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ABSTRACT

Climate and weather prediction has traditionally relied on computationally demand-
ing numerical simulations grounded in atmospheric physics, yet deep-learning
approaches are emerging as transformative alternatives. Existing methods, how-
ever, are often purely data-driven and physics-agnostic, overlooking essential
physical principles and struggling to generalize. To address these challenges, we
present the Physics-Aware Tensor Field Neural PDE (PA-TFNP), a forecasting
framework that embeds rotation-equivariant tensor-field neural operators directly
on the sphere, couples them with a numerically rigorous gradient operator based on
spherical transforms and physically consistent boundary treatment, and augments
the learned dynamics with diffusion terms derived from the atmospheric primitive
equations. These innovations enable our model to achieve superior performance
through strict physical fidelity and efficient learning. The proposed PA-TFNP
achieves state-of-the-art performance in global and regional weather prediction,
outperforming ClimODE by 78.92% on global hourly data with a comparable
number of parameters.

1 INTRODUCTION

Accurate climate and weather prediction is crucial for understanding environmental phenomena,
preparing for extreme events, and enabling informed decisions. Traditional numerical simulations
grounded in atmospheric physics (Rabier et al.| [2000; Rawlins et al., [ 2007; Thompson, [1961) have
achieved remarkable accuracy over medium timescales, leveraging systems of partial differential
equations (PDEs) to model atmospheric dynamics and capture processes like advection, diffusion, and
thermodynamics (Lions et al.l [1992; Haltiner, 1971} (Coiffier, |2011). However, solving these PDEs is
computationally expensive, and extensive or proprietary datasets (Yul [2010; |Warner, [2010) pose sig-
nificant scalability challenges, often making real-time or high-resolution global predictions infeasible.
Moreover, traditional models struggle with rapidly changing climate patterns not well-represented in
historical data (Neelin, [2010), highlighting the need for methods that are computationally efficient
and can learn from observed data while maintaining physical consistency (Bader et al., 2008).

In recent years, machine learning approaches have emerged as transformative alternatives to traditional
simulations, challenging the mechanistic modeling paradigm with data-driven methods (B1 et al.,
2023 |Lam et al.l [2023; |Bodnar et al., 2024; Kochkov et al.| |2024). These models learn complex
spatiotemporal patterns directly from observations, bypassing the need to solve costly PDEs. They
have shown promise in tasks ranging from high-resolution weather forecasting to global climate
simulations (Bihlo} |2021; |Verma et al.| 2024; |Pathak et al.,|2022), capturing intricate dependencies for
near-term predictions and localized events. Despite these successes, many remain physics-agnostic,
relying solely on learned correlations rather than leveraging physical principles. Consequently, they
struggle to enforce fundamental conservation laws, such as mass or energy conservation, and lack
mechanisms to maintain incompressibility in fluid dynamics. This limits their generalization across
diverse geophysical scenarios and leads to error accumulation over extended timeframes, undermining
long-term forecasting reliability. To address these limitations, we propose the Physics-Aware Tensor
Field Neural PDE (PA-TFNP), a novel framework designed to enhance climate and weather prediction
by combining the strengths of deep learning with physical principles. In contrast to recent neural
surrogates—such as ClimODE and ClimaX—that operate on flattened latitude—longitude grids or
impose physics only through auxiliary losses, PA-TFNP learns directly on spherical tensor fields,
preserving rotational symmetry throughout the network. It fuses a rotation-equivariant tensor-
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field operator with a mathematically consistent spherical-transform gradient and physically sound
boundary conditions, giving the model intrinsic knowledge of physics laws rather than relying
on post-hoc corrections. Furthermore, PA-TFNP embeds diffusion dynamics explicitly derived
from the atmospheric primitive equations, enabling realistic long-term dynamics. This integration of
geometry, numerics, and physics delivers substantial gains over existing benchmarks while demanding
significantly fewer computational resources, proving that physical fidelity and efficiency can coexist
in modern weather-forecasting systems. Our key contributions are as follows:

* We propose a Tensor Field Neural PDE framework (TFNP) powered by tensor-field neural
networks that not only captures rotationally equivariant spatiotemporal patterns but also
consistently outperforms the latest benchmark models across diverse climate and weather-
prediction tasks.

* We devise a numerically rigorous spherical-transform-based gradient operator with physi-
cally consistent boundary conditions that stabilizes training and sharpens predictive precision,
particularly near domain boundaries.

* We embed diffusion dynamics informed by the atmospheric Primitive Equations into our
network, capturing key atmospheric processes and thereby improving both the accuracy and
stability of weather forecasts.

Through these contributions, our method achieves significant improvements in both accuracy and
robustness, effectively bridging the gap between physics-driven simulations and data-driven machine
learning approaches.

2 RELATED WORKS

Numerical weather prediction. Conventional climate and weather forecasting primarily depends on
physics-based numerical simulations (Shuman, [1989; Warner;, 2010). In particular, short-term fore-
casts rely on established Numerical Weather Prediction (NWP) systems—such as the Unified Model
(UM) (Bush et al.,2020) or other frameworks used in the U.S. (Powers et al.,|2017)) and Europe—that
solve the so-called primitive equations (Wedi et al.| 2015)), a topic of extensive mathematical and
computational research (Lions et al.,[1992)). Meanwhile, longer-term forecasts employ dedicated
climate models, with Earth System Models (ESMs) (Mukhopadhyay et al.,|2019) representing the
cutting edge by coupling atmospheric, cryospheric, terrestrial, and oceanic processes. Although these
modeling approaches have seen considerable success, they still face notable challenges, including sen-
sitivity to initial conditions, structural inconsistencies across models (Bauer et al., 2015)), significant
computational burdens, and marked regional variability.

