
Scaling Test-Time Compute Without Verification or RL is Suboptimal

Amrith Setlur 1 Nived Rajaraman 2 Sergey Levine 2 Aviral Kumar 1

Abstract
Despite substantial advances in scaling test-time
compute, an ongoing debate in the community is
how it should be scaled up to enable continued
and efficient improvements with scaling. There
are largely two approaches: (i) distilling success-
ful search or thinking traces; and (ii), using ver-
ification (e.g., 0/1 outcome rewards, or verifiers)
to guide reinforcement learning (RL) and search
algorithms. In this paper, we prove that finetuning
LLMs with verifier-based (VB) methods based
on RL or search is far superior to verifier-free
(VF) approaches based on distilling or cloning
search traces, given a fixed amount of compute/-
data budget. Further, we show that as we scale
test-time compute (measured as the output token
length) and training data, suboptimality of VF
methods scales poorly compared to VB when the
base pre-trained LLM presents a heterogeneous
distribution over correct solution traces (e.g., dif-
ferent lengths, styles, etc.) and admits a non-
sharp distribution over rewards on traces sampled
from it. We formalize this condition using anti-
concentration (Erdös, 1945), implying a stronger
result that VB methods scale better asymptoti-
cally, with the performance gap between VB and
VF widening as test-time budget grows. We cor-
roborate our theory empirically on didactic and
math reasoning problems with 3/8/32B-sized pre-
trained LLMs, where we find verification is cru-
cial for scaling test-time compute.

1. Introduction
Pre-training and post-training of LLMs rely heavily on ac-
cess to high-quality “expert” data, but it is projected that by
2028, the availability of such data on the Internet will dimin-
ish (Villalobos et al., 2022; Liu et al., 2024), and improving
model performance on several domains (e.g., reasoning,
safety, etc.) often requires more data (Li et al., 2024). As a

1Carnegie Mellon University 2UC Berkeley. Correspondence
to: Amrith Setlur <asetlur@cs.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Prompts

 (problems)

Expert 

𝜋𝑒

Reward

Annotator 

Base LLM 𝜋𝑏

Problem 𝒙
Expert trace 𝝉

Problem 𝒙
Base rollout 𝝉
Reward r 𝒙, 𝝉

Verifier-Free: E.g., SFT on search traces

Verifier-Based: E.g., RL with ground-truth 

rewards, test-time search

scaling test-time compute 𝐻, 

#training data 𝑛 = Ω(𝐻) 

R
e

w
a

rd

Verifier

Based

Verifier

Free

Gap grows 

as √𝐻

(a) (b)Figure 1: Scaling test-time compute: Given a set of problems,
verifier-free (VF) methods query expert traces, whereas verifier-
based (VB) methods collect reward annotations for rollouts from
the base LLM. Crucially, one aims to mimic “good” traces and the
other seeks to improve via access to verification. We prove a

√
H

gap between a simple VB method and any VF method as we scale
data n and compute H , and verify this in practice.

result, scaling test-time compute is emerging as an alternate
paradigm for improving reasoning performance, where an
LLM is made capable of executing search or refinement
procedures, either implicitly by training for it, or by explic-
itly executing the search on top of the LLM outputs. The
goal here is to search over responses for a test query, which
naturally leads to traces much longer than a direct answer.
Broadly, we can classify the set of prevalant approaches for
scaling test compute into two categories (see Figure 1).

The first class uses some form of verification, e.g., a 0/1
outcome reward or a verifier, for test-time search (Cobbe
et al., 2021b) or reinforcement learning (RL), e.g., Deepseek
R1 (DeepSeek-AI et al., 2025) uses outcome reward. The
second class of approaches circumvents verification alto-
gether and runs supervised fine-tuning on “expert” traces,
obtained either by piecing together tree search (Gandhi et al.,
2024; Moon et al., 2024), or by querying bigger models
trained to generate longer traces, i.e., distillation approaches
(e.g., S1 (Muennighoff et al., 2025), OpenThinker (Team,
2025), etc.). We refer to these as “verifier-free”, as these
methods do not query any verification signal for guiding
learning. Despite the prevalence of both classes, i.e., verifier-
based (VB) and verifier-free (VF), it is not clear which
class results in better test-time scaling, especially when the
amount of test-time compute increases. We theoretically
and empirically show that when fine-tuning a pre-trained
LLM, VB methods are expected to perform better.

Theoretically, we show in this paper that VB methods out-
perform VF methods as we scale data and compute. To
do so, we operate in a setting where we are given a base

1



Scaling Test-Time Compute Without Verification or RL is Suboptimal

LLM πb and a dataset of problems. We represent the total
available test-time compute in terms of the total number of
tokens H that can be used to produce a solution. Our goal
is to finetune πb to make efficient use of test-time compute,
i.e., attain best performance within a given compute budget.
For learning, VF methods are allowed to obtain at most n
correct solution traces for these problems by querying an
expert (e.g., humans, linearized search (Gandhi et al., 2024),
etc.). On the other hand, VB methods are allowed to query
a reward annotator that measures correctness of a given re-
sponse on n samples generated from πb but never observes
expert traces. When operating in this setup (which reflects
practical scenarios), we prove that as we scale training data
n and test-time compute budget H , the separation between
a simple verifier-based approach based on RL, and any
verifier-free method grows. Since both class of approaches
involve finetuning πb, the properties of the pre-trained πb

plays a key role in our separation result, as we discuss below.

What properties of the pre-trained LLM enable VB meth-
ods to scale better than VF methods? To evaluate the per-
formance of different approaches across varying test-time
compute budgets, we define rewards that are high when
the LLM arrives at the correct solution, and does so with-
out completely exhausting the provided token budget. We
show that when the base LLM admits a sufficiently hetero-
geneous distribution over rewards (i.e., it admits coverage
over multiple correct sequences of varying lengths for a
given problem), then scaling test-time compute by running
any VF approach is suboptimal. In contrast, under a spe-
cific form of heterogeneity (which is also generally satis-
fied in practice), the performance of the policy obtained
by running RL with verifiers (either implicit 0/1 “regex”
matching rewards or explicitly trained numerical, generative
verifiers) is better at any given test-time compute budget,
and, moreover, also scales better as we further increase test-
time compute. We term this specific form of heterogeneity
as anti-concentration: for a given problem, a base LLM is
said to be anti-concentrated if it admits non-trivial probabil-
ity mass over solution traces that achieve rewards slightly
better than the mean reward for that problem under the base
policy. In Figure 3 we illustrate these two properties: het-
erogeneity and anti-concentration. Given a problem, if the
base LLM samples correct responses of varying response
length (heterogeneity), but also samples solution traces that
are rewarded higher than the mean reward on that problem
(anti-concentration); we prove that VB methods asymptot-
ically dominate VF methods as we proportionately scale
both training data n and the test-time compute H .

Overview of how we show the separation between VB and
VF. For our main result, we first prove an information-
theoretic lower bound showing that the suboptimality of
any VF algorithm scales as the heterogeneity or diversity
of the base policy being finetuned, which implies a subop-

timality gap of Ω(H/
√
n) in the worst case. For this we

build on second-order suboptimality bounds in Foster et al.
(2024a). That said, we then show that the suboptimality for
a simple VB method that runs RL with a trained verifier
or actual 0/1 outcome rewards scales as O(H/n). In fact,
we show that the heterogeneity of the base policy is often
helpful for VB approaches, as long as the heterogeneity also
implies anti-concentration, i.e., there is a reasonable chance
to sample traces with rewards slightly better than the mean
reward attained under the base policy. Consequently, the
performance difference between VB and VF methods scales
with the horizon or test compute H . This implies the need
for training verifiers, running RL, or at the very least, using
rewards when finetuning LLMs for test-time scaling.

Empirical results corroborating theory. We corroborate
our theoretical results on math reasoning with 3B/8B Llama
models, and the S1 (Muennighoff et al., 2025) model. For
the S1 model that is trained in a verifier-free manner, we
show that a simple verifier-based approach performs better
than S1 across a set of test-time compute budgets (Figure 6).
For the LLama models, we explicitly control the heterogene-
ity of the base LLM and show that VF methods perform
poorly with more heterogeneous base LLMs, and that the
gap between VB and VF performance scales with more test-
time compute (Figure 5 in Section 7). Our investigation also
reveals that common pre-trained LLMs are indeed heteroge-
neous and satisfy anti-concentration, which are abstractions
we introduce to prove our theoretical results (Figure 7, 8).
To the best our knowledge, this is the first theoretical result
and systematic study showing a separation between VF and
VB methods, under realistic assumptions on the base model.

Implications and takeaways. Our work presents several im-
plications for practitioners. As long as the pre-trained LLM
is sufficiently hetergeneous and anti-concentrated, which we
verify are both satsified in practice for models we evaluate,
our analysis implies: (i) While recent results imply that both
verifier-free and verifier-based methods can work well at
a large compute budget, we show that VB methods scale
better as the test-time budget increases; (ii) This gap can be
amplified further when the number of prompts for VB fine-
tuning also scales linearly with the allowed test-time token
budget. Another implication of our results is that since VF
methods work well when heterogeneity is small, this means
that in order for them to scale well, pre-trained LLMs must
also exhibit low heterogeneity, but we believe that this is
rarely the case with modern LLMs in practice.

2. Related Work
Scaling test-time compute. Recent works (Sardana et al.,
2023; Snell et al., 2024) show that scaling test-time compute
can improve performance at rates faster than scaling data (Li
et al., 2024) or model size (Hoffmann et al., 2022), either by
(i) training an LLM to implement a search (Yao et al., 2023;

2



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Gandhi et al., 2024) or refinement (Kumar et al., 2024; Qu
et al., 2024) procedure in its long chain-of-thought; or (ii)
wrapping LLMs with search procedures (Wu et al., 2024;
Beeching et al., 2024) that use trained verifiers (Cobbe et al.,
2021a; Setlur et al., 2024b) as cost functions for search.
We do not study this distinction in this paper, but rather
focus on an orthogonal axis that can be used to separate test-
time methods: whether or not there is access to a reward or
verification signal during training and/or inference.

Verifier-based (VB) algorithms. Several works use 0/1
“outcome” reward annotations (Uesato et al., 2022; Bi et al.,
2024) for training LLM reasoners. Some also use trained
verifiers (Hosseini et al., 2024) or run search test-time
search (Welleck et al., 2024; Chen et al., 2024b). More
recently, using 0/1 verification signals for RL (Kimi-Team,
2025; DeepSeek-AI et al., 2025) has shown impressive re-
sults. Other algorithms use verification by converting 0/1
rewards into a value function (Rafailov et al., 2023; Zelik-
man et al., 2022; Singh et al., 2023; Setlur et al., 2024a).
Verification can be done generatively (Zhang et al., 2024)
and implicitly (Yuan et al., 2024), all within one single LLM
alternating between generation and verification. We bucket
all of these as VB methods and show that querying verifiers
or rewards is critical for scaling test-time compute.

Verifier-free (VF) algorithms. With the goal of distilling
search procedures multiple works (Yang et al., 2022; Xie
et al., 2024; Lehnert et al., 2024; Gandhi et al., 2024), SFT
pre-trained LLMs on search traces (Gandhi et al., 2024; Nie
et al., 2024) that all succeed eventually. This is done so that
the LLM learns to search for solutions on test problems (Sel
et al., 2023). These methods are reward-free and are thus
forced to mimic heterogeneous search traces with varying
token counts. This makes generalization difficult for any
SFT method, leading to poor test-time scaling, aligning with
prior findings (Kumar et al., 2024; Xiang et al., 2025).

3. Notation and Preliminaries
Notation. We use the usual O/Ω notation, where a = Õ(b)
when a = O(b · max(1,polylog(b))), and a <∼ b for a =
O(b). The set of integers {1, . . . , n} is denoted as [n]. For
a set S, the set of all measures over S is given by ∆(S).
Preliminaries. Following prior work (Kazemnejad et al.,
2024; Setlur et al., 2024a) we model language genera-
tion as a token-level Markov decision process (MDP):
M(S,A, r,H), with state space S, token space A, binary
reward r : S × A 7→ {0, 1} in class R, and horizon (to-
ken budget) H . Let Sh denote the set of states at time h
(so, S =: ∪Hh=1Sh). The set of initial states S1 is the set
of input problems X ∋ x, sampled from a distribution ρ.
At time h, state sh is given exactly by the concatenation
of the problem x and the sequence of tokens sampled till
step h − 1, i.e., sh = (x, a1, . . . , ah−1); upon producing

token ah the environment deterministically transitions to
state sh+1 = (sh, ah) obtained by concatenation and col-
lects reward rh =: r(sh, ah). A policy π ∈ Π is a function
πh : S 7→ ∆(A) which produces a distribution over tokens
at each state. We use dπh to denote the distribution over Sh in-
duced by π. A solution trace is a rollout τ = (x, a1, . . . aH)
in the MDP, and r(τ) =

∑
h r(sh, ah). We use the notation

Eρ,π[·] to denote the expectation Ex∼ρ[Eτ∼π(·|x)[·]].

4. Effectively Scaling Test-Time Compute
Our goal is to compare methods that finetune LLMs to most
efficiently scale test-time compute. We say that an algorithm
is effective at making consistent use of test compute if it
attains the best performance possible within a fixed compute
budget. In practice, this means that an approach must strike a
balance between directly “guessing” an answer, which uses
the least number of tokens but is unlikely to succeed, and re-
attempting sequentially (i.e., run linearized search), which
is less token efficient and wastes compute, but is more likely
to succeed at least once. This entails a procedure where
models are deployed with an ever-growing upper bound
on test-time token budgets in hopes to find more successes
for a given prompt, underscoring the necessity of efficient
asymptotic scaling as we formalize in this section.

Denoting a base LLM as an autoregressive policy πb(a|s)
and a given budget on test-time compute represented in
terms of a maximum H output token length, we evaluate a
finetuning algorithm by measuring the performance of the
policy produced by finetuning πb under a specific reward
function r(s, a). This reward function should capture both
the accuracy and the efficiency of attaining the solution.
One such family of reward functions is a bi-level reward.

Bi-level reward. As discussed in Property 4.1, we say that
a reward function is a bi-level reward when on any given
trajectory, the reward remains 0 until it reaches a state corre-
sponding to the correct solution, at which point it receives a
reward of 1 (for the first time), and then continues to collect
1s in the future no matter what it samples (Figure 2). That is,
once the LLM generates a correct solution, it continues to
attain high rewards. For a solution trace τ = (x, a1, . . . aH)

we define the reward r(τ) =:
∑H

h=1 r(sh, ah), and the per-
formance (expected reward) of π is Jr(π) =: Eρ,τ [r(τ)].
A correct trace τ is one that gets the answer correct at some
point within the budget of H tokens, i.e., r(τ) > 0. To maxi-
mize efficiency, we want r(τ) to be as high as possible in the
distribution of the test problem, denoted ρ, i.e., maxπ Jr(π)

where Jr(π) =: Eρ,π

∑H
t=0 r(st, at). The Q-value is de-

fined as : Qπ(sh, ah) =: Eρ,π

[∑H
t=h r(st, at) | sh, ah

]
.

Property 4.1 (Bi-level rewards). For any trajectory τ ,
rewards are binary and non-decreasing, i.e. ∀h ∈ [H],
rh+1(sh+1, ah+1) ≥ rh(sh, ah), (example in Figure 2).

3



Scaling Test-Time Compute Without Verification or RL is Suboptimal

1 2 3 4 5 6 7 8
Time step

0.0

1.0

R
ew

ar
d

Figure 2: Example of bi-level rewards: After the first step where
reward is 1, irrespective of future actions reward remains 1.

Asymptotic test-time compute efficiency. Having defined
how we can measure the efficacy of a finetuning algorithm
in scaling test-time compute within a budget of H tokens,
we now turn to providing a formal definition that allows
us to compare different fine-tuning algorithms. Concretely,
Definition 4.2 defines what it means for an algorithm to

“asymptotically” scale test-time compute by Hα, compared
to another algorithm. Under our bi-level reward formulation,
a higher value of α implies that algorithm A1 is able to
arrive at the correct answers spending ≈ Hα less compute
on average compared to A2, as we scale H . In the next
section, we show that verifier-based algorithms scales test
compute by Ω̃(H) compared to veriifer-free algorithms.

Definition 4.2 (Scaling test-time compute by Hα). Fix
any bi-level reward r, base policy πb, horizon H and data
budget n = Ω(H), we say that algorithm A1 producing
policy A1(H), asymptotically scales test-time compute
by Hα compared to A2 producing A2(H) if:

Jr(A1(H))− Jr(A2(H)) = Ω̃(Hα).

5. Theory: When Does Verification Enable
Asymptotic Scaling of Test Compute?

In this section, we theoretically compare verifier-free and
verifier-based algorithms when scaling test-time compute.
We show that for any bi-level reward, there are base policies
(pre-trained LLMs) that enable verification based algorithms
to asymptotically scale test-time compute H , by a factor of
Ω(
√
H) relative to any verifier-free approach, and quantify

these properties of the pre-trained base LLM.

A verifier-free (VF) algorithm finetunes the base LLM πb

to mimic data from an expert policy πe without using any re-
wards or verification. The expert πe can produce a solution
trace that directly results in the final correct answer (Ze-
likman et al., 2022) or perform a number of search and/or
backtracking operations to eventually end in the final correct
answer (Gandhi et al., 2024). The expert policy samples
correct traces τ , i.e. r(τ) > 0, however these traces are not
guaranteed to be the most compute-efficient (i.e., r(τ) ̸= H)
as each one may get to the answer spending varying number
of tokens for search, backtracking, and CoT.

