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Figure 1. We propose a new representation for differentiable rendering based on the most classical of 3D primitives, the triangle. We
show how a triangle soup (i.e. unstructured, disconnected triangles) can be optimized effectively, generating state-of-the-art novel view
synthesis images while being immediately compatible with classical rendering pipelines. The figure shows the final rendered output (left),
a visualization of soft blending (middle), and the rendering of a random subset of triangles to highlight their structure (right).

Abstract

The field of computer graphics was revolutionized by
models such as NeRF and 3D Gaussian Splatting, displac-
ing triangles as the dominant representation for photogram-
metry. In this paper, we argue for a triangle comeback. We
develop a differentiable renderer that directly optimizes tri-
angles via end-to-end gradients. We achieve this by ren-
dering each triangle as differentiable splats, combining the
efficiency of triangles with the adaptive density of repre-
sentations based on independent primitives. Compared
to popular 2D and 3D Gaussian Splatting methods, our
approach achieves competitive rendering and convergence
speed, and demonstrates high visual quality. On the Mip-

NeRF360 dataset, our method outperforms concurrent non-
volumetric primitives in visual fidelity and achieves higher
perceptual quality than the state-of-the-art Zip-NeRF on in-
door scenes. Triangles are simple, compatible with stan-
dard graphics stacks and GPU hardware, and highly effi-
cient. Our results highlight the efficiency and effectiveness
of triangle-based representations for high-quality novel
view synthesis. Triangles bring us closer to mesh-based op-
timization by combining classical computer graphics with
modern differentiable rendering frameworks. The project
page is https://trianglesplatting. github.io/


https://trianglesplatting.github.io/

1. Introduction

One of the enduring challenges in 3D vision and graphics is
identifying a truly universal primitive for representing 3D
content in a differentiable form, enabling gradient-based
optimization of geometry and appearance. Despite exten-
sive research, no single data structure has emerged as a sil-
ver bullet. Instead, researchers have explored a variety of
approaches, including neural fields [29], hash tables [30],
convex primitives [8, 14], and Gaussians [19], among oth-
ers. Conversely, in conventional graphics pipelines, the tri-
angle remains the undisputed workhorse. Game engines
and other real-time systems primarily rely on triangles,
as GPUs feature dedicated hardware pipelines for ultra-
efficient triangle processing and rendering. Although other
primitives exist (e.g., quads in 2D or tetrahedra in 3D), they
can always be subdivided into triangles. Moreover, surface
reconstruction in 3D vision and graphics predominantly re-
lies on triangle meshes to represent continuous, watertight
geometry in an efficient, renderable form [18].

Despite their ubiquity, triangles are difficult to opti-
mize in differentiable frameworks due to their discrete na-
ture. Early attempts at differentiable optimization softened
the non-differentiable occlusion at polygon edges, enabling
gradients from image loss to flow into geometry and appear-
ance parameters [17, 25]. However, these methods require
a predefined mesh template, making them unsuitable when
the scene’s topology is unknown a priori. As a result, they
struggle to capture fine geometric details and adapt to novel
structures. To address these challenges, researchers adopted
volumetric primitives, such as anisotropic 3D Gaussians in
3DGS [19], which can be optimized for high-quality novel
view synthesis. However, the unbounded support of Gaus-
sians makes it difficult to define the “surface” of the rep-
resentation, and their inherent smoothness hinders accurate
modeling of sharp details. Surface structures can be par-
tially restored using 2D Gaussian Splatting [15] or 3D con-
vex polytopes [14]. Yet, a pivotal question remains:

Can triangles themselves be optimized directly?

Learning to optimize a “triangle soup” (i.e. unstructured,
disconnected triangles), as shown in the right side of Fig-
ure 1, via gradient-based methods could represent a major
step towards the goal of template-free mesh optimization.
Such an approach leverages decades of GPU-accelerated
triangle processing and the mature mesh processing liter-
ature, making it easier to integrate these techniques within
differentiable rendering pipelines.

