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Abstract—A result by Chebotarëv states that all minors of
a prime-sized Fourier matrix are non-zero. The authors have
conjectured that for every Fourier matrix of composite size there
exists a permutation of the columns that ensures that all principal
minors of the resulting matrix are non-zero. After correcting
numerical issues, we now know that this conjecture is false for
N = 16. We present some partial results and numerics relating
to this conjecture.

Index Terms—Fourier matrix, minors, Chebotarëv’s theorem,
exponential basis, permutation.

I. INTRODUCTION

The study of submatrices of the Fourier matrix is a classic
topic in harmonic analysis with Chebotarëv’s theorem (see,
e.g., [5], [10] for recent proofs) establishing that all sub-
matrices of a Fourier matrix of prime size are invertible.
Classical applications range from compressed sensing (e.g.,
[2]) to uncertainty principles relating to the Fourier transform
(e.g., [8], [10]).

More recently, the invertibility of Fourier submatrices has
been connected in [6] with the existence of Riesz bases of
exponentials for finite unions of intervals. This idea has been
extended in [3], [9] to so-called hierarchical Riesz bases of
exponentials for unions of intervals (i.e., bases where taking
a partial union of the involved frequencies gives rise to a
Riesz exponential basis for the corresponding partial union
of intervals). In [3], the authors showed that such a hierar-
chical Riesz basis of exponentials exists for a finite union of
intervals as long as the endpoints of the intervals are rationally
independent. The authors realised that the same methodology
can be used to prove the existence of hierarchical Riesz bases
of exponentials in the case that all the intervals involved have
rational endpoints, as long as the following conjecture is true.

Conjecture 1: For every N ∈ N there exists a permutation
of the columns of the N × N Fourier matrix such that all
principal minors of the permuted matrix are non-zero.
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In fact, we conjecture (along with the authors of [1]) that
in the case when N is square-free (i.e., not divisible by any
p2 with p prime), then the identity permutation suffices.

The remainder of this paper is structured as follows. Section
II contains definitions, notation and preliminaries. Section III
contains some partial results towards Conjecture 1 obtained
by the authors. Section IV contains technical results involving
determinants of Fourier submatrices and permutations. Sec-
tion V discusses numerical experiments performed concerning
Conjecture 1 and details about the N = 16 case.

II. PRELIMINARIES

Let N ∈ N. Denote N := {0, 1, . . . , N − 1} and N∗ :=
{n ∈ N : n is coprime with N}. Note that #N∗ = φ(N),
where φ is the Euler totient function. Let ΣN denote the set
of permutations acting on N and let ω := e2πi/N be a principal
N -th root of unity. The N ×N Fourier matrix is defined as

FN :=
(
ωk·ℓ)

k,ℓ∈N
.

Given a permutation σ ∈ ΣN , we define the permuted Fourier
matrix as

Fσ
N :=

(
ωk·σ(ℓ))

k,ℓ∈N
.

If the permutation is the identity, we will simply write FN .
If K,L ⊂ N satisfy #K = #L (i.e., they have the
same cardinality), we define the associated submatrix and,
respectively, minor of the permuted Fourier matrix by

Fσ
N [K,L] :=

(
ωk·σ(ℓ))

k∈K,ℓ∈L

and
∆σ

N [K,L] := detFσ
N [K,L].

When dealing with principal minors, i.e., when K = L, we
will simply write ∆σ

N [K]. With this notation, the conjectured
statements in Section I become:

For every N , there exists a permutation σ (depending on
N ) such that ∆σ

N [K] ̸= 0 for all K ⊂ N . If N is square-free,
the identity permutation suffices.



III. PARTIAL RESULTS

In [4], we proved the following two results.
Theorem 1: If N ≥ 4 is square-free, then all principal

minors of FN of size r × r are non-zero for r ∈ {2, 3, N −
3, N − 2}.
The result is based on elementary matrix manipulations (as
described in Section IV) and properties of complex numbers.
It is important to point out that the 2×2 case is independently
discussed in [1].

Theorem 2: If N ≥ 4 is not square-free, then for any 2 ≤
r ≤ N − 2, there exists a zero r × r principal minor of FN .
The main idea of this result is to construct a minor with
index set containing multiples of pm if N = p2m. The
corresponding rows can be shown to be linearly dependent.

Theorems 1 and 2 make use of a result concerning comple-
mentary principal minors [7].

In a manuscript currently under development, we prove,
based on Galois theory and a refinement on Zhang’s result
from [11]

Theorem 3: Let N = pq with p, q distinct primes. If q ∈
{2, 3, 5, 7}, then all principal minors of FN are non-zero.
and

Theorem 4: Let N = p1p2 . . . pk, where p1 < p2 < · · · <
pk are primes. For j ≥ 2, set Pj := p1p2 . . . pj−1. If for all

2 ≤ j ≤ k we have pj >
(

Pj

2

)Pjφ(Pj)/4

, where φ denotes
the Euler totient function, then all principal minors of FN are
non-zero.