Deep learning for forecasting. Recent advances in deep learning have yielded promising results
for weather forecasting by bypassing some of the complexities of physics-based simulations. For
instance, Rasp et al.| (2020) applied pre-training with ResNet for medium-range weather prediction,
and utilized large ensembles of deep models to capture sub-seasonal variations (Han et al., [2024)).
Other notable works include radar-based deep generative models for nowcasting (Ravuri et al.| [ 2021)
and graph neural network-based forecasting in GraphCast (Lam et al.,[2023)). In addition, FourCastNet
(Kurth et al.l 2023) and Pangu-Weather (B1i et al., 2023) represent state-of-the-art neural forecasting
approaches that harness data-driven backbones, such as Vision Transformer, UNet, and autoencoders.
Despite their empirical strengths, these methods tend to overlook key physical principles and seldom
provide uncertainty estimates, limiting their interpretability and robustness.

Physics-Informed Machine Learning. Neural ODEs frame time derivatives as learnable neural
networks (Fermanian et al.,|2021)), and have been extended to incorporate physics-based constraints
(Verma et al., 2024)). Physics-Informed Neural Networks (PINNs) (Cai et al., |2021) embed mech-
anistic knowledge into DEs, and a broader line of research focuses on discovering interpretable
differential equations (Brunton and Kutz, |2024)). Extending such ideas to Neural PDEs often requires
specialized spatial discretizations (Kochkov et al.,[2024) or functional representations (Seol et al.}
2024)). Several studies have also used machine learning to improve fluid dynamics models (Choi
et al.,2024). Notably, most of these works deal with smaller-scale fluid systems rather than the global
scope demanded by climate or weather applications.
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3 METHODOLOGY

Our model is fundamentally constructed using the Method of Lines (MOL) framework, as described
in (Verma et al.,|2024). This approach initially formulates the problem in terms of partial differential
equations (PDEs) governing the evolution of multiple variables. To approximate the spatial derivatives
in these PDEs, we employ a finite difference scheme, converting the PDEs into a system of ordinary
differential equations (ODEs). Subsequently, we effectively approximate the temporal dynamics
of the atmospheric variables by solving this system through a neural ODE framework (Chen et al.|
2018)). The detailed formulation is outlined below.

3.1 PRELIMINARY

Consider a set of d atmospheric variables denoted by q(x,t) = {q;(x,t)}%, (e.g. temperature,
geopotential height) that depend on the spatial location x € [—90, 90] x [0, 360] (representing latitude
and longitude on a sphere domain, such as Earth) and time ¢ > 0. Observations of these variables are
collected at a set of uniform grid points {x,, }_;, where the spatial domain consists of H latitude
points and W longitude points, resulting in a total of N = HW observations. In addition, we can
consider the velocity field U(t) = {{u;(x,, )}, })_, that governs the advection of atmospheric
variables. Given the velocity field, we model the temporal evolution of these variables using the
following governing equations as in (Verma et al., 2024).

2 i, 1) = i, 1) V(1) — 406 O - i, 1), n
S 0) =y (QU), YQU), U g((xa iy, 1),

where V denotes the spatial gradient, Q(¢) represents the set {q(x,,t)}_;, g is a spatio-temporal
embedding function and f,, is a trainable neural network with parameter 1. The second equation
implies that the velocity of each variable could be influenced by the other variables.

To transform Equation (1)) into a system of ODEs, we approximate the spatial derivatives using a

finite difference, denoted as F' (see Sectlonnfor details). The system for all variables Q(t) at the
points of the grid is given below.
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Here, NV (i) denotes the index set corresponding to the neighborhood of the grid point x; required for
the finite-difference approximation. The system that governs U(¢) can be formulated analogously.
Consequently, the complete system consists of 3/Nd components when each atmospheric variable
is considered a separate component. By integrating Equation (2) usmg the Runge-Kutta method to
solve this system, we can estimate the values of the variables {¢; }¢; at all grid points {x, }2_;.

8] - 8- [ ()

ds

Using the estimated Q(t) and real data, we train f, by minimizing the negative log-likelihood loss
function, as defined in Sections 3.7 and 3.8 of (Verma et al., [2024).

3.2 TENSOR FIELD NEURAL PDE (TFNP)

In this paper, we parametrize the nonlinear operator f, in Equation (illustrated in Figure [I)
with a Tensor Field Network (TFN) frrn (Thomas et al., 2018 Weiler et al., 2018} Kondor et al.}
2018)), combined with an attention mechanism, f,:; (Vaswani et al.,[2017), rather than employing
a convolutional neural network (CNN). Although CNNs are often adopted for f,, because they can
approximate finite difference schemes on a uniform Euclidean grid (Brandstetter et al., 2022} [Long
et al.,|2018), global climate data are typically sampled uniformly in latitude and longitude coordinates.
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Figure 1: Graphical overview of PA-TFNP. The tensor field network (TFN) and attention layer are
employed to model f, and the advection-diffusion equation is introduced. TEN accounts for the
spherical geometry of Earth. For instance, earth can be divided into four regions (A, B, C, D) based
on latitude [0°,90°], [-90°, 0°] and longitude [0°, 180°], [180°, 360°]. Projecting temperature data
onto the latitude-longitude plane forms the leftmost rectangular map. Rotation around the polar axis
leads to translation on this map, while rotation around the equatorial axis additionally reflects region
B and C. PA-TENP processes these partitioned region and outputs corresponding (A*, B*, C*, D¥),
ensuring rotational equivariance. Combining PA-TFNP with attention yields the final model f;,.