In this work, we introduce Triangle Splatting, a real-
time differentiable renderer that splats a soup of triangles
into screen space while enabling end-to-end gradient-based
optimization. Triangle Splatting merges the adaptability of
Gaussians with the efficiency of triangle primitives, sur-
passing 3D Gaussian Splatting (3DGS), 2D Gaussian Splat-
ting (2DGS), and 3D Convex Splatting (3DCS) in visual

fidelity, training speed, and rendering throughput. The opti-
mized triangle soup is directly compatible with any standard
mesh-based renderer. To our knowledge, Triangle Splatting
is the first splatting-based approach to directly optimize tri-
angles for novel-view synthesis and 3D reconstruction, de-
livering state-of-the-art results while bridging classical ren-
dering pipelines with modern differentiable frameworks.

Contributions. (i) We propose Triangle Splatting, a novel
approach that directly optimizes triangles, bridging com-
puter graphics and radiance fields. (ii) We introduce a dif-
ferentiable window function for soft triangle boundaries,
enabling effective gradient flow. (iii) Triangle Splatting de-
livers high visual quality and rendering speed, surpassing
Zip-NeRF on indoor scenes in perceptual quality (LPIPS)
and structural similarity (SSIM). (iv) The optimized tri-
angles are compatible with standard mesh-based render-
ers, enabling seamless integration into traditional graphics
pipelines.

2. Related work

Neural radiance fields have become the de-facto standard
for image-based 3D reconstruction [28]. A large body of
work has since addressed NeRF’s slow training and render-
ing by introducing multi-resolution grids or hybrid repre-
sentations [5, 10, 23, 30], or baking procedures for real-time
playback [7, 13, 31]. Improvements in robustness include
anti-aliasing [1-3], handling unbounded scenes [2, 37], and
few-shot generalization [4, 9, 16]. Despite their success, im-
plicit fields still require costly volume integration at render
time. Our Triangle Splatting sidesteps this by optimizing
explicit triangles that are traced once per pixel, leading to
comparable fidelity but orders-of-magnitude faster render-
ing. For example, our triangles render ten times faster than
Instant-NGP [30], while matching its optimization speed
and achieving significantly higher visual fidelity.

Primitive-based differentiable rendering.

Differentiable renderers back-propagate image loss to
scene parameters, enabling end-to-end optimization of ex-
plicit primitives such as points [11, 17], voxels [10],
meshes [17, 25, 26], and Gaussians [19]. 3D Gaussian
Splatting [19] demonstrated that millions of Gaussians can
be fitted in minutes and rendered in real time. Follow-up
work improved anti-aliasing [36], or offered exact volumet-
ric integration [27] Because Gaussians have infinite sup-
port and inherently smooth fall-off, they struggle with sharp
creases and watertight surfaces; recent extensions there-
fore experiment with alternative kernels [? ], learnable ba-
sis functions [6], or linear primitives [35]. Convex Splat-
ting [14] replaced Gaussians with smooth convexes, cap-
turing hard edges more faithfully, but at the cost of slow
optimization time and larger memory footprints. Compared



Outside the shape
1.04
= o =0.01
0.751 — =01
o=1
Eq. (1) 051 i
0.251 —Ct 0
01 n
Outside the shape
1.04
0.751
Eq.(2) 051
0.25+
01

6(s) 0

o=>5.0

c=1.0 o =10.01

Figure 2. Triangle window function (1D and 2D). We visualize the window functions of prior works [8, 14] (bottom) vs. the one
introduced in our paper (top) in both 1D (left) and 2D (right). We show how the window function changes as we vary the smoothness
control parameter 0. As o decreases, note that both can approximate the window function of a triangle. However, as o increases, the
support of Eq. (2) exceeds the footprint of the triangle, making it unsuitable for rasterization workloads. In the limit, Eq. (2) becomes
globally supported, with a window value of 0.5 everywhere, causing every triangle to contribute to the color of every pixel in the image.

with Gaussian [15, 19] or Convex Splatting [14], which ex-
plored either volumetric (e.g. Gaussian, voxel) or solid (e.g.
convex, tetrahedral) primitives, Triangle Splatting proposes
surface primitives, aligning with the surface of solid ob-
jects most typically found in real-world scenes. In exten-
sive experiments, we show that Triangle Splatting surpasses
3DGS [19], 2DGS [15], and 3DCS [14] in visual quality
and speed of rendering and optimization.

