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Abstract
We consider the batch reinforcement learning
problem where the agent needs to learn only from
a fixed batch of data, without further interaction
with the environment. In such a scenario, we want
to prevent the optimized policy from deviating too
much from the data collection policy since the es-
timation becomes highly unstable otherwise due
to the off-policy nature of the problem. However,
imposing this requirement too strongly will result
in a policy that merely follows the data collection
policy. Unlike prior work where this trade-off
is controlled by hand-tuned hyperparameters, we
propose a novel batch reinforcement learning ap-
proach, batch optimization of policy and hyper-
parameter (BOPAH), that uses a gradient-based
optimization of the hyperparameter using held-out
data. We show that BOPAH outperforms other
batch reinforcement learning algorithms in tabular
and continuous control tasks, by finding a good
balance to the trade-off between adhering to the
data collection policy and pursuing the possible
policy improvement.

1. Introduction
In many real-world applications of reinforcement learn-
ing (RL), exploratory behavior can be very costly when
the agent interacts with the environment. For example, it
would be unreasonable to deploy an ε-greedy policy for
autonomous vehicles, industrial plants, and clinical treat-
ments, let alone many others. One of the common and
straightforward practices in these scenarios is to build a sim-
ulator from collected data, train the agent with the simulated
environment by allowing to make as much exploration as
needed, and then deploy a fully optimized policy into the
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real environment. However, this approach requires a lot
of human effort including domain expertise in building a
faithful simulator that warrants a successful performance
in the real environment. This paper concerns with such a
scenario, often referred to as batch RL: optimize policy only
from a fixed batch of data, without further interaction with
the environment or a high-fidelity simulator.

Since the policy being optimized would be different from
the policy used for data collection, batch RL algorithms
are mostly founded on techniques in off-policy RL algo-
rithms. They are designed to learn when the behavior policy
(policy used to collect experience) differs from the esti-
mation policy (policy we aim to learn). Recent off-policy
policy optimization algorithms, e.g. (Lillicrap et al., 2016;
Munos et al., 2016; Haarnoja et al., 2018), have shown to
achieve remarkable sample efficiency in standard bench-
mark tasks. However, they still assume continuous interac-
tion with the environment with the behavior policy being
improved closely together with the estimation policy. On the
other hand, the batch RL setting assumes the behavior policy
being fixed throughout the policy optimization. This differ-
ence is considered a fundamental challenge for batch RL: as
we optimize the estimation policy, it would differ more from
the behavior policy, leading to severe covariate shift in the
batch data. As the policy optimization frequently relies on
function approximators trained on the data distributed by the
behavior policy, the optimization could actually get worse
due to the inevitable generalization error of the function
approximators. Thus the challenge is about estimating how
much we can trust the policy evaluation and safely optimize
the policy, rather than about improving the sample efficiency
as in standard off-policy RL scenarios, as exemplified by
recent work on batch RL (Laroche et al., 2019; Fujimoto
et al., 2019).

In this paper, we introduce a novel batch RL framework that
uses the validation data to estimate the reliability of policy
updates. Model selection and hyperparameter tuning with a
held-out dataset is a standard practice in supervised learning,
but has not been adapted to RL, to the best of our knowledge.
The contribution of this paper is two-fold: first, we present
a generalized KL-regularized RL framework that effectively
constrains the distance of the estimation policy from the be-
havior policy differently per state and stabilizes the training
process. Second, we present BOPAH (batch optimization of
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policy and hyperparameter) that optimizes the hyperparame-
ter in the KL-regularized RL objective via the hypergradient
(i.e. hyperparameter gradient) on the validation data. We
present a model-based algorithm assuming tabular tasks as
well as a model-free algorithm for continuous control tasks.

2. Related Works
The key concept in recent batch RL algorithms is to improve
upon the baseline policy used for data collection. Petrik
et al. (2016) consider the robust policy improvement over
the baseline policy in the worst-case scenario. Laroche et
al. (2019) presents SPIBB that bootstraps the estimation
policy with the behavior policy in the state-action pairs that
are not observed enough. While both algorithms are proven
to be safe with their finite sample bounds, the hyperparam-
eter values that guarantee a safe improvement with high
probability can be too conservative to be used in practice.

In the case of continuous state and action spaces, Fujimoto
et al. (2019) propose BCQ where the actor can only perturb
the behavior policy by a limited amount. Kumar et al. (2019)
provide a bound on suboptimality of an estimation policy
concerning its support, and present BEAR, which imposes
an MMD constraint between the estimation policy and the
behavior policy. Siegel et al. (2020) use KL constraint
and propose ABM that imposes advantage-weighting when
estimating behavior policy from the batch data, which filters
out trajectories that would lead to worse performance than
the current policy. They have empirically shown to robustly
improve over the baseline policy in continuous control tasks.
However, the hyperparameters that control the risk play a
crucial role in the performance, which must be hand-tuned
in practice.

Reinforcement learning with KL regularization (Todorov,
2007; Kappen et al., 2012; Schulman et al., 2017; Fox
et al., 2016; Galashov et al., 2019) or KL constraint (Schul-
man et al., 2015; Achiam et al., 2017; Sun et al., 2018)
have been extensively studied. Theoretical analyses simi-
lar to the bounds we propose have also been presented in
a model-based RL context (Sun et al., 2018; Janner et al.,
2019). State-independent KL regularization has also been
employed in the context of batch RL (Jaques et al., 2019;
Wu et al., 2019) with the hand-tuned hyperparameter. Nev-
ertheless, our generalization of KL-regularized RL to state-
dependent regularization provides a unique insight on how
they apply to batch RL.

