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ABSTRACT

Retrieval aims to find the top-k items most relevant to a query/user from a large
dataset. Traditional retrieval models represent queries/users and items as embed-
ding vectors and use Approximate Nearest Neighbor (ANN) search for retrieval.
Recently, researchers have proposed a generative-based retrieval method that rep-
resents items as token sequences and uses a decoder model for autoregressive
training. Compared to traditional methods, this approach uses more complex mod-
els and integrates index structure during training, leading to better performance.
However, these methods remain two-stage processes, where index construction is
separate from the retrieval model, limiting the model’s overall capacity. Addi-
tionally, existing methods construct indices by clustering pre-trained item repre-
sentations in Euclidean space. However, real-world scenarios are more complex,
making this approach less accurate. To address these issues, we propose a Unified
framework for Retrieval and Indexing, termed URI. URI ensures strong consis-
tency between index construction and the retrieval model, typically a Transformer
decoder. URI simultaneously builds the index and trains the decoder, construct-
ing the index through the decoder itself. It no longer relies on one-sided item
representations in Euclidean space but constructs the index within the interactive
space between queries and items. Experimental comparisons on three real-world
datasets show that URI significantly outperforms existing methods.

1 INTRODUCTION

Retrieval is a critical upstream stage in various tasks, such as information retrieval and recommender
systems, as it sets the upper bound for downstream ranking tasks. Given a query, the retrieval model
identifies the top-k most relevant items from a large-scale dataset. Throughout the paper, ”query”
will be used to represent both query and user.

1.1 PRIOR METHODS AND LIMITATIONS

Traditional retrieval models generate representations for queries and items, using simple similarity
measures like the inner product. After index construction, the Approximate Nearest Neighbor search
retrieves the relevant items. However, this approach has notable performance limitations due to the
linearity of the similarity metric, which constrains model complexity, and the decoupling of model
training from index construction.

To overcome these limitations, researchers have proposed a new method, Generative Retrieval (Tay
et al., 2022; Wang et al., 2022; Rajput et al., 2024; Feng et al., 2022), introducing Transformer
decoders (Vaswani, 2017) into the retrieval process. These methods involve multiple stages: first
constructing a hierarchical clustering index for items, representing them as sequences of cluster IDs,
and then training a decoder to generate these sequences. Compared to traditional methods, these
approaches use more complex model architectures and establish connections between model training
and the constructed index, resulting in improved performance. However, index construction is still
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disconnected from the retrieval model, relying only on item information without considering queries,
and heavily dependent on simplistic similarity measures and clustering algorithms in Euclidean
space, greatly limiting index effectiveness.

1.2 OUR SOLUTION

In this work, we propose a Unified framework for the Retriever and Indexer, termed URI. In URI, the
Retriever and Indexer share the same Decoder model, so the index is not constructed using simple
similarity measures but is directly generated by the Retriever. In previous methods, the Decoder
only memorizes the pre-constructed index, whereas in URI, the Decoder acts as a differentiable
index constructor.

We introduce a new metric for generative retrieval indices, called Average Partition Entropy (APE),
which is model-independent and can be evaluated immediately after construction. Using this metric,
we formally define the index construction task and propose a theoretically effective EM (Dempster
et al., 1977) algorithm. We then employ a machine learning approach to simulate the conditions and
outcomes of this algorithm by designing loss functions. In previous works, after index construction,
an encoder model is only required on the query side to extract information, while the item side is
represented by a sequence of index ID tokens. However, in URI, index construction and model
training occur simultaneously, so we set encoders on both the query and item sides. Information
extracted from the query and item by their respective encoders is input to the Decoder, resulting
in a probability distribution over k tokens for each. Our loss functions are trained based on these
distributions, enabling the query to identify positive items and the item to learn its assigned token.

1.3 OUR CONTRIBUTIONS

• We propose a novel unified framework for generative retrieval, URI, which constructs the index
simultaneously with training the Transformer Decoder Retriever.

• We introduce a new evaluation metric for generative indices, Average Partition Entropy (APE),
which allows direct assessment of index quality immediately after construction, without model
training.

• Using APE, we formally define the generative index construction task and provide a theoretical
explanation for the rationale behind URI’s loss function.

• We conduct extensive experiments on three real-world datasets, showing that URI achieves state-
of-the-art performance as a generative retrieval method. Moreover, we design various experiments
to explain its superior performance from multiple perspectives.

2 RELATED WORK

Traditional Retrieval Traditional retrieval represents both queries and items as embedding vec-
tors, typically measuring their similarity using the inner product, Euclidean distance, or cosine sim-
ilarity. The method for learning these embeddings varies by task. In document retrieval, pre-trained
NLP models like BERT (Kenton & Toutanova, 2019) and ALBERT (Lan, 2019) are commonly used.
In recommender systems, dual-tower models are mostly used, including MF (He et al., 2016), Deep-
ICF (Xue et al., 2019), and NCF (He et al., 2017) for general recommendations, as well as SASRec
(Kang & McAuley, 2018), YouTubeDNN (Covington et al., 2016), and GRU4Rec (Hidasi, 2015)
for sequential recommendations. Once trained, various indices are constructed for the item set,
including graph-based (Malkov & Yashunin, 2018; Jayaram Subramanya et al., 2019), quantization-
based (Jegou et al., 2010), LSH-based (Datar et al., 2004), and tree-based (Bentley, 1975) indices.
Approximate Nearest Neighbor Search (ANNS) is then used to complete retrieval.