IV. TECHNICALITIES CONCERNING PERMUTATIONS AND
CYCLOTOMIC POLYNOMIALS

Observe that the determinant of any submatrix of FN can
be viewed as an integer coefficient polynomial evaluated at
the root of unity ω. This is an immediate consequence of the
Laplace expansion of the determinant. We will write

PK,L(ω) = ∆σ
N [K,L]

or simply PK(ω) if we are dealing with principal minors, i.e.,
when K = L.

A fundamental fact of Galois theory is that if ψN is the N -
th cyclotomic polynomial (i.e., the minimal integer coefficient
polynomial that has ω as a root), then the roots of ψN are
precisely ωr with r ∈ N∗. Therefore, if an integer coefficient
polynomial has ω as a root, it must have all N -th principal
roots of unity as roots. In particular, this implies

PK,L(ω) = 0 ⇔ PrK,sL(ω) = 0 for all r, s ∈ N∗.

This observation, together with elementary row and column
operation considerations, motivate the introduction of two
special classes of permutations:

ak(x) = x+ k, for k ∈ N

mr(x) = r · x, for r ∈ N∗.

Note that mr is a permutation if and only if r is a unit in ZN ,
i.e., r ∈ N∗. The operations are performed modulo N .

The following lemma is elementary.
Lemma 1:

a. mr always fixes 0 ∈ N .
b. ak and mr almost commute, mr ◦ ak ≡ ark ◦mr.
c. Let σ ∈ ΣN be arbitrary. If k, k′ ∈ N and r, r′ ∈ N∗ are

such that ak ◦mr ◦ σ ≡ ak′ ◦mr′ ◦ σ or σ ◦mr ◦ ak ≡
σ ◦mr′ ◦ ak′ , then we necessarily have that k = k′ and
r = r′.

Let us denote σk,r
s,ℓ := ak ◦mr ◦ σ ◦ms ◦ aℓ for σ ∈ ΣN ,

k, ℓ ∈ N and r, s ∈ N∗. If k = 0 and r = 1, we will simply
write σs,ℓ. Similarly, if s = 1 and ℓ = 0, we will simply write
σk,r for the compositions. Additionally, we write O(σ) for the
orbit of σ under post-compositions, i.e.,

O(σ) := {σk,r : k ∈ N, r ∈ N∗}.

As a consequence of Lemma 1, the relation τ ∼ σ if τ = σk,r

is an equivalence relation and each equivalence class O(σ)
has the same cardinality, namely Nφ(N).

We call σ a good permutation if all principal minors of the
σ-permuted Fourier matrix are non-zero, i.e., if ∆σ

N [K] ̸= 0
for all K ⊂ N .

Proposition 1: σ is a good permutation if and only if all
σk,r
s,ℓ are good permutations.

Proof: In view of Lemma 1, it suffices to show the
separate implications σ good ⇒ σk,r good and σ good ⇒ σs,ℓ
good.
σ ⇒ σk,r : Let K = {x1, x2, . . . , xm} ⊂ N be arbitrary.

Since we are assuming that σ is a good permutation, we
have that ∆σ

N [K] ̸= 0. Let us denote by PK the integer
coefficient polynomial that satisfies PK(ω) = ∆σ

N [K]. Using
row operations on the determinant, we get

∆σk,r

N [K] = ωk(x1+···+xm)PK(ωr),

from which the conclusion follows.
σ ⇒ σs,ℓ : Again, let K = {x1, x2, . . . , xm} ⊂ N be

arbitrary. Define the subset

L := s(K + ℓ) = {sxj + sℓ : 1 ≤ j ≤ m}.

Since σ is assumed to be a good permutation, it follows that
PL(ω) ̸= 0. This time using elementary column operations,
we see that

∆
σs,ℓ

N [K] = ω−ℓs(x1+···+xm+mℓ)PL(ω
s−1

).

Another line of investigation concerns the restrictions im-
posed on a permutation σ by ensuring that small principal
minors of Fσ

N are non-zero.
Proposition 2: Let N = n ·m for some naturals n,m ≥ 2.

Let σ be a permutation on N such that there exist a, b ∈ N
satisfying a ≡ b mod n and σ(a) ≡ σ(b) mod m. Then σ is
not a good permutation.

Proof: Let us consider K := {a, b} and let us write a =
a′n + c and b = b′n + c for some c ∈ n. For simplicity, let
ξ := ωn = e2πin/N . Note that this implies ξm = 1.



