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Abstract

Large language models (LLMs), adopted to
understand human language, drive the develop-
ment of artificial intelligence (Al) web search
agents. Compared to traditional search engines,
LLM-powered Al search agents are capable
of understanding and responding to complex
queries with greater depth, enabling more accu-
rate operations and better context recognition.
However, little attention and effort has been
paid to the web search, which results in that
the capabilities of open-source models have not
been uniformly and fairly evaluated. The dif-
ficulty lies in lacking three aspects: an unified
agent framework, an accurately labeled dataset,
and a suitable evaluation metric. To address
these issues, we propose a general-purpose and
training-free web search agent by level-aware
navigation, called Level-Navi Agent, accom-
panied by a well-annotated dataset (Web24)
and a suitable evaluation metric. Level-Navi
Agent can think through complex user ques-
tions and conduct searches across various levels
on the internet to gather information for ques-
tions. Meanwhile, we provide a comprehensive
evaluation of state-of-the-art LLMs under fair
settings. To further facilitate future research,
source code will be made publicly available.

1 Introduction

Information gathering is a key step in the inter-
action between humans and their environment.
Search engines are widely used for information
acquisition (Brin and Page, 1998). With the de-
velopment of large language models (LLMs) (Ye
etal., 2023) (Achiam et al., 2023), Al search agents
based on LLMs have become an emerging and
challenging research topic (Nakano et al., 2021).
Retrieve-Augmented Generation (RAG) is used to
improve the precision of model responses (Ram
et al., 2023). Existing methods (Chan et al., 2024)
(Siriwardhana et al., 2023) leverage the powerful
language capabilities of LLMs to perform retrieval
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Figure 1: Pipeline of our Level-Navi Agent.

based on user queries and use the retrieved relevant
texts to improve the reliability of the model’s an-
swers. This advanced ability to understand and ana-
lyze questions exceeds that of traditional search en-
gines, driving a revolutionary transformation in Al-
powered search (Spatharioti et al., 2023). However,
these methods do not further explore how LLMs
handle complex questions. The simple text retrieval
approach cannot fully align with web search sce-
narios. And irrelevant texts retrieved have negative
impacts on the quality of responses (Asai et al.,
2023).

Therefore, refined methods (Chen et al.,
2024)(Reddy et al., 2023) are proposed to construct
Al search agents. Mindsearch (Chen et al., 2024)
employs the concept of Directed Acyclic Graphs to
structure the agent’s plan, breaking down complex
reasoning questions with the aim of simulating the
human mind, thereby striving to deliver more com-
prehensive answers. Infogent (Reddy et al., 2024)
utilizes an information aggregation approach to up-
date the retrieved information. Determine whether
the retrieved texts meet the required conditions
and improve the accuracy of responses by control-
ling the quality of the information. These methods
achieve promising results under detailed process
planning. However, the research community still
lacks comprehensive studies that can genuinely re-
veal the true capabilities of various open-source and
closed-source LLMs in the web search scenario.

Existing LLM-driven search agents require fine-
tuning or rely on high-performance close-source
models, making it difficult for researchers to inves-
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Figure 2: The overall framework of our proposed Level-Navi Agent.

tigate the capabilities of various LLMs due to their
costs. Datasets for evaluating the capabilities of
LLMs in Chinese scenarios are constructed, such
as CMMLU (Li et al., 2023) and AlignBench (Liu
et al., 2024). The advent of these datasets shows
the demand for model evaluation in real-world Chi-
nese contexts. However, in the field of web search,
a suitable Chinese web search dataset for quantita-
tive evaluation is lacking. Meanwhile, we reveal
that traditional metrics like F1 and ROUGE (Lin,
2004) do not consider the semantic information
across various versions, which poses challenges
when comparing the performance of different mod-
els.

To address the aforementioned issues, we pro-
pose a training-free Al search agent framework for
both open-source and close-source models, as il-
lustrated in Fig. 1. Meanwhile, we provide a new
Chinese web search dataset and a new evaluation
metric to evaluate the performance of LLMs in
the Chinese task. Overall, our contributions are as
follows.

¢ We propose a general-purpose training-free
web search agent framework, called Level-
Navi Agent. The question from the user is
first analyzed and decomposed by the Plan-
ner. Then the sub-questions are provided to
the Searcher, which will collect information at

different levels. By iterating this step, Level-
Navi Agent eventually collects enough infor-
mation to answer the initial question. Level-
Navi Agent does not require training, allowing
any open-source LL.M to be deployed.