This leads to geometric distortions near the polar regions, negatively impacting prediction accuracy.
Moreover, CNNSs inherently fail to capture rotation-equivariant properties essential for processing
spherical data. As in Figure[T] while rotations around the polar axis correspond to straightforward
transformations in a periodic domain, rotations around the equatorial axis involve transformations
coupled with reflections. Consequently, a CNN with fixed filters cannot approximate rotations of
the latter type, as local features along the boundaries separating regions A, B, C, and D become
distorted. We adopted a neural network based on tensor products instead of CNNs to mitigate this
problem. This approach is inherently rotation equivariant, ensuring that transformations affect points
near the poles and the equator consistently, without introducing distortion. The detailed formulation
is as follows. The function f,, takes as input Q(¢) € RV*4, vQ(t) € RV*24 U(¢) € RV*24 and
g({z, }N_1,t) € RVX¢ where e denotes the embedding dimension introduced by g. If inputs in T'
time steps are considered simultaneously, the dimension of input [ is given by T'x N X (5d+¢). After
reshaping I into a tensor of size IV x C;y,, we can define the neural network f,, : RN *Cin — RN*Cout
as a tensor product-based function. This function is parameterized by a trainable weight tensor
Wcout, ¢1.¢2] for indices cout, €1, c2 € [Coutl, [Cinl, [Cin], and is formulated as:

C(!ul C(!ul
frenUlisconl) =T@T =3 Wlco, c1,c2](I[i, 1] - I[i,ca]), Vi € [N].

c1=1co=1

Here, C;,, Cyy: denote the input and output channel dimensions of frry. Additionally, we incor-
porate an attention-based network, f;, following the architecture proposed in (Verma et al., [2024).
Consequently, the final f,, is constructed as the sum of the attention network f,;; and the Tensor
Field Network frpy,
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Figure 2: (a) Description of Neumann padding. (b) Description of the average padding. (c) Ground
truth values for z, t2, t2m, ul0, and v10 and absolute errors of ClimODE and the proposed TFNP.

3.3 PHYSICS-AWARE TENSOR FIELD NEURAL PDE (PA-TFNP)

In this section, we introduce PA-TFNP, an extension of TFNP that incorporates physical constraints
into the model. We make three key modifications. First, we apply boundary conditions that reflect
the domain’s physical properties. Second, spatial derivatives are computed using spherical operators
to capture Earth’s geometry. Third, we augment the inputs to f, () in Equation equation |1| with
physically relevant features: ground wind magnitude, lapse rate, and wind vorticity. We also modify
the PDE solver to blend neural outputs with physics-based tendencies for improved interpretability
and fidelity.

BOUNDARY CONDITIONS

ClimODE exhibits unexpected errors near the boundary of the domain (see Figure [2)), primarily
due to the discretization of the sphere onto a longitude—latitude rectangular domain. This issue
arises from the absence of proper boundary conditions in the original ClimODE formulation (Verma
et al.,[2024). The boundary conditions are implemented through an appropriate padding strategy and
incorporated into the advection—diffusion equation during gradient computation. We propose two
padding strategies, Neumann padding and average padding, both reflecting the physical characteristics
of the domain.

In both strategies, circular padding is applied along the longitudinal boundaries, effectively trans-
forming the rectangular domain into a cylindrical one. For Neumann padding, replicate padding is
used along the latitudinal boundaries, corresponding to homogeneous Neumann boundary conditions

at the north and south poles (see Figure[2a). In the case of average padding, we extend the domain by

padding with the average values of the boundary: 1 = 6%1 Z?il u1,; and pig = 6%1 Z?il ug, ;. This

transforms the rectangular domain into a sphere-like domain (see Figure 2b). Figure [2c|illustrates
that TFN, equipped with this padding scheme, effectively captures the solution behavior near the
poles. With a rotation-equivariant property, TFNP maintains consistent prediction accuracy across
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all regions, including areas near the poles, resulting in robust predictions both at the boundaries and
within the domain interior.

SPATIAL DERIVATIVE APPROXIMATION

This section outlines the computation of the spatial derivatives in Equation (I). The method proposed
in (Verma et al.|2024)) estimates the derivatives by directly computing finite difference approximations
along latitude and longitude, respectively. However, in a spherical domain, a given longitudinal
difference corresponds to varying Euclidean distances depending on latitude. To account for this, we
adopt a central finite difference scheme with a distance correction term:

v%’((¢a /\)7 t)

- <Qi((¢ T hA)t) —qi((@ —hA), 1) ({9, A+ w),t) —qi((¢, A — w)i)) S
Rhm /180 ’ Rh cos ¢/180 ’

where R represents the Earth’s radius, and h and w denote the uniform grid spacing in latitude and
longitude, respectively. Given the inherent periodicity in the longitudinal direction (), all grid points
along this axis can be treated as interior points. Furthermore, we impose boundary conditions such
as Neumann or periodic conditions on the latitude (¢), ensuring that all points within the domain
are treated as interior points. Under these conditions, the central finite difference scheme can be
consistently applied throughout the entire domain.

ADDITIONAL PHYSICS-DERIVED FEATURES

To augment the original TFNP framework, we introduce three physics-informed features: (i) the near-
surface wind magnitude |Vyo| = \/u%O + U%O, (ii) the low-tropospheric lapse rate At = t — to,,,, and
(iii) the relative vorticity ¢ = 0,v10 — Oyu10, computed using spherical gradients. These quantities
capture dynamic and thermodynamic processes essential to atmospheric motion.

MODIFIED PRIMITIVE EQUATION

To improve physical realism and long-term stability, we extend the neural advection formulation in
Equation [I] by incorporating physics-inspired diffusion and momentum correction terms.

First, scalar quantities such as temperature, humidity, and geopotential exhibit diffusive behavior in
the real atmosphere, caused by unresolved subgrid turbulence and eddy transport Haltiner| (1971));
Lions et al.|(1992); |Warner| (2010). To reflect this, we introduce a spatially varying diffusion term
with a learnable non-negative coefficient a(x) € R?*#*W  The scalar transport equation is modified
as follows:

0qi(x,1)

ot
where the last term mimics anisotropic and spatially varying diffusion. Next, we augment the
neural tendency with physically meaningful momentum dynamics for the learned velocity field u;.

