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Abstract001

Large language models (LLMs), adopted to002
understand human language, drive the develop-003
ment of artificial intelligence (AI) web search004
agents. Compared to traditional search engines,005
LLM-powered AI search agents are capable006
of understanding and responding to complex007
queries with greater depth, enabling more accu-008
rate operations and better context recognition.009
However, little attention and effort has been010
paid to the web search, which results in that011
the capabilities of open-source models have not012
been uniformly and fairly evaluated. The dif-013
ficulty lies in lacking three aspects: an unified014
agent framework, an accurately labeled dataset,015
and a suitable evaluation metric. To address016
these issues, we propose a general-purpose and017
training-free web search agent by level-aware018
navigation, called Level-Navi Agent, accom-019
panied by a well-annotated dataset (Web24)020
and a suitable evaluation metric. Level-Navi021
Agent can think through complex user ques-022
tions and conduct searches across various levels023
on the internet to gather information for ques-024
tions. Meanwhile, we provide a comprehensive025
evaluation of state-of-the-art LLMs under fair026
settings. To further facilitate future research,027
source code will be made publicly available.028

1 Introduction029

Information gathering is a key step in the inter-030

action between humans and their environment.031

Search engines are widely used for information032

acquisition (Brin and Page, 1998). With the de-033

velopment of large language models (LLMs) (Ye034

et al., 2023) (Achiam et al., 2023), AI search agents035

based on LLMs have become an emerging and036

challenging research topic (Nakano et al., 2021).037

Retrieve-Augmented Generation (RAG) is used to038

improve the precision of model responses (Ram039

et al., 2023). Existing methods (Chan et al., 2024)040

(Siriwardhana et al., 2023) leverage the powerful041

language capabilities of LLMs to perform retrieval042
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Figure 1: Pipeline of our Level-Navi Agent.

based on user queries and use the retrieved relevant 043

texts to improve the reliability of the model’s an- 044

swers. This advanced ability to understand and ana- 045

lyze questions exceeds that of traditional search en- 046

gines, driving a revolutionary transformation in AI- 047

powered search (Spatharioti et al., 2023). However, 048

these methods do not further explore how LLMs 049

handle complex questions. The simple text retrieval 050

approach cannot fully align with web search sce- 051

narios. And irrelevant texts retrieved have negative 052

impacts on the quality of responses (Asai et al., 053

2023). 054

Therefore, refined methods (Chen et al., 055

2024)(Reddy et al., 2023) are proposed to construct 056

AI search agents. Mindsearch (Chen et al., 2024) 057

employs the concept of Directed Acyclic Graphs to 058

structure the agent’s plan, breaking down complex 059

reasoning questions with the aim of simulating the 060

human mind, thereby striving to deliver more com- 061

prehensive answers. Infogent (Reddy et al., 2024) 062

utilizes an information aggregation approach to up- 063

date the retrieved information. Determine whether 064

the retrieved texts meet the required conditions 065

and improve the accuracy of responses by control- 066

ling the quality of the information. These methods 067

achieve promising results under detailed process 068

planning. However, the research community still 069

lacks comprehensive studies that can genuinely re- 070

veal the true capabilities of various open-source and 071

closed-source LLMs in the web search scenario. 072

Existing LLM-driven search agents require fine- 073

tuning or rely on high-performance close-source 074

models, making it difficult for researchers to inves- 075
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Figure 2: The overall framework of our proposed Level-Navi Agent.

