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Abstract

We show that differentially private full fine-tuning (DP-FFT) can distort pre-1

trained backbone features based on both theoretical and empirical results. We2

identify the cause of the distortion as the misalignment between the pre-trained3

backbone and the randomly initialized linear head. We prove that a sequential4

fine-tuning strategy can mitigate the feature distortion: first-linear-probing-then-5

fine-tuning (DP-LP-FFT). A new approximation scheme allows us to derive ap-6

proximate upper and lower bounds on the training loss of DP-LP and DP-FFT,7

in a simple but canonical setting of 2-layer neural networks with ReLU activa-8

tion. Experiments on real-world datasets and architectures are consistent with our9

theoretical insights. Moreover, our theory suggests a trade-off of privacy budget10

allocation in multi-phase fine-tuning methods like DP-LP-FFT.11

1 Introduction12

Today, many differentially-private (DP) machine learning pipelines proceed in two phases: (1) A13

model is pre-trained (non-privately) on a public dataset. (2) The model is then fine-tuned on private14

data, using DP optimization techniques such as DP stochastic gradient descent (DP-SGD) and its15

variants (Hoory et al., 2021; De et al., 2022; Tang et al., 2023; Zhang et al., 2024b). Pre-training a16

backbone model on public data enables differentially private fine-tuning to achieve improved per-17

formance across various downstream tasks (Yu et al., 2022) and is proven to be necessary in some18

cases (Ganesh et al., 2023a).19

Despite these advances, the effect of DP on fine-tuning training dynamics remains poorly under-20

stood. Several key questions are yet to be answered: (1) how does randomness (both of initialization21

and DP optimization) impact the pre-trained representations? (2) What are the convergence rates of22

common fine-tuning methods, such as DP full fine-tuning (DP-FFT) and DP linear probing (DP-LP,23

where feature representations are frozen, and only the linear head is fine-tuned)? (3) Prior work24

suggests that combining an early stage of DP-LP with a later stage of DP-FFT yields better privacy-25

utility tradeoffs (Tang et al., 2023), yet there is no theoretical understanding of this phenomenon,26

nor is it clear how to optimally combine these fine-tuning methods.27

Answering these questions theoretically requires an analysis that can capture the fine-grained opti-28

mization dynamics of DP fine-tuning. We seek a model of DP finetuning that satisfies 2 properties.29

(1) Architecture-sensitivity: The convergence dynamics must differentiate between representation30

learning in the backbone and learning in the linear head. The analyses of Bassily et al. (2014),Wang31

et al. (2022),Fang et al. (2023),Ganesh et al. (2023b) focus only on the network’s dimension, failing32

to capture this distinction. (2) Ability to model nonlinearities: The model should account for the33

nonlinearities introduced by multi neural layers, unlike existing methods that simplify analysis by34

linearizing neural networks (Ye et al., 2023a; Wang et al., 2024). We propose a novel approximation35

of DP-SGD training dynamics based on linearizing Langevin diffusion around the noise term. This36
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Figure 1: Left: Backbone feature quality evaluated by top-1 kNN accuracy on the downstream task,
for ResNet-50, through public pre-training on ImageNet-1K and differentially private fine-tuning on
STL-10. Right: Privacy budget trade-off in DP-LP-FFT, predicted in our theory, for WideResNet-
16-4 on CIFAR-10 (Tang et al., 2023).

approach offers new insights into DP fine-tuning and significantly simplifies analysis by convert-37

ing stochastic differential equations into ordinary differential equations (ODEs). We validate our38

theoretical predictions with real experiments.39

Main contributions. To summarize, we make four contributions:40

1. New approximation technique: In Section 2, we derive a first-order ODE via an asymptotic41

expansion of the stochastic noise in Langevin diffusion. Unlike previous methods, which lin-42

earize neural network parameters, our technique preserves the multi-layer structure of deep43

learning models while simplifying the analysis. This approach, commonly used in physics and44

control theory (Skorokhod et al., 2002), is novel in the context of private machine learning and45

bridges the gap between non-private neural network theory and the private regime.46

2. Understanding of feature distortion: In Section 3, we provide a theoretical understanding47

of how DP fine-tuning affects feature representations. Using our approximation, we prove48

that, in 2-layer ReLU networks, randomly initialized linear heads distort pre-trained backbone49

features in the early stages of DP-FFT. Empirically Figure 1 demonstrates that feature quality50

evaluated on private data initially degrades during DP-FFT but later improves and surpasses51

pre-fine-tuning quality. Our theory also predicts that running a single epoch of DP-LP before52

transitioning to DP-FFT can mitigate this initial feature distortion, as shown empirically in53

the DP-LP-FFT curve of Figure 1 (left). This insight extends the findings of Kumar et al.54

(2022), who showed that LP-FFT reduces feature distortion in non-private, OOD scenarios, to55

in-distribution settings for both DP and non-DP cases.56

3. Theoretical convergence bounds: In Section 4, we prove new upper and lower bounds on57

the training loss of DP-LP and DP-FFT, for 2-layer ReLU networks, using our approximation58

technique. To our knowledge, this is the first convergence analysis for DP-SGD on a non-linear59

neural network architecture.60

4. Mitigating feature distortion by combining fine-tuning methods: Prior work by Tang et al.61

(2023) empirically showed that combining DP-LP and DP-FFT (DP-LP-FFT) can achieve bet-62

ter test accuracy than either method alone. In Figure 1b, we demonstrate that allocating ap-63

proximately 20% of the privacy budget to DP-LP yields optimal test accuracy. In Section 5, we64

provide a partial theoretical explanation for this phenomenon. Specifically, our bounds suggest65

that DP-FFT may underperform relative to DP-LP at lower privacy budgets, while DP-LP-FFT66

can outperform both methods under moderate privacy budgets. These predictions are empiri-67

cally verified across various architectures and benchmarks in Section 5.2.68

1.1 Related Work69

Similar empirical phenomena have been explored in non-private, out-of-distribution (OOD) contexts70

by Aghajanyan et al. (2021), Kumar et al. (2022), Trivedi et al. (2023), and Chen et al. (2024).71