Specifically, we apply a time-dependent blending of neural predictions and physically grounded
operators:

8111' (X7 t)
ot
where the blend factor 5; = 1 — exp(—t/7p) gradually shifts preference from neural inference

to physical consistency over time. The physical operator fphys imposes structure on the velocity
evolution by incorporating key dynamical effects:

= —u;(x,t) - Vai(x, t) — q;(x, 1)V - wi(x, t) + a(x)Agi(x, t),

= (1= 8 f4(Q(1), VQ(1), U#), g({xn}71,)) + Be fonys (x, £, 11),

Jonys (X, 6, 0;) = =V® + vAu; — yu;,

where ® denotes the geopotential field (i.e., ® = 2), and v, ~y are learnable viscosity and linear drag
coefficients, respectively. This hybrid formulation preserves the expressiveness of neural models
while enforcing core physical constraints, improving both predictive performance and stability in
long-range forecasts.
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4 EXPERIMENTS

We evaluate the performance of PA-TFNP by comparing it with the neural ODE, ClimaX (Nguyen
et al.,[2023)) and ClimODE (Verma et al.| 2024), a state-of-the-art data-driven global climate fore-
casting model. To ensure a fair comparison, we follow the experimental setup of (Verma et al.|
2024), except for specific modifications detailed below. We utilize the ERAS dataset from Weather-
Bench (Rasp et al., [2020), selecting d = 5 key atmospheric variables: ground temperature (¢t2m),
atmospheric temperature (t), geopotential height (z), and ground wind components (u10,v10).
All variables are normalized to the range [0, 1] using min-max scaling. Further details on dataset
preprocessing and training settings remain consistent with those in (Verma et al.| |2024) and Appendix
All experiments were conducted using a single RTX 4090 GPU.

4.1 GLOBAL WEATHER FORECASTING ACROSS VARYING TEMPORAL AND SPATIAL
RESOLUTIONS

To evaluate the scalability and generalization of PA-TFNP across both spatial and temporal dimen-
sions, we conduct experiments on global weather forecasting at two different settings: (a) long-term
prediction over 5 days at a coarse resolution (5.625°), and (b) short-term prediction over 6 to 42 hours
at a finer resolution (11.25°). Figure [3]summarizes the RMSE results for the five key atmospheric
variables (z, t, t2m, ul0, v10), comparing PA-TFNP with the state-of-the-art ClimODE baseline.

Across both resolutions, PA-TFNP consistently outperforms ClimODE. In the long-term setting (first
row in Figure[3), our model demonstrates particularly large improvements in forecasting geopotential
height and atmospheric temperature. Similarly, in the short-term setting (second row in Figure [3),
PA-TFNP shows improved accuracy across all lead times, with gains becoming more pronounced
beyond 24 hours. This indicates that the model maintains robustness even as the forecasting horizon
increases. These results confirm the effectiveness of PA-TFNP in learning global-scale spatiotemporal
dynamics, while preserving accuracy across varying resolutions and forecast ranges.
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Figure 3: Comparison of RMSE values for ClimODE and the proposed PA-TFNP (Ours) across two
spatiotemporal resolutions. The results highlight the performance differences for key atmospheric
variables. Results are reported as mean =+ standard deviation. First row: long-term prediction at
a resolution of 5.625°. Second row: Short-term prediction at a resolution of 11.25°. PA-TFNP
outperforms ClimODE by 38.12% on daily data and by 78.92% on hourly data.

4.2 SHORT-TERM REGIONAL WEATHER FORECASTING

We evaluate short-term (up to 24 hours) regional weather forecasting over the Australia and the South
American region. Table[T] presents the RMSE (mean = standard deviation) of various models across
five key atmospheric variables. Our proposed model, PA—-TFNP, demonstrates strong predictive
accuracy overall, particularly for the geopotential height (z) and temperature (t) variables, where
it consistently outperforms all baselines across all lead times. Compared to the current state-of-
the-art model, ClimODE, PA-TFNP achieves lower RMSE, especially at longer horizons (18-24h),
demonstrating improved temporal robustness.
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Table 1: Comparison of RMSE values for baseline models and the proposed PA-TFNP (Ours) across
different regions. The results highlight the performance differences for key atmospheric variables.
Results are reported as mean + standard deviation.

Australia South America
Value Hour NODE ClimaX ClimODE PA-TFNP NODE ClimaX ClimODE PA-TFNP

6 2514 1902 103.8 + 14.6 79.5 + 19.9 2256 2054 107.7 £ 20.2 87.5 £ 22.0
12 344.8 1847 170.7 &+ 21.0 118.8 + 30.1 365.6 220.2 169.4 £ 29.6 128.2 £+ 31.3
18 539.9 2222 211.1 + 31.6 161.6 + 43.8 5519 269.1 237.8 £ 32.2 174.1 £ 43.4
24 632.7 3249 308.2 + 30.6 205.8 + 59.5 660.3 301.8 292.0 £ 38.9 221.3 £ 57.8

6 1.37 1.19 1.05 £0.12 0.87 + 0.14 1.58 1.38 0.97 £ 0.13 1.01 £ 0.16
12 2.18 1.30 1.20 £ 0.16 1.07 + 0.18 2.18 1.62 1.25 £ 0.18 1.18 £ 0.18
18 2.68 1.39 1.33 £0.21 1.19 £ 0.20 274 1.79 143 £ 0.20 1.29 £ 0.18
24 3.32 192 1.63 £0.24 1.31 +£0.23 341 197 1.65 £ 0.26 1.44 + 0.21

6 1.88 1.57 0.80 £ 0.13 2.42 £ 0.70 2.12 1.85 1.33 £ 0.26 1.73 £ 0.67
12 2.02 1.57 1.10 £ 0.22 298 £ 1.50 242 2.08 1.04 £ 0.17 2.37 £ 1.20

2m 18 3.51 1.72 1.23 £ 024 237 £ 055 260 2.15 0.98 £ 0.17 1.87 £ 0.84
24 246 215 125 +£0.25 1.16 £0.24 256 223 1.17 £0.26 1.15 £ 0.27
6 1.91 140 1.35 £ 0.17 143 £0.19 194 127 1.25 £ 0.18 1.42 £ 0.27
10 12 2.86 1.77 1.78 £ 0.21 1.74 £ 0.22 274 1.57 1.49 £ 0.23 1.56 £ 0.30
18 344 203 1.96 £ 0.25 1.88 £ 0.26 3.24 1.83 1.81 £ 0.29 1.69 £ 0.29
24 391 2.64 233 £0.33 2.06 £ 0.28 3.77 2.04 2.08 £0.35 1.86 + 0.32
6 2.38 147 1.44 £ 020 1.56 £ 0.19 229 1.31 1.30 £ 0.21 1.68 £ 0.39
v10 12 3.60 1.79 1.87 £0.26 1.78 £0.25 342 1.64 1.71 £0.28 1.93 £ 0.40