Agarwal et al. (2020) demonstrate that recent off-policy
deep RL algorithms, without correcting distribution mis-
match, trained on sufficiently large and diverse offline
datasets can result in high quality policies. In contrast,
the critical assumption we make in this paper is that the
data collection policy is determined by domain-specific re-

quirements, rather than selected freely to mitigate problems
related to batch RL. In this situation, addressing the distri-
bution mismatch is essential.

Lastly, we will adopt the gradient-based hyperparameter
optimization approach in supervised learning. When it
is possible to obtain the gradient of the model selection
criterion with respect to hyperparameters, gradient-based
optimization of hyperparameter (Bengio, 2000; Maclaurin
et al., 2015) is able to efficiently optimize a large number
of hyperparameters, outperforming Bayesian optimization
models (Pedregosa, 2016). We will show how hypergra-
dient computations can be formulated in terms of policy
evaluation in the RL context.

3. Preliminaries
We consider the environment modeled as a Markov decision
process (MDP), M = 〈S,A, P,R, d0, γ〉, where S is the
state space, A is the action space, P (st+1|st, at) is the
transition probability, rt = R(st, at) ∈ R is the immediate
reward function, d0(s) = p(s0 = s) is the initial state
distribution, and γ ∈ (0, 1) is the discount factor. We denote
dπM (s) = (1 − γ)

∑∞
t=0 γ

tp(st = s|π,M) the discounted
state marginal of policy π in the MDP M .

The state and the action value functions of policy π on
MDP M are denoted by V πM (s) and QπM (s, a) respectively.
We adopt the discounted return objective, i.e. V πM (s) =
Eπ,M |s[

∑∞
t=0 γ

trt] and QπM (s, a) = Eπ,M |s,a[
∑∞
t=0 γ

trt].
We measure the performance of a policy π on MDP M
by the expectation of the value function under the ini-
tial state distribution, ρM (π) = Es0∼d0 [V πM (s0)]. The
objective of policy optimization is to find the optimal
policy π∗ that maximizes the expected discounted return,
π∗ = arg maxπ ρM (π).

When the model M is available, the value of policy π can
be computed by iteratively applying the Bellman backup
operator T πM :

T πMQ(s, a) = R(s, a) + γEs′∼P (·|s,a)[V (s′)],

where V (s) = Ea∼π(·|s)[Q(s, a)],

which is a contraction mapping and has a unique fixed point
solution QπM .

In batch RL, the agent learns from the fixed dataset of expe-
riences D = {(si, ai, s′i, ri)}Ni=0 without direct interaction
with the environment. We will refer to the policy µ used
for the data collection as the behavior policy and the policy
π being optimized as the estimation policy, borrowing the
terminology in off-policy RL. If we only use samples in D
to compute the expectation of the Bellman backup operator
T πM , the resulting approximate operator T π

M̂
has a unique

fixed point solution Qπ
M̂

, which is a state-action value func-
tion on a Maximum Likelihood Estimation (MLE) MDP
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M̂ = 〈S,A, P̂ , R, d0, γ〉, where P̂ is the maximum likeli-
hood estimate of P by D. We also use the notation dπ

M̂
to

denote the discounted state marginal of a policy π under the
MLE MDP.

4. Generalized KL-Regularization for Batch
Reinforcement Learning

In a naive approach to batch RL, we could build an MDP
model M̂ from the batch data and optimize the policy using
the model. However, the resulting policy may fail to produce
any improvement over the behavior policy or even perform
severely worse (Petrik et al., 2016; Laroche et al., 2019).
For safe RL with batch data, we will first derive a policy
improvement bound for model-based RL, which naturally
yields a regularization function for batch RL.

Our derivation starts with bounding the policy evaluation
error incurred by the model error and the distribution shift
of the policy.
Theorem 4.1. Let

επM = Es∼dπM
[
TVπ,µs

]
, επ

M̂
= Es∼dπ

M̂

[
TVπ,µs

]
,

εPM = Es∼dµM
a∼µ

[
TVP,P̂s,a

]
where TVp,qx denotes the total variation distance between
p(·|x) and q(·|x). Suppose the reward function is bounded
|R(s, a)| ≤ Rmax for all s, a and known to the agent for
simplicity. For any policies π, µ, and an estimated MLE
MDP M̂ , the difference of policy evaluation is bounded by:

|ρM (π)− ρ
M̂

(π)| ≤c1
(
επM + επ

M̂

)
+ c2ε

P
M (1)

where c1 = 2Rmax

(1−γ)2 and c2 = 2γRmax

(1−γ)2 .

Since the error εPM only depends on the dataset and is not di-
rectly controllable during batch RL policy optimization, we
can gather only relevant terms and formulate the following
constrained optimization similar to (Schulman et al., 2015;
Achiam et al., 2017):

π∗δ = arg max
π

ρ
M̂

(π) (2)

s.t. Es∼dπM [KLπ,µs ] ≤ δ,Es∼dπ
M̂

[KLπ,µs ] ≤ δ,

where KLp,qx denotes the KL-divergence between p(·|x) and
q(·|x). Then, we can provide a policy improvement bound
for π∗δ in Eq. (2), which can be derived from Theorem 4.1:
Corollary 4.1. The negative baseline regret (Petrik et al.,
2016) of π∗δ , which is the performance improvement by
adopting π∗δ instead of the baseline policy µ on the true
environment M , is lower bounded by:

ρM (π∗δ )− ρM (µ) ≥ ρ
M̂

(π∗δ )− ρ
M̂

(µ)− c1
√

2δ − 2c2ε
P
M

with c1 and c2 defined in Theorem 4.1.