Kumar et al. (2022) demonstrated that non-DP fine-tuning distorts pre-trained features and degrades72

OOD performance. Their theory, however, relies on the assumption that OOD test data exists in an73

orthogonal subspace to the fine-tuning training data, leaving their results unable to explain why, in74

many transfer learning tasks, linear-probe fine-tuning (LP-FFT) still outperforms both LP and full75

fine-tuning (FFT) in in-distribution (ID) settings. Our work aims to fill this research gap.76

Wang et al. (2024) examined how pre-trained representations enhance DP fine-tuning through the77

neural collapse framework, though their focus was restricted to the final layer. Meanwhile, Tang78

et al. (2023) empirically observed the privacy budget trade-off for WideResNet models pre-trained79

on synthetic data, but without accompanying theoretical insights.80
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Analyses by Wang et al. (2019), Chen et al. (2020a), Ganesh et al. (2023b), and Fang et al. (2023)81

rely on standard convexity/non-convexity and smoothness assumptions, which abstract away the82

simultaneous dynamics between the backbone and linear head. Other works (Ye et al., 2023b; Wang83

et al., 2024) focus on linearized models, limiting their ability to capture the nuanced interactions84

between these components. Our explanation of representation alignment builds on the theoretical85

foundation laid by Min et al. (2024), which we extend to a DP context using new approximation86

tools.87

2 Continuous modeling of differentially private fine-tuning88

Notation. We denote both the deterministic and stochastic differential operators as ∂, the dot prod-89

uct between vectors x, y as x⊤y, the Euclidean norm of vector x as ∥x∥2, the infinity norm as ∥x∥∞,90

the trace operator of a matrix as tr, and the ReLU activation as ϕ. For any twice differentiable func-91

tion f(x), we write its gradient as ∇xf and its Hessian as Hxf . ⊔ denotes the disjoint union.92

[i] := {1, . . . , i}. We define the cosine similarity between two vectors u, v by cos(u, v) = u⊤v
∥u∥2∥v∥2

.93

We denote r as the privacy cost estimated by Rényi divergence (Mironov, 2017).94

DP-SGD Dynamics. Differential privacy (DP) is a widely-used method to evaluate privacy leak-95

age in a database accessed through queries (Dwork & Roth, 2014). In machine learning, DP ensures96

that an adversary cannot confidently ascertain whether a specific training sample (or set of training97

samples) was in the training dataset. Differentially Private Stochastic Gradient Descent (DP-SGD),98

introduced by Abadi et al. (2016), is the standard algorithm for optimizing deep neural networks99

while maintaining privacy guarantees.100

Our fine-tuning theory is based on an analysis of DP-SGD dynamics. To study the dynamics, con-101

tinuous approximations such as stochastic differential equations (e.g., Langevin diffusion) are fre-102

quently employed, though they differ from the discrete nature of real algorithms (Chourasia et al.,103

2021; Ye et al., 2023b). In a similar vein, Kumar et al. (2022) use gradient flow, a continuous104

approximation of SGD, to investigate fine-tuning dynamics in a non-private setting.105

Definition 2.1 (Langevin diffusion (Ganesh et al., 2023b)). A Langevin diffusion is a stochastic106

differential equation that models the dynamics of a system under the influence of both deterministic107

and random forces (Lemons & Gythiel, 1997). We can define an p-dimensional Langevin diffusion108

to model DP-SGD as follows:109

∂θ = −∇θL(θ|f)∂t+
√
2σ2∂Qt, (1)

where θ ∈ Rp contains the neural network parameters, f is the neural network architecture, L(·|f) :110

Rp → R is the training loss, and σ > 0 is the noise multiplier (Abadi et al., 2016). {Qt}t≥0 is the111

standard Brownian motion in Rm that models the Gaussian noise mechanism.112

By Itô’s lemma (Ito, 1951), the Langevin diffusion of the training loss is113

∂L =
[
−∥∇θL(θ|f)∥22 + σ2tr(HθL)

]
∂t+

√
2σ2(∇θL(θ|f))⊤∂Qt. (2)

Ye et al. (2023b) study how the random initialization affects DP-SGD performance in linearized114

neural networks via Langevin diffusion. To facilitate theoretical analysis, they linearize the entire115

neural network using 1st-order Taylor expansions at the initial parameter θ0.116

f(x) ≈ flin(x) := f(x)

∣∣∣∣
θ=θ0

+
∂f(x)

∂θ

∣∣∣∣
θ=θ0

· (θ − θ0). (3)

Recently, a growing body of research has employed this linearization technique to effectively explain117

important deep learning phenomena (Ortiz-Jimenez et al., 2021). However, linearizing the whole118

model removes the multi-layer interactions, making it unsuitable for our analysis.119

To address this, we view the optimization trajectory of neural networks as a dynamical system, with120

noise in gradient updates treated as random perturbations. Applying the zeroth-order asymptotic121

expansion for Equation (1) at the noise multiplier σ (Freidlin et al., 2012), we approximate:122