Generative Retrieval Existing generative retrieval methods use a multi-stage training approach.
They first construct a hierarchical clustering index based on pre-trained representations, use cluster-
ID sequences to represent items, and then train the model to generate these sequences. DSI (Tay
et al., 2022) and NCI (Wang et al., 2022) both construct indices by performing hierarchical K-
means clustering on text representations. Additionally, NCI uses a Prefix-Aware Weight-Adaptive
Decoder to adapt to different codebook levels. RecForest (Feng et al., 2022) pre-trains a recom-
mendation model and constructs the index using item ID representations, enhancing performance
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by integrating multiple trees. TIGER (Rajput et al., 2024) adopts RQ-VAE (Zeghidour et al., 2021)
to build the index from item text representations and uses the item’s semantic ID sequence to model
user historical behavior sequences. DR (Gao et al., 2021) uses an MLP for inference and iteratively
updates the index with the EM (Dempster et al., 1977) algorithm.

3 A MEASURE OF INDEX: APE

Inspired by the Mutual Information (Dhillon et al., 2003), we propose a metric to measure the
index in generative methods. We consider the case where the index has a single layer, meaning the
semantic ID length is 1. In later sections, we extend this to an index with L layers. Given a query
x corresponding to positive items Y+

x = {y1, . . . , yn}, the n items are distributed into k buckets
after indexing. The query then obtains a probability distribution Q = [q1, . . . , qk] over the k buckets
through the generative model’s decoder. To the best of our knowledge, all existing work uses cross-
entropy loss to ensure that the input query x retrieves buckets containing samples from Y+. Let
Idx(·) denote the constructed index that maps an item to a specific bucket, with Idx(yi) = bi. The
loss function is defined as

Lce(x,Y+
x ) = −

n∑
i=1

log qbi = −
k∑

j=1

nj log qj , where nj =

n∑
i=1

I(bi = j). (1)

It can be easily proven that the loss attains its minimum value when qj = nj/n using the method of
Lagrange multipliers. Substituting qj , we can get

Lce(x,Y+
x ) ≥ −

k∑
j=1

nj log
nj

n
= −n

k∑
j=1

nj

n
log

nj

n
(2)

The lower bound of the loss function is established once the index is constructed. It depends
only on the concentration of positive items corresponding to a query within the index. Let
Qx(Idx) = [

∑n
i I(Idx(yi)=1)

n , ...,
∑n

i I(Idx(yi)=k)

n ] = [n1

n , ..., nk

n ] represent the frequency distribu-
tion of the buckets containing the positive items corresponding to the query x. The entropy of Qx,
H(Qx(Idx)) = −

∑k
j

nj

n log
nj

n , significantly affects the retrieval performance of the query x af-
ter cross-entropy training. Inspired by this, we propose a new evaluation metric for the index in
generative retrieval models, called Average Partition Entropy (APE).

APE(Idx) = Ex∈D[H(Qx(Idx)] (3)

APE measures the concentration of relevant items in the index throughout the dataset. It depends
solely on the dataset and the constructed index, independent of the neural network model, allowing
APE to preliminarily evaluate index quality. A smaller APE value indicates better index construc-
tion. Balance is crucial in index construction, and all methods account for it when building indices.
The proposed APE metric is meaningful only when the index is relatively balanced. For extremely
unbalanced indices, such as when all items are assigned to one bucket, APE reaches its minimum
value, but making it meaningless. In generative retrieval, most models use a hierarchical, multi-layer
index structure. For an index with L layers and width k, we can obtain Qx ∈ RkL

at the leaf level.

4 METHODOLOGY

4.1 PROBLEM FORMULATION AND MOTIVATION

Before introducing the proposed framework URI, we first formulate the task of index construction
in generative retrieval and discuss how to solve it. Given a dataset D consisting of a query set X
and an item set Y of size N , where each query x ∈ X has its corresponding set of positive samples
Y+
x ⊂ Y , the task is to allocate all items evenly into k buckets, with each bucket containing N/k

items. The mapping from items to buckets is denoted as Idx(·). The optimal index is defined as:

argmin
Idx

APE(Idx) (4)

Even allocation is introduced to prevent all items from being assigned to a single bucket, which
would result in APE = 0 and render it meaningless. Assuming N is divisible by k, and z =
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N/k, there are N !/(k! · z!) possible allocation schemes (indices). This is an NP-hard allocation
problem, making direct optimization infeasible due to high computational cost. Existing methods
attempt to approximate the optimal solution by clustering in the item representation space; however,
a significant gap remains. These methods assume that items close in Euclidean distance yield similar
model outputs, based on the premise of a small Lipschitz constant. However, as models increase in
complexity, the cumulative effect of the Lipschitz constant becomes more pronounced (Fazlyab
et al., 2019), challenging this assumption.