This lower bound has two competing factors with respect
to δ: increasing δ would enlarge the feasibility region and
thus increase the objective ρ

M̂
(π), but this will also make

the estimation of expected return under M̂ unreliable since
the estimation error will increase. Most of the off-policy
RL and batch RL algorithms have this trade-off captured by
hyperparameters (Schulman et al., 2015; Petrik et al., 2016;
Laroche et al., 2019).

Now, instead of using KL-divergence as constraints in the
policy optimization, we reformulate the problem as an un-
constrained optimization where the KL-divergence acts as a
regularization:

ρ̃
M̂

(π) = ρ
M̂

(π)− α
(
Es∼dπM [KLπ,µs ] + Es∼dπ

M̂
[KLπ,µs ]

)
= E

π,M̂

[ ∞∑
t=0

γt
(
rt − α

(
dπM (st)
dπ
M̂

(st)
+ 1
)
KLπ,µst

)]

This objective is essentially a variation of KL-regularized
RL (Todorov, 2007; Kappen et al., 2012; Schulman et al.,
2017; Fox et al., 2016; Galashov et al., 2019), which consid-
ers the expected KL-divergence both in the true MDP and
the estimated MDP. Note that the term (dπM (st)/d

π
M̂

(st)+1)
is very hard to estimate without access to the true model M .
We thus work with the objective

max
π

Eπ,P̂

[ ∞∑
t=0

γt
(
rt − αβ(st)KLπ,µst

)]
(3)

where α is the state-independent hyperparameter and β(s)’s
are the state-dependent hyperparameters. We will denote
α(s) = αβ(s) for brevity. In the later part of the paper, we
will automatically tune α(s) using held-out validation set.

4.1. KL-Regularized Policy Iteration

In this section, we derive batch policy iteration with the
generalized KL-regularization that alternates between policy
evaluation and policy improvement, a planning algorithm
for Eq. (3) with fixed yet arbitrary hyperparameters α(s).

We first present the iterative policy evaluation method by
defining KL-regularized Bellman operator T πKL. For fixed
policy π,

T πKLQ̃(s, a) = R(s, a) + Es′
[
Ṽ (s′)

]
(4)

where Ṽ (s) = −α(s)KLπ,µs + Ea∼π
[
Q̃(s, a)

]
Lemma 4.1. (KL-Regularized Policy Evaluation) For a
fixed π with KLπ,µs <∞ ∀s, the backup operator T πKL is a
contraction mapping and has an unique fixed point solution
T πKLQ̃

π = Q̃π. In other words, for any Q̃0 : S × A → R,
define Q̃k+1 = T πKLQ̃

k. Then the sequence Q̃k converges
to KL-regularized Q-value function of π as k →∞.
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KL-regularized value functions have the following interpre-
tations:

Ṽ π(s) = Eπ|s

[ ∞∑
t=0

γt
(
rt − α(st)KLπ,µst

)]

Q̃π(s, a) = Eπ|s,a

[
r0 +

∞∑
t=1

γt
(
rt − α(st)KLπ,µst

)]
.

In the policy improvement step, we can compute a improved
policy by weighting exponential Q̃π and µ. However, when
dealing with continuous state and action encountered in
the later section, we may want to optimize our policy only
within a set of tractable distributions Π (e.g. a set of Gaus-
sian distributions), which requires a projection of the up-
dated policy distribution onto Π. One of the simple ways is
to adopt the information projection that minimizes the KL-
divergence to the target distribution as in (Haarnoja et al.,
2018):

πnew(·|s) = arg min
π′∈Π

KL

π′(·|s)∥∥∥∥exp
(
Q̃π(s,·)
α(s)

)
µ(·|s)

Zπ(s)


(5)

where Zπ(s) is the normalization constant. The follow-
ing lemma shows that πnew computed by Eq. (5) always
improves the value over π.

Lemma 4.2. (KL-Regularized Policy Improvement) Given
a policy π ∈ Π and its value function Q̃π, if we up-
date the new policy πnew by Eq. (5), then Q̃π

new

(s, a) ≥
Q̃π(s, a) ∀s, a.

Lemma 4.1 and 4.2 suggest a full algorithm: the KL-
regularized policy iteration alternates between the KL-
regularized policy evaluation of Eq. (4) and the KL-
regularized policy improvement of Eq. (5), and it is guaran-
teed to converge to the optimal policy π∗ within the set of
Π.

Theorem 4.2. (KL-Regularized Policy Iteration) Suppose
that |R(s, a)| ≤ Rmax and KLπ,µs <∞. Starting from any
π0 ∈ Π, the sequence of the value functions Q̃πk and the im-
proved policies πk+1 converge to the optimal value function
and the optimal policy π∗ ∈ Π, i.e. limk→∞ Q̃πk(s, a) ≥
Q̃π(s, a) for any π ∈ Π, s ∈ S, and a ∈ A.

Our theoretical result can be seen as an extension of those
in entropy-regularized RL (Haarnoja et al., 2018) to KL-
regularized RL, where the regularization parameter is arbi-
trarily given per state.