∆σ
N [K] =

∣∣∣∣ωaσ(a) ωaσ(b)

ωbσ(a) ωbσ(b)

∣∣∣∣ = ∣∣∣∣ξa′σ(a)ωcσ(a) ξa
′σ(b)ωcσ(b)

ξb
′σ(a)ωcσ(a) ξb

′σ(b)ωcσ(b)

∣∣∣∣
= ωc(σ(a)+σ(b))

∣∣∣∣(ξσ(a) mod m)a
′

(ξσ(b) mod m)a
′

(ξσ(a) mod m)b
′

(ξσ(b) mod m)b
′

∣∣∣∣
= 0 since σ(a) mod m = σ(b) mod m.

Corollary 1: Let N = n · m as above and assume that
σ is a good permutation. Then there must exist permutations
τ0, τ1, . . . , τn−1 ∈ Σm and ρ0, ρ1, . . . , ρm−1 ∈ Σn such that

σ(kn+ℓ) = τℓ(k)+m ·ρτℓ(k)(ℓ) for all k ∈ m, ℓ ∈ n. (1)

Theorem 5: If the permutation σ is good, then each of the
permutations τℓ and ρk from (1) must be good permutations
in Σm and Σn respectively.

Proof: As usual, set ω := e2πi/N .
First, let us fix ℓ ∈ n arbitrarily. Consider the set K :=

{ℓ, n+ ℓ, . . . , (m− 1)n+ ℓ}. Then

∆σ
N [K] = det

(
ω(kn+ℓ)·σ(k′n+ℓ)

)
k,k′∈m

= det
(
ω(kn+ℓ)·(τℓ(k′)+m·ρτℓ(k

′)(ℓ)
)
k,k′∈m

= det
(
ωnkτℓ(k

′) · ωNkρτℓ(k
′)(ℓ) · ωℓτℓ(k

′) · ωmℓρτℓ(k
′)(ℓ)

)
= ωδ · det

((
ωn

)kτℓ(k′)
)
k,k′∈m

= ωδ · detFτℓ
m ,

where, due to column operations,

δ = ℓ

m−1∑
k′=0

τℓ(k
′)+mℓ

m−1∑
k′=0

ρτℓ(k′)(ℓ) = ℓ
(m−1∑

j=0

j+m

m−1∑
j=0

ρj(ℓ)
)

so, in particular, |ωδ| = 1. It follows that any zero principal
minor of Fτℓ

m will give rise to a zero principal minor of Fσ
N .

Now, let us fix j ∈ m arbitrarily. Note that for each ℓ ∈ n
there exists a unique kℓ ∈ m such that τℓ(kℓ) = j. Set L :=
{k0n, k1n+ 1, . . . , kn−1n+ n− 1} and compute

∆σ
N [L] = det

(
ω(kℓn+ℓ)·σ(kℓ′n+ℓ′)

)
ℓ,ℓ′∈n

= det
(
ω(kℓn+ℓ)·(j+m·ρj(ℓ

′))
)
ℓ,ℓ′∈n

= det
(
ωnkℓj · ωNkℓρj(ℓ

′) · ωjℓ · ωmℓρj(ℓ
′)
)
ℓ,ℓ′∈n

= ω∆ · det
((
ωm

)ℓρj(ℓ
′)
)
ℓ,ℓ′∈n

= ω∆ · detFρj
n ,

where, due to row operations,

∆ = j

n−1∑
ℓ=0

ℓ+ nj

n−1∑
ℓ=0

kℓ.

Again, this implies that |ω∆| = 1, so any zero principal minor
of Fρj

n is a zero principal minor of Fσ
N .

Corollary 2: Assume that there are no good permutations
for N . Then there are no good permutations for any multiple
of N .

V. NUMERICAL RESULTS AND FUTURE WORK

The numerical results were obtained in Python and C++
on personal hardware and the NHR@FAU cluster based on
singular value decompositions.

Proposition 1 has two significant implications concerning
the run time of numerical testing:

• The freedom to choose s, ℓ in σk,r
s,ℓ means that one

only needs to check principal minors associated to
K = {0, 1, x1, x2, . . . , xm} where x1, . . . , xm ∈
{2, 3, . . . , N − 1} or K = {0, x1, x2, . . . , xm} with
x1, x2, . . . , xm ∈ N \N∗.

• The choice of k, r allows one to only check one represen-
tative from each equivalence class O(σ) when attempting
an exhaustive search for good permutations. In order to
avoid memory issues with storing checked permutations,
the code simply checks if the currently investigated
permutation is first with respect to the lexicographic order
in its equivalence class.