The performance of any verifier-free algorithm is dependent
on the choice of the expert. So, how do we choose “good”
experts for learning? Such experts must satisfy two condi-
tions: (a) they should attain high rewards (end in a correct
final answer), and (b) the expert’s distribution should be
at least somewhat “close” to the base policy πb to prevent

issues such as memorization and optimization pathologies
from finetuning (Kang et al., 2024; Tajwar et al., 2024). For
e.g., one predominant way of constructing expert data is
to first sample multiple traces from πb and then retain all
correct traces (Zelikman et al., 2022; Gulcehre et al., 2023).
While existing theoretical abstractions do not prescribe an
ideal condition to quantify (b), we formalize this practical
constraint by constraining the expert to be the highest reward
policy in Πκ: the set of all policies with χ2 divergence ≤ κ
w.r.t. the base πb. We choose χ2 over other f-divergences
like KL for simplicity (Huang et al., 2024b).

Dχ2 (πe∥πb) =: Eρ,πb

[(
πe(τ | x)
πb(τ | x)

− 1

)2
]
≤ κ. (1)

We refer to the κ-χ2 ball of expert policies as Πκ, and the
optimal expert, i.e., argmaxπ∈Πκ

Jr(π), as π̄κ.

A verifier-based (VB) algorithm is one that finetunes the
base policy without an expert, but instead queries an annota-
tor to provide rewards to solution traces sampled from πb.
E.g., RL with outcome rewards (DeepSeek-AI et al., 2025)
or using generative verifiers (Zhang et al., 2024) count as
VB methods. Note that this definition does not necessarily
require a learned verifier. In all, these classes of methods
differ in the learning signal being ued: access to an expert
policy vs. access toa a bi-level reward annotator.

We compare VF and VB methods, given n rollouts sam-
pled from expert policy for VF methods and n base policy
rollouts with reward annotations for VB. We are interested
in evaluting whether VB methods scale test-time compute
better than VF as per Definition 4.2. Our main theoreti-
cal result, Theorem 5.1, states that for any bi-level reward
function, there exist base policies πb, representative of pre-
trained LLMs, where a simple VB method scales test-time
compute better than all VF methods by at least Ω(

√
H).

Theorem 5.1 (Main result; informal). For any bi-level re-
ward r and sufficiently large data budget n, there exists a
base policy πb, verifier-based algorithm A, such that fine-
tuning πb withA scales test-time compute (Definition 4.2)
by Ω̃(

√
H) relative to any verifier-free algorithm.

Key insight. To prove the above, we establish an instance-
dependent information-theoretic lower bound on the sub-
optimality gap of any VF method, which is H/

√
n when

πb is sufficiently heterogeneous, i.e., solution traces for a
given prompt vary a lot in token efficiency. Then, we show
that a simple verifier-based method attains a suboptimality
gap upper bound of only H/n, even when πb is heteroge-
neous. For this, πb should cover some high-reward traces
with a sufficient probability. Formally, when the distribution
over rewards attained by traces sampled from πb is hetero-
geneous and not too “sharply” concentrated around its mean
and n = Ω(H) (typically the case for best performance),

4



Scaling Test-Time Compute Without Verification or RL is Suboptimal

VB methods scale test-time efficiency by
√
H over VF meth-

ods. A pictorial illustration of these conditions is shown in
Figure 3, which we also show holds empirically (Section 7).
Then, we use techniques from second-order adaptive bounds
to develop an analysis for proving the separation result.

5.1. Lower Bounds for Verifier-Free Expert Cloning
We first derive an information-theoretic lower bound for VF
methods comparing them to the expert policy πe. To under-
stand the implications of our theoretical result, we state our
lower bound using a notion of “base policy heterogeneity”,
which measures the variability in the token sequences that
all attain the same final answer under πb. We define this
notion of policy heterogeneity as follows:

Property 5.2 (Policy heterogeneity). Given problem x,
the heterogeneity of π ∈ Π at x is given by:

σ2
π,x =:

H∑
h=1

Esh∼dπ
h

[
Vara∼π(·|sh) [Q

πe(sh, ah)] | x
]
.

Total heterogeneity across problems is σ2
π=:Ex∼ρ

[
σ2
π,x

]
,

the median is σ̃π := Median({σπ,x : x ∈ X}), and the
mean across problems is σ̄π = Ex∼ρ [σπ,x].

For the expert policy, heterogeneity is non-zero when dif-
ferent solution traces spend different tokens and token bud-
gets to attain the final answer from any state-action tuple
attained in a trajectory. We expect most practical LLM
finetuning datasets obtained by rejection sampling, concate-
nating search traces, collecting human thinking trace data,
or distilling from larger models to induce quite a hetero-
geneous expert, since a high diversity of solution traces is
often a desideratum employed by practitioners when gen-
erating training data in supervised finetuning (Chen et al.,
2024a). In order to obtain heterogeneous expert traces, we
would also need the base policy πb to be heterogeneous. In
fact, we show a useful result relating heterogeneity of πe

to that of πb, which allows us to present our lower bound
directly in terms of σb of the base policy (instead of σe).
Lemma 5.3 (Lower bound on expert heterogeneity). Let the
heterogeneity of base policy πb be σ2

b . For any expert πe ∈
Πκ, its heterogeneity σ2

e satisfies |σ2
e − σ2

b | ≤ Hσb

√
κ/2.

Reading Theorem 5.4. This bound means that a dataset
of n datapoints from a fixed expert πe is fundamentally
insufficient to resolve uncertainty as to which of the experts
∈ Π′ was the one generating the data. Using a verifier-free
algorithm here incurs a suboptimality that depends on σ̃e/

√
n

for the worst choice of this expert in Π′, meaning that for
any given reward function, base policy and expert, there
is a problem instance Π′ and an alternate reward r′ where
this guarantee is tight. Further, when the total heterogeneity
σ2
e ≈ σ̄2

e , then we can replace the median with the expert’s
heterogeneity σe, which is in turn close to the base LLM’s
heterogeneity σb, as stated by our Lemma 5.3.

Heterogeneity
Property 5.2

Anti-concentration
Property 5.6

RewardsLi
ke

lih
oo

d

Figure 3: Illustration of properties of the base model πb that
enable VB methods to outperform VF methods: heterogeneity
(Property 5.2) and anti-concentration (Property 5.6).

Theorem 5.4 (Information-theoretic lower bound on
verifier-free algorithms). Given any ρ, r, πb, expert pol-
icy πe and k ≤ |X |/4, there exists a family of alternate
expert policies Π′ of size 2k and reward class R′ ⊆ R,
s.t., for any π̂vf

n returned by any verifier-free algorithm:

max
π′∈Π′

max
r′∈R′

Jr(π
′)− Jr′(π̂

vf
n ) = Ω

(
σ̃e

√
log |Π′|

n

)
,

∀π′ ∈ Π′, σ2
π′ = O(σ2

e) under any alternate reward
function r′ ∈ R′, and Π′ ⊆ ΠΘ(κ). Finally, when the
total hetetogeneity σ2

e≤(6/5)σ̄2
e , then the median hetero-

geneity across problems σ̃e scales as Ω(σe), i.e., we can
replace σ̃e in the bound above with σe.

To prove this result, we extend the lower bound result from
Foster et al. (2024a), which applies to only one prompt, to
an instance-dependent lower bound that applies to a set-
ting with more than one prompt and bi-level rewards. See
Appendix C.3 for a formal statement and a proof. This
result implies that it is challenging to clone highly heteroge-
neous experts: when σ̃b scales as Ω(H), the bound grows as
Ω(H/

√
n). A linear dependence on horizon is unavoidable,

even though the transition dynamics in this problem are triv-
ial (i.e., just concatenation) and the transitions are known.
The one scenario where this bound can be reasonable is
when σ̃b is small, but this is rarely the case in practice be-
cause pre-trained LLMs tend to be quite heterogeneous. Due
to pathologies from training on narrow data, users prefer
using more heterogeneous base models and experts.

5.2. A Simple Verifier-Based Algorithm
So far, we saw that heterogeneity can hurt the performance
of any VF algorithm that uses expert data without reward
annotations. Next, we show that this limitation does not ex-
ist for VB methods, by constructing a simple algorithm that
trains a verifier using n reward annotations on data sampled
from the base policy πb (which need not be an expert). Con-
cretely, our algorithm first trains a verifier to predict sparse
0/1 correctness of a given solution trace using the provided
data, to the best possible accuracy. Then, it finetunes the
LLM to maximize the verifier scores on the distribution of
problems ρ. Note, that at test-time we sample problems i.i.d.
from ρ. Crucially, the algorithm does not assume access to
ground-truth rewards over the entire distribution ρ, but only
a small training dataset Dtr. We present this approach for-

5



Scaling Test-Time Compute Without Verification or RL is Suboptimal

mally in Algorithm 1. In particular, Step 2 produces a class
of verifiers R̂γ that are γ-optimal as measured by squared
loss. Step 3 produces a policy that performs optimally on
the worst reward in R̂γ . This technique of optimizing a
pessimistic reward is common in both theory and practice
of offline RL (Wang et al., 2024), and has also been useful
for preventing reward overoptimization (Coste et al., 2024).

In practice, algorithms that use some sort of verification,
either train a policy on ground-truth 0/1 rewards on a fixed
set of training problems, e.g., in R1 (DeepSeek-AI et al.,
2025), DeepScaleR (Luo et al., 2025); or train outcome/pro-
cess verifiers to predict ground-truth rewards on the same
training problems, and use the verifiers at test time to run
search over responses sampled from the base policy given
test problems, e.g., best-of-N (Cobbe et al., 2021a), beam
search (Beeching et al., 2024; Snell et al., 2024; Setlur et al.,
2024b). The former trains a policy that generalizes onto test
problems, and the latter trains a verifier with the expecta-
tion that the verifier’s predictions are accurate on the test
problems. Algorithm 1 below falls in the latter category of
verification-based approaches. Next, we show that this VB

Algorithm 1 Simple Verifier-Based Algorithm

Require: Base policy πb, dataset Dtr =: {(xi, τi)}ni=1 of
problems xi ∼ ρ and traces τi ∼ πb(· | x).

1: For every τi annotate (xi, τi) with bi-level reward yi.
2: Learn set of classifiers R̂γ ⊂ R that are γ-optimal, i.e.,

R̂γ =:

{
r′ ∈ R

∣∣∣∣ 1n∑n

i=1
(r′(τi)− r(τi))

2 ≤ γ

}
3: Return any optimal pessimistic verifier-based policy,

π̂vb
n ∈ argmax

π∈Π
min
r∈R̂γ

Jr(π̂).

algorithm attains a lower suboptimality gap. To do so, we
first prove an intermediate Lemma 5.5, which upper bounds
the accuracy of the verifier trained on Dtr in Algorithm 1.

Proposition 5.5 (Verifier accuracy). For any bi-level reward
r, base policy πb, and learned reward function r̂ ∈ R̂γ from
Algorithm 1, with probability 1 − δ, the following error
bound is true: Eρ,πb

[|r(τ)− r̂(τ)|] ≤ ÕH

(
H·log( |R|

δ )/n
)

.

Equipped with this result, we can now bound the suboptimal-
ity of the learned policy π̂vb

n in Algorithm 1. We show that
when used with a specific subset of heterogeneous πb–which
are empirically show are representative of real pre-trained
LLMs–this VB algorithm attains a stronger suboptimality
guarantee of H/n, when compared to the best policy π̄κ

belonging to the χ2-ball, Πκ, around the base policy. In-
tuitively, this subset of heterogeneous policies are charac-
terized by a condition pertaining to how concentrated or
“sharp” is the distribution of rewards induced by sampling

traces from πb on a given prompt. We call this the anti-
concentation condition. As long as the reward distribution
puts a constant probability mass on reward values that are
≈ σx

√
κ higher than the mean reward πb gets on prompt x,

we say that the policy is anti-concentrated (Property 5.6; an
illustration of this condition is shown in Figure 3).

Property 5.6 (Anti-concentrated πb). For problem x,
horizon H , and base policy πb, let cx(ε) be the prob-
ability mass that reward r(τ) is larger than the mean
Eτ∼πb(·|x) [r(τ)] by a margin of σb,x

√
ε.

cx(ε) =: Prτ∼πb(·|x)

[
r(τ)≥Eτ∼πb(·|x) [r(τ)] + σb,x

√
ε
]
,

The base LLM πb is said to be c-anticoncentrated if
minx cx(κx) ≥ c, where κx =: Dχ2 (π̄κ(·|x)∥πb(·|x))
and π̄κ denotes the best policy in Πκ (highest perfor-
mance). The value of κx depends on how much an expert
is allowed to deviate from πb on problem x.

Even under high heterogeneity (Property 5.2), an anti-
concentrated πb covers–with a constant mass–a policy that
improves over its own mean. This means that an algorithm
using the reward signal to fine-tune πb should be able to
discover this “better” policy. VF algorithms that do not uti-
lize to the reward signal fail at finding this high-rewarding
policy. While a non-heterogeneous base policy (for e.g., one
that always samples a single trace for a given x) will not
satisfy Property 5.6, hetergeneous distributions can easily
be anti-concentrated since heterogeneity is a property of a
moment (i.e., variance) of the reward distribution whereas
Property 5.6 fundamentally relates to the shape or the CDF
of the reward distribution. We demonstrate in our experi-
ments that pre-trained LLMs often satisfy this property.

How can VB algorithms benefit from anti-concentration of
πb? As discussed above, Property 5.6 ensures the existence
of a good policy that is covered by the base policy, with
high probability. Intuitively, running RL should be able
to then sample traces that attain high rewards and learn to
pick up on this reward with more training. From a theo-
retical perspective, note that the suboptimality gap of any
VB method depends on the distribution shift between the
data-generating policy (πb in our case) and the compara-
tor policy that we wish to provide the guarantee against
(π̄κ), since this shift dictates how generalization error dur-
ing training gets amplified when the model is deployed.
This notion of distribution shift is typically formalized as
a bounded coverage coefficient (Rashidinejad et al., 2021)
of an unknown comparator policy, which is restrictive. We
strengthen the notion of coverage coefficient by leveraging
anti-concentration, which allows us to optimally construct a
high-reward comparator policy covered by the base policy.

Note that our simple VB method admits no direct depen-
dency in σb (base policy’s heterogeneity), which scales as

6



Scaling Test-Time Compute Without Verification or RL is Suboptimal

23 24 25 26 27 28 29

Horizon H (compute at test-time)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

T
es

t-
ti

m
e

effi
ci

en
cy

πb(Base)

πe (Expert)

π̂vf
n (SFT)

π̂vb
n (RL)

(a)

28 29 210 211 212 213

Data budget n

0.00

0.15

0.30

0.45

0.60

0.75

0.90

T
es

t-
ti

m
e

effi
ci

en
cy

πb(Base)

πe (Expert)

π̂vf
n (SFT)

π̂vb
n (RL)

(b)

23 24 25 26 27 28 29

Horizon H (test compute), data size n = H

0.35

0.50

0.65

0.80

T
es

t-
ti

m
e

effi
ci

en
cy

23%

37%

42%

π̂vf
n (SFT) π̂vb

n (RL)

(c)
Figure 4: Contextualized planted subsequence: We setup a heterogeneous base policy πb, and induce an expert by rejection sampling
correct traces from πb. (a) Fixing data size at 210 we scale test compute, training separate SFT, RL policies for each compute budget. (b)
For a fixed compute budget of 26 we scale data, and train a set of SFT and RL policies for each n. In (a), (b) we find RL scales both
data and test-time compute efficiency over SFT. In (c) we scale both test compute and training data and note that the gap between the
performance of RL and SFT grows super linearly, as predicted by our result in Theorem 5.8.

Ω(H) in the worst case. This implies that as long as πb satis-
fies Property 5.6 for some h0 ≪ H , VB methods only incur
suboptimality that scales as O(1) when n = Ω(H) whereas
for any VF method this is Ω(

√
H). Mathematically, this is

because once Property 5.6 is satisfied for some c0 at a given
horizon h0, then it continues to hold for c0 and ∀ H > h0.
This is a consequence of the structure of the bi-level reward
as we show in Lemma C.22 in Appendix C.4.

Theorem 5.7 (Suboptimality upper bound for VB against
any expert). Consider a bi-level reward r, base policy
πb that is c0-anticoncentrated at some horizon h0 ≤ H .
Then, w.p. 1 − δ, for the policy π̂vb

n returned by Algo-
rithm 1, the suboptimality gap w.r.t. the best expert: π̄κ:

Jr(π̄κ)− Jr(π̂
vb
n ) <∼

1

c0
· H log(|R|/δ)

n
.

Overall, Theorem 5.7 implies that if πb covers some correct
solution traces for a given prompt, then VB methods can
find these traces and minimize suboptimality, whereas VF
methods may not be able to discover them and will try to
mimic multiple traces, which also naturally increases the
chances of failing at the problem. Combining the upper and
lower bounds (Theorem 5.7 and 5.4) allows us to bound the
efficacy of test-time scaling with VB and VF methods.

Theorem 5.8 (Separation between test-time scaling of VB
and VF methods). For any heterogeneous πb with σ̃b =
Ω(H), and is c0-anticoncentrated for horizon h0 ≪ H , the
policy π̂vb

n returned by the simple verifier-based Algorithm 1
and π̂vf

n returned by any verifier-free method satisfy:

Jr(π̂
vb
n )− Jr(π̂

vf
n ) = Ω̃ (H/

√
n) ,

which implies our test-time scaling result in Theorem 5.1.

Takeaways: Verification enables test-time scaling
VF suffer when the base policy is heterogeneous.
VB outperform any VF algorithm given that the
base policy is heterogeneous and the induced reward
distribution is anti-concentrated.