5. Batch Optimization of Policy and
Hyperparameter (BOPAH)

In supervised learning, we commonly adopt regularization
to select a model that generalizes well to unseen data. This is
typically captured by a set of hyperparameters that balances
between approximation and generalization (i.e. overfitting
vs. underfitting). Commonly, the model parameters θ are op-
timized using the following objective function with training
data Dtrain:

θ∗α = arg max
θ

[
L(θ,Dtrain)− Eα(θ)

]
(6)

where L measures how well the model performs on Dtrain

(e.g. log-likelihood L(θ,Dtrain) = log p(Dtrain|θ) if prob-
abilistic model), and Eα is a regularization term that penal-
izes complex models to prevent overfitting (e.g. L2 regu-
larization Eα(θ) = α‖θ‖22) where α is the regularization
parameter that balances between approximation and gener-
alization. Then, the regularization parameter α is treated as
a hyperparemter and optimized using the held-out validation
dataset Dvalid which is mutually exclusive to Dtrain:

α∗ = arg max
α

L(θ∗α,Dvalid) (7)

Optimizing the hyperparameter is often done using sim-
ple grid or random search (Bergstra & Bengio, 2012), but
these simple methods scale poorly with the number of hy-
perparameters. Instead, our approach adopts the gradient-
based hyperparameter optimization method (Bengio, 2000;
Maclaurin et al., 2015; Pedregosa, 2016), known to be ca-
pable of many hyperparameters by using local information
about the objective function, assuming that Eq. (7) is differ-
entiable.

In this section, we introduce Batch Optimization of Policy
and Hyperparameter (BOPAH), a method for batch rein-
forcement learning that aims to achieve the best possible
performance improvement on the (not fully known) true
environment. BOPAH adopts KL-regularization in policy
optimization.

5.1. Model-based BOPAH

BOPAH starts by dividing the entire batch data D =
{(si, ai, s′i, ri)}Ni=1 into two mutually exclusive sets Dtrain

and Dvalid. Each of the split datasets constructs the train
(MLE) MDP M̂train and the valid (MLE) MDP M̂valid re-
spectively. The policy is then optimized on the train MDP
M̂train with the state-dependent KL-regularization whose
introduction was justified in Section 4:

π∗α = arg max
π

E
π,M̂train

[ ∞∑
t=0

γt
(
rt − α(st)KLπ,µst

)]
(8)
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(a) Single hyperparameter: α(s) = α ∀s.
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(b) Two hyperparameters: α(sodd) = α1 and α(seven) = α2.

Figure 1. Experimental result on a random MDP, where S = {s1, . . . s20}, |A| = 4, and α controls the degree of regularization. All the
results are obtained by averaging over 300 trials. The symbol × denotes the value of α that performs the best in the valid MDP. The
symbol ? denotes the optimal value of α for the true MDP.

which can be solved by KL-regularized policy iteration. In
Eq. (8), if the hyperparameters α(s)’s are close to zero, the
resulting policy becomes the optimal policy of the unreg-
ularized train MDP M̂train, which would be overfitting to
Dtrain. In contrast, if α(s)’s become too large, the policy
is reduced to the behavior policy µ, which corresponds to
underfitting. Our goal is to find the optimal hyperparameters
of α(s) that balances between two extremes.

To this end, we optimize the hyperparameters on the valid
MDP M̂valid:

α∗ = arg max
α

E
π∗α,M̂valid

[ ∞∑
t=0

γtrt

]
(9)

and deploy π∗α∗ to the real environment. Note the similarity
between our framework for batch RL Eq. (8-9), and the hy-
perparameter optimization in supervised learning Eq. (6-7).

Illustrative Example Figure 1 highlights our approach
for batch RL using a synthetic example. We constructed
a single instance of random MDP M with |S| = 20 and
|A| = 4. We collected batch data D consisting of 100
episodes with maximum time step 50 using the behavior
policy µ = 0.7π∗+0.3πunif , where π∗ is the optimal policy
of M and πunif is the uniform random policy. As a baseline,
πBasicRL is obtained by computing the optimal policy of the
MLE MDP using the entire data inD. We divideD into two
mutually exclusive sets Dtrain and Dvalid of same number
of trajectories, and π∗α is computed via Eq. (8) on the M̂train,
the MLE MDP using the data in Dtrain. Finally, ρM(π)
denotes the (reward) performance of policy π on MDPM∈
{M, M̂train, M̂valid}, i.e. ρM(π) =

∑
π,M [

∑∞
t=0 γ

trt].

Figure 1a visualizes the result when we used a global scalar
hyperparameter, i.e. α(s) = α ∀s. As α increases, the
performance of π∗α in M̂train monotonically decreases (cyan)
since α = 0 yields the optimal policy for the M̂train. In
contrast, the performance of π∗α in M̂valid (green) shows an

expected trend, where too large or too small value of α
deteriorates the performance. Note that the performance
trend in M̂valid is strongly correlated with the trend in the
true model M . This justifies the use of M̂valid for selecting
α in order to perform well on (unknown) true model M .

On the other hand, note that π∗α underperforms πBasicRL in
the true model when α = 0. This is expected, since π∗α is
obtained from M̂train using less amount of data. However,
when α∗ = arg maxα ρM̂valid

(π∗α) is used, π∗α∗ significantly
outperforms πBasicRL. This result supports that batch RL
can benefit from hyperparameter tuning approach, a com-
mon practice in supervised learning.