∂θ ≈ ∂θ̃ = −∇L
(
θ̃
∣∣f) ∂t. (4)
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This zeroth-order expansion helps circumvent the complex analysis of stochastic, non-linear equa-123

tions. By substituting the approximate parameter θ̃ into Equation (2), our modeling preserves the124

noisy behavior characteristic of DP-SGD.125

3 Representation Alignment126

In this section, we introduce the concept of representation alignment, present our theoretical find-127

ings, and validate them with experiments. Representation alignment refers to the process by which128

the classification head aligns itself with the pre-trained backbone features. During the differentially129

private full fine-tuning (DP-FFT) process, this alignment creates a characteristic trend in feature130

quality: initially, the randomly initialized linear head distorts the pre-trained features, but as it better131

aligns with the backbone, the distortion diminishes, and the overall quality of the backbone features132

improves over time.133

3.1 Theory134

Our goal is to understand (1) how does DP fine-tuning distort the pre-trained features in the back-135

bone, and (2) under what conditions this distortion can be mitigated. We consider the simple binary136

classification setup from Min et al. (2024), which provides a clear and intuitive understanding of137

representation alignment. The results generalize to our experiments in Section 3.2. Specifically, we138

use a 2-layer fully-connected neural network with h hidden nodes and ReLU activation ϕ,139

f(x) = v⊤g(x) = v⊤ϕ(W⊤x) =

h∑
j=1

vjϕ(w
⊤
j x). (5)

Figure 2: Visual-
ization of Assump-
tion 3.1.

fine-tuning on a dataset D := {(xi, yi)}ni=1 with n inputs xi ∈ Rdx , and140

binary labels yi ∈ {−1, 1}. The objective is to minimize the training141

loss L(θ̃|f) :=
∑n

i=1 ℓ(yi, f(xi)), using the exponential loss ℓ(y, ŷ) :=142

exp(−yŷ). Similar results hold for logistic loss (Min et al., 2024). For sim-143

plicity, we make the following assumption.144

Assumption 3.1 (Data correlation (Min et al., 2024)). For any pair of data145

(xi, yi), (xj , yj), the inputs are positively/negatively correlated if the labels146

are the same/different.147

inf
i,j∈[n]

[
(y1y2) ·

x⊤
1 x2

∥x1∥2∥x2∥2

]
:= µ > 0. (6)

We define two cones in Rdx that separate subspaces spanned by data points in the positive and148

negative classes, respectively: S+ = {z ∈ Rdx : ∀i ∈ [n], Ix⊤
i z>0 = Iyi=1}, S− = {z ∈ Rdx : ∀i ∈149

[n], Ix⊤
i z>0 = Iyi=−1}. Min et al. (2024) prove that S+ ∩ S− = ∅, and xi ∈ S+/− if yi = 1/ − 1150

(see Figure 2). We define the mean data directions of class c ∈ {−1, 1} by x̄c :=
∑

i∈[n] xi · Iyi=c.151

We assume that a “clustering” behavior emerges in the pre-trained features, which allows the features152

to work well in transfer learning (Galanti et al., 2022). This phenomenon is well-documented in the153

neural collapse literature (Kothapalli, 2023), suggests that pre-trained features wj tend to converge154

around the mean direction for data in class c(j).155

Assumption 3.2 (Collapsed neural features). For each wj in Equation (5) where j ∈ [h] (with h156

denoting the dimension of the linear head), it holds that wj ∈ S+ or wj ∈ S−. We define c(j) = 1157

if wj ∈ S+, and c(j) = −1 if wj ∈ S−. Thus, there is a partition [h] = F+ ⊔ F− over the index set158

[h], such that for each wj ,159 {
j ∈ F+ if wj ∈ S+,

j ∈ F− if wj ∈ S−.
(7)

Feature quality. Assumption 3.2 says that data with positive label (resp. negative) only activates160

the j-th neuron if j ∈ F+ (resp. j ∈ F−). As a result, any positive data pair (x, y) ∼ (x, y′) activate161

the same set of neurons. From a contrastive learning viewpoint, it makes the representations of them162
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Figure 3: We pre-train (BYOL) a ResNet-50 backbone on ImageNet-1K and DP fine-tune (DP-
SGD, ϵ = 1) it on STL-10. We qualitatively evaluate the features in the ResNet-50 backbone by
visualizing the backbone mappings (penultimate layer outputs) of data points via UMAP (McInnes
et al., 2020). These results suggest that DP-FFT distorts feature quality before improving it, as
predicted by Theorem 3.3.

semantically similar (Saunshi et al., 2019). Namely, when the features wj and data inputs xi are163

normalized unit vectors, the difference between representations of a positive data pair is bounded:164

∥g(x)− g(x′)∥∞ ≤ max
yi=c(j)=y

cos(wj , xi), (8)

which represents the maximum cosine similarity between the features wj and the data points.165

However, FFT or DP-FFT with random initialization may reduce the feature quality.166

Theorem 3.3 (Random initialization causes feature distortion). If Assumption 3.1 and Assump-167

tion 3.2 hold, and the linear head is randomly initialized by v0 ∼ N (0, βIh×h), then with proba-168

bility 1 − 2−h, ∃j ∈ [h],∆t > 0 such that during the time interval (0,∆t), DP-FFT distorts wj169

reducing its alignment with the data cluster. The cosine similarity between wj and the data cluster170

mean x̄c(j) decreases monotonically:171

∂

∂t
cos
(
wj , x̄c(j)

) ∣∣∣∣
t

< 0, ∀t ∈ (0,∆t) (9)

For a pre-trained wj that aligns with c(j)-labeled data, DP-FFT (as modeled by Equation (4)) makes172

it deviate from x̄c(j), the mean direction of those data. wj is optimal when cos(wj , x̄c(j)) = 1.173