To address this issue, we propose constructing the index directly from the final retrieval model,
rather than in the shallow representation space. Some previous methods like DR (Gao et al., 2021)
and JTM (Zhu et al., 2019) iteratively update the index based on the model after training, using
the EM (Dempster et al., 1977) algorithm to improve index quality. This is because the model
memorizes the index while capturing the rich collaborative filtering information within the dataset
at the same time. In Section 3, we define Qx under the ideal assumption of the model’s memorization
of the index. However, in practice, Qx is influenced by complex collaborative filtering relationships
between queries and items, preventing convergence to the minimum point of Lce(x,Y+

x ). The actual
Qx contains all the information absorbed by the model during training. Reconstructing the index
based on the distribution Qx obtained after training allows the new index to outperform the original.
We propose a simple greedy algorithm for reconstruction.

Greedy Algorithm: For each item y with a relevant query set X+
y = {x1, . . . , xn} (for each x ∈ X+

y ,
y ∈ Y+

x ), we calculate the expected distribution Ex∈X+
y
[Qx] of these queries. The item is assigned

to the token with the highest probability in its expected distribution. Under certain conditions, this
greedy algorithm can be proven to correctly assign the majority of items.
Theorem 1. Given a dataset D consisting of m queries and N items, where the N items are evenly
allocated into k buckets, and the probability of each query being related to an item is p. Given
the probability distribution {Qx}x∈X of each query across the k buckets, using the aforementioned
greedy algorithm can recover the allocation scheme of each item. Given

m ≥
[
Φ−1(1− δ)

]2 (
1 + 2N

k p(1 + p)
)

p(1− p)
,

the probability of successfully allocating each item Pcorrect ≥ 1− δ, where Φ−1 is the inverse CDF
of the standard normal distribution.

For a detailed proof, see Appendix D. In real-world datasets, statistical values often meet the theo-
rem’s conditions, indicating that this greedy algorithm is reliable. Therefore, the optimal index prob-
lem can be optimized using the EM algorithm: (1) At the E-step, the model optimizes Lce(x,Y+

x )
based on a pre-constructed index and obtains converged Qx. (2) At the M-step, the index is recon-
structed using the greedy algorithm described above, based on Qx.

We simulate the M-step using a machine-learning approach. As discussed in Section 3, training
with cross-entropy aligns the query distribution with the expected distribution of related items. By
swapping the roles of items and queries, the item distribution can be similarly trained using cross-
entropy. Considering an item y and its relevant queries X+

y = {x1, . . . , xn}, for xi ∈ X+
y , let

Qxi = [qi1, . . . , q
i
k]. Given the probability distribution Py = [p1, . . . , pk] of item y over k tokens

from the decoder, the cross-entropy is:

Lce(y,X+
y ) = −

n∑
i=1

k∑
j=1

qij log pj = −
k∑

j=1

((

n∑
i=1

qij) log pj). (5)

It is straightforward to prove that the loss function reaches its minimum value when pj =
(
∑n

i q
i
j)/n. This method completes the first step of the greedy algorithm. Next, we assign the

item to the token with the highest probability in the distribution. We introduce entropy as the loss
function to approximate the item distribution to a one-hot distribution:

Lcommit(y) = −
k∑

j=1

pj log pj . (6)

Note that index construction requires a constraint that items must be evenly allocated. To meet
this constraint, we also use a machine-learning approach, introducing the expected distribution to
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Figure 1: Overview Framework of URI’s Retriever and Indexer.

approximate a uniform distribution. The specific form is given by:

Lbalance(Y) = H(Uk,Ey∈Y [Py]) = −
k∑

j=1

1

k
logEy∈Y [p

y
j ]. (7)

Uk is a uniform distribution over k tokens. Lcommit aims to approximate the distribution to a
one-hot distribution, while Lbalance aims to approximate the distribution to a uniform distribution.
However, these objectives do not conflict, as Lcommit acts on individual items, while Lbalance acts
on the entire item set Y .

4.2 DECODER AS INDEXER AND RETRIEVER

Building on the previous discussion of index construction, we propose a unified framework for the
retriever and indexer, called URI. URI simulates the above EM algorithm using a differentiable
machine-learning approach, enabling end-to-end training. URI uses the same decoder model to
generate distributions for both the query and item over k tokens. We denote the distributions at the lth
token obtained from the decoder for the query and item as P l

Q and P l
I , respectively. H(·, ·) represents

cross-entropy, and H(·) represents entropy. The loss functions are summarized as follows:

Ll
E step = Ll

ce(x,Y+
x ) = H(P l

I , P
l
Q) (8)

LM step = Ll
ce(y,X+

y ) + Ll
commit + Ll

balance = H(P l
Q, P

l
I) +H(P l

I) +H(Uk,E[P l
I ]), (9)

Note that the two losses are trained simultaneously; the terms ”E-step” and ”M-step” are used for
clarity. From a gradient optimization perspective, the two Lce terms ensure that PQ and PI of
corresponding queries and items are as close as possible. Lcommit prevents PQ and PI from con-
verging to a uniform distribution, while Lbalance prevents them from converging to the same one-hot
distribution, avoiding index collapse.

