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Abstract

Previous work [12, 13] have shown that there exists a correlation between the1

performance of neural networks in object recognition tasks and its ability to match2

behavioral and neural recordings. We expanded on this work to ask the question:3

Does the behavioral and neural recordings are also correlated to the robustness of4

neural networks to common corruptions (e.g ImageNet-C). We selected several5

models from the leaderboard in Brain-Score, a platform that hosts neural and6

behavioral benchmarks for brain-model similarity, and tested their robustness to the7

corruption from ImageNet-C. We showed that higher brain-score is correlated with8

lower mean corruption error across models. Particularly, we show a correlation9

between the V4 and Behavioral datasets and the model’s robustness to ImageNet-C.10

These finds suggest that explicitly modeling/matching data from V4 might be a11

good strategy for developing robust models to common corruptions.12

1 Introduction13

Perceptual Robustness is a key component of the human vision system, however, this robustness is14

not present in current state-of-the-art deep learning models [7, 5, 15, 14]. Furthermore, these models15

are not robust to small image perturbations such as fog, snow, blur, pixelation, etc, which humans are16

not confused by. This discrepancy between humans and computer vision models has to be addressed17

if we want current deep learning models to generalize on natural settings beyond training set statistics.18

Nonetheless, improvements have been made to improve the robustness of deep learning models to19

common corruptions, mostly by training the models with different data augmentation techniques20

[4, 8, 11, 6]. However, there is still large room to match human level performance on ImageNet-C21

[7] and other robustness benchmarks. If we want to decrease this gap between humans and deep22

learning models, one strategy is to make computer vision models more brain-like. Previous work23

[16, 1, 2, 9], have studied how similar are these deep learning models to humans [], and found that24

high performing networks have similar representation to different visual cortical areas, and that the25

hierarchical structure of the visual representation from neural recordings is shared with the hierarchy26

of deep learning models.27

Recently [12, 13], established a benchmark to compare different deep learning models in their ability28

to predict the activity of different visual cortical areas (V1, V2, V4 and IT). This was done by doing a29

linear regression from the features of the model given an image x with neural responses:30

y = Xw + ε, (1)

.31

where w denotes linear regression weights and ε is the noise in the neural recordings.32
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Figure 1: Scatter Plot of mean Corruption Error (mCE) with respect to the average Brain-Score. We
observe a correlation (r=-0.8, p=1.4e-05) between these two variables. This indicates that higher
brain score model have lower mCE values

They were able to reproduce previous work [16], and expand the predictability for behavioral tasks,33

by using the metric of the image-by-image patterns of difficulty, broken down by the object choice34

alternatives. We decided to expand on this work and ask the question: Is there a correlation between35

this Brain-Score benchmark and the robustness of a deep learning model to common corruptions?36

and if there is, what cortical areas are responsible for this correlation?37

Main Contributions We showed that V4 and behavioral predictability are positively correlated with38

lower mean Corruption Error in ImageNet-C. Furthermore, we found that the predictability of V1 is39

anticorrelated with robustness to these common corruptions.40

2 Experimental Results41

To test this hypothesis, we used 20 deep learning models currently ranked on the Brain-Score website42

(See Table 1 for specific models), and extracted their brain score for each brain area (V1, V2, V443

and IT), behavioral score and their average score. Furthermore, we evaluate each model on the44

ImageNet-C benchmark. This dataset consists of 19 common corruptions (c) (See Sup. Figure ??45

for examples) with 5 different severity levels (s) added into the validation set images of ImageNet.46

We evaluated all the 20 models in this benchmark by calculating the mean Corruption Error (mCE),47

which was computed by:48

CEf
c = (

5∑
s,c

Ef
s,c)/(

5∑
s,c

EAlexnet
s,c ) (2)

Where the error for each corruption is normalized against AlexNet performance to measure the49

improvement in robustness with respect to the stablished deep learning model. Then, we did50

the Spearman’s correlation between the average score for each model with their corresponding51

mCE from ImageNet-C. In Figure 1, we observe the scatter plot we found a negative correlation52

between the average brain score and the mean corruption error (Lower corruption error means higher53

performance). Now that we established that the average brain-score is correlated with mCE, we54

asked, are all components of the brain predictability negatively correlated with the mCE?55

For this, we computed the scatter plot and correlation for each individual component of the brain-score:56