This result holds for both DP and non-DP settings and explains the potential feature distortion ob-174

served in in-distribution and non-private settings, such as those studied by Kumar et al. (2022)). The175

stochastic analysis of non-smooth loss, activation, cosine similarity functions is challenging without176

our approximation.177

Next, we show that running (DP-)LP before (DP-)FFT could mitigate feature distortion.178

Theorem 3.4 (DP-LP first mitigates feature distortion). Suppose Assumption 3.1 and Assump-179

tion 3.2 hold, and the linear head is randomly initialized by v0 ∼ N (0, βIh×h). There exists ∆t > 0180

such that after running DP-LP for time ∆t, switching to full fine-tuning ensures that DP-FFT does181

not distort the pre-trained features. Specifically, cos(wj , x̄c(j)) is non-decreasing for all j ∈ [h]:182

∂

∂t
cos
(
wj , x̄c(j)

) ∣∣∣∣
t

≥ 0, ∀t ∈ (0,∆t) (10)

3.2 Experiments183

In this section, we show empirical evidence supporting Theorems 3.3 and 3.4.184

Pre-training and Model. We pre-train Vision Transformers (ViT) and ResNet-50 backbones on185

ImageNet-1K using Self-Supervised Learning methods, including BYOL (Grill et al., 2020) and186

MoCo v2 (Chen et al., 2020b), as well as distillation methods (Touvron et al., 2021). Then we187

fine-tune the backbone with a linear classification head on CIFAR-10 and STL-10 using DP-SGD.188

Experiment protocols. We conduct public pre-training for 100 epochs with a batch size of 256.189

Following this, we implement DP-SGD using the pre-trained weights and a randomly initialized190

linear head for 30 epochs. Each DP fine-tuning process is repeated with 5 random seeds and a batch191

size of 1000. We evaluate the backbone features on both the pre-training and fine-tuning datasets,192

measuring feature quality through top-1 kNN accuracy (Chen et al., 2023).193

Private fine-tuning initially distorts features. Figure 3 qualitatively visualizes the effect of DP-194

FFT on feature quality with respect to the private test data. We pre-train (BYOL) a ResNet-50195
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backbone on ImageNet-1K and DP fine-tune (DP-SGD, ϵ = 1) it on STL-10. We qualitatively assess196

the features of the private test data within the ResNet-50 backbone by visualizing the backbone197

mappings (outputs from the penultimate layer) of data points using UMAP (McInnes et al., 2020).198

For simplicity, we only plot 3 classes in CIFAR-10.199

Figure 3 indicates that during the initial phases of DP-FFT, the randomly initialized linear head200

interferes with the pre-trained features in the backbone network, leading to a degradation in feature201

quality on both the pre-training and fine-tuning datasets. This observation validates Theorem 3.3.202

Concurrently, the linear head begins adapting to these pre-trained features, a process we refer to as203

“representation alignment.” As this alignment progresses, the backbone starts to regain a portion204

of its original feature quality, which had been degraded by DP noise and shifts in data distribution.205

Linear probing mitigates feature distortion. To illustrate the benefits of linear probing, we first206

run DP-LP for 1 epoch before transitioning to DP-FFT for the remaining epochs. In the initial207

steps of DP-FFT, the feature distortion is significantly weaker (Figure 1a) if we first run DP-LP.208

This supports the claim of Theorem 3.4. We also evaluate features on the pre-training domain (see209

Figure 5).210

4 DP Fine-tuning Convergence Rates211

Section 3 showed that DP-LP-FFT can mitigate feature distortion. A natural question is, for a fixed212

privacy budget, how do DP-LP and DP-FFT affect the convergence of fine-tuning loss function? We213

study this question under our zeroth-order approximation of Langevin diffusion (Section 4.1).214

Privacy guarantees We first provide privacy guarantees of Langevin diffusion by bounding the215

Rényi divergence of its trajectory distributions on neighboring datasets D ∼ D′ (Mironov, 2017).216

Ganesh et al. (2023b) and Ye et al. (2023b) both show that the Rényi divergence linearly increases217

over time. We use this guarantee for all fine-tuning variants.218

Theorem 4.1 (Rényi privacy guarantee (Ganesh et al., 2023b)). Suppose we initialize a pair of219

neural network parameters θ, θ′ by some i.i.d. distributions Θ0,Θ
′
0. We fine-tune θ, θ′ respectively220

on neighboring datasets D,D′ via Langevin diffusion. Denote the distribution of the trajectory of221

θ by Θ[0,T ] over [0, T ]. Similarly, denote the trajectory distribution of θ′ by Θ′
[0,T ]. Then for any222

α ≥ 1, the Rényi divergence Rα is bounded linearly in time,223

r := Rα(Θ[0,T ]∥Θ′
[0,T ]) = O

(
α∆gT

σ2

)
(11)

where σ is the noise multiplier, and ∆g ≥ ∥∇L(θ;D)−∇L(θ;D′)∥ is the upper bound of gradient224

difference between neighboring datasets. Thus, for any δ ∈ (0, 1), the Langevin diffusion satisfies225 (
α∆gT

4σ2
+

log(1/δ)

α− 1
, δ

)
− differential privacy. (12)

4.1 Convergence Rates under the Zeroth-order Approximation226

We follow the approximation scheme of Equation (4) to obtain the following convergence results227

for 2-layer ReLU neural networks. To our knowledge, these are the first convergence guarantees228

(approximate or not) for DP-SGD under a nonconvex, nonsmooth objective.229

Theorem 4.2 (Approximate DP-LP loss convergence). If Assumption 3.1 and Assumption 3.2 hold230

at t = 0, then we can bound the loss after running DP-LP for t = T :231

1
1

Lc(0)
e−B1T + A1

B1
(1− e−B1T )