We use positive sample pairs (query, item) to train the two loss functions. However, relying solely
on positive samples introduces bias, as items not in the positive sample set cannot be properly
learned. To address this, we incorporate randomly sampled items to train Lcommit and Lbalance.
These random items do not participate in optimizing Lce, as they lack corresponding matching
queries. In each training batch, we sample a number of random items equal to the positive samples.
Furthermore, Lbalance lacks adaptability across different tokens. To mitigate this, we introduce
weighting mechanisms to adjust the distribution across tokens:

Ll
balance = Hw(U

k,E[P l
I ]) = −

k∑
j=1

sgd(wj) ·
1

k
logEy∈Y [p

y
j ], wj = |1

k
− logEy∈Y [p

y
j ]|+1 (10)
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The weight’s magnitude relates to the difference between E[P l
I ] and the uniform distribution. A

larger difference indicates a higher imbalance, requiring a larger weight. A constant factor of 1
ensures weight stability, preventing it from approaching zero.

Assignment The Transformer Decoder uses autoregressive training, meaning that when training
the next layer’s token, previous tokens must be input. In our approach, since each layer’s tokens
are unknown before training, we train the model layer by layer. Once the model converges, items
are explicitly assigned to k tokens, preparing for training the next layer. To assign items, we first
pass all items through the Decoder to obtain each item’s probability distribution. Based on this
probability distribution, we use a balanced assignment algorithm (Li et al., 2023). Specifically, we
set a maximum load for each token, typically the average allocation size N/k. The probability
distribution of each item is sorted in descending order, and tokens are selected sequentially. If the
number of items in a selected token reaches the maximum load, the next token is chosen.

During training, we first train the model on the first layer, optimizing L1
E step + L1

M step. Once the
model converges, we assign first-layer tokens to the items. Next, we train the second-layer tokens,
using the first-layer tokens assigned to the items as inputs to the decoder. To prevent the model from
forgetting information learned in the first layer, we introduce a memory reinforcement loss, which
is the same as the loss used in prior works for training the decoder after index construction:

Ll
memory = −

l∑
i=1

(H(Ci, P i
Q)+H(Ci, P i

I )); Ll
Decoder = Ll

E step+Ll
M step+Ll−1

memory (11)

where Ci denotes the one-hot label of the token assigned to the item at layer i. Let L0
memory = 0.

We train Ll
Decoder layer by layer from l = 1 to l = L, where L is a hyperparameter.

Figure 1 shows the training process at Layer 2. The figure illustrates the URI framework, with its
core being the decoder component, serving as both the Retriever and the Indexer. Different encoders
can be used for different types of queries and items. For example, in a sequential recommendation
scenario, the query part can use a sequential model as its encoder. Additionally, features extracted by
the encoder are input to the decoder sequentially, allowing any desired representations to be freely
added, enriching the index construction with more information.

Although URI requires layer-by-layer training, the number of nodes increases exponentially. There-
fore, in practice, training two to three layers is generally sufficient. Moreover, tokens learned using
this method are more appropriately named, and their sequences exhibit greater consistency across
different layers. This occurs because when learning tokens of later layers, all assigned tokens from
preceding layers are used as inputs. Consequently, the information represented by the same token
across layers becomes more consistent, enhancing model performance. We validate this through
experiments (Sec 5.3).

4.3 RANKER

Query (User) Doc (Item)

ID Emb Text Emb ID Emb Text Emb

Sum Pooling Sum Pooling

Inner Product

Sampled Softmax

Figure 2: Ranker.

After the training of the Retriever, a ranker will be trained to identify the
topk items for the final retrieval. In previous work, most methods (Tay
et al., 2022; Wang et al., 2022; Rajput et al., 2024; Feng et al., 2022) in-
volved randomly adding a new token to different items in the final layer
to serve as the ranker, while the DR(Gao et al., 2021) model utilizes soft-
max loss over the entire item set. We follow the approach of DR, taking
the inner product of query and item as the score, using sampled softmax
loss (Covington et al., 2016) for training, where 10 negative samples are
drawn for each positive example. Furthermore, we incorporate hard neg-
ative mining. Specifically, we first sample 9 random negative examples,
then select one hard negative sample from the sibling nodes of the positive
sample’s node. This is feasible due to the high quality of the index we
construct. We summarize the ranker structure in Figure2.
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4.4 INFERENCE

In the index, each item is represented by a sequence of token IDs, transforming it into a sequence
generation task. The Transformer Decoder employs beam search to complete this task, ultimately
generating the top-b sequences. These top-b sequences represent the top-b buckets in the final index
layer. The union of all items in these buckets forms the candidate set. The final top-k retrieval
results are obtained by computing the inner product between the query’s representation and item
representations in the candidate set.