tigate the capabilities of various LLMs due to their076

costs. Datasets for evaluating the capabilities of077

LLMs in Chinese scenarios are constructed, such078

as CMMLU (Li et al., 2023) and AlignBench (Liu079

et al., 2024). The advent of these datasets shows080

the demand for model evaluation in real-world Chi-081

nese contexts. However, in the field of web search,082

a suitable Chinese web search dataset for quantita-083

tive evaluation is lacking. Meanwhile, we reveal084

that traditional metrics like F1 and ROUGE (Lin,085

2004) do not consider the semantic information086

across various versions, which poses challenges087

when comparing the performance of different mod-088

els.089

To address the aforementioned issues, we pro-090

pose a training-free AI search agent framework for091

both open-source and close-source models, as il-092

lustrated in Fig. 1. Meanwhile, we provide a new093

Chinese web search dataset and a new evaluation094

metric to evaluate the performance of LLMs in095

the Chinese task. Overall, our contributions are as096

follows.097

• We propose a general-purpose training-free098

web search agent framework, called Level-099

Navi Agent. The question from the user is100

first analyzed and decomposed by the Plan-101

ner. Then the sub-questions are provided to102

the Searcher, which will collect information at103

different levels. By iterating this step, Level- 104

Navi Agent eventually collects enough infor- 105

mation to answer the initial question. Level- 106

Navi Agent does not require training, allowing 107

any open-source LLM to be deployed. 108

• We provide a well-annotated benchmark 109

dataset (Web24) for Chinese web search. 110

Our dataset is capable of a diverse and de- 111

tailed classification of questions and sources, 112

all sourced entirely from the Chinese inter- 113

net. Considering the limitations of traditional 114

metrics, we adopted four reasonable met- 115

rics to evaluate the ability of different LLMs 116

when execute the Level-Navi Agent. Through 117

our benchmark, the performance of different 118

LLMs for AI web search is clearly presented. 119

• We reveal the factors that limit model per- 120

formance in executing web search agent 121

tasks. First, we find that the model exhibits 122

an “overconfidence" phenomenon, where it re- 123

frains from calling functions for web searches 124

even when it does not know the answer, lead- 125

ing to incorrect responses. Second, the model 126

demonstrates low “task fidelity" during task 127

execution, meaning it fails to fully understand 128

our instructions, resulting in non-compliant 129

answers and poor response quality. 130
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2 Level-Navi Agent131