We further extended the experiment setting by allowing
state-dependent hyperparameters α(s). Figure 1b demon-
strates the result when using two hyperparameters instead
of one. We set α(sodd) = α1 to the states of odd index
and α(seven) = α2 to the states of even index. Note that
there is a strong overall correlation between ρ

M̂valid
(π∗α)

and ρM (π∗α), and the optimal hyperparameter does not lie
on the dotted yellow line that corresponds to the case of the
global scalar hyperparameter. This result supports that the
state-dependent hyperparameters can be advantageous over
the global scalar hyperparameter.

5.2. Gradient-based Hyperparameter Optimization

Tuning the state-dependent hyperparameter α(s) via black-
box optimization (e.g. grid search or random search) is
intractable due to the curse of dimensionality even for a
handful of states. Thus, BOPAH adopts gradient-based
hyperparameter optimization, whose analytical form is pro-
vided as follows:

Theorem 5.1. Suppose that the state-dependent function
αξ(s) for Eq. (8) is parameterized by ξ 1. Then, the hy-

1For example, if ∀s αξ(s) = ξ such that ∇ξαξ(s) = 1, this
reduces to single hyperparameter α. On the other hand, if αξ(s) =
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pergradient ∇ξρM̂valid
(π∗ξ ) = ∇ξEπ∗ξ ,M̂valid

[∑∞
t=0 γ

trt
]

is given by:

∇ξρM̂valid
(π∗ξ ) = E

π∗ξ ,M̂valid

[ ∞∑
t=0

γtχξ(st)

]
(10)

s.t.

π∗ξ , arg max
π

Eπ,M̂train

[
∞∑
t=0

γt
(
rt − αξ(st)KLπ,µst

)]

∇ξQ̃
π∗ξ
M̂train

(s, a) , Eπ∗
ξ
,M̂train

[
∞∑
t=1

γt
(
−∇ξαξ(st)KL

π∗ξ ,µ
st

)]

Q̃
π∗ξ
M̂train

(s, a) , Eπ∗
ξ
,M̂train

[
∞∑
t=0

γt
(
rt − αξ(st)KLπ,µst

)]

Q
π∗ξ
M̂valid

(s, a) , Eπ∗
ξ
,M̂valid

[
∞∑
t=0

γtrt

]
χξ(s) ,

1

αξ(s)2
cova∼π∗

ξ

[
αξ(s)∇ξQ̃

π∗ξ
M̂train

(s, a)

−∇ξαξ(s)Q̃
π∗ξ
M̂train

(s, a), Q
π∗ξ
M̂valid

(s, a)
]

where cova[f(a), g(a)]i = E[fi(a)g(a)]−E[fi(a)]E[g(a)]
denotes element-wise covariance between the vector f(·)
and the scalar g(·).

In the above, π∗ξ can be obtained by KL-regularized policy

iteration, and ∇ξQ̃
π∗ξ

M̂train
(s, a) and ∇ξρM̂valid

(π∗ξ ) can be
computed by a standard policy evaluation technique with
auxiliary reward functions R1(s, a) , −∇ξαξ(s)KLπ

∗
ξ ,µ
s

and R2(s, a) , χ(s), respectively. Finally, we can opti-
mize the hyperparameters via the hypergradient by iterating
the following until convergence: ξ ← ξ + η∇ξρM̂valid

(π∗ξ )
where ξ is a parameter for the state-dependent function
αξ(s), and η is a learning rate.

This completes the description of BOPAH, which iteratively
alternates between policy optimization and gradient-based
hyperparameter optimization.

Remark While the definition of χ(s) from Theorem 5.1 is
hard to interpret as is, it can be reduced to simple expression
when αξ(s) is state-independent and provides an additional
intuition on the behavior of the hypergradient. When αξ(s)
is state-independent, i.e. αξ(s) = ξ, the auxiliary value

function∇ξQ̃
π∗ξ

M̂train
(s, a) becomes a simple discounted sum

of KL-divergences:

∇ξQ̃
π∗ξ

M̂train
(s, a) = −E

π∗ξ ,M̂train

[ ∞∑
t=1

γtKLπ
∗
ξ ,µ
st

]
(11)

which further reduces χ(s) by canceling out the regulariza-
tion term of the KL-regularized value function to become:

ξs such that ∇ξsiαξ(sj) = 1(si = sj), this corresponds to the
fully state-dependent hyperparameters α(s).

χξ(s) = − 1

αξ(s)
cova∼π∗ξ

[
Q
π∗ξ

M̂train
(s, a), Q

π∗ξ

M̂valid
(s, a)

]
(12)

where Q
π∗ξ

M̂train
(s, a) = E

π∗ξ ,M̂train
[
∑∞
t=0 γ

trt], the unregular-
ized value function under train MDP. The auxiliary reward
function χ(s) is now a negative covariance between unreg-
ularized value functions of train and valid MDPs.

Consider a scenario where a learned policy only exploits
reliable state-action pairs (i.e. state-action pairs that appear
frequently in the dataset). In this case, two unregularized
value functionsQ

π∗ξ

M̂train
(s, a) andQ

π∗ξ

M̂valid
(s, a) should be similar

under the policy distribution, resulting in positive covari-
ance. Then, the hypergradient, which is a discounted sum
of negative covariance, will become negative, the alpha will
decrease, and the policy will be less regularized to explore
more state-action pairs. On the other hand, when the pol-
icy tries to explore uncertain state-action pairs where two
unregularized value functions differ, the hypergradient de-
scent will regularize policy more to finally converge to the
appropriate level of regularization.