3. Method

We address the problem of reconstructing a photorealistic
3D scene from multiple images. We propose a scene repre-
sentation that enables efficient, differentiable rendering and
can be directly optimized by minimizing a rendering loss.
Similar to prior work, the scene is represented by a large
collection of simple geometric primitives. Where 3DGS
used 3D Gaussians [19], 3DCS used 3D convex hulls [14],
and 2DGS used 2D Gaussians [15], we propose the simplest
and most efficient primitive, triangles. First, Sec. 3.1 ex-
plains how these triangles are rendered on an image. Then,
Sec. 3.2 describes how we adaptively prune and densify the
triangle representation. Finally, Sec. 3.3 describes how to
optimize the triangles’ parameters to fit the input images.

3.1. Differentiable rasterization

Our primitives are 3D triangles T},, each defined by three
vertices v; € R3, a color ¢, a smoothness parameter o and
an opacity o. The vertices can move freely during optimiza-
tion. To render a triangle, we first project each vertex v;
to the image plane using a standard pinhole camera model.
The projection involves the intrinsic camera matrix K and
the camera pose (parameterized by rotation R and trans-

lation t): q; = K (Rv; +t), with q; € R? forming the
projected triangle 73, in the 2D image space. Instead of ren-
dering the triangle as fully opaque, we weigh its influence
smoothly using a window function I mapping pixels p to
values in the [0, 1] range. As we discuss below, the choice
of this function is of critical importance. Once the trian-
gles are projected, the color of each image pixel p is com-
puted by accumulating contributions from all overlapping
triangles, in depth order, treating the value I(p) as opacity.
The rendering equation is the same as the one used in prior
works [14, 19], and refer the reader to [34] for its derivation.

A new window function. We first describe how the window
function I is defined, which is one of our core contributions.
We start by defining the signed distance field (SDF) ¢ of the
2D triangle in image space. This is given by:

- Ll )
#(p) i (p)

Li(p) =mn; -p+di,
where n; are the unit normals of the triangle edges pointing
outside the triangle, and d; are offsets such that the triangle
is given by the zero-level set of the function ¢. The signed
distance field ¢ thus takes positive values outside the trian-
gle, negative values inside, and equals zero on its boundary.
Let s € R? be the incenter of the projected triangle T}, (i.e.,
the point inside the triangle with minimum signed distance).
With this, we define our new window function [ as:

¢(p) ) 7
I(p) = ReLU <
(°) 4(s)
=1 at the triangle incenter, D
such that I(p)< = 0 at the triangle boundary,

= 0 outside the triangle.



Here, the parameter o > 0 controls the smoothness of
the window function. ¢(p) is negative inside the triangle,
and ¢(s) is its smallest (most negative) value, so the ratio
¢(p)/d(s) is positive inside the triangle, equal to one at the
incenter, and equal to zero at the boundary. This formula-
tion has three important properties: (i) there is a point (the
incenter) inside the triangle where the window function ob-
tains the maximum value of one; (ii) the window function
is zero at the boundary and outside the triangle so that its
support tightly fits the triangle; and (iii) a single parameter
can easily control the smoothness of the window function.

Figure 2 shows that all three properties are satisfied for
different values of 0. For ¢ — 0 our window function con-
verges to the window function of the triangle. For larger
values, the window function transitions smoothly from zero
at the boundary to one in the middle, and for ¢ — oo the
window function becomes a delta function at the incenter.
Window function alternatives. Related works [8, 14] use
the LogSumExp function to approximate max in the signed
distance field: ¢(p) = log Ele exp L;(p). However, we ob-
served that, for small triangles, this max approximation is
poor, to the point that only one of the three vertices has any
influence on the final shape. We thus opted to use the ac-
tual max function which, while not smooth everywhere, ac-
curately defines the signed distance field. Further, related
work [8, 14, 25] also use a different definition for the win-
dow function I based on sigmoid:

I(p) = sigmoid(—o~" ¢(p))
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This definition fails to meet properties (i) and (ii) above,
as the maximum can be less than 1, and the support of the
window function can be significantly larger than the trian-
gle. This is illustrated in Figure 2, where o — oo results in
a constant value everywhere in R2.