This section introduces the details of our Level-132

Navi Agent, which mainly contains the Planning133

Agent and Level-info Agent. The overall structure134

of our Level-Navi Agent is shown in Fig. 2135

2.1 Planning Agent136

As a key component in our Level-Navi Agent, the137

Planner directly affects the overall performance of138

the web search process. Our Planning Agent plans139

the trajectory path by chain of thought (Wei et al.,140

2022) and iterative refinement. One the one hand,141

when the user inputs a question, our Agent first142

understands and breaks down the problem through143

chain of thought. Noticing the difference from144

the conventional chain of thought steps (Jin et al.,145

2024; Wang et al., 2023), we let the LLM first146

think through and determine the information that147

should be collected next, then generate a list of148

sub-questions that can be searched in parallel at149

this stage. The main reason is that in scenarios150

where complex reasoning is required, a complete151

plan may seem very clear. However, since we rely152

on another Agent to gather information, the content153

obtained each time is not necessarily sufficient or154

complete, which involves dynamically adjusting155

the plan every time. To avoid such a complex and156

redundant process design, we use prompt to enforce157

that the Planning Agent only giving the list of sub-158

question that needed to be obtained in the next step.159

After obtaining feedback from each step, it repeats160

this process iteratively until the Agent judges that161

the current information is sufficient to answer the162

question. We demonstrate the detailed process of163

our Planning Agent in Algorithm 1.164

Our Planning Agent utilizes prompt engineering,165

making the framework general-purpose and fine-166

tuning-free. This design ensures compatibility with167

any open-source or closed-source model.168

2.2 Level-Info Agent169

As depicted in the right of Fig. 2, the primary170

task of the Searcher is to obtain relevant informa-171

tion feedback to the Planner by conducting online172

searches based on the sub-problems received. To173

enrich the information obtained while enhancing174

its flexibility, we construct an Agent that dynami-175

cally simulates the human information acquisition176

process through a chain of thought, which we call177

the Level-Info Agent.178

As its name suggests, the Level-Info Agent is ca-179

pable of dynamically obtaining information at vari- 180

ous levels and can return results at any moment, sig- 181

nificantly improving the agent’s operational speed. 182

Firstly, when faced with an input sub-query, the 183

Level-Info Agent determines whether the informa- 184

tion can be answered using its own knowledge. If 185

it can, it returns the result directly; otherwise, it 186

proceeds with a web search. Then, the Agent will 187

call the web search function to return the results 188

of the online search. At this step, the returned ma- 189

terials will only be the summary parts of the web 190

pages. Here, we also have the Agent think and 191

determine whether the current materials obtained 192

can answer the sub-query. If the information is suf- 193

ficient, it will provide a direct response; otherwise, 194

it will proceed to the next step of opening relevant 195

websites. When performing this step, we also use 196

function calls to let the model select and open rel- 197

evant websites. After obtaining the information 198

from the web page, it will summarize and respond. 199

Our Level-Info Agent has up to three levels for 200

providing information feedback, this avoids the 201

need to always read a large number of websites, 202

which consumes a significant amount of tokens, 203

and reduces the cost of search engine APIs. 204

Algorithm 1 The process of Planning Agent
Input: Q for user’s question
Output: R for agent’s response
Variables: H denotes the set of his-
tory context, M is the collected informa-
tion.

1: H ← ∅
2: Add Q to H
3: while True do
4: Result← CoT (H)
5: if Result == "no" then
6: M ← ∅
7: Qsub← Result.sub-question
8: parallel for each q ∈ Qsub do
9: M [q]← Searcher(q)

10: end parallel
11: Add M to H
12: else
13: R← Result.response
14: break
15: end if
16: end while
17: Return R
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Figure 3: Source, domain and type distribution of
Web24 Dateset.

Domain Simp. Cond. Comp. Multi-hop All

Finance 23 23 22 22 90
Gaming 28 23 23 17 91
Sports 42 18 21 19 100
Movie 29 33 24 14 100
Event 23 27 22 28 100

All 145 124 112 100 481

Table 1: Distribution of problem domains and types.

3 Benchmark Construction205

This section presents the benchmark and evaluation206

metrics we constructed. The Web24 dataset, which207

is specifically designed for web search agents, is208

introduced in Section 3.1. Accordingly, a new eval-209

uation metric which is more suitable for web search210

agents is introduced in Section 3.2.211

3.1 Data Composition212

Our Web24 categorizes question-answer pairs into213

fine-grained divisions based on sources, domains,214

and types. In the process of evaluating the perfor-215

mance of web search agents, we aim to minimize216

the influence of the model’s internal knowledge to217

genuinely assess the search capabilities. Therefore,218

we ensure that the majority of question-answer219

pairs are sourced from the news, as illustrated in220

Fig. 3. All cases sourced from the news are entirely221

from news reports on the Chinese internet before222

December 2024.223

To evaluate the performance of web search224

agents, The impact of models’ internal knowledge225

to accurately assess their search capabilities should 226

be minimized. To achieve this, we construct our 227

benchmark primarily using question-answer pairs 228

derived from news sources (Fig. 3). All news- 229

based cases are exclusively drawn from Chinese 230

internet news reports published prior to December 231

2024. 232

To realistically simulate real-world web search 233

scenarios, we organize our question-answer pairs 234

into five distinct domains: Finance, Gaming, 235

Sports, Movies, and Events. Each domain is care- 236

fully designed to represent typical user information 237

needs. Furthermore, to better characterize the struc- 238

ture of these question-answer pairs, we classify all 239

questions into four types: simple, conditional, com- 240

parative, and multi-hop. The distribution of these 241

domains and question types is presented in Table 1. 242

The specific characteristics of each question type 243

are detailed below: 244

• Simple Questions: Direct queries seeking a 245

single and factual piece of information. For 246

example, “When was the Chinese national 247

anthem released?” 248

• Conditional Questions: Queries that incor- 249

porate specific temporal or situational con- 250

straints, requiring the answer to satisfy given 251

conditions. For example, “when was the an- 252

nouncement of the third batch of China’s 253

Time-Honored Brands?” 254

• Comparative Questions: Queries that neces- 255

sitate analyzing and contrasting attributes be- 256

tween two or more distinct entities. For ex- 257

ample, “who has a higher career total points, 258

Kobe or LeBron?” 259

• Multi-hop Questions: Complex queries that 260

demand iterative reasoning across multiple in- 261

formation sources, where answering requires 262

chaining together several intermediate search 263

and inference steps. For example, “where is 264

the headquarters of the company of the courier 265

who collected the 1500 billionth package this 266

year?” 267

3.2 Evaluation Metrics 268

To comprehensively assess the capabilities of 269

LLMs in performing web search tasks, we con- 270

sider multiple aspects and use four scoring metrics 271

to evaluate the capabilities holistically. Detailed 272

description of the evaluation metrics are detailed 273

as follows. 274
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Correctness Scores (Sco). In order to compre-275