6. Actor-Critic BOPAH
In this section, we extend BOPAH to control tasks with con-
tinuous state and action spaces via practical approximations
to KL-regularized policy iteration and hypergradient com-
putation. We achieve this goal by adopting the Actor-Critic
framework, where we train the parametric models of poli-
cies (i.e. actor), KL-regularized value functions (i.e. critic),
and state-dependent hyperparameters. The resulting algo-
rithm, Actor-Critic BOPAH (AC-BOPAH), thus performs
alternating updates of the three parametric models.

6.1. Parametric Model of State-dependent
Hyperparameters

Although in principle, we could use any parametric model
to represent state-dependent hyperparameters, we focus on
analyzing the linear model for αξ(s), which particularly
allows for stable training of KL-regularized value functions.
To see this, suppose

αξ(s) ,
dξ∑
i=1

ξiφi(s) = ξ>φ(s) (13)

where ξ = [ξ1, . . . , ξdξ ]
>, and φ : S → Rdξ is a feature

function of states such that ξ>φ(s) ≥ 0 for all s (e.g. ξ ≥ 0
and φi(s)’s are RBFs). The feature function φ(s) is prede-
fined and fixed, and only ξ is optimized during training.

This linear parameterization leads to the following decom-
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position of the KL-regularized value function:

Q̃π
M̂train

(s, a) = E
[
r0 +

∞∑
t=1

γt
(
rt − αξ(st)KLπ,µst

)]

=E
[ ∞∑
t=0

γtrt

]
︸ ︷︷ ︸
, Qπθtrain(s, a)

+ ξ> E
[ ∞∑
t=1

γt
(
− φ(s)KLπ,µst

)]
︸ ︷︷ ︸

, Qπ
θKL
train

(s, a)

(14)

Note in Eq. (14) that both Qπθtrain(s, a) and Qπ
θKL
train

(s, a) are
not dependent on ξ but only on π. Thus, we could train
the separate models for Qπθtrain(s, a) and Qπ

θKL
train

(s, a) instead

of the single model for Q̃π
M̂train

(s, a), making the training
more stable since they are not affected by the change in the
hyperparameters ξ.

Furthermore, the auxiliary value function ∇ξQ̃
π∗ξ

M̂train
(s, a)

in Theorem 5.1 is also directly derived using Qπ
θKL
train

(s, a)

without any further introduction of parameterized functions
since ∇ξαξ(s) = φ(s):

∇ξQ̃πM̂train
(s, a) = Qπ

θKL
train

(s, a) (15)

We also train the action-value critic for the validation-set
MDP, defined in the standard way:

Qπθvalid(s, a) , E
π,M̂valid

[ ∞∑
t=0

γtrt

]
(16)

Finally, we define state-value critics V πψtrain
(s), VψKL

train
(s),

and V πψvalid
(s) similarly to Eq. (14) and Eq. (16), which com-

pletes our parameterization of the value functions and the
hyperparameters for AC-BOPAH. As for the actor πω(a|s),
we use the Gaussian policy with its mean and covariance
parameterized by neural networks.

6.2. Objective Functions

We now present the objective functions to train each para-
metric model for the actor and the critic with fixed hy-
perparameters. First, the parameters for the reward value
functions, {ψtrain, θtrain, ψvalid, θvalid}, are trained by min-
imizing the squared residual errors: for each data ∈
{train, valid},

J(ψdata) = Es∼Ddata
a∼πω

[(
Vψdata

(s)−Qθdata
(s, a)

)2]
J(θdata) = E(s,a,r,s′)

∼Ddata

[(
Qθdata

(s, a)− r − γVψ̄data
(s′)
)2]

where ψ̄data is an exponential moving average of ψdata (i.e.
soft target update). Similarly, the parameters for the KL

value functions {ψKL
train, θ

KL
train} are trained by minimizing:

J(ψKL
train) = Es∼Dtrain

a∼πω

∥∥VψKL
train

(s)−QθKL
train

(s, a) + φ(s)KLπ,µs
∥∥2

2

J(θKL
train) = E (s,a,s′)

∼Dtrain

∥∥QθKL
train

(s, a)− γVψ̄KL
train

(s′)
∥∥2

2

where ψ̄KL
train is an exponential moving average of ψKL

train.
Then, the policy parameters are optimized by minimizing
the expected KL-divergence of Eq. (5), which yields:

J(ω) = Es∼Dtrain
a∼πω

[
αξ(s)KLπ,µs −Qπθtrain(s, a)− ξ>Qπ

θKL
train

(s, a)
]

Here, we use the analytic formula for computing the KL-
divergence KLπ,µs and adopt the reparameterization trick
to the Gaussian policy when computing the gradient in
order to reduce the variance of stochastic gradients. We
also perform conservative training with bootstrapped Q
and apply gradient penalty of critic networks. Without
them, the algorithm is prone to divergence during train-
ing due to the overestimation of the uncertain state-action.
Note that other batch RL algorithms (Kumar et al., 2019)
use similar conservative estimation techniques for stabi-
lization of training. The gradient penalty constrains the
Lipschitz constant of the critic, which prevents outputting
extremely high value for the uncertain region that can be
encountered by weak behavior-regularization during hy-
perparameter optimization. More technical details for the
experiments can be found in the Appendix E. Iterative opti-
mization of {J(ψdata), J(θdata), J(ψKL

train), J(θKL
train)} and

J(ω) results in an actor-critic algorithm that performs ap-
proximate KL-regularized policy iteration. We will denote
this actor-critic algorithm as KLAC in the experiments when
we use fixed hyperparameters.