Remark 5.9 (VB methods improve over VF by solving more

problems). We first note that the performance of the best
expert policy π̄κ which belongs the the κ χ2-ball around πb

will only continue to improve as a function of H by solving
more questions (i.e., by finding new x where r flips from 0
to 1). To see why, note that Dχ2 grows in H meaning that
at large H , the expert π̄κ cannot be simultaneously close to
the base policy and maximize reward unless it solves new
questions too. Now note that if n = Ω(H) samples are used
for training, then the VB algorithm attains a suboptimality
of O(1) compared to this best expert, but the VF algorithm
still suffers from a horizon-dependent suboptimality (if πb

is heterogeneous). This means that if the suboptimality
gap with respect to the best expert continues to be O(1) as
we increase the token budget, then we are solving harder
problems, not just being more efficient on easier problems.

6. Illustrating Theory in Practice
Our theoretical results in Section 5 show that when the base
policy is heterogeneous, VF approaches perform poorly.
However, this can still be favorable for VB Algorithm 1, as
long as the anti-concentration condition (Property 5.6) holds.
We now use a didactic setting representative of typical LLM
reasoning problems to validate our theoretical results, and
study real math reasoning problems in the next section.

Didactic setup. We extend the planted subsequence prob-
lem from Setlur et al. (2024b) to a contextual version. Con-
cretely, for an input problem x = (x1,.., x5), we say that a
response y with H tokens is a correct trace if there exists
a gold contiguous subsequence (g(x1),..,g(x5)) planted in
y. Here, the underlying mapping g : [10]7→[30] is fixed but
unknown. For a state s =: (x, a1,.., ah), the bi-level reward
r(s) = 1 if and only if there exists some h′ ≤ h such that
the last 5 tokens before h′ match the gold subsequence. To
use the same scale to compare methods trained for different
horizon H values (test-time budget), we Jr(π) and divide it
by the maximum reward of H − 4. Details in Appendix D.

Base policy. We wish to construct base policies πb that: (i)
differ in heterogeneity, and (ii) satisfy the anti-concentration
condition. To do so, we finetune GPT2-xl (Radford et al.,

7



Scaling Test-Time Compute Without Verification or RL is Suboptimal

29 210 211 212 213

test compute (tokens) H

0.30

0.34

0.38

0.42

0.46

0.50

0.54

A
cc

ur
ac

y
8×

8×

8B

3B

Scaling compute

Verifier-free (SFT)

Verifier-based (BoN)

(a)

212 213 214 215 216

data budget (n)

0.28

0.32

0.36

0.40

0.44

0.48

0.52

A
cc

ur
ac

y

> 6×

> 6×

8B

3B

Scaling data

Verifier-free (SFT)

Verifier-based (BoN)

(b)

29 210 211 212 213

test compute (tokens), n = H

0.28

0.31

0.34

0.37

0.40

A
cc

ur
ac

y

9%
17%

20%

Super linear increase in gap

Scaling compute and data (3B)

Verifier-free (SFT)

Verifier-based (BoN)

(c)
Figure 5: Scaling test compute H and training data n on MATH: We compare two common algorithms for spending test compute: (i)
verifier-free SFT on manually stitched sequential revisions (Qu et al., 2024; Muennighoff et al., 2025) from an expert, and (ii) BoN (Cobbe
et al., 2021a) search using a verifier trained on base LLM. In (a), we scale H , with data size n=214, and find BoN scales test-compute
by 8× over SFT. In (b), we fix H=212, scale n, and note the 6× gain in sample efficiency for BoN. In (c), we compare RL and SFT
following Definition 4.2 where we scale both n and H , and corroborating Theorem 5.8 the gap between RL and SFT grows super linearly.

2019) on samples obtained from a mixture of hand-designed
“procedural” policies. Inspired from Setlur et al. (2024b), a
procedural policy µγ(y

⋆
k+1|s)∝ γ, when the last k tokens in

the state s, match the first k tokens in the gold subsequence
y⋆. Thus, the normalized return for µγ→1, as γ→∞. We
vary the heterogeneity of πb by finetuning GPT2-xl on data
from a mixture of procedural policies with γ ∈ [1000].

Verifier-free SFT & verifier-based RL. Given n prompts,
we collect trajectories from an expert by running rejection
sampling over πb, i.e., for each prompt, we sample responses
from πb until a correct trace is sampled. Next, we run SFT
on this dataset in a verifier-free manner to obtain π̂vf

n , similar
to Zelikman et al. (2022). For RL, we implement a practical
version of Algorithm 1. We train a reward model (GPT2-xl)
as a multiclass classifier that predicts the bi-level reward
over H+1 values: 0 to H . To collect training data, we draw
a response τ ∼ πb(· | x) for each of the n prompts and
annotate it ground-truth r(τ). Using this, we train a reward
model r̂, and learn policy π̂vb

n by running REINFORCE
(with a KL constraint) against r̂ (Ahmadian et al., 2024).

Results: scaling test-time compute. In Figure 4(a), we
compare the test-time efficiency (normalized Jr) of SFT
and RL as we scale test-time token budget H , fixing n=210.
The performance of any procedural policy µγ improves with
H , since there is a greater chance of sampling the gold sub-
sequence. A similar argument applies to base and expert
policies that are mixtures over µγ . But perhaps counterintu-
itively, the gap between SFT and expert policy worsens as
H increases, matching our result in Theorem 5.4 where the
gap grows with H . This is because the heterogeneity of each
procedural policy (and hence σb) scales with H . On the filp
side, RL nearly matches the expert (Theorem 5.7 shows
suboptimality gap that is independent of σb), until a much
higher H , after which it deviates slightly, likely because
of decline in verifier accuracy at higher H (Appendix D),
resulting in reward hacking (Gao et al., 2023) during RL.

Scaling data budget. In Figure 4(b), we fix the test-time
compute to 26 tokens, and scale the data budget n. Expect-

edly, we see the performance of both SFT and RL improve,
but the slope for the RL curve is much higher than that of
SFT, which agrees with our theoretical result on VB being
more sample efficient (1/n) than VF (

√
1/n in Theorem 5.4).

Effect of policy heterogeneity. In Figure 4(c), we compare
the performance of SFT and RL policies as we reduce the
heterogeneity of the base policy. Consistent with our discus-
sion in Section 5.1, the suboptimality gap for SFT reduces
with the base policy’s heterogeneity. In this regime we also
find that VF methods outperform VB, primarily because of
the decline in verifier accuracy (Appendix D), and perhaps
the anti-concentration property is also not satisfied.

7. Results: Large-Scale Math Reasoning
Next, we extend our empirical results to math reasoning
problems where we compare VF supervised finetuning on
manually stitched search traces, and VB best-of-N search
(BoN) (Cobbe et al., 2021b). In BoN, we sample multiple
responses from the base LLM, and choose the best one with
an outcome verifier trained to predict 0/1 correctness labels.
Here, the verifier is trained on n samples generated from
the base LLM for questions in the training data. Thus, BoN
mimics the first few iterations of a VB online RL algorithm,
initialized with the base LLM, and that maximizes rewards
from a trained verifier. We mainly evaluate performance on
the MATH (Hendrycks et al., 2021) reasoning benchmark,
and use LLama-3.1/3.2 8B/3B instruct models (Dubey et al.,
2024) supervised finetuned on MATH as the base LLMs.
We vary the test-time compute budget from 29 to 213 tokens,
and also vary the training data budget n from 212 to 216.

Verifier-free approach: SFT on stitched search traces.
Motivated by the approach of scaling test-time compute
via iterative revisions (Qu et al., 2024), in this setting, we
SFT total test-time budget H on running as many rounds
of revision as possible within the budget. To construct SFT
data, we follow Snell et al. (2024) and construct an expert
policy that is “close” to πb by first sampling a bunch of
correct/incorrect solution traces from πb, and then manually

8



Scaling Test-Time Compute Without Verification or RL is Suboptimal

stitching a uniformly random number of incorrect solutions
followed by the correct into one search trace.

Verifier-based approach: Best-of-N sampling against
a verifier. For each training problem, we collect a given
number of traces∼ πb, and label them with a 0/1 correctness
score based on final answer match. We then train a verifier
with binary cross-entropy loss. On a test problem, we use
the verifier to rank N solutions from πb(·|x), at temperature
1.0 and choose the best one (N scales linearly in budget H).
While we run online RL in Section 6, due to computational
constraints at higher H , we only compare with BoN here,
which runs 1-step of policy improvement.

VB BoN scales compute by 8×, data by 6× of VF SFT.
At a fixed data budget of 214 samples, BoN scales test-time
compute by 8× over SFT, and at a fixed test compute of 212

tokens, VB scales data efficiency by 6× (Figure 5(a)(b)).
Revisiting Definition 4.2, we scale n with H and analyze
the gap between BoN and SFT. We find that the accuracy
gap grows super linearly in logH , i.e., the reward gap grows
as Ω(

√
H) (Figure 5(c)), matching Theorem 5.1.

512 1024 2048 4096
test compute (tokens)

0.60

0.70

0.80

0.90

1.00

A
cc

ur
ac

y

MATH 500

s1: Verifier-free
Distillation

Verifier-based

1024 4096 16384
test compute (tokens)

0.14

0.24

0.34

0.44

0.54

0.64

A
cc

ur
ac

y

AIME24

s1: Verifier-free
Distillation

Verifier-based

Figure 6: Results with s1: Fixing training data, and scaling test-
time compute budget, we compare the performance of s1 (Muen-
nighoff et al., 2025) trained with a verifier-free approach: super-
vised distillation, and our simple VB method: best-of-N search.
In a compute matched evaluation, sampling N short responses
and selecting the best one with the trained verifier outperforms the
budget forcing approach used in Muennighoff et al. (2025).

s1 trained with verifier-free distillation performs worse
than BoN. In Figure 6, across different test compute bud-
gets, we plot the performance of budget forcing in Muen-
nighoff et al. (2025), that scales test compute over the s1
model. s1 itself was trained by running supervised distilla-
tion over traces from the Gemini Thinking (Google, 2024)
model in a verifier-free manner. We compare this with BoN,
where we sample N responses of length 29 (MATH500) or
210 (AIME) and choose the best one with a trained outcome
verifier. In a compute matched evaluation, we find that even
when we fix the training data n, the verification based BoN
approach improves over budget-constrained s1.

VF generalizes on less heterogeneous problems, but mem-
orizes heterogeneous ones. We analyze the performance of
running SFT/BoN on different problem buckets, where each
bucket consists of problems of low, medium or high value
of heterogeneity, at token budget 210 (Figure 7). When σx

is small, VF SFT clones the trace well and improves over

Low Medium High
Avg. heterogeneity σx

35

40

45

50

55

A
cc

ur
ac

y

-2.1

+2.6

+4.7

Verifier-free SFT

Verifier-based BoN

5 10 15
Heterogeneity σx

400

800

1200

F
re

qu
en

cy

mean

Figure 7: Heterogeneity hurts SFT, but SFT outperforms BoN
on homogeneous problems: Across problems, we plot the distri-
bution of σx (Definition 5.2), bucket problems by heterogeneity,
and run SFT, BoN on each bucket. We find that verifier-free SFT
can outperform BoN when the heterogeneity measured by σx is
low, but the opposite is true when σx is high.

VB BoN, which can suffer from lack of coverage or inaccu-
racy of verifier (Appendix E). In contrast, when σx is larger,
VB BoN dominates since VF SFT fails to generalize under
heterogeneity and mainly memorizes responses. The distri-
bution of σx is also skewed towards higher values, resulting
in VB methods performing better on average (Figure 5).

0 50 100
Reward

0

20

40

F
re

qu
en

cy

Hard (0.27-anticoncentrated)

E [r(τ)]

E [r(τ)]+σ
√
κ

0 100 200
Reward

20

95

Easy (0.26-anticoncentrated)

Figure 8: Anti-concentration coefficient in practice: For easy
and hard problem sets in MATH, we compute the distribution of
bi-level rewards on the correct traces sampled from base LLM. We
find that for κ = 0.5 (controls the χ2 ball of the expert policy),
there is a non-trivial (≈ 1/4) probability of observing rewards
better than the mean reward by atleast σ

√
κ (σ computed by aver-

aging over prompts in the easy/hard bucket), implying that base
policy is roughly 0.25-anti-concentrated (Property 5.6).

Base LLM is anti-concentrated in practice. In Figure 8,
we plot the distribution over bi-level rewards (Property 4.1)
that measure test-compute scaling, conditioned on correct
answers. With κ = 0.5, we mark in red the performance
needed for trained LLM to improve over any expert in κ-χ2

ball around πb. On both easy (acc.>0.3) and hard prob-
lems (acc.<0.3), the region beyond the red mark is ≈ 1/4,
implying that πb has an anti-concentration coefficient of ≈
acc. × 0.25 (Property 5.6). Thus, the VB BoN is able to
cover correct answers, which only improves with more test
compute. Theorem 5.7 suggests that with H/η samples BoN
can outperform a policy that is η close to the red mark.

Takeaways: Trends on MATH match our theory.
Base LLMs (e.g., Llama-3.1-8B) exhibit hetero-
geneous and anticoncentrated reward distributions.
VB methods outperform VF for a fixed test com-
pute budget and the gap only grows as we increase
training data and test budget. Although, when het-
erogeneity is indeed low, VF can outperform VB.

9



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Acknowledgements
All experiments in this work were run at Carnegie Mellon
University. We thank Max Simchowitz, Andrea Zanette,
Yuxiao Qu, Max Sobol Mark, Kwanyoung Park, Matthew
Yang, Bhavya Agrawalla, Christina Baek, Charlie Snell,
Yifei Zhou, Yi Su, Paria Rashidinejad, Ahmad Beirami and
members of the CMU AIRe lab for feedback on an ear-
lier version of this paper and informative discussions. AK
is thankful for the support from Office of Naval Research
under N00014-24-12206. AS is thankful for the generous
support of JP Morgan AI PhD Fellowship. NR is thank-
ful for support from NSF Grants IIS-1901252 and CCF-
2211209. The authors thank the TRC program at Google
Cloud and Lambda labs for providing compute resources
that supported this work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,

J., Pietquin, O., Üstün, A., and Hooker, S. Back
to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. arXiv preprint
arXiv:2402.14740, 2024.

Beeching, E., Tunstall, L., and Rush, S. Scaling test-
time compute with open models, 2024. URL https:
//huggingface.co/spaces/HuggingFaceH4.

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek llm:
Scaling open-source language models with longtermism.
arXiv preprint arXiv:2401.02954, 2024.

Chen, H., Waheed, A., Li, X., Wang, Y., Wang, J., Raj, B.,
and Abdin, M. I. On the diversity of synthetic data and its
impact on training large language models. arXiv preprint
arXiv:2410.15226, 2024a.

Chen, L., Davis, J. Q., Hanin, B., Bailis, P., Stoica, I., Za-
haria, M., and Zou, J. Are more llm calls all you need?
towards scaling laws of compound inference systems.
arXiv preprint arXiv:2403.02419, 2024b.

Chen, X., Zhang, Y., et al. On bayes risk lower bounds.
Journal of Machine Learning Research, 17(218):1–58,
2016.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think

that much for 2+ 3=? on the overthinking of o1-like llms.
arXiv preprint arXiv:2412.21187, 2024c.

Chow, Y., Tennenholtz, G., Gur, I., Zhuang, V., Dai, B.,
Thiagarajan, S., Boutilier, C., Agarwal, R., Kumar, A.,
and Faust, A. Inference-aware fine-tuning for best-of-
n sampling in large language models. arXiv preprint
arXiv:2412.15287, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021a.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

Coste, T., Anwar, U., Kirk, R., and Krueger, D. Reward
model ensembles help mitigate overoptimization. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=dcjtMYkpXx.

Daniely, A., Sabato, S., Ben-David, S., and Shalev-Shwartz,
S. Multiclass learnability and the erm principle. In Pro-
ceedings of the 24th Annual Conference on Learning
Theory, pp. 207–232. JMLR Workshop and Conference
Proceedings, 2011.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,
R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,
X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,

10

https://huggingface.co/spaces/HuggingFaceH4
https://huggingface.co/spaces/HuggingFaceH4
https://openreview.net/forum?id=dcjtMYkpXx
https://openreview.net/forum?id=dcjtMYkpXx


Scaling Test-Time Compute Without Verification or RL is Suboptimal

Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,
Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Erdös, P. On a lemma of littlewood and offord. American
Mathematical Society, 1945.

Foster, D. J., Block, A., and Misra, D. Is behavior cloning
all you need? understanding horizon in imitation learning.
arXiv preprint arXiv:2407.15007, 2024a.

Foster, D. J., Han, Y., Qian, J., and Rakhlin, A. Online esti-
mation via offline estimation: An information-theoretic
framework. arXiv preprint arXiv:2404.10122, 2024b.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning
to search in language. arXiv preprint arXiv:2404.03683,
2024.

Gao, L., Schulman, J., and Hilton, J. Scaling laws for reward
model overoptimization. In International Conference on
Machine Learning, pp. 10835–10866. PMLR, 2023.

Google. Gemini 2.0 flash thinking mode.
https://cloud.google.com/vertex-ai/ generative-
ai/docs/thinking-mode, 2024. (gemini-2.0-flash-
thinking-exp-1219).

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova, K.,
Weerts, L., Sharma, A., Siddhant, A., Ahern, A., Wang,
M., Gu, C., Macherey, W., Doucet, A., Firat, O., and
de Freitas, N. Reinforced self-training (rest) for language
modeling, 2023.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hosseini, A., Yuan, X., Malkin, N., Courville, A., Sordoni,
A., and Agarwal, R. V-star: Training verifiers for self-
taught reasoners. arXiv preprint arXiv:2402.06457, 2024.

Huang, A., Block, A., Foster, D. J., Rohatgi, D., Zhang,
C., Simchowitz, M., Ash, J. T., and Krishnamurthy, A.
Self-improvement in language models: The sharpening
mechanism. arXiv preprint arXiv:2412.01951, 2024a.