* We provide a well-annotated benchmark
dataset (Web24) for Chinese web search.
Our dataset is capable of a diverse and de-
tailed classification of questions and sources,
all sourced entirely from the Chinese inter-
net. Considering the limitations of traditional
metrics, we adopted four reasonable met-
rics to evaluate the ability of different LLMs
when execute the Level-Navi Agent. Through
our benchmark, the performance of different
LLMs for Al web search is clearly presented.

* We reveal the factors that limit model per-
formance in executing web search agent
tasks. First, we find that the model exhibits
an “overconfidence" phenomenon, where it re-
frains from calling functions for web searches
even when it does not know the answer, lead-
ing to incorrect responses. Second, the model
demonstrates low “task fidelity" during task
execution, meaning it fails to fully understand
our instructions, resulting in non-compliant
answers and poor response quality.



2 Level-Navi Agent

This section introduces the details of our Level-
Navi Agent, which mainly contains the Planning
Agent and Level-info Agent. The overall structure
of our Level-Navi Agent is shown in Fig. 2

2.1 Planning Agent

As a key component in our Level-Navi Agent, the
Planner directly affects the overall performance of
the web search process. Our Planning Agent plans
the trajectory path by chain of thought (Wei et al.,
2022) and iterative refinement. One the one hand,
when the user inputs a question, our Agent first
understands and breaks down the problem through
chain of thought. Noticing the difference from
the conventional chain of thought steps (Jin et al.,
2024; Wang et al., 2023), we let the LLM first
think through and determine the information that
should be collected next, then generate a list of
sub-questions that can be searched in parallel at
this stage. The main reason is that in scenarios
where complex reasoning is required, a complete
plan may seem very clear. However, since we rely
on another Agent to gather information, the content
obtained each time is not necessarily sufficient or
complete, which involves dynamically adjusting
the plan every time. To avoid such a complex and
redundant process design, we use prompt to enforce
that the Planning Agent only giving the list of sub-
question that needed to be obtained in the next step.
After obtaining feedback from each step, it repeats
this process iteratively until the Agent judges that
the current information is sufficient to answer the
question. We demonstrate the detailed process of
our Planning Agent in Algorithm 1.

Our Planning Agent utilizes prompt engineering,
making the framework general-purpose and fine-
tuning-free. This design ensures compatibility with
any open-source or closed-source model.

2.2 Level-Info Agent

As depicted in the right of Fig. 2, the primary
task of the Searcher is to obtain relevant informa-
tion feedback to the Planner by conducting online
searches based on the sub-problems received. To
enrich the information obtained while enhancing
its flexibility, we construct an Agent that dynami-
cally simulates the human information acquisition
process through a chain of thought, which we call
the Level-Info Agent.

As its name suggests, the Level-Info Agent is ca-

pable of dynamically obtaining information at vari-
ous levels and can return results at any moment, sig-
nificantly improving the agent’s operational speed.
Firstly, when faced with an input sub-query, the
Level-Info Agent determines whether the informa-
tion can be answered using its own knowledge. If
it can, it returns the result directly; otherwise, it
proceeds with a web search. Then, the Agent will
call the web search function to return the results
of the online search. At this step, the returned ma-
terials will only be the summary parts of the web
pages. Here, we also have the Agent think and
determine whether the current materials obtained
can answer the sub-query. If the information is suf-
ficient, it will provide a direct response; otherwise,
it will proceed to the next step of opening relevant
websites. When performing this step, we also use
function calls to let the model select and open rel-
evant websites. After obtaining the information
from the web page, it will summarize and respond.

Our Level-Info Agent has up to three levels for
providing information feedback, this avoids the
need to always read a large number of websites,
which consumes a significant amount of tokens,
and reduces the cost of search engine APIs.

Algorithm 1 The process of Planning Agent
Input: () for user’s question
Output: R for agent’s response

Variables: H denotes the set of his-
tory context, M is the collected informa-
tion.

1. H %@

2: AddQto H

3: while True do
4: Result <~ CoT(H)

5:  if Result == "no" then

6: M+ 0

7: Qsup < Result.sub-question
8: parallel for each ¢ € Qg do
9: M]q| < Searcher(q)
10: end parallel
11: Add M to H
12: else
13: R < Result.response
14: break
15:  endif
16: end while
17: Return R
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Figure 3: Source, domain and type distribution of
Web24 Dateset.