hensively assess the precision of the response com-276

pared to ground truth answers, we employ an LLM277

as an evaluator to assess the consistency and preci-278

sion of the generated answers compared to ground279

truth answers (Yang et al., 2024). We use this eval-280

uator to score the responses on a scale of 1 to 10,281

and then normalize these scores to a range of 0 to282

1.283

Semantic Similarity Scores (Ssimi). By using284

an embedding model (Xiao et al., 2024), we can285

directly calculate the vectors of discrete tokens286

mapped to a high-dimensional continuous space,287

and directly compute the similarity between text288

vectors through mathematical methods.289

Relevance Scores (Srele). This metric primarily290

examines the model’s faithfulness to the task ex-291

ecution trajectory (Es et al., 2024). Based on the292

responses generated by the LLM, another evalua-293

tion LLM will generate multiple questions that are294

inferred from the responses, and then calculate the295

semantic similarity between these inferred ques-296

tions and the originally given questions, then the297

maximum value is taken as the final score.298

Searcher Count (Sc). This metric assesses the299

ability of LLMs to understand and break down300

questions. We have counted the number of times301

the Level-Info Agent is invoked in each task and302

used the average number of invocations as an eval-303

uation metric.304

Ultimately, we express the total score (1-100) as305

a weighted sum of the aforementioned four metrics.306

The formula for calculating the total score is as307

follows:308

Sfinal = 60·Sco+15·Ssimi+15·Srele+10·e−Sc .
(1)309

4 Experiments and Analysis310

In this section, we will present the experimental311

results and analysis of our constructed framework,312

benchmark and evaluation metric. We utilized 16313

models to operate Level-Navi Agent, encompass-314

ing open-source and closed-source models, which315

are316

a) Open-source. The open-source models we317

used primarily from the Chinese community, in-318

cluding InternLM series (Cai et al., 2024), GLM-4319

(GLM et al., 2024), Qwen series (Bai et al., 2023)320

and Llama series (AI@Meta, 2024)321

b) Closed-source. For closed-source models,322

we utilized ERNIE-3.5 from Baidu, Moonshot-v1323

from Moonshot AI, and GPT-4o (Achiam et al., 324

2023) from OpenAI. Note that Deepseek-V2.5 325

(DeepSeek-AI, 2024) is an open-source model, but 326

due to its large parameter size, we call it in the form 327

of an API. 328

Besides, we also evaluate the Reasoning Model 329

to perform our tasks, including both DeepSeek- 330

R1 (Guo et al., 2025) and its distilled version 331

DeepSeek-R1-Distill-Qwen-32B. 332

4.1 Experimental Results of Our Agent on the 333

Web24 Dataset 334

Quantitative results presented in Tables 2 and 3 re- 335

veals that Qwen2.5-72B and DeepSeek-V3 demon- 336

strate superior performance. Through systematic 337

analysis of all experimental results, we identify 338

the following critical findings regarding the perfor- 339

mance Web Search Agent: 340

Diminishing Marginal Returns of Model Param- 341

eters. Focusing on the scores of the Qwen series 342