4.5 COMPLEXITY ANALYSIS

Let the time for a single pass through the Decoder be O(t), the dataset size be |D|, and the number of
index layers be L. Then, the training complexity of URI is O(2L|D|t). Compared to other methods,
URI introduces an additional constant factor of 2L due to layer-by-layer training, with each training
step involving separate forward passes for both the query and item. This may slightly increase
training time; however, this overhead is acceptable, as L is typically small in practice, and URI
does not require index construction before training, eliminating that overhead. During inference,
URI’s complexity is the same as existing methods, dominated by the Decoder with a complexity of
O(BL3), where B is the beam size and L3 is the complexity required for the Decoder to generate a
sequence of length L.

5 EXPERIMENT

We conduct extensive experiments to answer the following questions:

RQ1 What is the overall performance of URI compared to other Generative methods?
RQ2 Why does URI perform so well?
RQ3 How to set the hyper-parameters for URI index?
RQ4 How is the index progressively built during URI training?

5.1 EXPERIMENTAL SETTINGS

Datasets We select three widely-used real-world datasets, each corresponding to one of three re-
trieval tasks: document retrieval, general recommendation, and sequential recommendation. The
KuaiSAR (Sun et al., 2023) dataset is a short video search dataset, where the query is text and the
item is a short video with a text description, corresponding to the document retrieval task. The
Beauty and Toys and Games datasets are both from the Amazon platform (He & McAuley, 2016).
We use the Beauty dataset for the general recommendation task and the Toys and Games dataset for
the sequential recommendation task, where the sequence length is set to 20.

Baselines and Settings In this paper, we focus on demonstrating that our method is the optimal
generative retrieval approach. To that end, we selected five representative works in this field: DSI
(Tay et al., 2022), NCI (Wang et al., 2022), RecForest (Feng et al., 2022), TIGER (Rajput et al.,
2024), and DR(Gao et al., 2021). Among these, DSI and NCI are designed for document retrieval
tasks, while the other three address recommendation tasks. All five methods follow a multi-stage
approach, where the index is first constructed, followed by model training. To ensure fairness in
comparison, we maintain consistency with the original papers in terms of the retrieval model archi-
tecture and index construction methods. For text extraction, we utilize the ‘bert-base-cased‘ (Kenton
& Toutanova, 2019) model from Huggingface (Jain, 2022) across all methods. We set the represen-
tation dimension to 96, the number of layers in the Decoder model to 2, the beam size to 20, and
the learning rate to 0.001. For NCI and DSI, we set the number of tokens in the final layer to 100,
referred to as c in the original papers. For KuaiSAR dataset, we set the index width k = 64 and
depth L = 2. For Beauty and Toys datasets, we set k = 32 and L = 2.

Evaluation Metrics Following most prior works, we evaluate the performance of each method
using Recall@K and NDCG@K (where K = 10 or 20). Additionally, we use our newly proposed
APE metric to assess the effectiveness of the indices constructed by different methods.
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5.2 OVERALL PERFORMANCE

Table 1: Recall(R)@K and NDCG(N)@K Results of URI compared with baseline methods
Dataset KuaiSAR Amazon Beauty Toys and Games

Metric R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

RecForest 0.0384 0.0194 0.0626 0.0254 0.0102 0.0046 0.0179 0.0065 0.0344 0.0254 0.0399 0.0267
w/ URI Index 0.0546 0.0270 0.0785 0.0330 0.0129 0.0062 0.0214 0.0084 0.0518 0.0371 0.0586 0.0381

DSI 0.0976 0.0519 0.1459 0.0641 0.0105 0.0050 0.0176 0.0068 0.0486 0.0345 0.0536 0.0358
w/ URI Index 0.1027 0.0560 0.1591 0.0700 0.0125 0.0058 0.0216 0.0081 0.0518 0.0373 0.0579 0.0391

NCI 0.0568 0.0276 0.1053 0.0397 0.0061 0.0028 0.0110 0.0040 0.0325 0.0206 0.0398 0.0225
w/ URI Index 0.0650 0.0312 0.1174 0.0444 0.0079 0.0037 0.0141 0.0052 0.0362 0.0220 0.0448 0.0242

TIGER 0.0376 0.0187 0.0624 0.0250 0.0092 0.0041 0.0167 0.0058 0.0322 0.0201 0.0383 0.0231
w/ URI Index 0.0546 0.0270 0.0785 0.0330 0.0129 0.0062 0.0214 0.0084 0.0509 0.0360 0.0582 0.0373

DR 0.0604 0.0358 0.0829 0.0415 0.0105 0.0049 0.0190 0.0075 0.0429 0.0271 0.0478 0.0295
w/ URI index 0.1124 0.0589 0.1533 0.0692 0.0125 0.0058 0.0203 0.0080 0.0523 0.0312 0.0607 0.0384

URI 0.1793 0.0925 0.2594 0.1127 0.0157 0.0067 0.0294 0.0097 0.0573 0.0373 0.0685 0.0401

In this section, we address RQ1 by comparing the overall performance of URI against baseline
methods using Recall@10, Recall@20, NDCG@10, and NDCG@20. Additionally, we replace all
baselines’ original indices with the index constructed by URI while keeping their model structures
unchanged. Table 1 summarizes all results, from which we make the following observations.