18 4.31 233 223 +£0.23 2.04 £ 026 4.16 1.90 2.07 £ 0.31 1.88 £+ 0.37
24 488 258 253 +£0.32 223 £ 030 476 2.14 243 £ 0.34 2.06 £ 0.37

For wind components, PA-TFNP slightly outperforms ClimODE in most settings, particularly at
longer lead times. Notably, for t2m, PA-TFNP underperforms at earlier lead times but catches up
or surpasses baselines at 24h. This may indicate a trade-off between local variance sensitivity and
longer-horizon stability.

4.3 MONTHLY AVERAGED WEATHER FORECASTING

Next, we evaluate the predictive accuracy of ClimODE, CilmaX, TFNP, and PA-TFNP over a
two-month lead time. All models predict the global two-month averaged future states based on
an initial monthly average state. Table [2] provides a detailed comparison of RMSE values for
various atmospheric variables, showing that PA-TFNP consistently outperforms other benchmarks,
particularly in predicting geopotential height (z), atmospheric temperature (t) and ground temperature
(t2m). The lower RMSE values in the results indicate that PA-TFNP more accurately captures
complex climate patterns, offering enhanced reliability for extended-range climate forecasting.

4.4 ABLATION STUDIES

Assessing rotational equivariance: ClimODE vs TFNP. To further evaluate the spatial prediction
capabilities of TFNP, we compare its performance with ClimODE in terms of absolute prediction
error across five key atmospheric variables (see Figure[6]in Appendix [A). The results demonstrate
that TENP consistently achieves lower error magnitudes than ClimODE, particularly in geophysically
challenging regions such as the poles and the equator. These regions are often prone to distortions
due to their rotational properties, where ClimODE exhibits noticeable artifacts. In contrast, TFNP
maintains strong spatial consistency, owing to its rotation-equivariant architecture. These findings
underscore the importance of incorporating geometric inductive biases, such as rotational equivariance,
in improving model robustness and accuracy in global-scale geophysical forecasting.
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Table 2: Comparison of RMSE values for different models across two months. The results highlight
the performance of TFNP and PA-TFNP compared to ClimODE and other baseline models for key
atmospheric variables.

Value Months ClimaX ClimODE TFENP (ours) PA-TFENP (ours)
, 1 580.73  692.10 + 119.80 529.44 + 95.77 502.01 4+ 79.50
2 773.40  870.57 4+ 72.58 527.07 + 84.54 562.39 +70.13
¢ 1 2.89 2.81 + 0.48 2.58 4+ 0.56 2.48 + 0.45
2 4.39 3.20 + 1.02 2.42 + 0.42 2.44 + 0.21
©2m 1 2.97 4.33 + 0.38 2.63 + 0.52 2.53 £ 0.34
2 5.07 4.99 + 0.48 2.95 + 0.45 2.95 + 0.30
ulo 1 1.80 1.98 + 0.19 1.86 + 0.23 1.83 £0.23
2 1.92 2.09 + 0.11 2.40 4+ 0.22 2.32 + 0.21
v10 1 1.50 1.66 + 0.18 1.40 £0.10 1.39 + 0.12
2 1.71 1.98 £+ 0.11 1.95 £+ 0.18 1.91 £ 0.21

Benefits of Physics-Aware Modeling for Long-Term Stability: TFNP vs PA-TFNP. To evaluate
the effectiveness of Physics-Aware modeling, we compared the performance of the PA-TFNP model,
which incorporate physical operators and features against the TFNP model. Experimental results
shows that PA-TFNP consistently outperforms the TFNP model at extended forecast horizons beyond
24 hours, across all scalar quantities. These results underscore the importance of embedding physical
properties within predictive models to achieve stable and reliable long-term forecasting, as clearly
illustrated in Figure 4]

Geopotential (z) . Temperature (t) 2m Temperature (t2m) 10m Zonal Wind (u10) 10m Meridional Wind (v10)

—— TFNP
—=— PATFNP

: s o e tidisas iseial
4 = HWH 40 40
, + : -#+H*H'i++‘ 35 35

Hibippait

Long-term value

25

20
0 2 40 60 8 100 120 140 O 20 40 60 80 100 120 140 20 40 60 8 100 120 10 0 20 40 60 8 100 120 140 20 40 60 80 100 120 140
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Figure 4: RMSE comparison of the TFNP baseline and Physics-Aware TENP (PA-TFNP) models over
extended forecast horizons (up to 138 hours) across multiple atmospheric variables (z, t, t2m, ul0,
v10). The PA-TFNP model, incorporating physical constraints, consistently demonstrates improved
accuracy, highlighting the importance of physics-informed modeling for stable long-term predictions.

5 CONCLUSION AND LIMITATIONS

In this work, we have presented the Physics-Aware TFNP, a novel framework that combines deep
learning with fundamental physical principles to tackle climate and weather prediction tasks more
accurately and robustly. By integrating gradient computation and boundary treatment methods
rooted in numerical techniques and by incorporating physically consistent diffusion terms and
divergence-free conditions, our approach addresses the shortcomings of both purely data-driven
and physics-agnostic models. TENP not only demonstrates state-of-the-art forecasting performance
but also maintains physical fidelity, offering enhanced interpretability and reliability. We anticipate
that the mathematical principles introduced here will generalize across a broad range of scientific
computing domains, thereby accelerating progress in both global and regional weather prediction.