Simpler depth-dependent scaling. In 3D Gaussian Splat-
ting, each 3D Gaussian is defined in world space by a full
covariance matrix, which is mapped to image space by ac-
counting for the projective transformation, resulting in a 2D
covariance matrix inversely proportional to depth. The ef-
fect is a 2D Gaussian whose size scales with depth. In Con-
vex Splatting [14], the 2D convex hull scales automatically
with depth, but not the window function smoothness param-
eter 0. Because the latter is defined in pixel units, it must
be scaled “manually” to achieve a depth-consistent effect.
In our case, this is unnecessary because of the normaliza-
tion in Eq. (1): o results in consistently scaled 2D window
functions for all depth values.

A simpler and more efficient primitive.  Triangle
Splatting reduces complexity compared to concurrent ap-

Figure 3. Triangle pruning. To reduce floaters, we prune trian-
gles seen in fewer than two views with over one pixel of coverage,
removing those overfitted to a single training view.

proaches. Unlike 3DGS, Triangle Splatting avoids the need
for EWA, a core component of 3DGS that is complex to
implement and whose quality degrades when moving away
from the optical center. Also, compared to 3D Convex
Splatting, Triangle Splatting avoids the complex and costly
kernel required to compute active edges and the need to cal-
culate the convex hull per primitive, simplifying implemen-
tation and improving speed.

3.2. Adaptive pruning and splitting

Triangles have a compact spatial domain (and, therefore, a
compact gradient); hence, we need a mechanism to control
coverage of the spatial domain by the triangles, modulating
their density and thus representation power at different lo-
cations. This is achieved by pruning and densification rou-
tines (respectively decreasing and increasing the represen-
tation power), analogously to 3DGS [19].

Pruning. During rasterization, we calculate the maximum
volume rendering blending weight 7" - o (where T is trans-
mittance, and o is opacity) for each triangle, and prune
all triangles whose maximum weight is less than a defined
threshold Tyrne across all training views. Additionally, we
prune all triangles that are not rendered at least rwice with
more than one pixel. In other words, we remove triangles
that explain small amounts of data within a single view and
are therefore likely to have overfitted to the training data.
Figure 3 illustrates the impact of this pruning strategy.

Densification. Instead of relying on manually tuned heuris-
tics for adding shapes, we adopt the probabilistic framework
based on MCMC introduced by Kheradmand et al. [20]. At
each densification step, we sample from a probability distri-
bution to guide where new shapes should be added. Kher-
admand et al. [20] stochastically allocates new Gaussians
proportionally to the opacity, and we extend this idea to our
representation by incorporating the sharpness parameter o.
Since both opacity and o are learned during training, we
build the probability distribution directly from these param-
eters by alternating between using the inverse of ¢ and the
opacity for Bernoulli sampling. In particular, we preferen-
tially sample triangles with low o values, i.e. solid trian-
gles. Because of our window function, the triangle’s influ-
ence is bounded by its projected geometry, and the diffusion



remains confined within the triangle itself. In high-density
regions, many triangles overlap at each pixel, allowing each
shape to adopt a higher ¢ and thus a softer contribution. In
contrast, in low-density regions, where fewer triangles in-
fluence a pixel, each triangle must contribute more to the
reconstruction. As a result, it adopts a lower o to increase
the contribution across its interior, ensuring maximal cov-
erage within the geometric bounds and producing a more
solid appearance.

Further, taking inspiration from Kheradmand et al. [20],
we design updates to avoid disrupting the sampling process.
In particular, we require that the probability of the state (i.e.
the current set of parameters of all triangles) remains un-
changed before and after the transition, allowing it to be
interpreted as a move between equally probable samples,
preserving the integrity of the Markov chain. To preserve
a consistent representation across sampling steps, we apply
midpoint subdivision to the selected triangles. Each triangle
is split into four smaller ones by connecting the midpoints
of its edges, ensuring that the combined area and spatial
region of the new triangles match that of the original. As
in our parametrization, a triangle is defined by 3D vertices,
making this operation straightforward to perform. Finally,
if a triangle is smaller than the threshold 7gpa, we do not
split it. Instead, we clone it and add random noise along the
triangle’s plane orientation.