URI outperforms all generative retrieval methods significantly across all datasets. For Recall@10,
URI improves upon the best baseline by 83.7%, 49.5%, and 33.6% on the KuaiSAR, Beauty, and
Toys and Games datasets, respectively. On the KuaiSAR dataset, URI achieves over a 100% im-
provement compared to most baselines. This is because the text in the dataset is token-anonymized,
preventing the direct use of pre-trained large language models for representation extraction. Con-
sequently, we train a small language model from scratch on the limited data, restricting the effec-
tiveness of indices built with these representations and resulting in poorer baseline performance.
However, URI significantly mitigates this issue by learning query-item correlations, demonstrating
the potential of constructing indices directly from the interaction space of queries and items. Ad-
ditionally, when all baselines use the index constructed by URI, performance improves to varying
degrees, indicating URI’s index is highly effective across different model structures.

5.3 EFFECTIVENESS ANALYSIS

We analyze the reasons behind URI’s performance from multiple perspectives to answer RQ2.

APE Comparison We evaluated the APE of indices constructed by different methods, including
Random, K-means, VQ-VAE (Van Den Oord et al., 2017), RQ-VAE (Zeghidour et al., 2021), and
URI. For each dataset, we select different values of k under a typical two-layer setting, allowing
us to compare indices with varying partition granularities. Since the KuaiSAR dataset has a larger
number of items, we chose relatively larger values of k. All results are summarized in Table 2. As
shown in the table, the APE values of the indices constructed by URI are significantly lower than
those of other methods, indicating that related items for the same query are more tightly clustered.
This leads to more precise retrieval performance after training.

Token Consistency In previous index construction methods, clusters are named randomly. For
multi-layer indices, this approach has little impact on the first layer. However, for subsequent lay-
ers, relationships between clusters at different levels are not considered during naming, and tokens
are randomly assigned, limiting the index’s effectiveness. In URI, layer-by-layer training allows
information from all previously constructed tokens to be incorporated when constructing the current
layer. Consequently, during naming, similar clusters are assigned the same token. To demonstrate
this, we design two variants of the URI index, in which token naming is degraded.

• Variant 1: A uniform token transformation is applied to all tokens in the final layer, meaning
transformations are the same for nodes under different parent nodes.

• Variant 2: A transformation is applied to tokens in the final layer, but transformations differ for
nodes under different parent nodes.
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Table 2: Comparison of the APE values for indices constructed by different methods.
Dataset k Random Kmeans VQ-VAE RQ-VAE URI

KuaiSAR
32 1.222 0.915 0.922 0.909 0.654
64 1.224 1.037 1.042 1.032 0.954
128 1.224 1.141 1.144 1.143 1.135

Beauty
16 1.127 1.080 1.088 1.075 0.988
32 1.134 1.106 1.112 1.110 1.040
64 1.135 1.125 1.128 1.126 1.107

Toys and Games
16 1.756 1.662 1.672 1.662 1.594
32 1.770 1.729 1.733 1.728 1.660
64 1.771 1.763 1.765 1.761 1.728

Figure 5 illustrates these two variants. Note that both variants retain the same APE as the original
URI index. Table 3 presents the Recall@10 results. Compared to the original index, the poorer
results of Variant 1 suggest that the original index maintains consistency across clusters with the
same token across different layers. Furthermore, the worse performance of Variant 2 compared to
Variant 1 indicates that, within the same layer, token naming for nodes under different parent nodes
also exhibits consistency.

0 1 2 3

0 1 2 3 0 1 2 3

BOS

2 1 3 0 2 1 3 0

0 1 2 3

0 1 2 3 0 1 2 3

BOS

2 1 3 0 1 3 0 2

Variant1 Variant2

Figure 3: Variant Illustration.

Table 3: Recall@10 of URI and variants
Dataset KuaiSAR Beauty Toys and Games

Variant 1 0.1633 0.0138 0.0561
Variant 2 0.1581 0.0124 0.0519

Original URI 0.1793 0.0157 0.0573

Adaptive Weight in Lbalance w In Equation 10, we propose adaptive weight loss Lbalance. Here,
we demonstrate its necessity through experiments. Table 4 shows that removing the adaptive weight
significantly declines URI’s performance. When training with the original Lbalance, many tokens
are ignored, resulting in an ”empty bucket” state. Introducing adaptive weight ensures the optimizer
focuses on these buckets.

Table 4: Ablation results of Recall@10 for Adaptive Weight and Hard Negative Mining
Dataset KuaiSAR Beauty Toys and Games

w/o Adaptive Weight 0.1301 0.0122 0.0517
w/o Hard Negative Mining 0.1528 0.0143 0.0558

Original URI 0.1793 0.0157 0.0573

Hard Negative Mining In Section 4.3, we propose incorporating hard negative samples during
ranker training by sampling from the sibling nodes of the positive sample’s node. The Recall@10
results in Table 4 indicate that removing hard negative samples decreases URI’s overall perfor-
mance, demonstrating the effectiveness of hard negative sampling. This also provides evidence of
the exploitable similarity among sibling nodes within the URI index.