As expected, the rotation-equivariant feature of the proposed PA-TFNP plays an important role in the
global forecasting model. However, this characteristic appears to offer limited benefits for regional
forecasting. This limitation warrants further investigation in future work. We have added diffusion
terms to the model equations for all predictive variables. However, the modification of the model
equation should be tailored to each variable, as their physical interpretations differ significantly.
For instance, the temperature variable and ground wind variables represent fundamentally different
physical phenomena and therefore should be modeled using distinct equations.
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A FURTHER EXPERIMENTS

In this section, we present additional experimental results for the TEFNP and the PA-TFNP model.
Table [2] and Figure [5] report the RMSE values for the two-month prediction task described in
Section@ Figure E]Visualizes the RMSE values of ClimODE, TFNP, and PA-TFNP over a two-
month forecast horizon, based on global monthly averaged predictions. The comparison spans five
atmospheric variables (z, t, t2m, 410, and v10). The results clearly show that PA-TFNP achieves the
lowest RMSE in most variables, especially in z and ¢, where its advantage over other models is more
pronounced. This supports our main claim that incorporating physics-aware inductive bias improves
long-range prediction performance.
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Figure 5: RMSE comparison of ClimODE, TFNP, and PA-TFNP for two-month averaged predictions
across five key atmospheric variables: geopotential height (z), temperature (¢), ground temperature
(t2m), and wind components (u10, v10). PA-TFNP consistently achieves the lowest RMSE for
most variables, particularly in z and ¢, demonstrating enhanced accuracy and temporal stability for
long-range climate forecasting.

Figure [6] shows the absolute prediction errors of PA-TFNP and ClimODE across five key atmospheric
variables, as discussed in Section[£.3]

Qualitative Comparison of ClimODE and TFNP Predictions

Z - ClimODE v10 - ClimODE ulo - ClimODE t2m - ClimODE t - ClimODE

0.00

v10 - TFNP ulO - TFNP t2m - TFNP

0.00 . 0.00

Figure 6: Qualitative comparison of absolute prediction errors from ClimODE and TFNP across
five atmospheric variables (z, v10, u10, t2m, t). The first row visualizes the spatial distribution of
prediction errors from ClimODE, while the second row shows those from TFNP. TENP significantly
reduces errors and improves spatial consistency, particularly in polar regions where ClimODE suffers
from grid distortion effects. These results highlight TFNP’s ability to handle rotationally sensitive
areas through its rotation-equivariant architecture, enabling more robust global-scale predictions.

Next, in Table@ we compare the PA-TFNP model with other baseline models—Neural ODE, ClimaX,
and ClimODE—for the North America region. See Table (1| for results in other regions, including
Australia and South America.

Figure [7and Figure 8] present qualitative visualizations of PA-TFNP’s prediction performance for
monthly-averaged and hourly forecasting tasks, respectively. Across both long-term (monthly) and
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Table 3: Comparison of RMSE values for baseline models and the proposed PA-TFNP (Ours) across
North America. Results are reported as mean =+ standard deviation.

Value Hours NODE ClimaX ClimODE PA-TFNP (Ours)

6 232.8 2734 134.5£10.6 130.2 £41.3
, 12 469.2 3295 225.0+£17.3 202.3 £ 59.1
18 667.2 543.0 307.7£25.4 282.7 £81.8
24 893.7 494.8 390.1 £ 32.3 367.3 £ 107.6
6 1.96 1.62 1.28 £0.06 1.45+0.27
¢ 12 3.34 1.86 1.81£0.13 1.79 £0.37
18 4.21 275 2.03+0.16 1.97+0.43
24 5.39 227 2.23+0.18 2.324+0.48
6 2.65 1.75 1.61+£0.12 3.48+£1.74
Om 12 3.43 1.87 1.87+£0.13 4.68 £1.03
18 353 227 1.96 £0.33 3.41+£1.05
24 3.39 193 2.15+£0.20 2.59 £ 0.64
6 1.96 1.74 1.54+£0.19 1.69+0.34
10 12 291 224 2.01#£0.20 1.94 +0.41
18 3.40 342 2.17+£0.34 2.08 £0.43
24 3.96 342 234+£0.32 2.26 £0.43
6 2.36 1.83 1.67+£0.23 1.79 £ 0.36
v10 12 3.42 243 2.03+0.31 1.94 +0.41
18 4.35 392 2.31+£0.37 2.20£0.40
24 4.57 339 250£041 2.37+£0.42

short-term (hourly) settings, PA-TFNP demonstrates low absolute errors across the entire spatial
domain, including boundary regions. The model consistently provides accurate predictions for key
atmospheric variables, particularly temperature (¢) and geopotential height (z), underscoring its
effectiveness in spatiotemporal climate modeling.

B DATASETS

The ERAS dataset consists of weather records for five variables: round temperature (t2m), atmospheric
temperature (t), geopotential height (z), and ground wind components (ul0, v10). It provides global
coverage on a uniform grid from 2006 to 2018. Data from 2006 to 2015 are used for training, 2016
for validation, and 2017-2018 for testing. We exclude the first two and last one months of each
year, considering only nine months per year. These months are further divided into three sequential
groups, where, for each group, we predicted atmospheric variables for two consecutive months based
on observations from the preceding month. The spatial grid is uniformly spaced at 5.625° in both
latitude and longitude, with dimensions H = 32 and W = 64.

C TRAINING DETAILS

We employed the forward Euler method as our ODE solver to integrate the dynamical system in
Equation (1)) and its variation, using a time resolution of 1/6 month (approximately 5 days). In our
neural ODE framework, this resolution is represented as 0.01 in normalized time to avoid excessive
computational costs of directly using a one-month unit. Model training and inference are performed
on a single NVIDIA RTX 4090 (24GB). All training hyperparameters for ClimODE and ClimaX
remain consistent with those in (Nguyen et al., 2023} [Verma et al., [2024)). During training, all
variables are normalized to [0,1] using min-max scaling; however, the original values are restored to
compute RMSD in Table
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Figure 7: Comparison of RMSE values for ClimODE and TFNP-PA in two-month averaged pre-
dictions for five atmospheric variables. TENP consistently achieves lower RMSE, particularly for
temperature (t) and geopotential height (z), highlighting its improved forecasting performance.