Furthermore, as a consequence of Jacobi’s complementary
determinants identity (see [7]), only minors of size at most
⌊N

2 ⌋× ⌊N
2 ⌋ need to be checked to determine if a permutation

is good.
The first numerical result obtained was generating exhaus-

tive lists of good permutations for N ≤ 16. After correcting a
numerical precision issue in our earlier implementations, we
realized that there are no good permutations for N = 16 and
that this is the smallest number with this property. Note that in
view of Corollary 2, this implies that there are infinitely many
naturals for which Conjecture 1 fails, at least all multiples
of 16. The most efficient way we’ve found of exhaustively
generating the good permutations is based on a tree search
type algorithm proposed by Florian Lange:

• Start with K = {0, 1} and run through all possible
choices L = {0, ℓ} for ℓ ∈ {1, 2, . . . , N −1}. The choice
of the first element of L being 0 is justified by Proposition
1 and the above discussion.

• For each such pair (K,L), check numerically if
∆N [K,L] is zero. This is achieved by comput-
ing the smallest singular value of FN [K,L] with
numpy.linalg.svd and assesing if it is smaller than
a numerical threshold (usually chosen to be 10−10). If
∆N [K,L] is deemed to be zero, discard L.

• If L survived the previous step, append 2 to K and run
through all possible extensions of L, i.e., L = {0, ℓ, j}
for 1 ≤ j ≤ N − 1, j ̸= ℓ, such that L can be viewed as
a truncation to the first 3 elements of a permutation that
is a class representative with respect to the equivalence
class discussed after Lemma 1 (e.g., by ensuring that
the truncation comes from a ‘lexicographically first’
permutation).

• Check numerically all 2 × 2 and 3 × 3 submatrices
of FN [K,L] that involve the last row and column of
FN [K,L]. Again, discard the L that yield singular such
submatrices.



• Iterate this process by always appending the next con-
secutive index to K and any possible index to L that
respects the uniqueness of truncations with respect to
the equivalence class described before. For the sake of
run time efficiency, only test submatrices that involve
the last appended row and column and, in view of the
complementarity result in [7], only check submatrices of
size at most ⌊N

2 ⌋ × ⌊N
2 ⌋.

• When the check for K = N is complete, the collection
of all remaining L gives the images of all the good
permutations up to the equivalence relation described
above. From this the full list of good permutations can
easily be obtained by applying mr and ak permutations
as described in Lemma 1.

For 2 ≤ N ≤ 16, this yields the following table
N # good N # good N # good
2 2 7 5040 12 38 880
3 6 8 2304 13 13!
4 16 9 46 656 14 51 685 200
5 120 10 43 400 15 23 079 600
6 144 11 11! 16 0

It is not clear at the moment whether the issue with N = 16
is strictly due to 16 being a power of 2. A natural question
to ask is whether N = 81 also has no good permutations.
However, this is definitely outside the scope of a numerical
implementation. For this reason and in order to avoid the rather
delicate issue of picking the correct numerical threshold in the
above algorithm, we hope to be able to prove directly (i.e.,
‘with pen and paper’) based on an extension of the ideas from
Theorem 5 that N = 16 admits no good permutations and see
how this generalizes. This is in the scope of a manuscript in
preparation.

Additional results were obtained for N ≤ 36:

• For N ∈ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, the identity
permutation suffices by Chebotarëv’s theorem.

• For N ∈ {6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35}, the
identity permutation was verified to be good numerically,
consistent with the fact that in this case N is always
square-free.

• For N ∈ {4, 9, 25}, the bit reversal permutation was
verified to be good. For N = p2 with p prime, the bit
reversal permutation is defined as ap + b 7→ bp + a for
all a, b ∈ 0, 1, . . . , p− 1.

• For N ∈ {12, 18, 20, 28}, which are all of the form
p2q with p, q distinct primes, the permutation obtained
by tensoring the identity permutation on Zq with the bit
reversal permutation on Zp2 was verified to be good.

• For N ∈ {8, 24} good permutations were found by
random or exhaustive search based on the algorithm de-
scribed above, but no purely algebraic way of generating
good permutations has been identified yet.

• For N ∈ {16, 32} there are no good permutations. As
described before, the case N = 16 was exhaustively
checked numerically and the case N = 32 follows from
Corollary 2.

• For N ∈ {27, 36} quick randomized searches have not
yet yielded any good permutations, but we hope to have
a clear answer for these cases soon, based on longer
numerical searches.

It should be pointed out that whenever a good permutation
was found numerically, it was also then, whenever feasible
given the much longer run times, verified symbolically using
sympy by checking the remainder of the determinants, written
as polynomials evaluated at the root of unity, after dividing by
the N -th cyclotomic polynomial.
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