5.4 HYPER-PARAMETER SENSITIVITY ANALYSIS

In this section, we compare results under different index hyperparameter settings to address RQ-
3. For generative retrieval models, a larger k implies more parameters and leaf nodes at the same
depth L, resulting in finer-grained item partitioning and more possible item combinations during
retrieval, thus increasing the model’s upper performance bound. However, finer partitioning reduces
the number of items within the same node, increasing the risk of overfitting. Therefore, it is crucial
to select k and L to balance accuracy and robustness in the index. Figure 4 shows the Recall@10
curves as the candidate set size varies under different k and L settings for the three datasets. The
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results indicate that k = 64 and L = 2 are optimal for KuaiSAR, while k = 32 and L = 2
are most suitable for Beauty and Toys and Games. Under these settings, each leaf node contains
approximately 10 to 100 items. In practice, this conclusion can guide the selection of k and L.
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Figure 4: The Recall@10 curve with respect to the number of candidate items on different indices.

5.5 CASE STUDY

In this section, we address RQ4 by observing how the index is constructed, monitoring the token
training process of KuaiSAR in the first layer with k = 4. We plot the output probability distributions
of a specific query (with search session id: 2) and its relevant positive items as pie charts after model
processing. Figure 5 shows that all probability distributions are initially uniform, indicating that the
model has no prior knowledge. As training progresses, the item distributions gradually converge to
one-hot. Finally, Item1, Item2, Item4, and Item5 are assigned to Token ’4’, while Item3 is assigned
to Token ’2’. The query’s distribution closely aligns with the expected value of these five samples’
distributions, consistent with the discussion in Section 3. In the original dataset, Item1, Item2,
Item4, and Item5 belong to the category ”Two-dimensional,” while Item3 belongs to ”Film and
Short Series.” This information is not introduced during training, indicating that the model learns
similar knowledge solely through collaborative filtering signals between the query and items.

Query Item1 Item2 Item3 Item4 Item5

0 epoch

3 epochs

5 epochs

Token ‘1’ Token ‘2’ Token ‘3’ Token ‘4’

[Two-dimensional] [Two-dimensional] [Two-dimensional] [Two-dimensional][Film and short series]

Figure 5: Case Study.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose Averaged Partition Entropy (APE), a new metric for evaluating indices in
generative models, and introduce a novel generative retrieval framework, URI, where model train-
ing and index construction are completed simultaneously within the same Decoder. Compared to
previous methods, where the Decoder only memorizes an already constructed index, URI treats
the Decoder as a differentiable Indexer. Comparative experiments with baselines show that URI
achieves state-of-the-art (SOTA) performance. Analytical experiments explain why URI outper-
forms from various perspectives, including a lower APE for the index and token consistency across
layers. In the future, we will focus on developing methods to enable URI to generate multi-level
tokens simultaneously to accelerate training.
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APPENDIX

A NOTATIONS

All notations in the main text and their descriptions are summarized in Table 5.

Notation Description

x,X Query, Query set
y,Y Item, Item Set
X+

y Queries related to item y

Y+
x Items related to query x

D A Dataset consisting of X and Y
Qx The distribution of items related to x in the index
p Item-query relevance probability
m The number of queries
N The number of items
δ A tolerance level

Φ(·) The CDF of standard normal distribution
P i
Q The distribution at the i-th token of the query

P i
I The distribution at the i-th token of the item

Ci The token assigned to the item at the i-th Layer
H(a, b) Cross-entropy of a and b

H(b) Entropy of b
Uk A uniform distribution over k classes
k The width of the index (The number of tokens)
L The depth of the index (The number of Layers)

Table 5: Notations

B DATASET STATISTICS

Dataset #Query #Item # Interaction

KuaiSAR 191330 112388 1093920
Beauty 41895 15817 162713

Toys and Games 13271 25357 90557

Table 6: Dataset Statistics

We summarize the statistics of the three datasets in Table 6. Setting the tolerance level δ to 0.95 and
substituting the dataset density for p, all three datasets satisfy the conditions of Theorem 1. This
indicates that our proposed greedy algorithm is applicable to most datasets and demonstrates the
rationality of URI’s approach in simulating the greedy algorithm through machine learning.

C SUPPLEMENT

D PROOF OF THEOREM 1

Before deriving Theorem 1, we can transform the problem of recovering the allocation scheme into
a matrix equation-solving problem. Let W be the interaction matrix between queries and items,
with a size of m × N . The value at a given position is 1 if the query is related to the item, and 0
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otherwise. In a recommender system, W represents the user purchase matrix. Let H be the item
allocation matrix, with a size of N × k, where each row contains exactly one 1, and the sum of each
column is N/k. Define M = W × H , where M has a size of m × k, representing the frequency
distribution of each query over the k buckets. Thus, the problem is transformed into solving for H
given M and W . The conclusions of the theorem and the greedy algorithm are also correspondingly
transformed, as described below.

D.1 THEOREM

Theorem 2. (Correct Reconstruction Probability)

Given the following conditions:

• Tolerance Level: A tolerance level δ ∈ (0, 1).

• Parameters: Positive integers N and k, and a probability p ∈ (0, 1).