6.3. Clipped Importance Sampling for Hypergradients

Finally, we compute the approximate hypergradients by
exploiting the current actor and critics as the approximate
solutions of the KL-regularized MDP with respect to the
current hyperparameter ξ. From Eq. (10) and Eq. (14-15),

∇ξρM̂valid
(π) = E

π,M̂valid

[ ∞∑
t=0

γtχξ(st)

]
(17)

s.t. χξ(s) =
1(

ξ>φ(s)
)2 cova∼π

[
(ξ>φ(s))Qπ

θKL
train

(s, a)

−φ(s)
(
Qπθtrain

(s, a) + ξ>Qπ
θKL
train

(s, a)
)
, Qπθvalid(s, a)

]

Here, for immediate (off-policy) policy evaluation of π
with respect to the auxiliary reward χξ(st) using the val-
idation trajectory collected by µ, we adopt a clipped im-
portance sampling. For the validation dataset Dvalid =
{τ1, . . . , τNτ } such that τn = {(snt , ant , rnt , s′nt )}Tnt=0, we
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Figure 2. Example of the learned αξ(s) in Pendulum-v0. The
symbol × denotes the representative states for center of RBFs,
obtained from the cover tree algorithm.

estimate the approximate hypergradient as follows:

∇ξρM̂valid
(π) ≈ 1

Nτ

Nτ∑
n=1

Tn∑
t=0

γtwn0:tχξ(st) (18)

s.t. wn0:t , clip

((
t∏

k=0

π(ank |snk )

µ(ank |snk )

)
, wmin, wmax

)
,

and update the hyperparameter via hypergradient ascent. In
practice, we alternate between Hf steps of optimizing the
actor-critic (inner-problem) and one step of optimizing the
hyperparameter (outer-problem). We refer this algorithm as
AC-BOPAH.

Illustrative Example Figure 2 visualizes αξ(·) optimized
by AC-BOPAH in Pendulum-v0. We sampled trajectories
of 103 episodes using a suboptimal behavior policy which
was partially trained for only 104 steps by soft actor-critic
(SAC) (Haarnoja et al., 2018). We selected 10 representative
states within the batch data via the cover tree algorithm
(Beygelzimer et al., 2006) and used them for the basis of
each RBF φi(s) in α(s). Finally, we run AC-BOPAH for
106 steps.

As we can inspect from the left heatmap in Figure 2, the
optimized αξ(·) has lower values in the densely collected
state region while it has higher values in the sparsely col-
lected state region. This is a desirable result: we can be
safely deviate from the behavior policy for optimization in
experience-rich areas but should be conservative and fall
back to the behavior policy in experience-sparse areas of
the state space.

7. Experiments
7.1. Model-based BOPHA on Random MDPs

In order to probe how safely and efficiently BOPAH can
improve performance over the behavior policy with respect
to the varying number of trajectories and optimality of the

behavior policy, we conducted repeated experiments us-
ing randomly generated MDPs. The experimental protocol
follows that of (Laroche et al., 2019), and details can be
found in the Appendix F. In essence, we repeated 10k runs,
where each random MDP M was created with |S| = 50,
|A| = 4, γ = 0.95, where the maximum episode length
was set to 50. The ζ-optimal behavior policy µ denotes
ρM (µ) = ζρM (π∗) + (1− ζ)ρM (πunif).

We compare the model-based BOPAH with four algorithms:
(1) BasicRL (simple baseline appeared in 5.1), (2) Reward-
adjusted MDP (RaMDP) (Petrik et al., 2016), (3) Robust
MDP (Nilim & El Ghaoui, 2005; Iyengar, 2005), (4) SPIBB
(Laroche et al., 2019), using various sizes of trajectories and
two optimalities of behavior policy (near-optimal and near-
random policies). For each run, we measure the normalized
performance of π: ρ̄M (π) = ρM (π)−ρM (µ)

ρM (π∗)−ρM (µ) ∈ (−∞, 1],
which measures how much the algorithm improves its per-
formance over the behavior policy. Finally, we report the
mean (normalized) performance and the conditional value at
risk performance (CVaR). The x%-CVaR denotes the mean
(normalized) performance of the worst x% runs.

Figure 3a-3b presents the result when the behavior policy
is near-optimal (ζ = 0.9), where the behavior policy is
nearly deterministic, thus the collected trajectories could
cover only part of the entire state-action space. On the
other hand, Figure 3c-3d represents the results when the
behavior policy is more randomized (ζ = 0.5), thus the col-
lected trajectories could cover the entire state-action space
fairly well. In both settings, BOPAH with state-dependent
hyperparameters consistently matched or exceeded other
algorithms, which highlights effectiveness and robustness
of our algorithm.