Domain Simp. Cond. Comp. Multi-hop \ All

Finance 23 23 22 22 90
Gaming 28 23 23 17 91
Sports 42 18 21 19 100
Movie 29 33 24 14 100
Event 23 27 22 28 100
All 145 124 112 100 \ 481

Table 1: Distribution of problem domains and types.

3 Benchmark Construction

This section presents the benchmark and evaluation
metrics we constructed. The Web24 dataset, which
is specifically designed for web search agents, is
introduced in Section 3.1. Accordingly, a new eval-
uation metric which is more suitable for web search
agents is introduced in Section 3.2.

3.1 Data Composition

Our Web24 categorizes question-answer pairs into
fine-grained divisions based on sources, domains,
and types. In the process of evaluating the perfor-
mance of web search agents, we aim to minimize
the influence of the model’s internal knowledge to
genuinely assess the search capabilities. Therefore,
we ensure that the majority of question-answer
pairs are sourced from the news, as illustrated in
Fig. 3. All cases sourced from the news are entirely
from news reports on the Chinese internet before
December 2024.

To evaluate the performance of web search
agents, The impact of models’ internal knowledge

to accurately assess their search capabilities should
be minimized. To achieve this, we construct our
benchmark primarily using question-answer pairs
derived from news sources (Fig. 3). All news-
based cases are exclusively drawn from Chinese
internet news reports published prior to December
2024.

To realistically simulate real-world web search
scenarios, we organize our question-answer pairs
into five distinct domains: Finance, Gaming,
Sports, Movies, and Events. Each domain is care-
fully designed to represent typical user information
needs. Furthermore, to better characterize the struc-
ture of these question-answer pairs, we classify all
questions into four types: simple, conditional, com-
parative, and multi-hop. The distribution of these
domains and question types is presented in Table 1.
The specific characteristics of each question type
are detailed below:

» Simple Questions: Direct queries seeking a
single and factual piece of information. For
example, “When was the Chinese national
anthem released?”

* Conditional Questions: Queries that incor-
porate specific temporal or situational con-
straints, requiring the answer to satisfy given
conditions. For example, “when was the an-
nouncement of the third batch of China’s
Time-Honored Brands?”

* Comparative Questions: Queries that neces-
sitate analyzing and contrasting attributes be-
tween two or more distinct entities. For ex-
ample, “who has a higher career total points,
Kobe or LeBron?”

* Multi-hop Questions: Complex queries that
demand iterative reasoning across multiple in-
formation sources, where answering requires
chaining together several intermediate search
and inference steps. For example, “where is
the headquarters of the company of the courier
who collected the 1500 billionth package this
year?”’

3.2 Evaluation Metrics

To comprehensively assess the capabilities of
LLMs in performing web search tasks, we con-
sider multiple aspects and use four scoring metrics
to evaluate the capabilities holistically. Detailed
description of the evaluation metrics are detailed
as follows.



Correctness Scores (.5;,). In order to compre-
hensively assess the precision of the response com-
pared to ground truth answers, we employ an LLM
as an evaluator to assess the consistency and preci-
sion of the generated answers compared to ground
truth answers (Yang et al., 2024). We use this eval-
uator to score the responses on a scale of 1 to 10,
and then normalize these scores to a range of 0 to
1.

Semantic Similarity Scores (.55;,,;). By using
an embedding model (Xiao et al., 2024), we can
directly calculate the vectors of discrete tokens
mapped to a high-dimensional continuous space,
and directly compute the similarity between text
vectors through mathematical methods.

Relevance Scores (.5,.;c). This metric primarily
examines the model’s faithfulness to the task ex-
ecution trajectory (Es et al., 2024). Based on the
responses generated by the LLM, another evalua-
tion LLM will generate multiple questions that are
inferred from the responses, and then calculate the
semantic similarity between these inferred ques-
tions and the originally given questions, then the
maximum value is taken as the final score.

Searcher Count (S.). This metric assesses the
ability of LLMs to understand and break down
questions. We have counted the number of times
the Level-Info Agent is invoked in each task and
used the average number of invocations as an eval-
uation metric.