3.3. Optimization

Our method starts from a set of images and their cor-
responding camera parameters, calibrated via SfM [32],
which also produces a sparse point cloud. We create a 3D
triangle for each 3D point in the sparse point cloud. We
optimize the 3D vertex positions {v1, vo, v}, sharpness o,
opacity o, and spherical harmonic color coefficients c of all
such 3D triangles by minimizing the rendering error from
the given posed views. The initialization is done as fol-
lows. Let q € R® be a SfM 3D point and let d be the
average Euclidean distance to its three nearest neighbors.
We initialize the corresponding 3D triangle to be approxi-
mately equilateral, randomly oriented, and with a size pro-
portional to d. To do this, we sample uniformly at random
three vertices {u, us, ug} from the unit sphere, we scale
them by d, and we add q to center them at the point q:
v, = q+k-d-u;, where £k € R is a scaling constant.
Our training loss combines the photometric £ and Lp_ssiv
terms [19], the opacity loss £, [20], and the distortion L4
and normal £,, losses [15]. Finally, we add a size regu-
larization term L = 2 ||(v1 — vg) X (Vo — v0)||g1, to en-
courage larger triangles. The final loss £ is given by:

L= (1-NLi+Alpssm+B1Lo+B2La+B3Ln+BaLs .

3)
The full list of thresholds and hyperparameters is detailed
in the Supplementary Material.

4. Experiments

We compare our method to concurrent approaches on the
standard benchmarks Mip-NeRF360 [2] and Tanks and
Temples (T&T) [22]. We consider 3DCS [14], which is the
most closely related method, as well as to non-volumetric
primitives such as BBSplat [33] and 2DGS [15]. We also
consider primitive-based volumetric methods, including
3DGS [19], 3DGS-MCMC [20], and DBS [24]. Addition-
ally, we evaluate against implicit neural rendering methods
such as Instant-NGP [30], Mip-NeRF360 [2], and the state-
of-the-art in novel view synthesis Zip-NeRF [3]. We evalu-
ate the visual quality using standard metrics: SSIM, PSNR,
and LPIPS. We report training time, rendering speed, and
memory usage, measured on an NVIDIA A100.

Implementation details. We use spherical harmonics of
degree 3, resulting in 59 parameters per triangle, matching
the number of parameters for a single 3D Gaussian [19].

4.1. Novel-view synthesis

Table 1 presents the quantitative results on the T&T dataset,
as well as on the indoor and outdoor scenes from the Mip-
NeRF360 dataset. In comparison with planar primitive
methods, Triangle Splatting achieves a higher visual qual-
ity, with a significant improvement in LPIPS (the metric
that best correlates with human visual perception). Specifi-
cally, Triangle Splatting improves over 2DGS and BBSplat
by 25% and 19% on Mip-NeRF360, respectively. Trian-
gle Splatting achieves consistently better LPIPS scores in
outdoor scenes, surpassing both 2DGS and BBSplat. Sim-
ilarly, on the T&T dataset, Triangle Splatting yields a sub-
stantial improvement over 2DGS and BBSplat.

While our method yields slightly lower PSNR values,
this metric does not fully capture visual quality due to its in-
herent limitations (PSNR generally rewards overly smooth
reconstructions that regress to the mean). As a result,
smooth representations, such as Gaussian-based primitives,
tend to perform better under PSNR, whereas sharper tran-
sitions from solid shapes may be penalized. Figure 4 illus-
trates this limitation of PSNR: although our reconstruction
looks visually superior to that of 2DGS, the PSNR in the
highlighted region is 3 PSNR higher for 2DGS.

Against volumetric primitive methods, Triangle Splat-
ting achieves high visual quality, with a significant improve-
ment in LPIPS. Specifically, Triangle Splatting improves
over 3DGS and 3DCS by 10% and 7% respectively on Mip-
NeRF 360. Compared to implicit methods, Triangle Splat-
ting matches the visual quality of the state-of-the-art Zip-
NeRF, with only a 0.002 difference in LPIPS, while deliv-
ering over 500 faster rendering performance.