V1 predictability, V2 predictability, V4 predictability, IT predictability and behavioral predictability57

against the mCE. In Figure 2, we observe that most of the Brain scores are correlated with lower58

mCE (V2, V4, IT, and behavioral scores). Particularly, V4 and behavioral predictability have p values59

lower than 0.05. Interestingly, we have a positive correlation between V1 predictability and mCE,60

which suggests that V1-like have less robustness to common corruption compared to other areas.61

This is a surprising result, however, previous work [3] has shown that a V1-Like model is not more62
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Figure 2: Scatter plot of mean Corruption Error (mCE) with respect to brain-score for Top:(left) V1
neural predictability, (middle) V2 neural predictability and (right) V2 predictability. Bottom: (Left)
IT Predictability, (Right) Behavioral Predictability.

Figure 3: Scatter plot of mean Corruption Error (mCE) with respect to brain-score for different
corruption Families. Left: Noise, Middle Left: Blur, Middle Right: Weather, Right: Digital. We
found that all corruption families have a negative correlation with the average brain-score.

robust than other models to common corruptions, however, they were more robust to adversarial63

perturbations [10].64

Given these results, another aspect we decided to explore whether higher brain-score was correlated65

with robustness against all common corruptions or was it correlated with an specific family of image66

corruption presented on Imagenet-C? Within, ImageNet-C there are 4 corruption families: Noise,67

Blur, Weather and Digital. Each of these families have different properties and therefore you could68

obtain robustness to one without gaining robustness on the other ones. To test this, we calculated69

the correlation between different models and the mCE to the different common corruption families.70

In Figure 3, we observe the scatter plot between mCE for each specific corruption family and the71

average brain-score. We observe that the correlation between each corruption family and the average72

brain-score is the same as with the mean Corruption Error (with p < 0.05 for all corruptions). This73

shows that higher correlation between mCE and brain-score is not due to improvement in an specific74

corruption family but an improvement for across all corruptions. This is an interesting result because75

in theory brain-like models should be equally robust to all these types of common corruptions and we76

observe that there is not bias in performance towards an specific corruption type.77
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Noise Blur Weather Digital
Models Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE
Alexnet 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

CORnetS 82 83 86 79 88 81 83 84 80 73 63 76 84 81 79 79
CORnetZ 105 104 104 107 105 106 102 104 107 108 116 106 108 103 113 107

Densenet121 71 72 74 76 87 77 78 74 71 59 56 62 87 73 76 72
Densenet169 66 67 70 71 84 76 79 69 67 56 52 55 82 68 70 68
Densenet201 67 70 70 70 82 73 77 68 66 57 50 57 79 63 69 67
Inception v3 65 66 66 81 88 81 89 76 73 70 63 69 87 59 71 72
Mobilenet v2 89 90 90 82 94 85 88 87 87 79 69 81 89 93 83 84

Resnet101 73 75 76 67 81 70 74 73 70 62 53 66 77 64 67 69
Resnet152 72 73 76 66 81 65 74 70 67 62 50 67 75 68 65 67
Resnet18 87 88 91 83 91 86 88 86 84 78 68 78 90 80 85 83
Resnet34 81 83 84 76 86 79 84 79 77 69 61 71 86 70 74 76
Resnet50 79 81 82 74 88 78 79 77 74 66 56 71 84 76 76 75

Resnet50SIN 66 66 68 69 81 69 80 68 70 64 57 66 78 61 69 68
Resnet50SIN-IN 66 66 68 69 81 69 80 68 70 64 57 66 78 61 69 68

Resnet50SIN-IN-IN 75 76 77 71 86 73 79 74 72 66 55 67 80 74 73 72
Resnet50-robust 86 86 92 92 79 85 81 81 83 111 81 105 79 60 68 84
Squeezenet1.0 105 104 103 100 103 105 101 101 103 97 97 97 109 107 113 102
Squeezenet1.1 107 106 105 99 102 100 100 100 102 96 97 97 105 109 133 103

VGG-16 86 87 89 83 94 86 87 83 79 72 63 75 95 94 88 82
VGG-19 82 82 88 81 93 83 86 80 78 68 61 73 93 85 83 79

Table 1: mCE, and Corruption Error values of different corruptions and architectures on IMAGENET-
C. The mCE value is the mean Corruption Error of the corruptions in Noise, Blur, Weather, Extra,
and Digital columns.