≤ Lc(T ) ≤
1

1
Lc(0)

e−B2T + A2

B2
(1− e−B2T )

(13)

where Lc(t) denotes the training loss of data points labeled c ∈ {−1, 1}, L = L1 + L2, and232 

A1 =
∑

wj∈Sc

[
maxyi=c w

⊤
j xi

]2
B1 = 1

2σ
2
{∑

yi=c ∥relu(W⊤xi)∥−2
2

}−1

A2 =
∑

wj∈Sc

[
minyi=c w

⊤
j xi

]2
B2 = 1

2σ
2
{∑

yi=c ∥relu(W⊤xi)∥42
}1/2

(14)
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are constants for DP-LP.233

When we take n = h = 2, y1 = −y2, w1 = x1 = −w2 = −x2, the upper and lower bounds are234

equal and we achieve a tight bound on the DP-LP loss.235

Theorem 4.3 (Approximate DP-FFT loss convergence). For simplicity, we assume that ∥xi∥2 = R236

for all i ∈ [n]. If Assumption 3.1 and Assumption 3.2 hold, and we consider a balanced initialization237

∥W∥2F = ∥v0∥22 (Min et al., 2023) at t = 0, then238

(i) we lower bound the loss after running DP-FFT for T > 0:239

Lc(T ) ≥
1

1
Lc(0)

e(1−exp(λcT ))AlCl/λc + Bl

Cl

[
1− e(1−exp(λcT ))AlCl/λc

] (15)

where we define Al = ∥W0∥2F , Bl = 2R2, Cl =
R2σ2(1+µ2)

2 and λc = 2RLc(0).240

(ii) we upper bound the loss after running DP-FFT for T > 0:241

Lc(T ) ≤
1

Bu

Cu
(1− e−AcCuT ) + 1

Lc(0)
e−AcCuT

(16)

where we define Ac =
∑

wj∈Sc

[
v2j,t=0 + ∥wj∥22

]
, Bu = R2µ2 and Cu = 1

2R
2σ2.242

5 Budget Allocation between DP-LP and DP-FFT243

Consider the DP-LP-FFT fine-tuning strategy, which first applies DP-LP for some portion r of the244

privacy budget (i.e. for some number of training iterations), then uses the remaining privacy budget245

for DP-FFT. In this section, we ask: given a fixed privacy budget, how should we allocate it across246

DP-LP and DP-FFT? Our results, both theoretical and empirical, suggest that at low total privacy247

budget, one should allocate more of the total privacy budget to DP-LP.248

5.1 Results under Zeroth-order Approximation249

We first show how to allocate privacy budget to avoid the feature distortion analyzed in Section 3,250

under our zeroth-order approximation.251

Theorem 5.1 (Estimated privacy budget allocated to DP-LP). If Assumption 3.1 and Assumption 3.2252

hold at t = 0, then for any ρ ∈ (0, 1), with probability (1− ρ)h, we can avoid feature distortion by253

spending254

r ∝ σ4
√
ln(2/ρ) (17)

amount r of privacy budget on DP-LP, where σ is the noise multiplier. That is, we ensure that255

∀j ∈ [h], and any t > 0 after DP-LP,256

∂

∂t
cos
(
wj , x̄c(j)

) ∣∣∣∣
t

≥ 0 (18)

According to Theorem 5.1, we should spend greater ratio of privacy budget on DP-LP if the total257

privacy budget is smaller.258

5.2 Experiments259

To illustrate the privacy budget trade-off, we empirically evaluate the benefits of DP-LP-FFT on real260

data and architectures.261

DP-LP-FFT outperforms other fine-tuning methods: Pre-training on synthetic data. We follow262

the setup in Tang et al. (2023) and generate utility curves for ϵ = 1, 2, 3 (Figure 1b). We pre-train263

WideResNet with synthetic images generated from StyleGAN-oriented (Baradad et al., 2021) , and264

fine-tune it with DP-SGD on CIFAR-10. The x-axis sweeps the fraction of privacy budget allocated265

to DP-LP, and the remaining budget is used for DP-FFT. We find that at various privacy levels,266

DP-LP-FFT gives a clear advantage over either DP-FFT or DP-LP alone.267

Figure 1b presents a different trend from our theoretical prediction, where we expect the optimal268

budget ratio for DP-LP to increase as the privacy noise grows. A possible intuitive explanation is269

7



0 2 4 6 8 10
LP epochs

55

60

65

Te
st

 a
cc

ur
ac

y 
(%

)

MoCo-v2

200ep
800ep

0 2 4 6 8 10
LP epochs

40

60

80

Te
st

 a
cc

ur
ac

y 
(%

)

MoCo-v3

300ep
1000ep

(a) Private utility curves (σ = 0.3)

0 2 4 6 8 10
LP epochs

70

80

90

Te
st

 a
cc

ur
ac

y 
(%

)

MoCo-v2

200ep
800ep

0 2 4 6 8 10
LP epochs

85

90

95

Te
st

 a
cc

ur
ac

y 
(%

)

MoCo-v3

300ep
1000ep
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Figure 4: Utility curves for pretraining on ImageNet-1K and fine-tuning on CIFAR-10 over ResNet-
50, with pretrained features from MoCo-v2 and MoCo-v3 (Chen et al., 2020b; Chen* et al., 2021).
We compare the performance from pre-trained weights of different pre-training epochs (200/800
epochs for MoCo-v2, 300/1k epochs for MoCo-v3). The x-axis sweeps the number of LP epochs
from 0 to 10; the remaining epochs (out of 10) use FFT.