Triangles work particularly well in indoor or structured
outdoor scenes with walls, cars, and other well-defined
surfaces, where they can closely approximate geometry.



Outdoor Mip-NeRF 360

Indoor Mip-NeRF 360

Aver. Mip-NeRF 360 Tanks & Temples

LPIPS | PSNR{ SSIMt | LPIPS| PSNR{ SSIM{ | LPIPS| PSNR{T SSIM 1 H LPIPS| PSNR?T SSIM?T FPSt

‘ Implicit Methods

Instant-NGP [30] - - -
Mip-NeRF360 [2] 0.283 24.47 0.691 0.179 31.72
Zip-NeRF [3] 0.207 25.58 0.750 0.167 32.25

0.331 25.59 0.699 0.305 21.92 0.745 14.4

0.917 0.237 27.69 0.792 0.257 22.22 0.759 0.14
0.926 0.189 28.54 0.828 - - - -

‘ Volumetric Primitives

3DGS [19] 0.234 24.64 0.731 0.189 30.41
3DGS-MCMC [20]f | 0.210 25.51 0.76 0.208 31.08
DBS [24] T 0.246 25.10 0.751 0.22 32.29
3DCS [14] 0.238 24.07 0.700 0.166 31.33

0.920 0.214 27.21 0.815 0.183 23.14 0.841 154
0.917 0.210 27.98 0.829 0.19 24.29 0.86 129
0.936 0.234 28.29 0.833 0.140 24.85 0.870 150
0.927 0.207 27.29 0.802 0.156 23.94 0.851 33

| Non-Volumetric Primitives

BBSplat [33] 0.281 23.55 0.669 0.178 30.62
2DGS [15] 0.246 24.34 0.717 0.195 30.40
Triangle Splatting 0.217 24.27 0.722 0.160 30.80

0.921 0.236 26.69 0.781 0.172 25.12 0.868 66
0.916 0.252 27.04 0.805 0.212 23.13 0.831 122
0.928 0.191 27.16 0.814 0.143 23.14 0.857 165

Table 1. Quantitative results. We evaluate our method on both indoor and outdoor scenes, achieving state-of-the-art performance on the
indoor benchmark. Across all datasets, our approach consistently outperforms other non-volumetric primitives. Bold scores indicate the
best results among non-volumetric methods. 1 denotes reproduced results, while I marks results reported in [24].

his makes Triangle Splatting especially effective indoors,
achieving state-of-the-art performance and outperforming
3DCS and Zip-NeRF. Unstructured outdoor scenes are
more challenging for planar primitives due to sparse or am-
biguous geometry, making it harder to maintain visual con-
sistency across views. Even so, Triangle Splatting narrows
the performance gap and surpasses 3DGS and 3DCS on the
T&T dataset, achieving a lower LPIPS.

Figure 5 presents a qualitative comparison between Tri-
angle Splatting, 3DCS, and 2DGS. We consistently produce
sharper reconstructions, particularly in high-frequency re-
gions. For instance, in the Bicycle scene, it more accu-
rately captures fine details, as highlighted.

Speed & Memory. Table 2 compares the memory con-
sumption and rendering speed of concurrent methods. Al-
though BBSplat uses fewer primitives, it suffers from con-
siderably slower training and inference. Triangle Splatting
shows strong scalability, despite using more primitives, it
renders 4 x faster than BBSplat and achieves a 40% speedup
over 2DGS. Triangle Splatting significantly outperforms
3DCS, achieving 2 x faster training and 4 x faster inference.

Ground Truth 7

| Train | FPS{ Memory |

ZipNerf 5h 0.18 569MB
3DGS 42m 134 734MB
3DCS 87m 25 666MB
BBSplat 96m 25 175MB
2DGS 29m 64 484MB
Ours 39m 97 795MB

Table 2. Speed & Memory. Triangle Splatting scales efficiently,
achieving faster training and rendering even with more primitives.

Unlike 3DCS, Triangle Splatting does not require comput-
ing a 2D convex hull and rendering is more efficient. Tri-
angle Splatting computes the signed distance for only three
lines per pixel, whereas 3DCS requires calculations for six
lines, effectively doubling the per-pixel computational cost.