3 Conclusions and Future Work78

We found a correlation between V4 neural predictability and behavioral predictability, and perfor-79

mance on ImageNet-C. However, this correlation is not found for V2 and IT (See Figure 2), this is80

perplexing given that a more brain-like model should have high predictability across brain areas and81

low mean corruption error. Furthermore, we found an anti-correlation between V1 predictability and82

mean corruption error. For future work, we want to expand this work to other robustness dataset such83

as ImageNet-P and CIFAR100-C to see if our results also hold for these datasets. Also, given previous84

work on the adversarial robustness of V1-Like models [3], we want to explore the correlation between85

brain-score and adversarial robustness. In addition, we want to generate models that have explicit86

high predictability of V4 and see if this model outperforms other models on ImageNet-C and other87

common corruption datasets. Finally, we want to expand the brain-score evaluation for models that88

are robust to ImageNet-C such as the ones from [8], [6] and [11].89

References90

[1] S. A. Cadena, G. H. Denfield, E. Y. Walker, L. A. Gatys, A. S. Tolias, M. Bethge, and A. S.91

Ecker. Deep convolutional models improve predictions of macaque v1 responses to natural92

images. PLoS computational biology, 15(4):e1006897, 2019.93

[2] C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, and94

J. J. DiCarlo. Deep neural networks rival the representation of primate it cortex for core visual95

object recognition. PLoS Comput Biol, 10(12):e1003963, 2014.96

[3] J. Dapello, T. Marques, M. Schrimpf, F. Geiger, D. D. Cox, and J. J. DiCarlo. Simulating a97

primary visual cortex at the front of cnns improves robustness to image perturbations. BioRxiv,98

2020.99

[4] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-100

trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness.101

arXiv preprint arXiv:1811.12231, 2018.102

4



[5] K. Gu, B. Yang, J. Ngiam, Q. Le, and J. Shlens. Using videos to evaluate image model103

robustness. arXiv preprint arXiv:1904.10076, 2019.104

[6] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Para-105

juli, M. Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution106

generalization. arXiv preprint arXiv:2006.16241, 2020.107

[7] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-108

tions and perturbations. arXiv preprint arXiv:1903.12261, 2019.109

[8] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan. Augmix:110

A simple data processing method to improve robustness and uncertainty. arXiv preprint111

arXiv:1912.02781, 2019.112

[9] A. Kell, D. Yamins, S. Norman-Haignere, D. Seibert, H. Hong, J. DiCarlo, and J. McDermott.113

Computational similarities between visual and auditory cortex studied with convolutional neural114

networks, fmri, and electrophysiology. Journal of vision, 15(12):1093–1093, 2015.115

[10] Z. Li, W. Brendel, E. Walker, E. Cobos, T. Muhammad, J. Reimer, M. Bethge, F. Sinz, Z. Pitkow,116

and A. Tolias. Learning from brains how to regularize machines. In Advances in Neural117

Information Processing Systems, pages 9529–9539, 2019.118

[11] E. Rusak, L. Schott, R. Zimmermann, J. Bitterwolf, O. Bringmann, M. Bethge, and W. Brendel.119

Increasing the robustness of dnns against image corruptions by playing the game of noise. arXiv120

preprint arXiv:2001.06057, 2020.121

[12] M. Schrimpf, J. Kubilius, H. Hong, N. J. Majaj, R. Rajalingham, E. B. Issa, K. Kar, P. Bashivan,122

J. Prescott-Roy, F. Geiger, K. Schmidt, D. L. K. Yamins, and J. J. DiCarlo. Brain-score: Which123

artificial neural network for object recognition is most brain-like? bioRxiv preprint, 2018.124

[13] M. Schrimpf, J. Kubilius, M. J. Lee, N. A. R. Murty, R. Ajemian, and J. J. DiCarlo. Integrative125

benchmarking to advance neurally mechanistic models of human intelligence. Neuron, 2020.126

[14] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao. Is robustness the cost of accuracy?–a127

comprehensive study on the robustness of 18 deep image classification models. In Proceedings128

of the European Conference on Computer Vision (ECCV), pages 631–648, 2018.129

[15] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may be at odds130

with accuracy. arXiv preprint arXiv:1805.12152, 2018.131

[16] D. L. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo. Performance-132

optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of133

the National Academy of Sciences, 111(23):8619–8624, 2014.134

5


	Introduction
	Experimental Results
	Conclusions and Future Work