Huang, A., Zhan, W., Xie, T., Lee, J. D., Sun, W., Krish-
namurthy, A., and Foster, D. J. Correcting the mythos
of kl-regularization: Direct alignment without overopti-
mization via chi-squared preference optimization. arXiv
preprint arXiv:2407.13399, 2024b.

Jones, A. L. Scaling scaling laws with board games. arXiv
preprint arXiv:2104.03113, 2021.

Kang, K., Wallace, E., Tomlin, C., Kumar, A., and Levine,
S. Unfamiliar finetuning examples control how language
models hallucinate, 2024.

Kazemnejad, A., Aghajohari, M., Portelance, E., Sordoni,
A., Reddy, S., Courville, A., and Roux, N. L. Vineppo:
Unlocking rl potential for llm reasoning through refined
credit assignment. arXiv preprint arXiv:2410.01679,
2024.

Kimi-Team. Kimi k1.5: Scaling reinforcement learning
with llms, 2025.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Iqbal, S., Bishop, C., Roelofs,
R., et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917,
2024.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lehnert, L., Sukhbaatar, S., Su, D., Zheng, Q., Mcvay, P.,
Rabbat, M., and Tian, Y. Beyond a*: Better planning with
transformers via search dynamics bootstrapping. arXiv
preprint arXiv:2402.14083, 2024.

Li, C., Wang, W., Hu, J., Wei, Y., Zheng, N., Hu, H.,
Zhang, Z., and Peng, H. Common 7b language models
already possess strong math capabilities. arXiv preprint
arXiv:2403.04706, 2024.

Ling, S. and Xing, C. Coding Theory: A First Course.
Cambridge University Press, 2004.

Liu, R., Wei, J., Liu, F., Si, C., Zhang, Y., Rao, J., Zheng, S.,
Peng, D., Yang, D., Zhou, D., and Dai, A. M. Best prac-
tices and lessons learned on synthetic data for language
models, 2024.

11

https://arxiv.org/abs/2501.12948


Scaling Test-Time Compute Without Verification or RL is Suboptimal

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W., Roongta, M.,
Cai, C., Luo, J., Zhang, T., Li, E., Popa, R. A., and Stoica,
I. Deepscaler: Surpassing o1-preview with a 1.5b model
by scaling rl, 2025. Notion Blog.

Moon, S., Park, B., and Song, H. O. Guided stream
of search: Learning to better search with language
models via optimal path guidance. arXiv preprint
arXiv:2410.02992, 2024.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

Nie, A., Su, Y., Chang, B., Lee, J. N., Chi, E. H., Le, Q. V.,
and Chen, M. Evolve: Evaluating and optimizing llms
for exploration. arXiv preprint arXiv:2410.06238, 2024.

Polyanskiy, Y. and Wu, Y. Lecture notes on information
theory. Lecture Notes for ECE563 (UIUC) and, 6(2012-
2016):7, 2014.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive
introspection: Teaching language model agents how to
self-improve. arXiv preprint arXiv:2407.18219, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. arXiv preprint
arXiv:2305.18290, 2023.

Rajaraman, N., Han, Y., Jiao, J., and Ramchandran, K. Sta-
tistical complexity and optimal algorithms for nonlinear
ridge bandits. The Annals of Statistics, 52(6):2557–2582,
2024.

Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell,
S. Bridging offline reinforcement learning and imi-
tation learning: A tale of pessimism. arXiv preprint
arXiv:2103.12021, 2021.

Sardana, N., Portes, J., Doubov, S., and Frankle, J. Beyond
chinchilla-optimal: Accounting for inference in language
model scaling laws. arXiv preprint arXiv:2401.00448,
2023.

Sel, B., Al-Tawaha, A., Khattar, V., Jia, R., and Jin, M.
Algorithm of thoughts: Enhancing exploration of ideas in
large language models. arXiv preprint arXiv:2308.10379,
2023.

Setlur, A., Garg, S., Geng, X., Garg, N., Smith, V., and
Kumar, A. Rl on incorrect synthetic data scales the effi-
ciency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024a.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
llm reasoning. arXiv preprint arXiv:2410.08146, 2024b.

Setlur, A., Qu, Y., Yang, M., Zhang, L., Smith, V., and
Kumar, A. Optimizing llm test-time compute involves
solving a meta-rl problem. https://blog.ml.cmu.
edu, 2025. CMU MLD Blog.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint
arXiv:2312.06585, 2023.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Song, Y., Zhang, H., Eisenach, C., Kakade, S., Foster,
D., and Ghai, U. Mind the gap: Examining the self-
improvement capabilities of large language models. arXiv
preprint arXiv:2412.02674, 2024.

Tajwar, F., Singh, A., Sharma, A., Rafailov, R., Schneider,
J., Xie, T., Ermon, S., Finn, C., and Kumar, A. Preference
Fine-Tuning of LLMs Should Leverage Suboptimal, On-
Policy Data, 2024.

Team, O. Open Thoughts. https://open-thoughts.ai, Febru-
ary 2025.

Tsybakov, A. B. Nonparametric estimators. Introduction to
Nonparametric Estimation, pp. 1–76, 2009.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Villalobos, P. and Atkinson, D. Trading off com-
pute in training and inference, 2023. URL
https://epochai. org/blog/trading-off-compute-in-training-
and-inference. Accessed, pp. 9–26, 2023.

Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn,
M., and Ho, A. Will we run out of data? an analysis of
the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 2022.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

Wang, Z., Zhou, D., Lui, J., and Sun, W. Model-based rl as
a minimalist approach to horizon-free and second-order
bounds. arXiv preprint arXiv:2408.08994, 2024.

12

https://blog.ml.cmu.edu
https://blog.ml.cmu.edu


Scaling Test-Time Compute Without Verification or RL is Suboptimal

Welleck, S., Bertsch, A., Finlayson, M., Schoelkopf, H., Xie,
A., Neubig, G., Kulikov, I., and Harchaoui, Z. From de-
coding to meta-generation: Inference-time algorithms for
large language models. arXiv preprint arXiv:2406.16838,
2024.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Infer-
ence scaling laws: An empirical analysis of compute-
optimal inference for problem-solving with language
models. arXiv preprint arXiv:2408.00724, 2024.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan,
D., et al. Towards system 2 reasoning in llms: Learning
how to think with meta chain-of-though. arXiv preprint
arXiv:2501.04682, 2025.

Xie, Y., Goyal, A., Zheng, W., Kan, M.-Y., Lillicrap, T. P.,
Kawaguchi, K., and Shieh, M. Monte carlo tree search
boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H., Lin,
H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J.,
Xu, J., Zhou, J., Bai, J., He, J., Lin, J., Dang, K., Lu, K.,
Chen, K., Yang, K., Li, M., Xue, M., Ni, N., Zhang, P.,
Wang, P., Peng, R., Men, R., Gao, R., Lin, R., Wang, S.,
Bai, S., Tan, S., Zhu, T., Li, T., Liu, T., Ge, W., Deng,
X., Zhou, X., Ren, X., Zhang, X., Wei, X., Ren, X., Fan,
Y., Yao, Y., Zhang, Y., Wan, Y., Chu, Y., Liu, Y., Cui, Z.,
Zhang, Z., and Fan, Z. Qwen2 technical report. arXiv
preprint arXiv:2407.10671, 2024.

Yang, M. S., Schuurmans, D., Abbeel, P., and Nachum,
O. Chain of thought imitation with procedure cloning.
Advances in Neural Information Processing Systems, 35:
36366–36381, 2022.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yuan, L., Li, W., Chen, H., Cui, G., Ding, N., Zhang, K.,
Zhou, B., Liu, Z., and Peng, H. Free process rewards
without process labels. arXiv preprint arXiv:2412.01981,
2024.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Ku-
mar, A., and Agarwal, R. Generative verifiers: Re-
ward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

13



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Appendices
A. Discussion, Conclusion and Limitations.

B. Additional Related Work.

C. Proofs from Section 5.

D. Additional Experiments in the Didactic Setup.

E. Additional Experiments on MATH.

A. Discussion, Limitations, and Future Work
Recent results show that capabilities of foundation models improve as we sample more tokens from them at test time. But,
this paradigm of scaling test-time compute is only sustainable if there exist learning algorithms that can learn policies, which
make efficient use of test-time compute and keep improving as we scale test-time budgets. To study this, we first formalize
the problem of optimizing test-time compute efficiency under our bi-level rewards (Property 4.1). Then, we define what it
means to scale test-time compute efficiency asymptotically, mainly when comparing a pair of algorithms (Definition 4.2).

Based on these definitions, we present a novel theoretical study that analyzes two classes of popular algorithms. These
algorithms train LLMs to use higher compute budgets at test-time, much higher than the length of correct answers for
typical problems. Crucially, we separate these classes along the axis of access to reward or verification signals, and find that
without access to verification (which can be in the form of 0/1 rewards during training, or trained verifiers at test-time),
the performance of learning algorithms may not scale efficiently to large budgets compares to a simple verification-based
approach. We prove this separation under two conditions on the base pre-trained LLM we start with. In particular, we show
that when the base policy is heterogeneous (i.e., conditioned on a problem, the distribution of bi-level rewards has a high
variance), no verifier-free learning algorithm can accurately learn any expert in a χ2 ball around the base policy. While
every verifier-free algorithm suffers from a heterogeneous base policy, we show that when the base policy satisfies a weak
anti-concentration condition: for all problems, the pretrained LLM puts a constant mass on a region of rewards, slightly
higher than mean performance on the problem, then a simple verifier-based algorithm we analyze is already good enough to
closely approximate the expert policy, which is supposed to scale well as we scale test-time compute further. We verify
that the above conditions of base policy heterogeneity and anti-concentration are satisfied in practice, which neatly ties
our theoretical abstractions and results to practical settings and empirical observations. We also compare our theoretical
predictions on the gap between VF and VB methods on the MATH and AIME benchmarks (with the s1 model (Muennighoff
et al., 2025) and a sequential self-correction model (Snell et al., 2024)), and a didactic setting which allows us to control the
heterogeneity explicitly.

Limitations and future work. In this work, we mainly group algorithms based on whether or not they utilize access to
verification signals for learning. Future work should consider building on our analysis to compare verifier-based algorithms
that query sparse vs. dense forms of verification, e.g., process-based rewards. Theoretically, it would also be interesting
to extend our analysis of verifier-based algorithms with bi-level rewards to other classes of reward functions, including
generative rewards (Zhang et al., 2024). Finally, since it is very expensive to train LLMs to use long contexts at test-time
(> 32k) an analysis of scaling behaviors for RL with outcome, or dense rewards, and other verifier-based approaches would
be crucial for making progress in this area. We believe that our analysis could provide certain “intuitions” about how to set
up the right problems for such a scaling study.

B. Additional Related Work
Scaling test-time compute. Recent works (Sardana et al., 2023; Snell et al., 2024) have shown that scaling test-time
compute can improve performance at a rate faster than that afforded by traditional approaches of scaling data (Li et al.,
2024) or model parameters (Hoffmann et al., 2022), implying that training compute can often be traded off optimally for
test-compute (Villalobos & Atkinson, 2023; Jones, 2021). There are two popular ways of spending test compute. First, is to
autoregressively sample from the LLM long “chains-of-thought” that resemble linearized search traces (Yao et al., 2023;
Gandhi et al., 2024) or an iterative refinement of answers (Qu et al., 2024; Kumar et al., 2024). Second, is to explicitly
implement search procedures (Wu et al., 2024; Beeching et al., 2024) with trained verifiers (Cobbe et al., 2021a; Setlur
et al., 2024b). In our work, we empirically show that either of these approaches can scale well, and both theoretically and

14



Scaling Test-Time Compute Without Verification or RL is Suboptimal

empirically examine a different and critical axis of separating these approaches: access to verification during training or
inference. Additionally, recent works (Chen et al., 2024c; Setlur et al., 2025) raise concerns about the unncessary wastage of
test-time compute by sampling overly long responses for even simple questions (Yang et al., 2024). In our work, we use a
“bi-level” reward formulation to capture what it means to efficiently use test-compute, and how to compare the asymptotic
compute efficiency of verifier-free and verfier-based algorithms.

Access to verification. We say that a finetuning algorithm has access to verification if it directly uses ground truth rewards,
e.g., the 0/1 correctness labels on math solutions (Uesato et al., 2022; Bi et al., 2024); or if it queries trained verifiers for
collecting training data (Hosseini et al., 2024) and running search procedures at test-time (Welleck et al., 2024; Chen et al.,
2024b; Chow et al., 2024). The former approach of training LLMs to generate long “chains of thought” with final reward
on-policy RL (Kimi-Team, 2025; DeepSeek-AI et al., 2025) has shown impressive gains on reasoning benchmarks. For
off-policy RL algorithms (Rafailov et al., 2023; Zelikman et al., 2022; Singh et al., 2023) that utilize verification, converting
the same 0/1 rewards into value function based process verification has been shown to be critical (Setlur et al., 2024a). Apart
from these verification can also be generative (Zhang et al., 2024) and implicit (Yuan et al., 2024) where the same LLM is
trained to generate and self-verify responses iteratively. In this work, we bucket all the above as verifier-based algorithms,
and formally show that the asymptotic performance of this class scales test-compute more efficiently than approaches that
do not query any sort of rewards, highlighting the critical role played by access to verification.

Verifier-free algorithms. Multiple works have proposed to scale test-time compute by finetuning pre-trained LLMs on
manually stitched search traces (Gandhi et al., 2024; Nie et al., 2024) that all lead to the correct solution. The goal here is
to force the LLM to mimic known search procedures like Monte-Carlo tree search (Yang et al., 2022; Xie et al., 2024) or
A⋆ (Lehnert et al., 2024) on training questions, with the hope that the LLM learns to search for solutions on test problems
too (Sel et al., 2023). Crucially these algorithms do not annotate search trajectories in the training data with any reward,
and the LLM is forced to mimic multipe search traces that are “heterogeneous” in nature, i.e., different traces spending
varying number of tokens (for search) to arrive at the same final solution. In our work, we analyze how this heterogeneous
nature makes it hard for any supervised finetuning algorithm to generalize, resulting in a poor test-time scaling law for these,
matching observations in practice (Kumar et al., 2024; Xiang et al., 2025).

Formalizing self-improvement in LLMs. Some recent works analyze self-improvement in LLMs under the assumption of
a verification-generation gap (Song et al., 2024), or frame sharpening model confidence (Huang et al., 2024a) as a form of
self-improvement, where the most likely solution is assumed to be correct. In contrast, we do not assume that learning to
verify is easier than learning to generate the correct trace, but instead show much weaker yet realistic conditions on the
pre-trained LLM, where such a gap exists.

C. Proofs from Section 5
C.1. Useful Lemmas

For a pair of probability measures P and Q, we define the total variation distance as DTV (P,Q) = 1
2

∫
|dP − dQ|, and

define the χ2-divergence by Dχ2 (P∥Q) =
∫ (dQ−dQ)2

dQ if P ≪ Q and χ2 (P∥Q) = +∞ otherwise. We define the KL

divergence by DKL (P∥Q) =
∫
dP log

(
dP
dQ

)
if P ≪ Q and DKL (P∥Q) = +∞ otherwise.

Lemma C.1 ((Polyanskiy & Wu, 2014)). The following inequalities hold:

• DTV (P,Q) ≤ DH2 (P,Q) ≤ 2DTV (P,Q).

• 1
6DH2 (P,Q) ≤ Dχ2

(
P∥ 12 (P +Q)

)
≤ DH2 (P,Q).

• DTV (P,Q) ≤
√

1
2DKL (P∥Q)

Lemma C.2 (Change of measure (Polyanskiy & Wu, 2014; Foster et al., 2024a)). Let P and Q be probability distributions
over a measurable space (Y,F ). Then for all functions h : Y → R,

|EP [h(Y )]− EQ[h(Y )]| ≤
√
VarQ [h(Y )] ·Dχ2 (P∥Q) (χ2-CoM)

≤
√

1

2
(EP [h2(Y )] + EQ [h2(Y )]) ·D2

H(P,Q) (H-CoM)

15



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Lemma C.3 (Total expert heterogeneity). For any policy π, recall the definition of heterogeneity in Definition 5.2. For this
definition of heterogeneity the following equivalance to the expected conditional variance of rewards is true:

σ2
π = Ex∼ρVarτ∼π(·|x) [r(τ)] .

Proof. Let us begin by recalling the definition of σ2
π .

σ2
π =:

H∑
h=1

Esh∼dπ
h

[
Varπ(·|sh) [Qπ(sh, ah)]

]
.

Now let us expand Varπ(·|sh) [Qπ(sh, ah)] in the following way.

Varπ

[
H∑

h′=h

r(sh′ , ah′)

∣∣∣∣∣sh
]

= Varπ

[
r(sh, ah) +

H∑
h′=h+1

r(sh′ , ah′)

∣∣∣∣∣sh
]

= Eπ

(r(sh, ah)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)

)2
∣∣∣∣∣∣sh


= Eπ

(r(sh, ah) + Vπ(sh+1)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


= Eπ

(Qπ(sh, ah)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


Breaking the above expectation into three terms by expanding the square, note that the third term is zero because,
Eπ [Qπ(sh, ah)− Vπ(sh+1) | sh] = 0, for any state sh and in our autoregressive MDP with deterministic dynamics,

Qπ(sh, ah) = r(sh, ah) + Vπ(sh+1),

also for every state sh. Recall that, here the state sh+1 = (sh, ah). Additionally, we also take the expecation over the state
distribution of sh ∼ dπh, and since the equality is true individually for each value of sh, it also holds under the expectation
over sh. This gives us the following.