C.1 Loss FUNCTION

Consider the set of observations {{g?**(x,, )}, }V_,. To introduce stochasticity, we assume the
following equation with the estimated mean and variance as in (Verma et al., [2024).:

a7 (x,8) ~ N (qi(x,1) + pi(x, 1), 07 (x, 1)) ,

where the function € (¢;(x,t), g({x, }3_,,t)) estimates the additional mean 1i;(x, t) and variance

02(x,t). Given the observations {q?**(x,,t)}, we define the loss function £(7) using the negative
log- hkehhood

log L({{a?"* (xn, t) Yy i [{{ ki (ks ) iy 10 {{0i (3, 1211000

d N
= IOgH H L(Qz()bs(xmt)‘:ui(xna t),0i(Xn, 1))
1=1n=1
d N
= ZZlog(L(qo (Xns )i (X, 1), 03 (X, 1))
i=1 n=1
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Table 4: Comparison of RMSE values for ClimODE and the proposed PA-TFNP (Ours) across two
spatiotemporal resolutions. The results highlight the performance differences for key atmospheric
variables. Results are reported as mean + standard deviation.

(a) Long-term prediction at a resolution of 5.625°. (b) Short-term prediction at a resolution of 11.25°.

Value Day ClimODE TFNP (Ours) Hour ClimODE TENP (Ours)
5 1104.0 £104.0 220.4+21.6 6 3115.1 +216.6 161.24+174
10 1445.7 +103.1 988.3 £ 91.1 12 3156.4 4+ 204.0 602.5 + 59.6
15 1430.2 £118.6 1033.3 == 87.5 18 3175.8 +£176.3 830.3 £77.1
z 20 1470.3 +129.0 1058.2 4+ 70.9 24 3202.5 & 176.5 935.5 £ 87.8
25 1445.6 £83.6 1018.0 +=81.1 30 3240.1 +178.9 999.8 +90.2
30 1449.0 +108.5 1014.4 4+ 92.8 36 3216.3 +181.3 1038.1 £90.7
35 1457.8 £113.1 1078.0 = 68.6 42 3282.4 +224.7 1067.6 £106.3
5 6.12 = 0.55 1.15+0.13 6 22.62 + 1.41 1.27 £0.28
10 7.58 + 0.45 4.34 +0.47 12 22.73 +1.16 3.22 +0.21
15 7.73 £0.86 4.49 +0.33 18 22.59 +1.07 3.99 +0.28
t 20 7.46 + 0.56 4.54 + 0.30 24 22.49 +1.17 4.29 +0.30
25 7.67 £0.58 4.64 +0.46 30 22.50 +1.09 4.49 +0.31
30 8.07 £ 0.83 4.70 £ 0.42 36 22.51 +1.13 4.61 +0.35
35 8.16 = 0.51 4.98 +0.42 42 22.86 +1.15 4.71 +£0.37
5 7.92 +0.71 1.16 £0.13 6 38.58 +4.77 0.92 +0.17
10 8.78 +0.82 3.09 + 0.37 12 39.03 +4.70 2.274+0.18
15 8.58 +£0.80 3.43 +0.38 18 38.48 +4.12 2.80 £ 0.26
t2m 20 8.76 + 0.87 3.59 +0.33 24 38.19 £+ 4.50 3.04 +£0.28
25 8.90 £ 0.95 3.81 £ 0.45 30 39.19 4+ 3.85 3.20 £ 0.31
30 9.09 +0.70 4.04 £0.48 36 39.21 +4.21 3.33+0.34
45 9.51 £1.23 4.30 +0.62 42 37.87 +4.35 3.421+0.35
5 3.99 +0.30 0.96 + 0.08 6 14.86 £+ 0.92 0.62 +0.04
10 6.29 +0.32 4.86 +0.25 12 15.44 £ 0.92 3.98 +£0.26
15 6.27 £ 0.29 5.17 +0.24 18 15.57 £0.92 4.69 1+ 0.27
ul0 20 6.09 & 0.20 5.18 +0.22 24 15.67 £ 0.83 4.97 +0.30
25 6.08 +£0.31 5.12 4+ 0.21 30 15.70 £ 0.88 5.124+0.35
30 6.09 £ 0.30 5.11 +£0.26 36 15.86 £ 0.82 5.23 £0.35
35 6.22 +0.27 5.21 +0.21 42 15.89 + 0.87 5.324+0.35
5 3.94 +0.44 1.50 +0.08 6 13.86 4+ 0.92 0.59 +0.05
10 6.41 £ 0.29 4.83 +0.28 12 14.46 £ 0.92 4.50 + 0.36
15 6.19 +0.37 4.98 +0.38 18 14.74 +0.82 5.17 +0.37
v10 20 6.18 £0.37 5.00 £+ 0.23 24 14.75 £ 0.74 5.32 +0.37
25 5.93 £0.29 4.94 +0.30 30 14.78 +0.84 5.36 +0.36
30 6.29 +0.39 4.88 +0.28 36 14.73 £0.74 5.39 +£0.33
35 6.21 +0.31 4.97 £0.28 42 14.69 4 0.92 5.43 +0.36

To enhance numerical stability, we incorporate a small constant 10~2 into the variance term and

introduce a regularization term weighted by A:

N
1 n=1

d
i=

[(bes(xna t) = pi(%n, 1))
2(ci(xp,t))2 + 103

C.2 LATITUDE-WEIGHTED RMSE METRIC

+ log(o; (xn,t) + 103)}

To quantify prediction accuracy, we employ the latitude-weighted RMSE metric, defined as:

T

1 AW
ow Z Z a(h)(ythw - uthw)2

h w

1
RMSE = T Zt:

where a(h) = cos(h)/ % Zg cos(h’) represents the latitude-dependent weighting factor.
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Table 5: Training time for 1 epoch and the number of parameters.