Ultimately, we express the total score (1-100) as
a weighted sum of the aforementioned four metrics.
The formula for calculating the total score is as
follows:

Sfinal = 60'Sco+15 : Ssimi+ 15- Srele+ 10‘67‘%-
(1

4 Experiments and Analysis

In this section, we will present the experimental
results and analysis of our constructed framework,
benchmark and evaluation metric. We utilized 16
models to operate Level-Navi Agent, encompass-
ing open-source and closed-source models, which
are

a) Open-source. The open-source models we
used primarily from the Chinese community, in-
cluding InternL.M series (Cai et al., 2024), GLM-4
(GLM et al., 2024), Qwen series (Bai et al., 2023)
and Llama series (Al@Meta, 2024)

b) Closed-source. For closed-source models,
we utilized ERNIE-3.5 from Baidu, Moonshot-v1

from Moonshot Al, and GPT-40 (Achiam et al.,
2023) from OpenAl. Note that Deepseek-V2.5
(DeepSeek-Al, 2024) is an open-source model, but
due to its large parameter size, we call it in the form
of an APL

Besides, we also evaluate the Reasoning Model
to perform our tasks, including both DeepSeek-
R1 (Guo et al., 2025) and its distilled version
DeepSeek-R1-Distill-Qwen-32B.

4.1 Experimental Results of Our Agent on the
Web24 Dataset

Quantitative results presented in Tables 2 and 3 re-
veals that Qwen2.5-72B and DeepSeek-V3 demon-
strate superior performance. Through systematic
analysis of all experimental results, we identify
the following critical findings regarding the perfor-
mance Web Search Agent:
Diminishing Marginal Returns of Model Param-
eters. Focusing on the scores of the Qwen series
models in Table 2, doubling the size from 3B to
14B improved performance by 6 points, but from
14B to 72B, it only gained 3 points. From the re-
sults in Table 3, we found that although the perfor-
mance of closed-source models is quite good, there
is not a significant gap with Qwen2.5-72B. From
the analysis above, it can be seen that: To further
enhance the performance of LLMs in executing
web search tasks, researchers should focus on how
to obtain higher-quality information, since the di-
minishing marginal effect of model parameters is
quite clear.
Few-shot Prompts Enhance Pass Rates. For all
models, we implemented three types of prompt
methods: zero-shot, one-shot, and three-shot
(Brown et al., 2020). We calculated the number of
error responses for each evaluation and compared
it with the total number of the dataset to derive
the pass rate. The chain of thought method and
few-shot prompt combination have been proven
effective in previous research (Liang et al., 2023)
(Ma et al., 2023), this conclusion is also reflected in
our experiments. From Table 2, it can be seen that
the three-shot method significantly improved the
pass rate of the Agent compared to the zero-shot
approach. In general, we recommend providing
few-shot prompts when executing agent tasks. This
approach is not only simple and cost-effective but
also enhances the model’s performance in various
aspects.

From the results in Table 4, we can observe that
the final score of DeepSeek-R1 is slightly lower



Model Few-shot ‘ S tinal Seo Srele Ssimi Se Pass rate
zero-shot 49.48 0.47 0.81 0.56 2.62 0.92
Internlm?2.5-7B one-shot 47.76 0.45 0.79 0.56 2.98 0.91
three-shot 49.31 0.47 0.8 0.56 2.65 0.95
zero-shot 55.02 0.57 0.80 0.57 3.62 0.93
Internlm2.5-20B one-shot 57.70 0.61 0.81 0.58 3.68 0.96
three-shot 55.43 0.57 0.80 0.57 2.69 0.97
zero-shot 63.25 0.66 0.83 0.67 2.16 0.94
GLM-4-9B one-shot 40.82 0.34 0.79 0.54 3.05 0.89
three-shot 43.43 0.37 0.81 0.56 2.69 0.92
zero-shot 60.17 0.62 0.84 0.64 2.56 0.85
Qwen2.5-3B one-shot 54.28 0.54 0.82 0.57 2.27 0.86
three-shot 60.45 0.63 0.84 0.59 2.12 0.86
zero-shot 63.12 0.65 0.85 0.60 1.44 0.99
Qwen2.5-7B one-shot 65.01 0.69 0.84 0.61 1.68 1.00
three-shot 65.84 0.70 0.84 0.62 1.64 1.00
zero-shot 68.34 0.75 0.84 0.61 1.84 0.99
Qwen2.5-14B one-shot 68.45 0.75 0.84 0.61 1.77 1.00
three-shot 68.39 0.75 0.84 0.61 1.81 1.00
zero-shot 68.74 0.76 0.83 0.61 1.87 1.00
Qwen2.5-32B one-shot 69.05 0.76 0.84 0.61 1.77 1.00
three-shot 68.82 0.76 0.83 0.61 1.82 1.00
zero-shot 69.99 0.78 0.83 0.60 1.75 1.00
Qwen2.5-72B one-shot 69.48 0.77 0.83 0.60 1.70 1.00
three-shot 71.30 0.80 0.83 0.60 1.69 1.00
zero-shot 37.02 0.30 0.74 0.51 3.60 0.88
Llama3.1-8B one-shot 34.54 0.28 0.68 0.49 3.97 0.92
three-shot 32.45 0.27 0.61 0.46 3.89 0.93
zero-shot 41.56 0.35 0.76 0.54 2.24 0.57
Llama3.1-70B one-shot 52.28 0.50 0.81 0.60 2.18 0.80
three-shot 51.02 0.48 0.81 0.61 2.39 0.90