that, in the Figure 1b experiments, the pre-training data is synthetic, making it ’distant’ from the270

CIFAR-10 fine-tuning data distribution. This divergence may violate our assumption that the pre-271

trained weights wj are well-aligned with the fine-tuning data xi.272

DP-LP-FFT outperforms other fine-tuning methods: Pre-training on ImageNet-1K. Figure 4273

illustrates the utility curves on ResNet-50 for σ = 0, 0.3. To demonstrate utility curves for DP-LP-274

FFT, we vary the number of epochs of linear probing from eLP = 0 to eLP = 10; all remaining275

epochs (out of 10 total) are allocated to full fine-tuning, i.e., eFFT = 10− eLP . Note that full fine-276

tuning corresponds to eLP = 0 (the leftmost point of our subplots), and linear probing corresponds277

to eLP = 10. We observe that for non-private optimization (Figure 4b), full fine-tuning achieves278

the highest test accuracy. However, for DP-SGD (Figure 4a), linear probing outperforms full fine-279

tuning, and DP-LP-FFT outperforms both DP-LP and DP-FFT.280

Model ResNet18 MobileNetv3 TransformerDeiT
ϵ ∞ 1.29 0.57 ∞ 1.29 0.57 ∞ 1.29 0.26
LP 68.540.02 67.900.12 66.600.04 71.120.31 69.540.08 67.320.03 95.740.04 93.610.08 94.210.08
LP-FFT 72.660.12 68.650.08 59.791.03 71.300.11 71.180.06 66.940.08 96.820.08 93.660.15 93.620.05
FFT 73.690.03 59.791.03 53.820.37 77.020.31 63.060.05 45.120.07 96.170.08 90.310.53 84.190.82

Table 1: Test accuracies of DP-LP, DP-LP-FFT, and DP-FFT on various architectures.

Comparing DP fine-tuning methods. As suggested by Theorem 5.1, as the noise scale σ increases,281

the best fine-tuning strategy changes from DP-FFT (small σ, low privacy regime) to DP-LP-FFT, to282

DP-LP (large σ, high privacy regime). To qualitatively test this prediction, we sweep over different283

noise scales σ and fix other hyperparameters in each benchmark and model architecture. We sort the284

rows by the number of parameters of each model and the noise scale in an ascending order. For each285

experiment setting, we report average test accuracies with standard errors. As expected, among the286

three fine-tuning methods (Table 1), DP-FFT almost always does the best under small noise scales287

(including the non-private setting where σ = 0), DP-LP-FFT does the best under moderate noise288

scales, and DP-LP does the best under large noise scales. The close non-DP (ϵ) performance of FFT289

and LP-FFT on transformer architectures is consistent with previous observations in Kumar et al.290

(2022, Table 1). We also provide results with LoRA (see Table 2).291

6 Conclusion and Discussion292

We characterize the training dynamics of DP fine-tuning under a simplified theoretic setup (2-layer293

neural networks, separable datasets with -1/1 labels) using a Langevin diffusion-based approxima-294

tion of DP-SGD, with an asymptotic expansion of random perturbations in dynamical systems as295

an approximation for Langevin diffusion. Our theory identifies and explains the phenomenon of296

representation distortion and alignment during DP fine-tuning, which we confirm empirically. Our297

work takes a step towards understanding how different private fine-tuning strategies can be mixed298

to improve performance, which could be useful for designing or mixing other strategies, such as299

memory-efficient zeroth-order optimization with differential privacy (Zhang et al., 2024a).300

Limitations and open questions There are several open questions we cannot cover in this work,301

such as generalizing our results to multi-layer neural networks with our approximation technique,302

the effect of other loss functions on the fine-tuning dynamics, and loss lower bounds for DP-LP/FFT303

without the zeroth-order approximation. Moreover, it is unclear how to apply our theory to other304

fine-tuning methods like LoRA (Hu et al., 2022), as well as generative models for which neural305

collapse does not happen. Understanding whether the zeroth-order approximation can facilitate306

analysis in these settings is an interesting and important question for future work.307
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A Additional experiment results504

In this section, we provide more experiment results and detailed configurations.505

Evaluations back in the pre-training distribution (Figure 5). We also evaluate the feature quality506

on ImageNet1-K, the pre-training dataset. The representation alignment for the pre-training domain507

is different: once a proper alignment is achieved, the backbone gradually recovers a portion of its508

original feature quality, which had been compromised due to DP noise and distribution-shift.509
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Figure 5: Backbone feature quality evaluated by average top-1 kNN accuracy on the pre-training
dataset, for ResNet-50, through public pre-training on ImageNet-1K and differentially private fine-
tuning on STL-10.

More experiments on parameter-efficient fine-tuning (PEFT) methods. We conduct experiments510

with another fine-tuning trick: differentially private LoRA (Hu et al., 2022). We run experiments on511

the Mini-DeiT-Ti architecture, where we use LoRA instead of full fine-tuning. In these experiments512

(Table 2), our batch size is 1000, and our LoRA rank is set to 8. We observe the same trend as what513

we saw for full fine-tuning; namely, as we increase the noise scale (i.e., as we reduce epsilon, giving514

a stronger privacy guarantee), it becomes more beneficial to use LP-LoRA or even just LP.515

TransformerDeiT
ϵ ∞ 12.28 1.29 0.57 0.26
LP 95.810.05 95.550.05 94.800.06 94.210.08 92.480.27
LP-LoRA 96.20.05 95.900.03 94.810.08 94.180.05 91.990.19
LoRA 96.260.05 95.500.06 94.760.08 93.050.09 91.280.43

Table 2: Test accuracies of LP, LP-LoRA, LoRA on TransformerDeiT.