models in Table 2, doubling the size from 3B to 343

14B improved performance by 6 points, but from 344

14B to 72B, it only gained 3 points. From the re- 345

sults in Table 3, we found that although the perfor- 346

mance of closed-source models is quite good, there 347

is not a significant gap with Qwen2.5-72B. From 348

the analysis above, it can be seen that: To further 349

enhance the performance of LLMs in executing 350

web search tasks, researchers should focus on how 351

to obtain higher-quality information, since the di- 352

minishing marginal effect of model parameters is 353

quite clear. 354

Few-shot Prompts Enhance Pass Rates. For all 355

models, we implemented three types of prompt 356

methods: zero-shot, one-shot, and three-shot 357

(Brown et al., 2020). We calculated the number of 358

error responses for each evaluation and compared 359

it with the total number of the dataset to derive 360

the pass rate. The chain of thought method and 361

few-shot prompt combination have been proven 362

effective in previous research (Liang et al., 2023) 363

(Ma et al., 2023), this conclusion is also reflected in 364

our experiments. From Table 2, it can be seen that 365

the three-shot method significantly improved the 366

pass rate of the Agent compared to the zero-shot 367

approach. In general, we recommend providing 368

few-shot prompts when executing agent tasks. This 369

approach is not only simple and cost-effective but 370

also enhances the model’s performance in various 371

aspects. 372

From the results in Table 4, we can observe that 373

the final score of DeepSeek-R1 is slightly lower 374
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Model Few-shot Sfinal Sco Srele Ssimi Sc Pass rate

Internlm2.5-7B
zero-shot 49.48 0.47 0.81 0.56 2.62 0.92
one-shot 47.76 0.45 0.79 0.56 2.98 0.91

three-shot 49.31 0.47 0.8 0.56 2.65 0.95

Internlm2.5-20B
zero-shot 55.02 0.57 0.80 0.57 3.62 0.93
one-shot 57.70 0.61 0.81 0.58 3.68 0.96

three-shot 55.43 0.57 0.80 0.57 2.69 0.97

GLM-4-9B
zero-shot 63.25 0.66 0.83 0.67 2.16 0.94
one-shot 40.82 0.34 0.79 0.54 3.05 0.89

three-shot 43.43 0.37 0.81 0.56 2.69 0.92

Qwen2.5-3B
zero-shot 60.17 0.62 0.84 0.64 2.56 0.85
one-shot 54.28 0.54 0.82 0.57 2.27 0.86

three-shot 60.45 0.63 0.84 0.59 2.12 0.86

Qwen2.5-7B
zero-shot 63.12 0.65 0.85 0.60 1.44 0.99
one-shot 65.01 0.69 0.84 0.61 1.68 1.00

three-shot 65.84 0.70 0.84 0.62 1.64 1.00

Qwen2.5-14B
zero-shot 68.34 0.75 0.84 0.61 1.84 0.99
one-shot 68.45 0.75 0.84 0.61 1.77 1.00

three-shot 68.39 0.75 0.84 0.61 1.81 1.00

Qwen2.5-32B
zero-shot 68.74 0.76 0.83 0.61 1.87 1.00
one-shot 69.05 0.76 0.84 0.61 1.77 1.00

three-shot 68.82 0.76 0.83 0.61 1.82 1.00

Qwen2.5-72B
zero-shot 69.99 0.78 0.83 0.60 1.75 1.00
one-shot 69.48 0.77 0.83 0.60 1.70 1.00

three-shot 71.30 0.80 0.83 0.60 1.69 1.00

Llama3.1-8B
zero-shot 37.02 0.30 0.74 0.51 3.60 0.88
one-shot 34.54 0.28 0.68 0.49 3.97 0.92

three-shot 32.45 0.27 0.61 0.46 3.89 0.93

Llama3.1-70B
zero-shot 41.56 0.35 0.76 0.54 2.24 0.57
one-shot 52.28 0.50 0.81 0.60 2.18 0.80

three-shot 51.02 0.48 0.81 0.61 2.39 0.90

Table 2: Open Source Model Results with GPT-4o Evaluation.