Esh∼dπ
h

Eπ

(r(sh, ah) + Vπ(sh+1)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


= Esh∼dπ
h

Eπ

[
(r(sh, ah) + Vπ(sh+1)− Vπ(sh))

2
∣∣∣sh]+ Eπ

( H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


+ 2 · Esh∼dπ
h

[
Eπ [r(sh, ah) + Vπ(sh+1)− Vπ(sh)|sh] · Eπ

[
H∑

h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

∣∣∣∣∣sh
]]

As we noted above, the third term in the summation above is zero. Thus,

Esh∼dπ
h

[
Varπ

[
H∑

h′=h

r(sh′ , ah′)

∣∣∣∣∣sh
]]

= Esh+1∼dπ
h+1

[
Varπ

[
H∑

h′=h+1

r(sh′ , ah′)

]∣∣∣∣∣sh
]

+ Esh∼dπ
h
[Varπ [Qπ(sh, ah)]|sh]

16



Scaling Test-Time Compute Without Verification or RL is Suboptimal

The above induction is true for all values of h. Now, taking the sum over h, from h = 1 to h = H on both left and right
sides of the equation and using the definition of σ2

π , we get:

σ2
π = Es1∼dπ

1

[
Varπ

[
H∑

h=1

r(sh, ah)

∣∣∣∣∣s1
]]

.

Recall from Section 3 that the first state s1 is simply the input prompt x. Thus dπ1 is indpendent of π and is simply the
distribution over the input prompts x, which is defined as ρ. Plugging this into the above equation we get:

σ2 = Ex∼ρ

[
Varπ

[
H∑

h=1

r(sh, ah)

∣∣∣∣∣x
]]

= Ex∼ρ

[
Varτ∼π(·|x) [r(τ)]

]
.

Lemma C.4. Consider a random variable A which is almost surely non-negative and has mean µ and variance σ2. For any
θ ≥ 0,

E
[
θ(µ−A)

σ + θA

]
≤ 2θ2 (2)

Proof. Let f(θ) = E
[
θ(µ−A)
σ+θA

]
. Observe that,

f ′(θ) = E
[
µ−A

σ + θA

]
− E

[
θ(µ−A)A

(σ + θA)2

]
f ′′(θ) = −2E

[
(µ−A)A

(σ + θA)2

]
+ 2E

[
θ(µ−A)A2

(σ + θA)3

]
= 2E

[
θ(µ−A)A2 − (µ−A)A(σ + θA)

(σ + θA)3

]
= 2σE

[
(A− µ)A

(σ + θA)3

]
= 2σE

[
µ(A− µ)

(σ + θA)3

]
+ 2σE

[
(A− µ)2

(σ + θA)3

]
≤ 2σE

[
µ(A− µ)

(σ + θA)3

]
+ 2σE

[
(A− µ)2

σ3

]
= 2σE

[
µ(A− µ)

(σ + θA)3

]
+ 2

Note that µ(A− µ) and (σ + θA)3 are both increasing functions in A, and therefore,

E
[
µ(A− µ)

(σ + θA)3

]
≤ 2σE [µ(A− µ)]E

[
1

(σ + θA)3

]
= 0.

This results in the upper bound ∥f ′′∥∞ ≤ 2. Since f(0) = 0 and f ′(0) = 0, we have that,

f(θ) =

∫ θ

0

f ′′(α)dα ≤ 2θ2.

C.2. Lower bound on σe: Proof of Lemma 5.3

In this section, we show that for any base policy πb, and any expert policy πe such that DKL (πe∥πb) ≤ κ,

σ2
e ≥ σ2

b −Hσb

√
κ/2.

17



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Since DKL (·∥·) ≤ χ2(·∥·) pointwise, this implies the lower bound on σe within the χ2 ball.

By definition, observe that,

σ2
π = Ex∼ρ[Varτ∼π(·|x) [r(τ)]]

=
1

2
Ex∼ρ

[
Eτ,τ ′∼π(·|x)[(r(τ)− r(τ ′))2]

]
Note that the squared Hellinger divergence D2

H satisfies D2
H(·, ·) ≤ DKL(·, ·) pointwise (cf. Lemma 2.4 in Tsybakov

(2009)). With the choice Y = (τ, τ ′) in the change-of-measure argument in Equation (H-CoM) of Lemma C.2, h(Y ) =
(r(τ) − r(τ ′))2 and P denote the distribution over trajectories πb(· | x) and Q denote the distribution over trajectories
induced by πe(· | x),

|Varτ∼πb(·|x)[r(τ)]−Varτ∼πe(·|x)[r(τ)]| ≤
1

2

√
1

2
(EP [h2(Y )] + EQ [h2(Y )]) ·DKL ((τe, τ ′e)∥(τb, τ ′b))

≤ 1

2

√
(EP [h2(Y )] + EQ [h2(Y )]) ·DKL (τe∥τb) (3)

where in the last inequality, we use the fact that τe and τ ′e are i.i.d. ∼ πe(· | x), and likewise τb and τ ′b are i.i.d. ∼ πb(· | x),
and the chain rule of KL divergence. What remains is to bound Eτ∼π(·|x)[(r(τ)− r(τ ′))4] for π = πe and π = πb. Since
|r(τ)− r(τ ′)| ≤ H almost surely,

Eτ∼π(·|x)[(r(τ)− r(τ ′))4] ≤ 2H2Varτ∼π(·|x)[r(τ)]

Let’s denote A = Varτ∼πe(·|x)[r(τ)] and B = Varτ∼πb(·|x)[r(τ)]. Combining with Equation (3) and squaring, and denoting
DKL (τe∥τb) = κx,

(A−B)
2 ≤ H2

4
(A+B) · κx

=⇒ A2 −
(
2B +

κxH
2

4

)
A+

(
B2 − κxH

2

4
B

)
≤ 0 (4)

This is a quadratic equation in A. Solving, we get,

A ≥
(
B +

κxH
2

8

)
−
√(

B +
κxH2

8

)2

−
(
B2 − κxH2

4
B

)
=

(
B +

κxH
2

8

)
−
√

κxH2

2
B +

κ2
xH

4

64

≥ B −H
√
κxB/2

where the last inequality uses the subadditivity of the
√· function. This implies that,

Varτ∼πe(·|x)[r(τ)] ≥ Varτ∼πb(·|x)[r(τ)]−H
√
(κx/2)Varτ∼πb(·|x)[r(τ)]

Taking an expectation over x ∼ ρ on both sides, and using Jensen’s inequality,

σ2
e ≥ σ2

b −HEx∼ρ

[√
(κx/2)Varτ∼πb(·|x)[r(τ)]

]
≥ σ2

b −H
√
Ex∼ρ[κx/2]Ex∼ρ

[
Varτ∼πb(·|x)[r(τ)]

]
= σ2

b −Hσb

√
κ/2

Noting that Ex∼ρ[κx] ≤ κ. Solving for the larger root of the quadratic in Equation (4), we also arrive at the upper bound,

A ≤ B +H
√
κxB/2 +

κxH
2

4

=⇒ σ2
e ≤ σ2

b +Hσb

√
κ/2 +

κH2

4
. (5)

which follows by taking an expectation over x ∼ ρ.

18



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Optimality of Lemma 5.3. The above result is tight up to constants. Consider an autoregressive MDP with a single
prompt, where picking action a0 at time 1 results in hitting a bi-level (so, regardless of future actions, a reward of 1 is
collected at each step) and picking action a1 results in a reward of 0 forever. πb picks the first branch with probability p and
the second with probability 1− p at t = 1. Then, σ2

b = p(1− p)H2 and by scaling p from 0 to 1/2, any 0 ≤ σ2
b ≤ H2/4

can be achieved. On the other hand, consider the policy πe which plays a0 with probability p− θ at t = 1. Suppose p is a
constant. Then,

χ2(πe∥πb) =
(p− θ)2

p
+

1− 2(p− θ) + (p− θ)2

1− p
− 1

=
p2 − 2pθ + θ2

p
+

(1− p)2 + 2θ(1− p) + θ2

1− p
− 1

=
θ2

p
+

θ2

1− p

=
θ2

p(1− p)

Therefore, choosing θ = min{p,
√
κp(1− p)}, we get,

χ2(πe∥πb) ≤ κ

And furthermore that, σ2
e = (p− θ)(1− (p− θ))H2 and therefore,

σ2
e − σ2

b = (p− θ)(1− (p− θ))H2 − p(1− p)H2

= −(θ + θ2 − 2pθ)H2,

when θ = p, we get σ2
e = 0. When θ =

√
κp(1− p), this is assumed to be in the regime θ > p and so,

σ2
e − σ2

b ≤ −(θ + pθ − 2pθ)H2

≤ −θ

2
H2

where in the last equation we recall the assumption that p ≤ 1/2. Plugging in θ and observing that H2θ = Hσb
√
κ

completes the proof.

C.3. Proof of Theorem 5.4

We will state a slightly more formal version of Theorem 5.4 below in Appendix C.3.3. Prior to this, we introduce some
relevant notation necessary to state the main result.

C.3.1. MEASURE OF COMPLEXITY: L⋆
k

Consider an arbitrary partitioning of the prompt space X into k disjoint parts, denoted {Xi}ki=1. Let {X ⋆
i }ki=1 denote the

partitioning of the prompt space which maximizes,

L({Xi}ki=1) =: min {Ex∼ρ[σe,xI(x ∈ ∪i∈KXi)] : K ⊆ [k] and |K| ≥ k/4} . (6)

And let L⋆
k = L({X ⋆

i }ki=1). Our construction, and lower bounds derived therafter are stated in terms of {X ⋆
i }ki=1 and L⋆

k.
We devote the first part of this section toward interpretations of L⋆

k.

Recall that σ̃e = Median({σπ,x : x ∈ X}), σe = Ex∼ρ[σπe,x] and σ2
e = Ex∼ρ[σ

2
πe,x]. We will first show that L⋆

k ≳ σ̃e

always. Later, we will show that if σ2
e ≤ cσ2

e for a sufficiently small constant c > 1, L⋆
k ≳ σe.

C.3.2. INTERPRETATIONS OF, AND BOUNDS ON L⋆
k

Lemma C.5. Consider any 8 ≤ k ≤ |X |/4. Then, L⋆
k ≥ 1

32 σ̃e.

Proof. We will prove this statement in two assertions,

19



Scaling Test-Time Compute Without Verification or RL is Suboptimal

1. When k is a power of two, L⋆
k/2 ≥ L⋆

k.

2. When k is any power of two, and any k/2 ≤ k′ ≤ k, L⋆
k′ ≥ 1

2L
⋆
k.

For a subset X ⊆ X , define its score s(X) = Ex∼ρ[σe,xI(x ∈ X)]. Assuming these two assertions, we will prove the main
lemma first, and then come back to proving them.

Proof of the main lemma. Consider k as the largest power of 2 between |X |/4 and |X |/2. For this choice, consider the
partition of X into k sets by choosing the first k parts as singleton sets, consisting of the top k prompts x ∈ X with the
highest values of σe,x; the remaining prompts are distributed among sets in the partition arbitrarily. Notably, the score of
each part Xi in this partition satisfies s(Xi) ≥ Median({s({x}) : x ∈ X}); by implication, for any such value of k,

L⋆
k ≥

k

4
Median({s(x) : x ∈ X}) ≥ |X |

16
Median({s({x}) : x ∈ X}) = 1

16
Median({σe,x : x ∈ X}) (7)

where the last equation uses the fact that ρ is the uniform distribution over X . Therefore, for any k′ ≤ k, we have that
L⋆
k ≥ 1

2L
⋆
k =≥ 1

32Median({σe,x : x ∈ X}).

Proof of the first assertion. Consider the optimal partition which induces L⋆
k, {X ⋆

i }ki=1, arranged in increasing order of
scores. Note then, that L⋆

k =
∑k/4

i=1 s(Xi) Consider the partition ofX into k/2 parts, as {X ⋆
1 ∪X ⋆

2 ,X ⋆
3 ∪X ⋆

4 , · · · ,X ⋆
k−1∪X ⋆

k }.
Since scores are additive, the k/8 parts with the lowest scores must be {X ⋆

i ∪ X ⋆
i+1}

k/8
i=1. This implies the first assertion.

Proof of the second assertion. Consider the optimal partition which induces L⋆
k, {X ⋆

i }ki=1. By dissolving the bottom
k − k′ parts (in terms of score) of {X ⋆

i }ki=1 and merging them with other parts, this results in a partitioning of X such that
the sum of k′/4 worst scores of the parts must be at least (k′/k)L⋆

k ≥ L⋆
k/2.

Lemma C.6. Suppose σ2
e ≤ 4

3σ
2
e, then σ̃e ≥ 1

10σe ≥ 1
15σe.

Proof. By the Paley-Zygmund inequality,

Pr
x∼ρ

[
σe,x ≥

1

10
σe

]
≥ 4

5
× σ2

e

σ2
e

(8)

When σ2
e ≤ 4

3σ
2
e, the LHS is at least 3/5. This means that at least 3|X |/5 of the prompts satisfy σe,x ≥ 1

10σe, and so
Median({σe,x : x ∈ X}) ≥ 1

10σe.

As a corollary of this lemma, we have that,

Corollary C.7. Under the condition σ2
e ≤ (4/3)σ2

e, for every k ≤ |X |/4, we have that L⋆
k ≥ cσe for some absolute

constant c > 0.

Having introduced these interpretations of L⋆
k, we prove the following instance-dependent lower bound on the suboptimality

of any verifier-free algorithm.

C.3.3. LOWER BOUNDS ON VERIFIER-FREE APPROACHES

Below we introduce the class of rewards for which we prove the instance-dependent lower bound in Theorem 5.4.

Definition C.8 (Half-bi-level rewards). Define the class of half-bi-level rewards, R1/2, as those reward functions such
that every trajectory contains a bi-level at or before time t = ⌊H/2⌋. Namely, for any trajectory (s1, a1, · · · , sH , aH),
r(st, at) = 1 for every t ≥ ⌊H/2⌋ for any reward r ∈ R1/2.

Remark C.9. Although half-bi-level rewards are constrained to have all their bi-levels before time H/2, this does not
preclude there from existing policies having high variance under rewards from this class. In particular, there exists a policy
π and a reward r ∈ R1/2 such that σ2

π = H2/16.

20



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Theorem C.10. Suppose |X | ≥ 16 and choose any 4 ≤ k ≤ |X |/4. Consider any autoregressive MDP and assume that
ρ = Unif(X ). For any choice of reward r ∈ R1/2, base policy πb and expert policy πe ∈ Πε, there exists an alternate
family of expert policies Π′ of size ⌈2k/4⌉ and reward classR′ ⊂ R (also of the same size), such that,

1. πe ∈ Π′ and r ∈ R′,

2. Π′ ⊆ Πε′ corresponds to a family of feasible expert policies with ε′ = 3(1 + ε) ·max
{

H
√
εstat

σmin
, H2εstat

σ2
min

}
.

Here, σmin = minx∈X σe,x.

3. For every r′ ∈ R′ and policy π′ ∈ Π′, σ2
r′(π

′) ≤ σ2
e +Hσe

√
εstat +H2εstat.

4. For any realizable verifier-based learning algorithm, satisfying π̂vf
n ∈ Π′,

max
π′∈Π′

max
r′∈R

Pr
(
Jr′(π

′)− Jr′(π̂
vf
n) ≥ L⋆

k

√
εstat
)
≥ 1/8 (9)

Here, we define εstat =
log(|Π′|)

16n and assume that n is sufficiently large so that εstat ≤ minx∈X σ2
e,x/(Jr(πe|x))2.

Proof structure. We define the alternate policy class Π′ across Lemma C.14 and Lemma C.15, culminating in Ap-
pendix C.3.4. Property 2 (i.e., Π′ ⊆ Πε′ ) and Property 3 (i.e., the bound on the variance of policies in Π′ on rewards inR′)
are established in Lemma C.14.

Remark C.11. The results of (Foster et al., 2024a) establish a similar lower bound for autoregressive MDPs. However their
construction specifically assumes, either (i) there is a single prompt, or (ii) the adversary constructing an alternate hard
instance can change the initial state distribution ρ. This follows from the fact that their alternate policy is constructed in a
way which does not preserve the initial state distribution of the MDP (cf. Lemma G.1 in their paper).

Our lower bound scales with L⋆
k ≳ σ̃e where σ̃e = Median({σe,x : x ∈ X}), rather than σe, as previous work (Foster et al.,

2024a) hints in the case of a single prompt. In general, it turns out that it is not possible to have an instance-dependent lower
bound that scales as Ω(σe

√
log(|Π|)/n). There exist a class of MDPs where verifier free approaches achieve an error of

O(σ̃e

√
log(|Π|)/n), even under the worst case choice of policy class, and improve over the suggested Θ(σe

√
log(|Π|)/n)

instance-dependent error.

Theorem C.12. Consider an autoregressive MDP with |A| = 2 and H = 1. There exists an expert policy πe, such that for
any policy class Π ∋ πe of size |Π| ≥ 2Ω(|X |), there exists a verifier-free learner such that with probability at least 1− δ,

max
r∈R

Jr(πe)− Jr(π̂
vf
n) ≤ Õ|X |,δ

(
σ̃e

√
log(|Π|)

n
+

log(|Π|)
n

)

= Θ̃|X |,δ

(
σe√
|X |
·
√

log(|Π|)
n

+
log(|Π|)

n

)

as long as δ ≥ |X | exp(− 1
2

√
n/|X |).