Experiment setup in Table 1. We use batch size 1000 and and sweep over a range of learning rates516

{9, 5, 1, 0.5, 0.2, 0.15, 0.1, 0.05, 0.025}.517

Summary of experiment configurations. We run experiments on five deep learning models and518

four transfer learning benchmarks to verify if our theoretical prediction, the existence of concave519

utility curves, generalizes to deep neural networks and real datasets. Each experimental setting520

comprises: (1) a model architecture, (2) a (larger) dataset for public pretraining, and (3) a (smaller)521

dataset as the private data for fine-tuning. The benchmarks we use are:522

• ImageNet-1K→CIFAR-10. ImageNet-1K is a large-scale dataset. We initialize pretrained523

features of ResNet-50 from MoCo-v2 Chen et al. (2020b) and MoCo-v3 Chen* et al.524

(2021), trained on ImageNet-1K Russakovsky et al. (2015) without privacy. We then pri-525

vately fine-tune the ResNet-50 on CIFAR-10.526

• ImageNet-1K→STL-10. We pretrain a DeiT model on ImageNet then pretrain a Mini-527

DeiT-Ti model with weight distillation from the DeiT model Touvron et al. (2021); Zhang528

et al. (2022). After that, we privately fine-tune the Mini-DeiT-Ti model on STL-10 Coates529

et al. (2011) for 20 epochs.530

• CIFAR-10→STL-10. We pretrain the feature extractor on CIFAR-10 Krizhevsky (2009)531

using stochastic gradient descent without privacy mechanisms. Then we finetune the pre-532

trained features and a randomly initialized linear head on STL-10. This benchmark has533

been studied in the context of domain adaptation French et al. (2018); Kumar et al. (2022).534
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The training subset of STL-10 only contains 500 images. To align with the small scale fine-535

tuning data, we run the experiments with smaller and data-efficient models: MobileNet-v3536

and ResNet-18.537

• RandP→CIFAR-10. To reproduce the results of Tang et al. (2023) and verify the general538

existence of concave utility curves, we also consider a slightly non-standard pretraining539

protocol. We pretrain a wide residual network (WRN) Zagoruyko & Komodakis (2016) on540

synthetic images generated by random diffusion processes. We follow the settings in Tang541

et al. (2023).542

We employ early stopping, and select the optimal learning rate based on the accuracy of the in-543

distribution validation.544

B Technical results545

Lemma B.1 (Holder’s inequality for sums). For a sequence x = [xi]
n
i=1 of positive real numbers546

and p > 0, define ∥x∥p := (
∑n

i=1 x
p
i )

1/p. Then for any pair of positive real numbers p > 0, q > 0547

with 1
p + 1

q = 1, and any pair of sequence of positive real numbers x and y,548

∥xy∥1 ≤ ∥x∥p∥y∥q
Lemma B.2 (Reverse Holder’s inequality for sums). For a sequence x = [xi]

n
i=1 of positive real549

numbers and p > 0, define ∥x∥p := (
∑n

i=1 x
p
i )

1/p. Then for any pair of positive real numbers550

p > 0, q > 0 with 1
p − 1

q = 1, and any pair of sequence of positive real numbers x and y,551

∥xy∥1 ≥ ∥x∥p∥y∥−q

Lemma B.3 (Reverse QM-AM inequality for sums). For a sequence x = [xi]
n
i=1 of positive real552

numbers,553 (
n∑

i=1

xi

)2

≥
n∑

i=1

x2
i

Lemma B.4 (µ-coherent data conic hull (Min et al., 2024, Lemma 5)). Define a conic hull K :=554

CH({yixi : i ∈ [n]}) = {
∑n

i=1 aiyixi : ∀ai ≥ 0, i ∈ [n]}. If Assumption 3.1 holds, i.e. the dataset555

is separable, then K is µ-coherent:556

∀z1, z2 ∈ K\{0}, cos(z1, z2) ≥ µ

Corollary B.5 (Orthogonally separable =⇒ linearly separable (Min et al., 2024)). If Assumption 3.1557

holds, then ∃γ > 0 and z ∈ SD−1 such that558

∀i ∈ [n], yi⟨z, xi⟩ ≥ γ

Proof of Corollary B.5. We prove the existence statement by picking a valid pair of z, γ. Take z :=559
y1x1

∥x1∥2
. Then ∀i ∈ [n],560

yi⟨z, xi⟩ =∥xi∥2 cos(y1x1, yixi)

//by Lemma B.4
≥∥xi∥2µ
≥µ · min

i∈[n]
∥xi∥2

Therefore γ = µ ·mini∈[n] ∥xi∥2.561

C Appendix: Representation alignment562

C.1 Theory563

The Langevin diffusion of wj on a n-sized data cluster (j ∈ [h]) is564

ẇj =

n∑
i=1

yi exp(−yif(xi;W, v))vjrelu
′(w⊤

j xi)xi + σ∂Qt, (19)
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where Qt is a vector containing D independent 1-dimensional Brownian motion.565

The Langevin diffusion of v on a n-sized data cluster is566

v̇ =

n∑
i=1

yi exp(−yif(xi;W, v))relu(W⊤xi) + σ∂Qt,

where Qt is a vector containing h independent 1-dimensional Brownian motion.567

We rewrite the Langevin diffusion by asymptotic expansion (Freidlin et al., 2012, Equation 2.1,568

Chapter 2.2),569 {
vj ≈ v

(0)
j + σv

(1)
j + · · ·

wj ≈ w
(0)
j + σw

(1)
j + · · · ,

(20)

i.e. we expand the Langevin diffusion as a linear combination of the original gradient flow and a570

linear stochastic diffusion.571 {
v̇
(0)
j =

∑n
i=1 yi exp(−yif(xi;W

(0), v(0)))relu((w
(0)
j )⊤xi)

ẇ
(0)
j =

∑n
i=1 yi exp(−yif(xi;W

(0), v(0)))v
(0)
j relu′((w

(0)
j )⊤xi)xi.