than that of Deepseek-V3. Such results demon-375

strate the reasoning model is slightly inferior to the376

regular model in general tasks such as multi-turn377

conversations and function calling task (Guo et al.,378

2025). The final score of its distilled model mainly379

decreased due to a lack of correctness, which re-380

flects that distillation primarily reduces the model’s381

judgment capability. Overall, although reasoning382

models demonstrate strong capabilities in complex383

problems and planning, they do not show particu-384

lar advantages in general tasks. Considering their385

substantial token consumption, whether to use rea-386

soning models in similar tasks remains a subject of387

debate. 388

4.2 Comparison with Other Products 389

We compare our Agent (Qwen2.5-72B) with estab- 390

lished market products, including Chinese LLM 391

services Kimi and Doubao, and GPT-4o. We test 392

100 web24 dataset examples for answers on their 393

websites. As shown in Fig. 4, the scores for cor- 394

rectness, relevance, and semantic similarity were 395

similar across the three LLM products. Kimi edged 396

out slightly in all metrics, but the differences were 397

not significant. Overall, our Agent matched com- 398

mercial products in these metrics, such results vali- 399
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Model Few-shot Sfinal Sco Srele Ssimi Sc Pass rate

Deepseek-V3 * three-shot 74.70 0.84 0.85 0.62 1.49 1.00

ERNIE-3.5 three-shot 72.19 0.80 0.87 0.64 1.87 1.00

Moonshoot-v1 three-shot 70.89 0.77 0.87 0.64 1.59 0.99

GPT-4o three-shot 71.33 0.79 0.85 0.62 1.67 1.00
* This model is open-source, but due to its large parameter volume, we call it using the API.

Table 3: Close Source Model Results with Qwen2.5-72B Evaluation.

Model Few-shot Sfinal Sco Srele Ssimi Sc Pass rate

DeepSeek-R1 three-shot 69.50 0.78 0.75 0.61 1.47 1.00

DeepSeek-R1-Distill-Qwen-32B three-shot 63.87 0.68 0.80 0.61 1.65 1.00

Table 4: Reasoning Model Results with GPT-4o Evaluation.

date the effectiveness of our proposed Level-Navi400

Agent framework.401

4.3 Analysis of Metrics402

Limitation of Traditional Metrics. Table 5403

presents the results of model responses using tra-404

ditional methods. By comparing and analyzing405

the performance of LLMs with different param-406

eter sizes on the same task, we discover the in-407

crease in model parameters do not universally lead408

to an improvement in F1 and ROUGE scores and409

even caused declines. Because traditional F1 and410

ROUGE methods are based on token matching and411

do not consider semantic information, more de-412

tailed answers tend to deviate from brief standard413

answers, leading to lower scores. Only the Re-414

call metric benefits from more comprehensive re-415

sponses. These phenomena all demonstrate the416

limitations of traditional metrics. Meanwhile, this417

inspires us to design a metric that is more suitable418

for evaluating the task under study.419

The effectiveness of our metrics. From the quanti-420

tative evaluation results in Tables 2 and 3, it can be421

observed that using our metrics, the performance422

distribution of various models aligns with empirical423

knowledge and common sense. In terms of Cor-424

rectness Scores, the advantage brought by model425

parameter size is clearly demonstrated. Mean-426

while, Semantic Similarity Scores and Relevance427

Scores consistently reflect the capability differ-428

ences among models. Through the overall scores,429

anyone can intuitively discern the performance dif-430

ferences between models. These findings strongly431

validate the effectiveness of the quantitative evalu-432

Figure 4: Comparison with other commercial products
based on our metrics.

Model ROUGE F1 Recall

Internlm2.5-7B 0.12 0.09 0.69
Internlm2.5-20B 0.12 0.09 0.74

Qwen2.5-3B 0.20 0.18 0.71
Qwen2.5-7B 0.23 0.21 0.74
Qwen2.5-14B 0.19 0.16 0.78
Qwen2.5-32B 0.19 0.16 0.78
Qwen2.5-72B 0.16 0.12 0.81

Table 5: Using traditional metrics (Under three-shot
method).

ation metric proposed in this paper. 433

Therefore, we believe that using LLM-based 434

evaluation methods (Zhuge et al., 2024) rather 435

than traditional ones in open-ended tasks like web 436

search Q&A can better reflect real-world condi- 437

tions. 438

4.4 Error Analysis and Discussion 439

By error analysis and experiments, we summarize 440

the shortcomings in models and evaluation meth- 441

ods. 442
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Figure 5: Comparison of Searcher and Function call
counts, the percentage at the bottom represent the
Searcher count / Function call count(0 for zero-shot;
1 for one-shot; 3 for three-shot).