Proof. WLOG, assume A = {0, 1}. Consider the following expert: for the ith prompt, arranged in arbitrary order, let
πe(1|xi) =

1
2i2 . Observe that,

σ̃e = Θ

(
1

|X |

)
σe = Eρ[σe,x] ≤ Eρ[

√
πe(1|x)] = Θ

(
log(|X |)
|X |

)
σe =

√
Eρ[σ2

e,x] ≥
√

1

2
Eρ[πe(1|x)] = Θ

(
1

2
√
|X |

)

21



Scaling Test-Time Compute Without Verification or RL is Suboptimal

For each action, construct the empirical distribution estimator, and return this policy as π̂vf
n (0|x). Then, with probability at

least 1− δ, conditioning on the number of samples nx observed with prompt x,

|π̂vf
n (0|x)− πe(0|x)| ≤ min

1,

√
πe(0|x) log(2/δ)

nx
+

log(2/δ)

nx


Therefore, with probability at least 1− δ,

max
r∈R

Jr(πe)− Jr(π̂
vf
n ) = Eρ

[
DTV

(
π̂vf
n (·|x), πe(·|x)

)]
≤ Eρ

1,

√
πe(0|x) log(2|X |/δ)

nx
+

log(2/δ)

nx


 (10)

With probability 1− δ, we have that nx ≥ n
|X | −

√
n
|X | log(1/δ) for every x ∈ X . Assuming δ ≥ |X | exp(− 1

2

√
n/|X |),

by union bounding, we have that with probability at least 1− δ, for all x ∈ X , nx ≥ n
2|X | . Combining with Equation (10),

with probability at least 1− 2δ,

max
r∈R

Jr(πe)− Jr(π̂
vf
n ) ≤ 2

∑
x∈X

√
πe(0|x) log(|X |/δ)

n|X | +
log(2/δ)

n

≤ 2 log(|X |)
√

log(|X |/δ)
n|X | + 2

|X | log(2/δ)
n

≤ 2σ̃e ·
√

log(|Π|) log(|X |/δ)
n

+
2 log(|Π|) log(2/δ)

n

where the last inequality uses the fact that |Π| ≥ 2Ω(|X |) and by construction, the value of σ̃e.

Lemma C.13. For any reward r ∈ R1/2, there exists another reward r̃ ∈ R such that, for any policy π ∈ Π and input
distribution ρ,

Eρ,π[r(τ)] = H − Eρ,π[r̃(τ)]

Varρ,π[r(τ)] = Varρ,π[r̃(τ)]

Proof. Consider the bi-level reward r, and consider the set of minimal states: ∪τ∈AH{st⋆ where t⋆ = min{1 ≤ t ≤ H :
r(st−1, at) > r(st−2, at−1)}. These are the states where a bi-level may be first visited. For each such minimal state, the
bi-level property implies that any trajectory which visits this state collects a reward of 1 at every point in time regardless of
the sequence of actions played. Based on this construction, we define the reward r̃ as follows: for every minimal state s
which appears at time t, consider the subtree rooted at this node (i.e., the set of trajectories which visit this state). Delete this
minimal state, and replace it by the set of all 2H−t new minimal states corresponding to the set of all states in the subtree at
depth H − t. Let r̃ be induced by this new set of minimal states; moreover, it is feasible to construct this set because of the
assumption that r ∈ R1/2: every minimal state appears at some value of t ≤ H/2.

Consider any trajectory τ . Suppose this trajectory visits a bi-level at time t ≤ H/2. Now the same trajectory is guaranteed
to visit a bi-level at time H − t ≥ H/2. Thus, r̃(τ) = H − r(τ), and the assertions about Eρ,π[r̃(τ)] and Varρ,π[r̃(τ)]
follow suit.

Lemma C.14. For any policy π and reward r, and 0 ≤ ξ ≤ minx∈X
σ2
e,x

4(Jr(πe|x))2 , there exists a class of 2k policies, Πk =

{πz : z ∈ {0, 1}k} indexed by binary vectors, and a class of 2k rewards indexed similarly as Rk = {rz : z ∈ {0, 1}k},
such that,

1. For any z, z′ ∈ {0, 1}k, Dχ2 (πz∥πz′) ≤ 8ξ. Furthermore, Dχ2 (πz∥πe) ≤ 8ξ.

22



Scaling Test-Time Compute Without Verification or RL is Suboptimal

2. Jrz (πz)− Jrz (πz′) =
√
ξ
∑k

i=1 I(zi ̸= z′
i(x)) · Ex∼ρ[σe,xI(x ∈ X ⋆

i )],

3. For every reward r′ ∈ Rk and every π′ ∈ Πk: σ2
e,x(π

′, r′) ≤ σ2
e,x +Hσe,x

√
ξ +H2ξ.

4. Recall that πe ∈ Πε, the ε-radius KL ball around πb. Then, every π′ ∈ Πk belongs in the ball Πε′ , where,

ε′ = 3(1 + ε) ·max

{√
ξH

σmin
,
ξH2

σ2
min

}
. (11)

and where σmin = minx∈X σe,x.

Proof. The policy πz is defined as follows. For each i ∈ [k] and x ∈ Xi,

πz(τ |x) ∝
{
(σe,x + θxr(τ))πe(τ |x), if zi = 1

πe(τ |x), otherwise.
(12)

where θx ≥ 0 is a parameter to be determined later. Likewise, the reward rz is defined as follows. For each x ∈ Xi,

rz(τ |x) ∝
{
r(τ), if zi = 1

r̃(τ |x), otherwise.
(13)

where r̃ is the reward defined in Lemma C.13. Since we only care about values and variances, for all intents and purposes, r̃
is the same as 1− r (which itself may not be a bi-level reward).

Assertion 1: Bounding the χ2-divergence between πz and πz′ . Consider any pair of binary vectors z, z′ ∈ {0, 1}k. If
zi = z′

i, then Dχ2 (πz(·|x)∥πz′(·|x)) = 0 for any x ∈ Xi. Otherwise, if zi = 1 and z′
i = 0, for any x ∈ Xi,

Dχ2 (πz(·|x)∥πz′(·|x)) = Dχ2 (πz(·|x)∥πe(·|x))

=
Eπe

[(σe,x + θxr(τ))
2|x]

Eπe [σe,x + θxr(τ)|x]2
− 1

=
σ2
e,x + 2θxσe,xJr(πe|x) + θ2x((Jr(πe|x))2 + σ2

e,x)

(σe + θxJr(πe|x))2
− 1

=
θ2xσ

2
e,x

(σe,x + θxJr(πe|x))2
= ξ (14)

where the last equation follows by choosing θx such that θxσe,x =
√
ξ(σe,x + θxJr(πe|x)). There will always exist a

feasible choice of θx ≥ 0 satisifying this equation as long as the condition
√
ξ ≤ σe,x/Jr(πe|x) is satisfied, and under the

stronger restriction
√
ξ ≤ σe,x/2Jr(πe|x) we will have that θx ≤ 2

√
ξ. On the other hand, if z(x) = 0 and z′(x) = 1, for

any x ∈ Xi,

Dχ2 (πz(·|x)∥πz′(·|x)) = Dχ2 (πe(·|x)∥πz(·|x))

= Eπ[σe,x + θxr(τ)|x] · Eπ

[
1

σe,x + θxr(τ)

∣∣∣∣x]− 1

= Eπ

[
σe,x + θxJr(πe|x)
σe,x + θxr(τ)

∣∣∣∣x]− 1

= Eπ

[
θx(Jr(πe|x)− r(τ))

σe,x + θxr(τ)

∣∣∣∣x]
(i)

≤ 2θ2x

≤ 8ξ (15)

where (i) follows from Lemma C.4 and the last inequality relies on the choice of θx ≤ 2
√
ξ. Combining Equations (14)

and (15) with an expectation over x ∼ ρ results in a proof of the first assertion.

23



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Assertion 2: Bounding the value gap. Observe that Jr(πz|x)− Jr(πz′ |x) = 0 for any x ∈ Xi if zi = z′
i. In case zi = 1

and z′
i = 0 and any x ∈ Xi, rz(τ) = r(τ) for any τ which visits x and,

Jrz (πz|x)− Jrz (πz′ |x) = Eπ[σer(τ) + θx(r(τ))
2|x]

Eπ[σe,x + θxr(τ)|x]
− Jrz (πe|x)

=
σe,xJr(πe|x) + θx(Jr(πe|x))2 + σ2

e,x)

σe,x + θxJr(πe|x)
− Jr(πe|x)

=
θxσ

2
e,x

σe,x + θxJr(πe|x)
= σe,x

√
ξ (16)

where the last equation follows by choice of θx. When zi = 0 and z′
i = 1, the same analysis results in the same bound

Jr(πz|x)− Jr(πz′ |x) = σe,x

√
ξ for any x ∈ Xi, and taking an expectation over x ∼ ρ proves the second assertion.

Assertion 3: Bound on variance of πz . This follows from Equation (5), which bounds the variance of a policy which lies
within a radius κ χ2 ball of another: in particular, πz(·|x) lies in a ξ-sized KL ball around πe(·|x), which has variance σ2

e,x,
and taking an expectation over x ∼ ρ. Note also that the reward rz preserves variances across policies compared to r (cf.
Lemma C.13 and the fact that rz uses either r or r̃), so it suffices to carry out the variance computation under r.

Assertion 4: Bound on Dχ2 (π∥πb) for π ∈ Πk. For any z ∈ {0, 1}k, note that πz and πe have density ratio upper
bounded by, ∥∥∥∥πz(τ |x)

πe(τ |x)

∥∥∥∥
∞
≤ σe,x + θxH

σe,x + θxJr(πe|x)

≤ 1 +
2
√
ξH

σmin

This upper bound on the density ratio implies that,

Dχ2 (πz∥πb) = Ex∼ρ

[
Dχ2 (πz(·|x)∥πb(·|x))

]
≤
(
1 +

2
√
ξH

σmin

)2

(1 +Dχ2 (πe∥πb))− 1

≤ 3(1 + ε) ·max

{√
ξH

σmin
,
ξH2

σ2
min

}

Lemma C.15. There exists a subset Z ⊆ {0, 1}k with |Z| = ⌈2k/4⌉ and such that every pair z, z′ ∈ Z satisfies,

k∑
i=1

I(zi ̸= z′
i) ≥ k/4

Proof. This statement essentially follows from the Gilbert-Varshamov bound (cf. Theorem 5.2.6 in (Ling & Xing, 2004)).

C.3.4. CONSTRUCTION OF POLICY CLASS Π′ AND REWARD CLASS R′

Consider the set of policies Π′ = {πz : z ∈ Z} ⊆ Πk and R′ = {rz : z ∈ Z} (see the proof of Lemma C.14 for a
definition of πz , Πk andRk). By Lemma C.15, |Π′| ≈ 2k/4, and furthermore, for any z, z′ ∈ Z ,

Jrz (πz)− Jrz (πz′) ≥ L⋆
k

√
ξ (17)

where L⋆
k is defined in Equation (6). This bound follows from the first assertion in Lemma C.14 and the fact that z and z′

differ in at least k/4 coordinates; L⋆
k, by definition, captures the deviation for the worst-case choice of k/4 coordinates.

24



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Definition C.16 ((Chen et al., 2016; Rajaraman et al., 2024)). The χ2-informativity is defined as,

Iχ2(X;Y ) ≜ inf
QY

χ2 (PXY ∥PX ×QY )

Theorem C.17. Consider the family of policies Π′ defined above. Let pΠ′ denote the uniform prior over them (alternately,
the distribution over πz for z ∼ Unif(Z)). Let the policy π̂ be constructed via a dataset D and assume that the verifier-free
learner is realizable, satisfying π̂vf

n ∈ Π′. Then,

Pr(Jrz (πz)− Jrz (π̂
vf
n) ≥ L⋆

k

√
ξ) ≥ 1− 1

|Π′|
√
Iχ2(z;D) + 1

Proof. Let P be the joint distribution of z and D. Let Q be the distribution Unif(Z)×Qdata for a generic (arbitrary) data
distribution Qdata. Let T : (z, D) 7→ I(Jrz (πz) − Jrz (π̂

vf
n ) ≥ L⋆

k

√
ξ) be a generic map, and P ◦ T−1 and Q ◦ T−1 be

the pushforward measures of P and Q by T . Letting E(z, D) = {Jrz (πz) − Jrz (π̂
vf
n ) ≥ L⋆

k

√
ξ)}, the data-processing

inequality gives,

Dχ2 (P∥Q) ≥ Dχ2

(
P ◦ T−1∥Q ◦ T−1

)
=

(P (E(z, D))−Q(E(z, D)))2

Q(E(z, D))(1−Q(E(z, D)))
(18)

Let us assume that the learner’s policy π̂ is realizable, and satisfies π̂ ∈ Π′. By the product structure of Q, we have that,

Q(E(z, D)) ≤ sup
π∈Π′

Pr
(
Jrz (πz)− Jrz (π) ≥ L⋆

k

√
ξ
)
= 1− 1

|Π′| .

where the last inequality uses the fact that for any z′ ̸= z, Jrz (πz)− Jrz (πz′) ≥ L⋆
k

√
ξ (cf. Equation (17)). Combining

with Equation (18), rearranging, simplifying and taking the infimum over Qdata completes the proof.

Lemma C.18. Consider any realizable verifier-free learner, satisfying π̂vf
n ∈ Π′. Then,

Pr

(
Jrz (πz)− Jrz (π̂

vf
n) ≥ L⋆

k

√
log(|Π′|)

16n

)
≥ 1

4

Proof. Observe that,

Iχ2(z;D) + 1 = inf
Qdata

∫ [
(pΠ(πz))

2
(∏

τ∈D πz(τ)
)2

pΠ(πz)Qdata(D)

]
dDdπ

(i)

≤
∫ [

pΠ(πz)
(∏

τ∈D πz(τ)
)2∏

τ∈D πe(τ)

]
dDdπ

=

∫ [
pΠ(πz)

(∏
τ∈D πz(τ)

)2∏
τ∈D πe(τ)

]
dDdπ

= Eπ∼pΠ [(1 +Dχ2 (πz∥πe))
n]

(ii)

≤ (1 + 8ξ)n

where in (i) we choose Qdata as the data distribution realized by πe and in (ii), we use the first assertion of Lemma C.14.
Choose ξ = εstat =

log(|Π′|)
16n , we get,

Pr

(
Jrz (πz)− Jrz (π̂

vf
n ) < L⋆

k

√
log(|Π′|)

n

)
≥ 1

4

25



Scaling Test-Time Compute Without Verification or RL is Suboptimal

C.4. Bounding the performance of Algorithm 1

C.4.1. UNDERSTANDING THE ANTI-CONCENTRATION ASSUMPTION

Recall that the anticoncentration assumption controls the probability of the reward r(τ) for τ ∼ πb(·|x) of exceeding its
mean by a margin of

√
ε times its standard deviation. Namely,

cx(ε) =: Prπb(·|x)
(
r(τ) ≥ Eπb(·|x) [r(τ)] + σb,x

√
ε
)
.

The interpretation of cx(ε) is natural, as a prompt-conditional measure of anticoncentration of the rewards r(τ) collected
by the base policy. However, as we discuss in the next lemma, the deviation term Eπb(·|x) [r(τ)] + σb,x

√
ε serves a dual

purpose: it precisely captures the maximum value achievable in a χ2 ball around πb of radius ε.

Lemma C.19 (Characterizing the optimal value within the χ2 ball). For a single prompt x ∈ X , consider the set of policies
Πε,x = {π : Dχ2 (π(·|s)∥πb(·|x)) ≤ ε}. Then,

sup
π∈Πε,x

Eτ∼π(·|x)[r(τ)] ≥ Eπb(·|x)[r(τ)] + σb,x

√
ε. (19)

Furthermore, as long as ε ≤ σ2
b,x

(Jr(πb|x))2 , this inequality is an equality.

Proof. Consider the candidate policy π(τ |x) ∝ (σb,x + θr(τ))πb(·|x) for θ to be chosen later. Mirroring the calculation in
Equation (14) (with πe replaced by πb), we see that,

Dχ2 (π(·|x)∥πb(·|x)) =
θ2σ2

b,x

(σb,x + θJr(πb|x))2

The maximum achievable value of the χ2 divergence by this policy is
σ2
b,x

(Jr(πb|x))2 . Likewise, mirroring the calculation in
Equation (16),

Jr(π|x)− Jr(πb|x) =
θσ2

b,x

σx + θJr(πb|x)
= σb,x

√
Dχ2 (π(·|x)∥πb(·|x)) = σb,x

√
ε

Therefore, with the appropriate choice of θ, this policy is a feasible policy achieving the supremum in the statement. What
remains is to show that the supremum can be no larger. By Lemma C.2, with the choice of Y = r(τ), P as the distribution
over τ induced by π(·|x) and Q the distribution over trajectories induced by πb(·|x). Then,∣∣Eτ∼π(·|x)[r(τ)]− Eτ∼πb(·|x)[r(τ)]

∣∣ ≤√Varτ∼πb(·|x)[r(τ)] ·Dχ2 (π(·|x)∥πb(·|x)) = σb,x

√
ε

This shows that the supremizing value is exactly σb,x
√
ε.

Property C.20 (Regularity). Assume that for each x ∈ X that Jr(πb|x) > 0 and,

εx =: Dχ2 (π̄κ(·|x)∥πb(·|x)) ≤
σ2
b,x

(Jr(πb|x))2
.

where π̄κ is any policy which collects the maximum value, while remaining within Πκ.

Lemma C.21. Suppose πb is c0-anticoncentrated for some problem horizon h0 and assume that Property C.20 holds true
for the base policy at this value of h0. Define a collection of parameters, λ = {λx : x ∈ X} where R ∋ λx ∈ (0, σb

√
2/c0].

Then, there exists a policy πc such that,

1. Almost surely, r(τ) > 0 for τ ∼ πc(·|x) and any x ∈ X .

2. πc is no worse than πe. Namely, Jr(πc) ≥ supπ∈Πκ
Jr(π) ≥ Jr(πe).

