The dimension of action space
|U | for small, medium, and large is 30, 80, and 100, respectively. The size of the target set to generate |S| is 20, 60, 80,
respectively. The predefined energy E(t) for each element t is randomly generated in the range [−1, 1], and |S|/10 of the
elements have the same energy (resulting in multiple optimal solutions). We implement DB, TB, SubTB and FL-DB based
on the open-source codes4. The GFlowNet model is a feedforward network that consists of 2 hidden layers with 256 hidden
units per layer which uses the LeakyReLU activation function. We sample a parallel of 16 rollouts from the environment
for training all of the models. The GFlowNet model is trained based on the Adam (Kingma & Ba, 2015) optimizer with a
learning rate of 0.001 for DB, SubTB, and FL-DB, where we use a larger learning rate of 0.1 for the learnable parameter Z
for TB following (Malkin et al., 2022a).

B.2. Bit Sequence Generation

We implement all baselines based on Malkin et al. (2022a) and follow the default hyperparameters and setup as in Malkin
et al. (2022a). We study the bit sequence generation tasks with increasing sequence lengths n including normal (n = 120),
long (n = 140), and very long (n = 160). The GFlowNet model is a Transformer (Vaswani et al., 2017) consisting of 3
hidden layers with 64 hidden units per layer and has 8 attention heads. The size of the minibatch is 16, and the random
action probability is set to 0.0005 for performing ϵ-greedy exploration. The reward exponent is set to 3, and we use a
sampling temperature of 1 for the forward policy PF for the GFlowNet models. The learning rate for the policy parameters
is 1× 10−4 for TB, and the learning rate for the learnable parameter Z is 1× 10−3. The learning rate is 5× 10−3 for the
DB and FL-GFN variants.

4https://github.com/GFNOrg/gflownet

12

https://github.com/GFNOrg/gflownet

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

B.3. Molecule Discovery

All baselines are implemented based on the open-source codes5. We use a reward proxy provided in Bengio et al. (2021a).
We use Message Passing Neural Networks (MPNN) for the network architecture for all GFlowNet models, as the molecule
is represented as an atom graph. We follow the default hyperparameters and setup as in Malkin et al. (2022a). We fine-tune
the reward exponent by grid search following (Malkin et al., 2022a) and set it to be 4. We use a random action probability of
0.1 for performing ϵ-greedy exploration, and the learning rate is 5× 10−4.

(a) Detailed balance (DB)

(b) Trajectory balance (TB)

(c) FL-GFN

Figure 7. Visualization of top-3 molecules generated by different methods.

5https://github.com/GFNOrg/gflownet/tree/master/mols

13

https://github.com/GFNOrg/gflownet/tree/master/mols