Overconfidence Phenomenon in Web Search443

Function Usage. The quantitative evaluation re-444

sults in Table 2 show the scores of GLM-4-9B are445

lower than expected. We uncovered the reason for446

this phenomenon by calculating the average Search447

Count invoked per task and the actual number of448

Web Search Function calls. In Fig. 5, we com-449

pared the gap between GLM-4 and Qwen2.5-7B450

on the aforementioned metrics. We observed that451

Qwen2.5-7B’s function call rate reached about 90%452

of the Agent invocations, while GLM-4-9B’s ra-453

tio dropped from 30% to a single-digit percentage.454

Given that 70% of the answers in the dataset come455

from news sources, GLM-4-9B cannot possibly456

answer correctly without invoking web searches.457

We refer to this phenomenon as “Overconfidence"458

(Huang et al., 2024).459

The issue indicates that LLMs might overesti-460

mate their question-answering abilities during train-461

ing, overlooking the need for external resources in462

certain situations (Xiong et al., 2024). To address463

this overconfidence, we recommend that develop-464

ers balance positive and negative examples in the465

training dataset to improve LLMs’ function-calling466

capabilities.467

Low Task Fidelity in Conducting Chinese Tasks.468

When assessing LLM agents, we prioritize whether469

the model comprehends and adheres to instructions470

to answer questions. We call it “Task Fidelity",471

which reflects the model’s faithfulness in executing472

instructions. The Relevance Scores do not take into473

account the correctness of the model’s response, so474

it can reflect the end-to-end Task Fidelity.475

In Table 2, the relevance scores of Llama3.1-8B476

did not behave as expected compared to other mod-477

Model Few-shot Values (%)

Llama3.1-8B
zero-shot 25.16
one-shot 27.86

three-shot 23.64

Llama3.1-70B
zero-shot 2.08
one-shot 0.42

three-shot 0.42

Table 6: Statistics of Non-compliant Responses.

els; instead, they fluctuated significantly. Upon 478

examining the outputs of the Llama 3.1 series mod- 479

els, we found that a considerable portion of the re- 480

sponses did not fully comply with our instructions, 481

with some incorrectly mixing the given instructions 482

with the answers. Table 6 more detailedly reflects 483

this type of non-compliant response. The introduc- 484

tion of the few-shot method did not improve this 485

issue for Llama3.1-8B, only Llama3.1-70B showed 486

improvement. 487

We view non-compliant responses as indicating 488

low Task Fidelity. The LLM’s struggle to grasp the 489

intent of instructions in lengthy Chinese contexts 490

can greatly impair task performance. Developers 491

should focus on ensuring smaller LLMs to maintain 492

the multilingual ability as bigger ones. 493

5 Conclusion 494

In this paper, we introduce the Level-Navi Agent 495

and a novel benchmark for web search tasks. The 496

Level-Navi Agent offers an innovative solution to 497

web search challenges through the collaboration 498

of multiple agents and a hierarchical approach to 499

reasoning and searching. Starting from the Chinese 500

open source-community, we employed reasonable 501

metrics to comprehensively assess the performance 502

of various LLMs in executing web search tasks. 503

This analysis sheds light on the true capabilities of 504

current LLMs when performing web search tasks 505

within the Chinese Internet. Meanwhile, we built a 506

benchmark that can be used for web search agents 507

through manual annotation, which may facilitate 508

the evaluation and application of various models. 509

Through data-driven error analysis, we identify the 510

limitations of LLMs in handling web search tasks 511

and provide recommendations for improvement, 512

contributing to the advancement of this field. 513
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Limitations514

While our proposed Level-Navi Agent provide a515

comprehensive framework for evaluating LLM-516

based web search agents, there are several limi-517

tations worth noting: 1) Although we design a hier-518

archical approach to retrieve web information, the519

differences in capabilities among various search520

engines are not reflected. How to construct more521

fine-grained information retrieval remains a worth-522

while research question; 2) Our Web24 dataset cov-523

ers news information from multiple domains, but it524

does not include academic papers as information525

sources. This aspect could be further explored in526

future research.527
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