3. For every x ∈ X , supτ :Prπb
(τ |x)>0

Prπc (τ |x)
Prπb

(τ |x) ≤ c−1
0

26



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Proof. Fix a prompt x ∈ X . We will construct πc separately for each prompt and later argue about each of these three
assertions. Since πb is c0-anticoncentrated for some problem horizon h0, as long as εx =: Dχ2 (π̄κ(·|x)∥πb(·|x)) ≤

σ2
b,x

(Jr(πb|x))2 , by Lemma C.19, defining T as the set of trajectories {r(τ) ≥ supπ∈Πεx,x
Eτ∼π(·|x)[r(τ)]}. Then,

Pr
τ∼πb(·|x)

(τ ∈ T ) ≥ c0 (20)

Consider the policy πc(·|x) which is the mixture over the trajectories T = {τ : r(τ) ≥ Eτ∼πb(·|x)[r(τ)] + σb,x
√
εx} with

mixture weights wτ ∝ Prπb(·|x)(τ). Since the MDP is autoregressive (i.e., tree-like), πc(·|x) corresponds to a simple policy
(as opposed to a mixture over policies), since two trajectories in T can not visit the same state again after a different action
is played between them, i.e., a breakpoint. This implies that the mixture of these two trajectories is the same as the policies
which agrees with them until the breakpoint and picks one of the trajectories to follow at the breakpoint, proportional to its
weight. The same argument applies when considering a mixture over more than two trajectories. Next, we prove the three
assertions of this lemma.

Assertion 1: Rewards are strictly positive. πc(·|x) is only supported on trajectories which collect rewards which exceed
supπ∈Πεx,x

Eτ∼π(·|x)[r(τ)] ≥ Eτ∼πb(·|x)[r(τ)]. By Property C.20, we have that Eτ∼πb(·|x)[r(τ)] > 0; this implies that the
reward collected by every such trajectory is not only strictly positive, but must be at least 1 (by the bi-level property of the
rewards).

Assertion 2: Value bound. πc(·|x) is supported on trajectories which collect reward at least:

sup
π∈Πεx,x

Eτ∼π(·|x)[r(τ)].

Thus, with probability 1, for any trajectory τ sampled from πc(·|x), r(τ) ≥ supπ∈Πεx,x
Eτ∼π(·|x)[r(τ)]. Taking an

expectation over τ ∼ πc(·|x), we get, Eτ∼πc(·|x)[r(τ)] ≥ supπ∈Πεx,x
Eτ∼π(·|x)[r(τ)]. Further, taking an expectation over

x ∼ ρ,

Eρ,πc
[r(τ)] ≥ Ex∼ρ

[
sup

π∈Πεx,x

Eτ∼π(·|x)[r(τ)]

]
≥ sup

π∈
⋂

x∈X Πεx,x

Eρ,π[r(τ)]

= sup
π∈Πκ

Eρ,π[r(τ)]

where the last equation follows by definition of εx (cf. Property C.20).

Assertion 3: Bounds on coverage. Note that πc(·|x) is the policy
∑

τ∈T wτδτ . In particular, for any trajectory τ in the
support of πc(·|x),

Prπc
(τ |x)

Prπb
(τ |x) =

wτ

Prπb(·|x)(τ)
=

1∑
τ∈T Prπb(·|x)(τ)

(21)

where the last equation follows by definition of wτ . By Equation (20),
∑

τ∈T Prπb(·|x)(τ) ≥ c0. This completes the proof
of the last assertion.

Lemma C.22. Suppose πb is c0-anticoncentrated for some problem horizon h0 and assume that Property C.20 holds true
for the base policy πb at this value of h0. Consider the policy πc introduced in Lemma C.21 at this value h0. For any horizon
H > h0, there exists a policy π̃c which satisfies essentially the same conditions,

1. Almost surely, r(τ) > 0 for τ ∼ π̃c(·|x) for any x ∈ X ,

2. π̃c is no worse than πe when deployed on horizon H . Namely, JH
r (π̃c) ≥ supπ∈ΠH

κ
JH
r (π) ≥ JH

r (πe).

3. supτ :Prπb
(τ |x)>0

Prπc (τ |x)
Prπb

(τ |x) ≤ c−1
0 .

27



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Here, we point out that the in the third assertion (coverage), (a) trajectories τ are of length H , and (b) the variance term
σb(h0) that appears is that of the base policy evaluated on the horizon h0. Everywhere, we take care to superscript Jr and
Πκ to indicate the horizon over which the policies are considered.

Proof. Consider the “extension” of πc, defined till time h0, by πb (which we assume is defined for every t ∈ N). Namely,
consider the policy π̃c which follows πc till time h0 and plays actions according to πb thereon.

The first three assertions follow from the fact that πc is only supported on trajectories with strictly positive reward. By the
bi-level property, each of these trajectories collect 1 unit of reward at every t > h0. Thus, JH

r (π̃c) = Jh0
r (π̃c) + (H − h0),

while supπ∈ΠH
κ
JH
r (π) ≤ sup

π∈Π
h0
κ

JH
r (π) + (H − h0). This follows from the fact that the supremizing policy for the H

horizon problem can be truncated to the first h0 steps to result in a candidate policy in Πh0
κ ; in the process the value of the

policy decreases by at most H − h0. The last assertion follows from the fact that π̃c and πb agree after time h0, so the
worst-case density ratio cannot increase as H increases beyond h0.

C.4.2. ANALYSIS OF ALGORITHM 1: PROOF OF THEOREM 5.7

Below, we provide implementation details of Algorithm 1 and a slightly more formal version of Theorem 5.7. We will
define the confidence set R̂γ below, and choose γ appropriately as any upper bound to EstOff

n (δ) (see Equation (22)). One
such upper bound is provided in Lemma C.25. For the purpose of this section, we will assume that Algorithm 1 carries
out least square estimation with respect to some reward classRvb such that r belongs to this class, and may be a subset or
superset of the set of all bi-level rewards,R.

Theorem C.23 (Formal version of Theorem 5.7). Consider a bi-level reward r, base policy πb that is c0-anticoncentrated at
some horizon h0 ≤ H and assume that Property C.20 is satisfied at h0. Suppose the verifier is used to label the cumulative
reward of every trajectory and results in a dataset of noisy reward annotations, {(xi, τi, yi)}ni=1: assume that the reward
annotations are of the form yi = r(τi) + Zi where the Zi’s are independent and standard normal with trajectory level
variance Var[Zi] ≤ σ2

noise. Then, the policy π̂vb
n returned by Algorithm 1, the suboptimality gap w.r.t. the best expert

π̄κ ∈ Πκ satisfies: with probability ≥ 1− δ,

Jr(π̄κ)− Jr(π̂
vb
n ) <∼

(H + σ2
noise) log(|Rvb|/δ)

nc0
,

With independent O(1)-variance noise at steps of a trajectory, note that σ2
noise ≤ O(H).

Below we instantiate the confidence set R̂γ in Algorithm 1. Recall that we assume that Algorithm 1 carries out least square
estimation with respect to some reward classRvb: with r̂ls as the least squares estimator,

r̂ls ← inf
r′∈Rvb

1

n

n∑
i=1

(r′(τi)− yi)
2

R̃γ =

{
r′ ∈ Rvb

∣∣∣∣∣ 1n
n∑

i=1

(r′(τi)− r̂ls(τi))
2 ≤ γ

}
R̂γ =

{
{round(r′(·))} : r′ ∈ R̃γ

}
Where round(r(·)) is the “rounding” of the reward r, for every τ , r(τ) is rounded to the nearest integer, breaking ties
arbitrarily. We define the offline estimation error of the least-squares estimator below. Define Eδ as the event,

1

n

n∑
i=1

(r̂ls(τi)− r(τi))
2 ≤ EstOff

n (δ) (22)

And suppose Pr(Eδ) ≥ 1− δ where the probability is computed over the randomness of the training dataset {(xi, τi)}ni=1.

The analysis of the verifier-based learner in Algorithm 1 follows the standard analysis of pessimism-based algorithms. For

28



Scaling Test-Time Compute Without Verification or RL is Suboptimal

an arbitrary comparator policy πc,

Jr(πc)− Jr(π̂
vb
n ) ≤ Jr(πc)− min

r̂∈R̂γ

Jr̂(π̂
vb
n )

≤ Jr(πc)− min
r̂∈R̂γ

Jr̂(πc)

≤ sup
r̂∈R̂γ

Eρ,πc [|r(τ)− r̂(τ)|] (23)

With the choice of the comparator policy πc = π̃c, as defined in Lemma C.22,

sup
π∈Πκ

Jr(π)− Jr(π̂
vb
n ) ≤ sup

r̂∈R̂γ

c−1
0 Eρ,πb

[|r(τ)− r̂(τ)|] .

where note that the base policy is assumed to be c0-anticoncentrated for the horizon h0. The performance of the algorithm
thus relies on establishing a generalization bound for the reward estimation problem, which is proved below in Theorem C.24.
In conjunction, this results in the upper bound: with probability 1− δ,

sup
π∈Πκ

Jr(π)− Jr(π̂
vb
n ) ≤ O

(
(H + σ2

noise) · log(|Rvb|/δ)

c0n

)
Theorem C.24. Recall that the reward annotations are of the form yi = r(τi) + Zi where the noise Zi is assumed to be
independent and standard normal with trajectory level variance σ2

noise. Consider any δ ∈ (0, 1). Then, with probability
1− δ, simultaneously for all r′ ∈ R̂γ ,

Eρ,πb
[|r(τ)− r′(τ)|] ≤ O

(
(H + σ2

noise) · log(|Rvb|/δ)

n

)
Note that with independent noise at each step, σ2

noise ≤ O(H).

Proof. This result is a direct combination of Lemmas C.25 and C.27.

Lemma C.25 (Lemma C.1 in (Foster et al., 2024b)). It suffices to choose,

EstOff
n (δ) =

8σ2
noise log(|Rvb|/δ)

n
(24)

to guarantee that Pr(Eδ) ≥ 1− δ.

Lemma C.26. With the choice γ = EstOff
n (δ), under the event Eδ , r ∈ R̂γ . Under the same event, for every reward r′′ ∈ R̂γ ,

1

n

n∑
i=1

|r′′(τi)− r(τi)| ≤ 16 · EstOff
n (δ)

Proof. The first assertion follows by definition of R̃γ and Equation (22), and the fact that r is a bi-level reward, so it is
unperturbed by the round(·) operation. For the second assertion: under Eδ , for any reward r′ ∈ R̃γ ,

1

n

n∑
i=1

(r′(τi)− r(τi))
2 ≤ 2

n

n∑
i=1

(r′(τi)− r̂ls(τi))
2 + (r(τi)− r̂ls(τi)))

2 ≤ 4EstOff
n (δ) (25)

Consider the r′′ = round(r′) ∈ R̂γ , for this choice of reward, observe that r′′(τ) − r(τ) ∈ Z, since both rewards only
take integer values. Furthermore, (a) if |r′(τ) − r(τ)| < 1/2, then we know that r′′(τ) − r(τ) = 0 surely, and (b) if

29



Scaling Test-Time Compute Without Verification or RL is Suboptimal

|r′(τ)− r(τ)| ≥ 1/2, then |r′′(τ)− r(τ)| ≤ 2|r′(τ)− r(τ)|. This implies,

1

n

n∑
i=1

|r′′(τi)− r(τi)| =
1

n

n∑
i=1

|r′′(τi)− r(τi)| · I(|r′(τ)− r(τ)| > 1/2)

≤ 2

n

n∑
i=1

|r′(τi)− r(τi)| · I(|r′(τ)− r(τ)| > 1/2)

≤ 4

n

n∑
i=1

|r′(τi)− r(τi)|2 · I(|r′(τ)− r(τ)| > 1/2)

≤ 16 · EstOff
n (δ)

where the last inequality follows from Equation (25).

C.4.3. PROOF OF PROPOSITION 5.5

Lemma C.27 (Generalization bound for learning in L1-error). With probability 1− 2δ, simultaneously for all r′ ∈ R̂γ ,

Eρ,πb
[|r(τ)− r′(τ)|] ≤ O

(
H · log(|Rvb|/δ)

n
+ EstOff

n (δ)

)
Proof. For any fixed reward r′ ∈ Rvb, by Bernstein concentration, with probability ≥ 1− δ,

Eρ,πb
[|r(τ)− r′(τ)|]− 1

n

n∑
i=1

[|r(τi)− r′(τi)|] ≤
√

Varρ,πb
[|r(τ)− r′(τ)|] · log(1/δ)

n

≤
√

Eρ,πb
[(r(τ)− r′(τ))2] · log(1/δ)

n

≤
√

H · Eρ,πb
[|r(τ)− r′(τ)|] · log(1/δ)

n

Union bounding over rewards inRvb, and choosing an arbitrary r′ ∈ R̂γ , by Lemma C.26, with probability ≥ 1− 2δ,

Eρ,πb
[|r(τ)− r′(τ)|] ≤ 16 · EstOff

n (δ) +

√
H · Eρ,πb

[|r(τ)− r′(τ)|] · log(|Rvb|/δ)

n

Solving the quadratic equation results in the upper bound: with probability ≥ 1− 2δ,

∀r′ ∈ R̂γ , Eρ,πb
[|r(τ)− r′(τ)|] ≤ O

(
H · log(|Rvb|/δ)

n
+ EstOff

n (δ)

)

C.5. Weakening the notion of anti-concentration

The notion of anti-concentration we consider can be weakened to accommodate “average-case” notions of anti-concentration
at the cost of a slightly weaker dependency of the reward gap, as a function of n. In particular, using Hölder’s inequality we
may show that,

sup
π∈Πκ

Jr(π)− Jr(π̂
vb
n ) ≤ Ex[1/c

p
x]

1/p H

n1−1/p
, p ≥ 2. (26)

This change is purely analytical, and does not require any modification to the algorithm. In comparison, our current result
shows the bound:

sup
π∈Πκ

Jr(π)− Jr(π̂
vb
n ) ≤ ∥1/cx∥∞

H

n
, (27)

30



Scaling Test-Time Compute Without Verification or RL is Suboptimal

which corresponds to letting p → ∞ in Equation (26). The result in Equation (26) has an improved dependency on the
individual anti-concentration parameters, cx, and no longer depends on the smallest value, but this comes at the cost of
worse dependency on n. In particular, with p = 3, we get a bound of the form:

sup
π∈Πκ

Jr(π)− Jr(π̂
vb
n ) ≤ Ex[1/c

3
x]

1/3 H

n2/3
. (28)

For any constant p strictly greater than 2, say 2 + ε the verifier based bound decays as H/n1/2+ε, which is strictly faster
than the H/

√
n rate exhibited by SFT. In particular, this results in the same conclusion as Theorem 5.8 in the current paper:

the advantage now, is that the bound depends on a weaker notion of anti-concentration than the worst case bound considered
in the paper.

C.6. Proof of Theorem 5.8

The proof of this result follows directly from the instance lower bound in Theorem 5.4 and suboptimality upper bound result
in Theorem 5.7. When, σ̃b = Ω(H), the lower bound on the suboptimality gap of any VF method scales as H log(|Π|)/n, with
respect to any expert in a O(1)-χ2 ball around the base policy πb, where as if πb is c0 anti-concentrated, then there exists an
algorithm that yields an upper bound on the suboptimality gap of H log |R|/n, with constant probability. Thus, in compliance
with the definition of scaling test-time compute in Definition 4.2, as we scale n = Ω(H), we get the result in Theorem 5.1.

As an example of such a πb, consider a single prompt, and a base policy that gets a reward of 1 with probability > 3
5 on any

trajectory rolled out till horizon H = H0, and that this mass remains constant as we scale H →∞, i.e., the fraction of in
correct trajectories (in the set SH0

) remain incorrect no matter how much we rollout πb. For this distribution, it is easy to see
that σ̃b = Ω(H), but is 0.5-anti-concentrated.

C.7. Analyzing Verifier Accuracy Under 0/1 Loss

Consider the following modified version of Algorithm 1.

Algorithm 2 Simple Verifier-Based Algorithm with ℓ0/1 loss

Require: Base policy πb, dataset {(xi, τi)}ni=1 of prompts xi ∼ ρ and traces τi ∼ πb(· | x).
1: For every τi annotate (xi, τi) with bi-level reward r(τi).
2: Learn set of classifiers R̂γ ⊂ R that are γ-optimal, i.e.,

R̂γ =:

{
r′ ∈ R

∣∣∣∣ 1n∑n

i=1
ℓ0/1(r

′(τi), r(τi)) ≤ γ

}
3: Return any optimal pessimistic verifier-based policy,

π̂vb
n ∈ argmax

π∈Π
min
r∈R̂γ

Jr(π̂).

Proposition C.28 (Verifier accuracy). For any bi-level reward r, base policy πb, there exists an algorithm querying the at
most reward annotator n times to learn r̂ ∈ R, s.t. w.p. 1− δ,

Eρ,πb
[ℓ0/1(r(τ), r̂(τ))] = Õn

(
log(|R|/δ) logH

n

)
=: γstat.

In Algorithm 1, setting γ = γstat =⇒ r ∈ R̂γ w.p. ≥ 1− δ.

Definition C.29 (Graph dimension). Let H be a hypothesis class on an input space X and label space Y . Let S ⊆ X .
The class H is said to G-shatter S if there exists an f : S → Y such that for every T ⊆ S, there is a g ∈ H such that
∀x ∈ T, g(x) = f(x), and ∀x ∈ S \ T , g(x) ̸= f(x). The graph dimension of H, denoted dG(H), is the maximal
cardinality of a set that is G-shattered byH.

Theorem C.30 (Sample complexity of multiclass classification (Daniely et al., 2011)). There exists an absolute constant

31



Scaling Test-Time Compute Without Verification or RL is Suboptimal

C > 0 such that for every hypothesis classH, given aH-realizable i.i.d. dataset D of size n ≥ n(ε), where,

n(ε) = C

(
dG(H) log(1/ε) + log(1/δ)

ε

)
, (29)

empirical risk minimization on D with the hypothesis classH incurs 0-1 loss of at most ε with probability at least 1− δ.