Table 2: Open Source Model Results with GPT-40 Evaluation.

than that of Deepseek-V3. Such results demon-
strate the reasoning model is slightly inferior to the
regular model in general tasks such as multi-turn
conversations and function calling task (Guo et al.,
2025). The final score of its distilled model mainly
decreased due to a lack of correctness, which re-
flects that distillation primarily reduces the model’s
judgment capability. Overall, although reasoning
models demonstrate strong capabilities in complex
problems and planning, they do not show particu-
lar advantages in general tasks. Considering their
substantial token consumption, whether to use rea-
soning models in similar tasks remains a subject of

debate.

4.2 Comparison with Other Products

We compare our Agent (Qwen2.5-72B) with estab-
lished market products, including Chinese LLM
services Kimi and Doubao, and GPT-40. We test
100 web24 dataset examples for answers on their
websites. As shown in Fig. 4, the scores for cor-
rectness, relevance, and semantic similarity were
similar across the three LLM products. Kimi edged
out slightly in all metrics, but the differences were
not significant. Overall, our Agent matched com-
mercial products in these metrics, such results vali-



Model ‘ Few-shot ‘ Stinal Seo Srele Ssimi Se Pass rate
Deepseek-V3 * | three-shot | 7470  0.84 085 062 149 1.00
ERNIE-3.5 | three-shot | 72.19  0.80 087  0.64  1.87 1.00
Moonshoot-vl | three-shot | 70.89 077 087 064 159 0.99
GPT-40 | three-shot | 7133 079 085 062  1.67 1.00
" This model is open-source, but due to its large parameter volume, we call it using the API.
Table 3: Close Source Model Results with Qwen2.5-72B Evaluation.
Model ‘ Few-shot ‘ S final Sco Srele  Ssimi S, Pass rate
DeepSeck-R1 | three-shot | 69.50 078 075 061 147  1.00
DeepSeek-R1-Distill-Qwen-32B | three-shot | 63.87 0.68 0.80 061  1.65 1.00
Table 4: Reasoning Model Results with GPT-40 Evaluation.
date the effectiveness of our proposed Level-Navi
Agent framework. =TT S T
Corrctnes Relevance Similariy

4.3 Analysis of Metrics

Limitation of Traditional Metrics. Table 5
presents the results of model responses using tra-
ditional methods. By comparing and analyzing
the performance of LLMs with different param-
eter sizes on the same task, we discover the in-
crease in model parameters do not universally lead
to an improvement in F1 and ROUGE scores and
even caused declines. Because traditional F1 and
ROUGE methods are based on token matching and
do not consider semantic information, more de-
tailed answers tend to deviate from brief standard
answers, leading to lower scores. Only the Re-
call metric benefits from more comprehensive re-
sponses. These phenomena all demonstrate the
limitations of traditional metrics. Meanwhile, this
inspires us to design a metric that is more suitable
for evaluating the task under study.

The effectiveness of our metrics. From the quanti-
tative evaluation results in Tables 2 and 3, it can be
observed that using our metrics, the performance
distribution of various models aligns with empirical
knowledge and common sense. In terms of Cor-
rectness Scores, the advantage brought by model
parameter size is clearly demonstrated. Mean-
while, Semantic Similarity Scores and Relevance
Scores consistently reflect the capability differ-
ences among models. Through the overall scores,
anyone can intuitively discern the performance dif-
ferences between models. These findings strongly
validate the effectiveness of the quantitative evalu-

25% 25% 25% 26% 25% 26%

GPT-40 Kimi = Doubao = Ours

Figure 4: Comparison with other commercial products
based on our metrics.

Model ROUGE F1 Recall
Internlm?2.5-7B 0.12 0.09 0.69
Internlm?2.5-20B 0.12 0.09 0.74
Qwen2.5-3B 0.20 0.18 0.71
Qwen2.5-7B 0.23 0.21 0.74
Qwen2.5-14B 0.19 0.16 0.78
Qwen2.5-32B 0.19 0.16 0.78
Qwen2.5-72B 0.16 0.12 0.81

Table 5: Using traditional metrics (Under three-shot
method).

ation metric proposed in this paper.