• Random Matrix W : An m × N binary matrix where each element Wr,l is independently
and identically distributed (i.i.d.), satisfying:

P (Wr,l = 1) = p, P (Wr,l = 0) = 1− p

• Structured Matrix H: An N × k binary matrix satisfying:

– Row Constraint: Each row contains exactly one 1, and all other elements are 0.
k∑

j=1

Hi,j = 1, ∀i = 1, 2, . . . , N

– Column Constraint: Each column contains exactly Nj = N
k ones (assuming N is

divisible by k).
N∑
i=1

Hi,j = Nj , ∀j = 1, 2, . . . , k

• Product Matrix M : Defined as M = W ·H .

If the number of rows m in matrix W satisfies:

m ≥
[
Φ−1(1− δ)

]2 (
1 + 2N

k p(1 + p)
)

p(1− p)

Then, using the following greedy algorithm, the probability that each row of matrix H is correctly
reconstructed is:

Pcorrect ≥ 1− δ

D.2 GREEDY ALGORITHM DESCRIPTION

For each row index i = 1, 2, . . . , N :

1. Identify Set Si: Find all rows in matrix W where the i-th column is 1.
Si = {r | Wr,i = 1}

2. Compute Vector si: For each column j = 1, 2, . . . , k, calculate the sum of corresponding
entries in matrix M :

s
(j)
i =

∑
r∈Si

Mr,j

3. Select Maximum: Determine the column j∗ with the highest sum:

j∗ = argmax
j

s
(j)
i

4. Update Matrix H: Assign the 1 in the i-th row of H to column j∗:
Hi,j∗ = 1

14
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D.3 PROOF

For a given row index i and any incorrect column j ̸= j∗ (where j∗ is the correct column), define
the difference:

∆s
(j)
i = s

(j∗)
i − s

(j)
i

Using the structure of the problem:

∆s
(j)
i = ci,i +

∑
l ̸=i

(Hl,j∗ −Hl,j)ci,l

where: ci,i is the number of rows in matrix W where column i has a value of 1. ci,l is the number
of rows in matrix W where both columns i and l have a value of 1.

(a) For ci,i:

Since ci,i counts the number of times the i-th column in W contains a 1, it can be written as:

ci,i =

m∑
r=1

Wr,i

where Wr,i is an independent Bernoulli random variable with probability p. Therefore:

- Expectation:
E[ci,i] = m · p

- Variance:
Var[ci,i] = m · p(1− p)

(b) For ci,l (when l ̸= i):

Similarly, ci,l counts the number of times both columns i and l in matrix W contain a 1. Since Wr,i

and Wr,l are independent Bernoulli variables:

- Expectation:
E[ci,l] = m · p2

- Variance:
Var[ci,l] = m · p2(1− p2)

We now calculate the expectation and variance of ∆s
(j)
i .

(a) Expectation of ∆s
(j)
i :

Using the linearity of expectation and the fact that the expectation of Hl,j∗ −Hl,j is zero (as both
are binary variables):

E[∆s
(j)
i ] = E[ci,i] = m · p(1− p)

(b) Variance of ∆s
(j)
i :

Since ci,i and ci,l are independent, the variance of ∆s
(j)
i is the sum of the variances of the terms:

Var[∆s
(j)
i ] = Var[ci,i] +

∑
l ̸=i

(Hl,j∗ −Hl,j)
2 ·Var[ci,l]

Since (Hl,j∗ − Hl,j)
2 takes values of 0 or 1 (with 1 occurring when one column contains a 1 and

the other does not), let n be the number of times (Hl,j∗ −Hl,j)
2 = 1. We have:

n ≤
(
N

k
− 1

)
+

N

k
≤ 2N

k

Thus, the variance becomes:

Var[∆s
(j)
i ] = Var[ci,i] + n ·Var[ci,l]
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Substitute the values of Var[ci,i] and Var[ci,l]:

Var[∆s
(j)
i ] = m · p(1− p) + n ·m · p2(1− p2)

By the Central Limit Theorem, since m is a fairly large number, we approximate ∆s
(j)
i as a normally

distributed variable:
∆s

(j)
i ∼ N

(
E[∆s

(j)
i ],Var[∆s

(j)
i ]
)

Thus, the probability of correct assignment is:

P
(
∆s

(j)
i > 0

)
= Φ

 E[∆s
(j)
i ]√

Var[∆s
(j)
i ]


where Φ is the CDF of the standard normal distribution.

Substitute the expressions for E[∆s
(j)
i ] and Var[∆s

(j)
i ] into the probability formula:

P
(
∆s

(j)
i > 0

)
= Φ

(
mp(1− p)√

mp(1− p) + nmp2(1− p2)

)

Simplify the Expression:

P
(
∆s

(j)
i > 0

)
= Φ

( √
mp(1− p)√

1 + np(1 + p)

)

Substitute n ≤ 2N
k , m ≥ [Φ−1(1−δ)]

2
(1+ 2N

k p(1+p))
p(1−p) :

P
(
∆s

(j)
i > 0

)
= Φ

( √
mp(1− p)√

1 + np(1 + p)

)
≥ 1− δ
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