5. Ablations

Loss terms. Table 3 shows the impact on performance
when removing different components of our pipeline on
Mip-NeRF360. The opacity regularization £, is the most

Triangle Splatting (our:

Figure 4. Limitations of PSNR. Due to its smoothness, Gaussians tends to perform better on the PSNR metric, which evaluates pixel-wise
differences, despite being blurrier. In the highlighted areas, our method achieves a PSNR of 18.41, compared to 21.27 for 2DGS.



Flowers

Bicycle

Figure 5. Qualitative results. We visually compare our method to 3DCS [14] and 2DGS [15]. Triangle Splatting captures finer details and
produces more accurate renderings of real-world scenes, with less blurry results than 2DGS, and a higher visual quality than 3DCS [14].

‘LPIPSi PSNR 1 SSIM 1
Triangle Splatting ‘ 0.191 27.14 0.814

w/lo L 0.191 26.97 0.812
w/o o~ ! sampling 0.193 27.03 0.811
w/o o sampling 0.193 27.02 0.811
wlo Lqg & Ly, 0.194 27.11 0.811
w/o L, 0.207 26.38 0.794

Table 3. Ablation study. We isolate the impact of each compo-
nent by removing them individually.

impactful, encouraging lower opacity values so that un-
necessary triangles become transparent and are reallocated.
The regularization term L encourages larger triangles, in-
creasing PSNR, particularly in indoor scenes. The initial
point cloud is often extremely sparse along walls, frequently
with few or no initial triangles. Without L, triangles ex-
pand too slowly to reach scene boundaries. By promot-
ing larger shapes, this regularization enables faster growth,
allowing triangles to extend into underrepresented regions.
Sampling based on o~ or opacity alone yields similar per-
formance, while combining both leads to improved results.
Window functions. Figure 6 compares the sigmoid-based
window function with our proposed version. In regions with
sparse initial point cloud, particularly in the background, the
sigmoid function fails to recover the scene structure. Since
the sigmoid is not bounded by its geometry’s vertices and
can grow arbitrarily large, the optimizer tends to increase
the sigma values instead of moving vertices to cover empty
areas. This results in small yet very smooth shapes, mak-
ing them difficult to optimize. In contrast, our normalized
window function enforces spatial bounds, which encour-
ages vertices to move and fill underrepresented regions. As
the size of each shape is explicitly defined, the optimization
process becomes more stable and effective.

Triangle vs. convex splatting. In 3DCS, each convex is
defined by six vertices. When the number is reduced to

Figure 6. Ablation study (window function). = We compare
against the Sigmoid function (left) which fails to recover back-
ground regions accurately, while ours doesn’t (right).

Figure 7. Ablation study (triangles as convexes). We compare
our method (left) with 3DCS using three-vertex convexes (right),
which results in degenerate geometry, as seen in the zoom-ins.

three, the shape degenerates into a triangle. In Figure 7,
we present a visual comparison between Triangle Splatting
and 3DCS using triangles. Triangle Splatting does not pro-
duce line artifacts, which often appear in 3DCS when han-
dling degenerate triangles. Furthermore, Triangle Splatting
obtains a higher visual quality with an improvement of 0.05
LPIPS, 0.61 PSNR and 0.045 SSIM on Mip-NeRF360.

6. Triangle splatting in a traditional renderer

While the main goal of this work is to introduce triangles as
anovel primitive for high-quality novel view synthesis, their
benefits extend beyond this task. To obtain a model with
mesh-like topology, we set opacity to 1 and o to 0, yield-
ing opaque, hard triangles that require only vertex positions
and per-triangle colors to be stored in a standard mesh for-
mat (e.g., .off), with no post-processing. This marks a sig-



nificant improvement over 2DGS. The final triangle soup
can be integrated into any mesh renderer. Alternatively, the
full triangle splatting model can be incorporated into tra-
ditional rendering pipelines using order-independent trans-
parency to correctly handle semi-transparent triangles. To
demonstrate practicality, we evaluate triangle splatting in a
traditional renderer across both use cases.