Lemma C.31 (Upper bound on the graph dimension). For any hypothesis classH, dG(H) ≤ log2(|H|).

Proof. For a set S ⊆ X to be G-shattered by H if there exists a function f such that for any subset T ⊆ S there exists
an discriminator gT ∈ H that agrees with f on T and disagrees with it on S \ T . Across different choices of the subset
T ⊆ S, the discriminating gT cannot be the same: indeed for T1 ̸= T2 ⊆ S, gT1 and gT2 must disagree on points in
(T1 \ T2) ∪ (T2 \ T1), the symmetric difference of the two subsets. This is simply because on points in T1 \ T2, gT1 agrees
with f and gT2

disagrees with f , while on points in T2 \ T1, gT2
agrees with f and gT1

disagrees with f . Since the map
T → gT is injective, and there are 2|S| choices of T , this means that S can only be G-shattered if |H| ≥ 2|S|.

Theorem C.32. Given a dataset of n(ε) trajectories from πb, there exists an algorithm which calls the verifier n(ε)⌈log2(H)⌉
times and learns a reward model such that,

Eρ,πb
[I(r(τ) ̸= r̂(τ))] ≤ ε. (30)

Proof. Recall that R is assumed to be a bi-level reward class. For each r ∈ R, consider the multiclass classifier fr :
(S × A)H → [H + 1] which maps a trajectory τ = {(s1, a1), · · · , (sH , aH)} to the value of h ∈ [H] such that h is the
first point in the trajectory where r(sh, ah) = 1, i.e., the location of the bi-level in the trajectory. If the reward stays 0
entirely through the trajectory, then fr(τ) = H + 1. First, we relate the 0-1 error of a reward estimator r̂ to the multiclass
classification error of fr, assuming the labels come from fr. Observe that,

Eρ,πb
[I(r(τ) ̸= r̂(τ))] ≤ Eρ,πb

[I(fr(τ) ̸= fr̂(τ))] . (31)

This follows from the fact that, if r(τ) ̸= r̂(τ), then the bi-level in this trajectory τ is identified incorrectly, implying that
fr(τ) ̸= fr̂(τ). Recall that the expert dataset is composed of n = n(ε) trajectories D = {(xi, τi)}ni=1 for some ε > 0 (see
Equation (29) for the definition of n(ε)). Using the verifier to annotate rewards, by a binary searching, the location of the
bi-level in any of these n trajectories may be located: thus with n⌈log2(H)⌉ calls to the verifier, a dataset of n examples
may be constructed of the form {(τi, fr(τ))}ni=1 for the ground truth reward r. By carrying out empirical risk minimization
over the hypothesis class F = {fr : r ∈ R} to learn a hypothesis f̂ , and invoking Theorem C.30, with probability ≥ 1− δ,

Eρ,πb

[
I(fr(τ) ̸= f̂(τ))

]
≤ ε. (32)

C.8. Proof of Theorem 5.4 for the single problem instance

This result follows using a similar approach as the instance-dependent lower bound against behavior cloning proved in
(Foster et al., 2024a). For the case, where we have a single prompt x, we use the following lemma to argue that given an
expert policy πe, we can always construct another policy π̃e, and a pair of rewards {r, r̃} that satisfy certain properties,
while ensuring that each policy observes a variance of σ2 in the range (0, H2/4] for either of the rewards.

Next, we consider the following inequality, which holds for any ∆ > 0:

min
Alg

max
π∈{πe,π̃e}

max
r∈{r,r̃}

P [Jr(π)− Jr(π̂) ≥ ∆] ≥ min
Alg

max
π∈{πe,π̃e}

P [|Jr(π)− Jr(π̂)| ≥ ∆] .

Here, Jr(π) denotes the expected reward under the reward function r, and for convenience, we abbreviate J(π) ≡ Jr(π)
going forward. Let Pπ

n represent the probability distribution of the offline imitation learning dataset when the data is collected
under policy π. By choosing ∆ = |J(πe)−J(π̃e)|

2 , and applying the standard Le Cam two-point argument, we can conclude
that:

32



Scaling Test-Time Compute Without Verification or RL is Suboptimal

max
{
Pπe
n [|J(πe)− J(π̂)| ≥ ∆] ,Pπ̃e

n [|J(π̃e)− J(π̂)| ≥ ∆]
}

is bounded below by:

1

2

(
1− Pπe

n [|J(πe)− J(π̂)| < ∆] + Pπ̃e
n [|J(π̃e)− J(π̂)| ≥ ∆]

)
.

This, in turn, is further bounded below by:

1

2

(
1− Pπe

n [|J(π̃e)− J(π̂)| ≥ ∆] + Pπ̃e
n [|J(π̃e)− J(π̂)| ≥ ∆]

)
,

and by a standard application of the data processing inequality for the total variation distance, we have:

1

2

(
1−DTV

(
Pπe
n ,Pπ̃e

n

))
.

Utilizing the tensorization property of the Hellinger distance (Wainwright, 2019), we further lower bound this by:

1

2

(
1−

√
n ·DH (Pπe ,Pπ̃e)

)
.

Next, we proceed to show the following key inequality:

ωπe(ε) := sup
π

{
|J(π)− J(πe)|

∣∣DH (Pπe ,Pπ) ≤ ε2
}
≥ Ω(1) ·

√
σ2
πe
· ε2,

for any ε > 0 sufficiently small. The final result follows by setting ε2 ∝ 1
n , and defining:

π̃e = argmax
π

{
|J(π)− J(πe)|

∣∣DH (Pπe ,Pπ) ≤ ε2
}
.

To prove this, we invoke the following technical lemma:

Lemma C.33 (Lemma G.1 in Foster et al. (2024a)). For any distribution Q and any function h satisfying |h| ≤ R almost
surely, it holds that for all 0 ≤ ε2 ≤ VarQ[h]

4R2 , there exists a distribution P such that:

1. EP[h]− EQ[h] ≥ 2−3
√

VarQ[h] · ε2,

2. DKL(Q∥P) ≤ ε2.

In the case of stochastic policies π in the autoregressive Markov Decision Process M∗, these policies are equivalent
to defining arbitrary joint distributions over the sequence (a1, . . . , aH) using Bayes’ rule. Consequently, since J(π) =

Eπ
[∑H

h=1 rh

]
, Lemma C.33 ensures that for any ε2 ≤ Varπe [

∑H
h=1 rh]

4R2 , there exists a policy π̃e such that:

DH
(
Pπe ,Pπ̃e

)
≤ DKL

(
Pπe ,Pπ̃e

)
≤ ε2,

and:

J(π̃e)− J(πe) ≥ 2−3

√√√√Varπe

[
H∑

h=1

rh

]
· ε2.

33



Scaling Test-Time Compute Without Verification or RL is Suboptimal

This establishes the desired inequality. Setting ε2 = c
n for some constant c > 0, we achieve√

n ·DH (Pπe ,Pπ̃e) ≤ 1

2
,

which is valid provided that n ≥ c′ · R2

σ2
πe

.

D. Additional Experiments in the Didactic Setup
Details on the setup. We generalize the planted subsequence problem from (Setlur et al., 2024b). The input prompt is
a sequence of length 5 with the tokens chosen randomly from the set {1, 2, 3, . . . , 10}. We fix the unknown function to
be g(x) = 2x+ 5. We fix the vocabulary for the policy we are training to be the set V =: {0, . . . , 30}. Here 0 is treated
as the padding token. Concretely, for an input problem x = (x1,.., x5), we say that a response y with H tokens from
the vocabulary V is a correct trace if there exists a gold contiguous subsequence (g(x1),..,g(x5)) planted in y. Here, the
underlying mapping g :[10]7→[30] is fixed but unknown. For a state s =: (x, a1,.., ah), the bi-level reward r(s) = 1 if and
only if there exists some h′ ≤ h such that the last 5 tokens before h′ i.e., (ah′−4,..,ah′) match the gold subsequence. In
order to use the same performance scale to compare methods trained for different horizon H values (test-time compute
budget), we Jr(π) and divide it by the maximum reward of H − 4.

We wish to construct base policies πb that: (i) differ in heterogeneity, and (ii) satisfy the anti-concentration condition. To do
so, we finetune GPT2-xl (Radford et al., 2019) on samples obtained from a mixture of hand-designed “procedural” policies.
Inspired from Setlur et al. (2024b), a procedural policy µγ(y

⋆
k+1|s)∝ γ, when the last k tokens in the state s, match the first

k tokens in the gold subsequence y⋆. Thus, the normalized return for µγ→1, as γ→∞. We vary the heterogeneity of πb by
finetuning GPT2-xl on data from a mixture of procedural policies with γ ∈ {5, 10, 20, 50, 100, 500}. Once the last 5 tokens
match the gold sequence, the procedural policy puts mass ∝ γ on the padding token 0. See Figure 9 for an illustration of
data sampled from different procedural policies.

For any compute budget H (token length), we train separate SFT and RL policies, where SFT is run on traces that are H
tokens long. We also run RL on the same token budget, against a trained verifier. The verifier is trained on samples from
the base policy. For this, we train a GPT2-xl transformer as a multiclass classifier, that takes in an H length sequence and
outputs a single value in 0 to H (i.e., it is an H + 1-way classifier).

Experiment details. For the RL runs, we use REINFORCE (Ahmadian et al., 2024) train for 20k iterations in both with
a batch size of 64, and a constant learning rate of 1e− 4, with the Adam optimizer. The RL runs are initialized with the
base policy, and to prevent reward hacking we also use a KL penalty (with weight 0.2), in addition to the REINFORCE
training objective. For every trace in a batch, we query the trained verifier, which outputs a value between 0 and H , which
directly tells us where the “staircase” appears in the bi-level reward. For example, a value of 2 implies that the staircase
appears on the second last token. We convert this outcome supervision into token-level 0/1 rewards and update the policy
with the computed policy gradient. For SFT, we also use the Adam optimizer with a learning rate of 2e− 4, and a batch
size of 64. Similar to RL, we apply a KL regularization term in addition to the next token prediction loss (ignoring the
padding token 0), where the strength of the KL term is the same as RL. SFT runs are also initialized with the base policy.
Using the same hyperparameters, we obtain the base policy by running SFT on 200k data points sampled i.i.d. from the
uniform mixture over procedural policies outlined above. To collect training data for the verifier, we draw a random sample
of n/logH prompts in Dtr, and then make log(H) calls on each of them to binary search for the token where the correct
answer first appeared. This way, we only query reward annotator n times. Finally, for our experiments, where we vary base
and expert policy heterogeneity, we simply change γ (reducing variance over it), in a way that the average performance of
the base/expert policy remains roughtly the same.

Accuracy of trained verifier. In Figure 10(left), we plot the accuracy of the verifier (black line), as we scale the horizon. We
fix the data budget to n = 214 here. Since, here budget implies a multi-class classification over more classes, the problem
hardness increases for the verifier, which explains the performance drop. Initially, we do see an improvement with H , since
the coverage over high reward trajectories improves with H , as we sample the base policy for longer. We also plot the upper
bound on RL performance, where we train the RL policy with ground-truth staircase rewards. Looking at its performance,
it is clear that across all horizons, RL with trained verifier mainly suffers from the inaccuracy of the trained verifier (i.e.,
reward hacking issues). In Figure 10(right), we plot the accuracy of the learned verifier on two distributions (base policy),
and the policy learned by RL. As we reduce base policy heterogeneity, it is easier to generalize on the base policy, but the
verifier is inaccurate outside the narrow distribution of the base policy, making it more susceptible to reward hacking. As a

34



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Unknown mapping: 𝑔 𝑥 = 2𝑥 + 5

Procedural policy 
𝛾 = 1000

Input 
(Context)

1, 2, 5, 3, 8

Procedural policy 
𝛾 = 10

7, 9, 3, 7, 25, 7, 9, 15, 14, 20 7, 9, 15, 11, 21, 0, 0, 0, 0, 0
Reward: 0, Normalized: 0 Reward: 6, Normalized: 1

3, 1, 7, 2, 6 11, 7, 3, 11, 7, 19, 9, 17, 2, 5 11, 7, 19, 9, 17, 0, 0, 0, 0, 0
Reward: 3, Normalized: 0.5 Reward: 6, Normalized: 1

Gold subsequence

Figure 9: Procedural policies for the generalized planted subsequence problem: For two values of γ: 10, and 1000, we
show examples of two draws, over H = 10 tokens from each. Here, the unknown mapping is g(x) = 2x+ 5. When γ is
1000, the policy (over the first 5 tokens) is almost like a dirac delta distribution on the gold subsequence, followed by which
it samples the padding tokens. On the other hand, when γ = 10, it makes multiple attempts and completing the sequence.
Once it fails, it makes a new attempt. In the second sample, we see that after a few tokens it gets the correct sequence,
achieving a total bi-level reward of 3, and normalizing it with H − 4, we get a normalized reward of 0.5.

23 24 25 26 27 28 29

Horizon H (compute at test-time)

0.45

0.55

0.65

0.75

0.85

0.95

T
es

t-
ti

m
e

effi
ci

en
cy

π̂vb
n (RL) πvb

? (RL w/ GT)

0.45

0.55

0.65

0.75

0.85

0.95

A
cc

ur
ac

y

103 102 101 100

Base policy heterogeneity σb

0.60

0.70

0.80

0.90

A
cc

ur
ac

y

Accuracy on learned policy π̂vb
n

Accuracy on base policy πb

Figure 10: Accuracy of trained verifier: (Left) we plot the accuracy of the verifier (black line), as we scale the horizon
(black line). We also plot the performance of RL with ground-truth (GT) bi-level rewards, and compare it with RL using the
trained verifier. (Right) As we vary base policy heterogeneity we plot the accuracy of the verifier on two distributions: (i) on
base policy πb, (ii) on policy learned by running RL π̂vb

n .

result, we observe poor accuracy on the learned policy’s distribution.

E. Additional Experiments on MATH
Experiment details. We run all our training on the questions in the training set of MATH (Hendrycks et al., 2021), and run
our test on the MATH500 evaluation benchmark. Any problem instance is determined by the data budget n and compute
budget H . For a fixed compute budget H , we run SFT on trajectories of search traces. A single search trace consists of
multiple turns of responses. Each response is at most 512 tokens long. A trace can thus comprise of anywhere between
1 to H/512 turns (sometimes more for shorter responses). Here, all turns except the last one are responses that result in
incorrect final answers for the problem. This is exactly the recipe followed by Qu et al. (2024) and Snell et al. (2024), for
learning to self-correct, revise responses, or more generally use sequential compute at test-time. See below for examples
of search traces of SFT. For training the verifier, we simply use samples from the base LLM, and use 0/1 rewards to train
a model of the same size as the policy with cross-entropy loss. We use a batchsize of 32 and learning rate of 1e − 6 for
all our experiments. We run SFT and verifier training for 10000 iterations on each instance. We use a weight decay of
0.01 for training both. At test-time, we measure the performance of SFT using majority voting over sequential revisions,
following Snell et al. (2024). We sample rollouts with temperature 1.0.

Verifier accuracy. In Figure 11 we plot the test accuracy of the trained verifier as we scale data. Interestingly, we find that
the bigger model always generalizes better, and models of both sizes improve performance at the same rate, as we scale the
data budget n.

35



Scaling Test-Time Compute Without Verification or RL is Suboptimal

212 213 214 215 216

data budget (n)

0.75

0.79

0.83

0.87

0.91

A
cc

ur
ac

y

Verifier accuracy

8B

3B

Figure 11: Accuracy of verifier: We plot the accuracy of verifier as we scale data, for Llama3-3b and 8b sized models. We
find that the larger model generalizes better across all data budgets.

Search trace with sequential revisions for SFT (example with 3 episodes)

Query: A rectangle’s length is five more than twice its width. If its perimeter is 58 cm, what is its width?
Turn-1 Response: Step 1: Let’s assume the width of the rectangle as x. Step 2: According to the given information, the
length is five more than twice the width. So, the length can be expressed as 2x+ 5. Step 3: The perimeter of a rectangle
is given by the formula:

Perimeter = 2(Length + Width)

Step 4: Substituting the given perimeter of 58 cm and our expressions for length and width:

2(x+ 2x+ 5) = 58

x =
53

6

Answer:
53

6
INCORRECT

Turn-2 Response (Subtle Error Introduced): Step 1: The width is x and the length is 2x + 5. Step 2: Using the
perimeter formula:

2(x+ 2x+ 5) = 58

6x+ 5 = 58

x = 7

Answer: 7 INCORRECT
Turn-3 Response: Let’s solve the problem step by step: Step 1: Let’s denote the width of the rectangle as x. Step 2:
The length is five more than twice the width, so it can be expressed as 2x + 5. Step 3: The perimeter formula for a
rectangle is:

Perimeter = 2(Length + Width)

Step 4: Substituting the given perimeter of 58 cm:

2(x+ 2x+ 5) = 58

x = 8

Answer: 8 INCORRECT

36



Scaling Test-Time Compute Without Verification or RL is Suboptimal

Search trace with sequential revisions for SFT (example with 2 episodes)

Query: A farmer has three times as many chickens as cows on his farm. If he has 15 cows, how many chickens does he
have?
Turn-1 Response: Step 1: Let’s assume the number of cows as x. Step 2: According to the given information, the
farmer has three times as many chickens as cows. So, the number of chickens can be expressed as 3x. Step 3: We are
given that there are 15 cows, so let’s substitute x = 15 into the equation:

3x = 3(15) = 30

Answer: 30 INCORRECT
Turn-3 Response: Let’s solve the problem step by step: Step 1: Let’s denote the number of cows as x. Step 2: We are
given that the farmer has three times as many chickens as cows. So, the number of chickens can be expressed as 3x.
Step 3: We are also given that there are 15 cows, so we can substitute x = 15 into the expression for the number of
chickens:

3× 15 = 45

Answer: 45 CORRECT

37