Category Model Time [s] #Params

All-data ClimaX 115M
Regional

North ClimODE 305.00 2.75M

TENP (Ours) 289.87 2.78M

South ClimODE 309.86 2.75M

TENP (Ours) 295.46 2.78M

Australia ClimODE 310.08 2.75M

TENP (Ours) 292.43 2.78M

Global ClimODE 23.69/55.60 2.715M

Long Term / High Resolution PA-TFNP (Ours) 11.27/31.39 0.196M

Monthly ClimODE 6.50 2.40M

TENP (Ours) 2.87 0.098M

PA-TFNP (Ours) 3.30 0.194M

Ablation TENP (Ours) 3.17 0.130M

PA-TFNP (Ours) 4.38 0.196M

C.3 COMPUTATIONAL COST

Table [5] reports the training time per epoch and the number of trainable parameters for various
models and experimental settings. Our proposed models (TFNP and PA-TFNP) demonstrate notable
efficiency in both training speed and model size compared to baseline models like ClimODE and
ClimaX. In regional settings, our models consistently show faster training times despite having
a comparable number of parameters. For global high-resolution forecasts, PA-TFNP achieves
significantly reduced training time, with the number of parameters less than 10% of ClimODE’s,
highlighting its scalability. Furthermore, under the monthly and ablation settings, our lightweight
PA-TFNP remains both computationally efficient and parameter-efficient, making it suitable for
practical deployment in climate modeling tasks.

D ADDITIONAL EXPLANATION ON PHYSICS-AWARE VARIANTS

This section details the physics-informed variant model presented in Section [3.3]

RATIONALE FOR ADDING PHYSICAL TERMS

Atmospheric phenomena, such as turbulence, can distribute energy across scales—an effect we
attempt to approximate with the Laplacian A term. Even when the governing equations do not
explicitly include diffusion, some level of numerical diffusion is generally needed to prevent the
accumulation of artificial energy in simulations; see (Warner, 2010, Section 3.4.7). To address these
practical considerations, we include a term aA(+) in the original transport equation equation where
the non-negative coefficient « is a learnable parameter. Setting o = 0 preserves the original equation
equation [T} while a small & > 0 allows the model to represent physically motivated diffusion in a
controlled manner.

Similarly, the physics-informed forcing term fynys(xX, ¢, ui) explicitly aims to incorporate essential
physical processes into the neural equation. We define

fphys(x,t,u;) = =V® + vAu; — yu;,

where ® represents the geopotential field (with & = z), and v, y are learnable coefficients associated
with viscosity and linear drag, respectively. Including these physical terms is intended to enhance
the consistency of the model with fundamental atmospheric physics. Our experiment shows that
our approach improves interpretability, prediction accuracy, and numerical stability, particularly in
longer-range atmospheric simulations.
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Thus, our hybrid formulation of PA-TFNP aims to retain the expressive capability of neural net-
work models while encouraging adherence to important physical constraints, potentially leading to
improved predictive performance for long-term forecasts.

MOTIVATION OF ADDITIONAL PHYSICS-DERIVED FEATURES

We introduce three physics-derived features and recall the governing relations in which each enters:

« Wind magnitude. |Vio| = \/u?, + v?, appears in the bulk aerodynamic surface stress
formula
T = pCp [Vio| Vio,

where T is asurface stress vector, p is air density and Cp a drag coefficient.

» Lapse rate. At =t — tq,,, appears in various governing equations, particularly in parame-
terizations of turbulent mixing processes in the atmospheric boundary layer. Specifically, it
is utilized to estimate buoyancy-driven turbulence production or suppression, represented
mathematically by terms such as:

Box -2 KyAt
to

where B denotes the buoyancy contribution to the turbulent kinetic energy budget, g is
gravitational acceleration, 6 represents a reference potential temperature, and K is the
eddy diffusivity for heat. Therefore, the lapse rate At can be considered a valuable physical
feature when developing approximate neural network-based flow models, as it directly
encapsulates critical information about atmospheric stability and turbulence dynamics.

* Relative vorticity. ( = 0,v19 — 0,u10 quantifies the local horizontal spin of the wind and
features explicitly in the barotropic vorticity equation, quasi-geostrophic potential vorticity,
and Ertel potential vorticity. Its direct link to these conservation laws makes ( a clear,
physically interpretable variable for weather-prediction modeling.

SPATIAL DERIVATIVE

The spatial derivative approximation used in this study is based on the gradient operator in spherical
coordinates. Let F'(R, ¢, \) be a scalar field defined on the surface of a sphere, where ¢ denotes
latitude (in radians), A\ denotes longitude (in radians), and R represents the Earth’s radius, which
is assumed to be constant throughout the domain. Although the notation S? typically refers to the
unit sphere, here we consider the spherical surface of radius R, denoted S%, = {x € R? : ||x| = R}.
Assuming no variation in the radial direction, the surface gradient takes the following form:

10F . n 1 OF,
=——0¢ ——— ——@€,.
R9¢ " Rcospox
Here, €4 is the unit vector in the direction of increasing latitude (northward), and é, is the unit vector

in the direction of increasing longitude (eastward). Both lie in the tangent plane of the sphere at each
point.

VS?%F(¢7 )‘)

Based on this formulation, the gradient is numerically approximated using a second-order central
finite difference scheme, yielding Equation equation [3| where the factor 7/180 converts angular
increments from degrees to radians. The spherical derivative approximation is applied consistently
throughout the PA-TFNP model.

E BROADER IMPACT

The proposed PA-TFNP improves global and regional weather prediction by combining physical
interpretability with high forecasting accuracy and reduced computational cost. This enables faster,
more accessible predictions, especially valuable in regions with limited computing resources. The
model’s efficiency supports broader deployment of weather forecasting systems, contributing to
better preparedness for climate change. Careful integration with traditional methods and responsible
communication are essential for safe and effective use.
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Figure 8: Comparison of RMSE values for TFNP-PA in long-term predictions over hourly predictions
for five atmospheric variables. TENP consistently predicts over the entire domain, particularly for
temperature (t) and geopotential height (z), highlighting its improved forecasting performance.
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