Stochastic Triangle Splatting renderer. As demonstrated
by StochasticSplats [21], alpha blending-based models like
3DGS can be implemented with z-buffer rasterization by
employing stochastic transparency. This approach is par-
ticularly well suited to Triangle Splatting, as it relies on in-
voking the fragment shader many times for each final pixel
to reduce noise. Unlike Gaussian-based models, which
must evaluate the Gaussian PDF in the fragment shader,
Triangle Splatting can perform almost all computations in
the vertex shader, lowering the cost of additional sam-
ples. We include a link in the Supplementary Material to a
browser-based demo of this method, which includes a naive
implementation of temporal filtering for noise reduction.
It should be noted that more sophisticated temporal anti-
aliasing pipelines are a standard feature in modern game
engines. Table 4 shows that even a consumer laptop with an
Iris Xe renders 4.3M triangles at high speed, while high-end
GPUs like the RTX 4090 exceed 1000 FPS. As shown in
Figure 8, Stochastic Triangle Splatting also preserves high
visual quality when integrated into a traditional renderer.

Mesh-based novel-view synthesis. Table 5 com-
pares mesh-based novel view synthesis between Trian-
gle Splatting and 2DGS. For 2DGS, the mesh was extracted
via TSDF fusion and textured with a neural color field
trained for 5k iterations following 30k iterations of main
training (see MILo [12] for more details). In contrast,
Triangle Splatting requires no additional processing, only
the opacity is set to 1 and ¢ to 0. Compared to Trian-
gle Splatting, 2DGS relies on post-processing, lacks direct
game engine compatibility, and achieves lower visual qual-
ity. For Triangle Splatting we simply set the opacity to 1
and o to 0, without any additional processing. 2DGS re-
quires post-processing, lacks direct game engine compati-
bility, and delivers lower visual quality. Triangle Splatting
improves PSNR by 37%, SSIM by 12%, and reduces LPIPS
by 2.7%, yielding better visuals without post-processing.

Triangle Splatting uses far fewer triangles (= 1M vs. ~
7M). It reconstructs background regions more accurately,
while 2DGS tends to focus on the object center and often
leaves backgrounds sparse or missing, reducing visual qual-
ity. Triangle Splatting opens the door to future work, such
as developing training strategies specifically for high visual
quality in game engines (for example, gradually pushing
opacity and o toward 1 and 0, respectively), or connecting
triangles during training to obtain a watertight mesh.

Hardware | OS  TFLOPS HD FullHD 4k

Iris Xe Windows 2 33 23 15
MacBook M4 MacOS 8 120 90 40
RTX4090 Linux 48 1058 759 327

Table 4. Stochastic renderer: FPS across different hardware
and resolutions. Evaluated on Garden (=~ 4.3M triangles) with 1
sample per pixel. OS stands for operating system.

Figure 8. Qualitative rendering results with Stochastic Trian-
gle Splatting. Most computations run in the vertex shader, en-
abling real-time rendering in a game engine without quality loss.

‘ Post-processing ‘ PSNR{ LPIPS| SSIM? ‘ #T

2DGSY Yes 15.36 0.474 0.498 ~TM
Ours No 21.05 0.462 0.558 ~1M

Table 5. Mesh-based novel view synthesis. ~Comparison be-
tween Triangle Splatting and 2DGS on MipNeRF 360. We achieve
higher image quality (higher PSNR/SSIM, lower LPIPS), and re-
quire far fewer triangles (#T). T results obtained from [12].

7. Conclusions

We have introduced Triangle Splatting, a novel differ-
entiable rendering technique that directly optimizes trian-
gle primitives for novel-view synthesis. Leveraging the
same primitive used in classical mesh representations, our
method bridges the gap between neural rendering and tra-
ditional graphics pipelines. We have shown that Tri-
angle Splatting outperforms concurrent methods in visual
quality while retaining the efficiency, and compatibility of
the triangle. Moreover, it opens several directions for future
research, including connecting triangles during training to
obtain watertight meshes and optimizing ¢ and opacity for
high visual quality in game engines. These results establish
Triangle Splatting as a promising step toward mesh-aware
neural rendering, unifying decades of GPU-accelerated
graphics with modern differentiable frameworks.
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