Therefore, we believe that using LLM-based
evaluation methods (Zhuge et al., 2024) rather
than traditional ones in open-ended tasks like web
search Q&A can better reflect real-world condi-
tions.

4.4 Error Analysis and Discussion

By error analysis and experiments, we summarize
the shortcomings in models and evaluation meth-
ods.
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Figure 5: Comparison of Searcher and Function call
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Searcher count / Function call count(0 for zero-shot;
1 for one-shot; 3 for three-shot).

Overconfidence Phenomenon in Web Search
Function Usage. The quantitative evaluation re-
sults in Table 2 show the scores of GLM-4-9B are
lower than expected. We uncovered the reason for
this phenomenon by calculating the average Search
Count invoked per task and the actual number of
Web Search Function calls. In Fig. 5, we com-
pared the gap between GLM-4 and Qwen2.5-7B
on the aforementioned metrics. We observed that
Qwen2.5-7B’s function call rate reached about 90%
of the Agent invocations, while GLM-4-9B’s ra-
tio dropped from 30% to a single-digit percentage.
Given that 70% of the answers in the dataset come
from news sources, GLM-4-9B cannot possibly
answer correctly without invoking web searches.
We refer to this phenomenon as “Overconfidence"
(Huang et al., 2024).

The issue indicates that LLMs might overesti-

mate their question-answering abilities during train-
ing, overlooking the need for external resources in
certain situations (Xiong et al., 2024). To address
this overconfidence, we recommend that develop-
ers balance positive and negative examples in the
training dataset to improve LLMs’ function-calling
capabilities.
Low Task Fidelity in Conducting Chinese Tasks.
When assessing LL.M agents, we prioritize whether
the model comprehends and adheres to instructions
to answer questions. We call it “Task Fidelity",
which reflects the model’s faithfulness in executing
instructions. The Relevance Scores do not take into
account the correctness of the model’s response, so
it can reflect the end-to-end Task Fidelity.

In Table 2, the relevance scores of Llama3.1-8B
did not behave as expected compared to other mod-

Model Few-shot  Values (%)
zero-shot 25.16

Llama3.1-8B one-shot 27.86
three-shot 23.64
zero-shot 2.08

Llama3.1-70B one-shot 0.42
three-shot 0.42

Table 6: Statistics of Non-compliant Responses.

els; instead, they fluctuated significantly. Upon
examining the outputs of the Llama 3.1 series mod-
els, we found that a considerable portion of the re-
sponses did not fully comply with our instructions,
with some incorrectly mixing the given instructions
with the answers. Table 6 more detailedly reflects
this type of non-compliant response. The introduc-
tion of the few-shot method did not improve this
issue for Llama3.1-8B, only Llama3.1-70B showed
improvement.

We view non-compliant responses as indicating
low Task Fidelity. The LLM’s struggle to grasp the
intent of instructions in lengthy Chinese contexts
can greatly impair task performance. Developers
should focus on ensuring smaller LL.Ms to maintain
the multilingual ability as bigger ones.

5 Conclusion

In this paper, we introduce the Level-Navi Agent
and a novel benchmark for web search tasks. The
Level-Navi Agent offers an innovative solution to
web search challenges through the collaboration
of multiple agents and a hierarchical approach to
reasoning and searching. Starting from the Chinese
open source-community, we employed reasonable
metrics to comprehensively assess the performance
of various LLMs in executing web search tasks.
This analysis sheds light on the true capabilities of
current LLMs when performing web search tasks
within the Chinese Internet. Meanwhile, we built a
benchmark that can be used for web search agents
through manual annotation, which may facilitate
the evaluation and application of various models.
Through data-driven error analysis, we identify the
limitations of LLMs in handling web search tasks
and provide recommendations for improvement,
contributing to the advancement of this field.



Limitations

While our proposed Level-Navi Agent provide a
comprehensive framework for evaluating LL.M-
based web search agents, there are several limi-
tations worth noting: 1) Although we design a hier-
archical approach to retrieve web information, the
differences in capabilities among various search
engines are not reflected. How to construct more
fine-grained information retrieval remains a worth-
while research question; 2) Our Web24 dataset cov-
ers news information from multiple domains, but it
does not include academic papers as information
sources. This aspect could be further explored in
future research.
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