7.2. AC-BOPAH on Continuous Control Tasks

In this experiment, we evaluate the effectiveness of AC-
BOPAH on continuous control tasks, using the MuJoCo
environments in the OpenAI gym (Todorov et al., 2012;
Brockman et al., 2016). We first obtained the behavior pol-
icy by running SAC (Haarnoja et al., 2018) for half-million
steps and then prepared the dataset consisting of 103 trajec-
tories shared by all algorithms. For AC-BOPAH, we held
out 20% of trajectories as the validation set. We compare
our AC-BOPAH with two behavior cloning baselines, one
with the Gaussian policy (BC) and the other one with the
variational autoencoder (VAE-BC). We also compare with
two state-of-the-art batch deep RL algorithms for continuous
control problems, BCQ (Fujimoto et al., 2019) and BEAR-
QL (Kumar et al., 2019). We used their published code
and hyperparameters (Φ = 0.05 for BCQ and ε = 0.05 for
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Figure 3. The result from random MDP experiments.
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Figure 4. The results of continuous control experiments averaged over 5 trials, which are moving-averaged with a window size of 20. The
shaded area represents the standard error.

BEAR-QL) therein for obtaining experimental results.2 We
report two versions of our algorithm, AC-BOPAH (single α)
that uses a global hyperparameter α and AC-BOPAH that
uses state-dependent hyperparameter αξ(s) with |ξ| = 21.
Both versions are initialized to start from αξ(s) = 102 ∀s.
KLAC is the KL-regularized actor-critic with α = 102 held
constant for all tasks.

As presented in Figure 4, AC-BOPAH consistently out-
performed the state-of-the-art algorithms by large margins.
While the KLAC was on a par with other algorithms, AC-
BOPAH made further improvement by optimizing the hyper-
parameters using the held-out validation set. AC-BOPAH
(with state-dependent KL-regularization) shows clear im-
provement over the constant α version, except for the
HalfCheetah-v2 domain where the latter already achieved
near-optimal performance.

8. Conclusion
In this work, we presented the generalized KL-
regularization and the BOPAH framework for batch RL,

2For more thorough comparison, we also conducted additional
experiments with hyperparameter grid-search for BCQ and BEAR
as in (Wu et al., 2019), i.e. Φ ∈ {0.005, 0.015, 0.05, 0.15, 0.5}
for BCQ and ε ∈ {0.015, 0.05, 0.15, 0.5, 1.5} for BEAR-QL.
We observed improvement only for BCQ in Halfcheetah (with
Φ = 0.5), which managed to perform better than AC-BOPAH.
However, such tuning requires access to the true environment,
which is not feasible in the batch RL setting.

which propose the optimization of state-dependent regular-
ization via the hypergradient ascent. We provided a formal
analysis that motivates the objective used in BOPAH, and
presented two concrete versions, (1) model-based BOPAH
that assumes tabular environment and computes exact hy-
pergradients, and (2) AC-BOPAH that uses actor-critic ar-
chitecture to compute approximate hypergradients in more
challenging continuous tasks. We empirically demonstrated
that both model-based BOPAH and AC-BOPAH outperform
the state-of-the-art algorithms, supporting the hypothesis
that batch RL can significantly benefit from hyperparam-
eter optimization. While we introduced BOPAH with the
KL-regularization for batch RL in this work, we believe that
our BOPAH framework can be extended to other related
problems in RL with limited experience data, which shall
be interesting direction for future work.
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Kappen, H. J., Gómez, V., and Opper, M. Optimal control as
a graphical model inference problem. Machine Learning,
87(2):159–182, 2012.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. On conver-
gence and stability of gans, 2017.

Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing
off-policy q-learning via bootstrapping error reduction.
In Advances in Neural Information Processing Systems,
pp. 11761–11771, 2019.

Laroche, R., Trichelair, P., and Des Combes, R. T. Safe pol-
icy improvement with baseline bootstrapping. In Interna-
tional Conference on Machine Learning, pp. 3652–3661,
2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

Maclaurin, D., Duvenaud, D., and Adams, R. P. Gradient-
based hyperparameter optimization through reversible
learning. In International Conference on Machine Learn-
ing, pp. 2113–2122, 2015.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems,
pp. 1054–1062, 2016.

Nilim, A. and El Ghaoui, L. Robust control of markov
decision processes with uncertain transition matrices. Op-
erations Research, 53(5):780–798, September 2005.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. In Advances in Neural
Information Processing Systems, pp. 4026–4034, 2016.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In International Conference on Machine
Learning, pp. 737–746, 2016.



Batch Reinforcement Learning with Hyperparameter Gradients

Petrik, M., Ghavamzadeh, M., and Chow, Y. Safe policy
improvement by minimizing robust baseline regret. In
Advances in Neural Information Processing Systems, pp.
2298–2306, 2016.

Pfau, D. and Vinyals, O. Connecting generative adversarial
networks and actor-critic methods, 2016.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Chen, X., and Abbeel, P. Equivalence between
policy gradients and soft q-learning, 2017.

Siegel, N., Springenberg, J. T., Berkenkamp, F., Abdol-
maleki, A., Neunert, M., Lampe, T., Hafner, R., Heess,
N., and Riedmiller, M. Keep doing what worked: Behav-
ior modelling priors for offline reinforcement learning. In
International Conference on Learning Representations,
2020.

Sun, W., Gordon, G. J., Boots, B., and Bagnell, J. Dual
policy iteration. In Advances in Neural Information Pro-
cessing Systems, pp. 7059–7069, 2018.

Todorov, E. Linearly-solvable markov decision problems.
In Advances in Neural Information Processing Systems,
pp. 1369–1376, 2007.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In International Confer-
ence on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Wu, Y., Tucker, G., and Nachum, O. Behavior regularized
offline reinforcement learning. ArXiv, abs/1911.11361,
2019.