(21)

Lemma C.1 (Zeroth order invariance of locally linearized LD). If we rewrite the Langevin diffusion572

by asymptotic expansion (Freidlin et al., 2012, Equation 2.1, Chapter 2.2),573 {
vj ≈ v

(0)
j + σv

(1)
j

wj ≈ w
(0)
j + σw

(1)
j .

then the layer invariance still holds for zeroth order approximation574

d

dt
[(v

(0)
j )2 − ∥w(0)

j ∥22] = 0. (22)

This result is similar to the imbalance matrix in gradient flow (Arora et al., 2018; Du et al., 2018;575

Min et al., 2023).576

We are ready to prove Theorem 3.3.577

Proof of Theorem 3.3. The explicit expression of the cosine value is578

cos(wj , x̄c(j)) =
w⊤

j x̄c(j)

∥wj∥2∥x̄c(j)∥2
(23)

Without loss of generality, let ∥x̄c(j)∥2 = 1. To show that the cosine value decreases with high579

probability, we only need to prove that the derivative of
(w⊤

j x̄c(j))
2

∥wj∥2
2

is negative at t = 0 with high580

probability. The explicit derivative expression is581

∂

∂t
cos(wj , x̄c(j)) =

2(w⊤
j x̄c(j))

∥wj∥22

[
∥wj∥22x̄⊤

c(j)

∂wj

∂t
− x̄⊤

c(j)wjw
⊤
j

∂wj

∂t

]
(24)

=
2(w⊤

j x̄c(j))

∥wj∥22

[
∥wj∥22x̄c(j) − (x̄⊤

c(j)wj)wj

]⊤ ∂wj

∂t
(25)

//by Assumption 3.2 (26)

sign

(
∂

∂t
cos(wj , x̄c(j))

)
=sign

([
∥wj∥22x̄c(j) − (x̄⊤

c(j)wj)wj

]⊤ ∂wj

∂t

)
(27)

=sign
(
vj(∥wj∥22 − (x̄⊤

c(j)wj)
2)
)

(28)

=sign(vj) (29)

Since we initialize v ∼ N (0, βIh×h), with probability 1 − 2−h, there exists j such that vj < 0582

at t = 0 =⇒ ∂
∂t cos(wj , x̄c(j)) < 0 at t = 0. By the continuity of the approximated Langevin583

diffusion, there exists ∆t > 0 such that for any t ∈ (0,∆t),584

∂

∂t
cos(wj , x̄c(j)) < 0. (30)

585
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Proof of Theorem 3.4. In the proof of Theorem 3.3, we show that for wj ∈ Sc, c ∈ {−1, 1},586

sign

(
∂

∂t
cos(wj , x̄c(j))

)
= sign(vj) · sign(c) (31)

To mitigate the feature distortion after some time index ∆t, we only need c · vj > 0. For DP-LP,587

every ∂
∂tvj increases/decreases if c = 1/− 1. Therefore, for any initialization, there exists ∆t such588

that sign(vj) = sign(c) after time index ∆t. If we switch to DP-FFT after ∆t, ∂
∂t cos(wj , x̄c(j)) > 0589

for any j ∈ [h]. Thus cos(wj , x̄c(j)) is non-decreasing in DP-FFT.590

D Approximate convergence of DP-LP and DP-FFT591

D.1 Approximate DP-LP convergence592

We add some extra notations for the following proofs:593

• Positive data subset I+ := {i ∈ [n] : yi > 0}594

• Negative data subset I− := {i ∈ [n] : yi < 0}595

• Positive head cluster V+(t) := {j ∈ [h] : sign(vj(t)) > 0}596

• Negative head cluster V−(t) := {j ∈ [h] : sign(vj(t)) < 0}597

• Index function I : RD → {I+, I−} maps feature vector to its cluster598

I (w) =


I+ w ∈ S+

I− w ∈ S−
∅ otherwise

We first derive the upper bound for approximate DP-LP.599

Upper bound proof of Theorem 4.2. We construct a lower bound of the drift terms in the zeroth600

order approximation601

∥∇vL(0)∥22 =

h∑
j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

(32)

=

h∑
j=1

 ∑
i∈I (w

(0)
j )

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)


2

(33)

≥
h∑

j=1

[
min

i∈I (w
(0)
j )

relu((w
(0)
j )⊤xi)

]2 ∑
i∈I (w

(0)
j )

yi exp(−yif(xi;W
(0), v(0))))


2

(34)

=

h∑
j=1

[
min

i∈I (w
(0)
j )

relu((w
(0)
j )⊤xi)

]2 ∑
i∈I (w

(0)
j )

exp(−yif(xi;W
(0), v(0))))


2

(35)

=
∑
j∈V+

[
min
i∈I+

relu((w
(0)
j )⊤xi)

]2
(L(0)

+ )2 +
∑
j∈V−

[
min
i∈I−

relu((w
(0)
j )⊤xi)

]2
(L(0)

+ )2

(36)

≥min

∑
j∈V+

[
min
i∈I+

relu((w
(0)
j )⊤xi)

]2
,
∑
j∈V−

[
min
i∈I−

relu((w
(0)
j )⊤xi)

]2[(L(0)
+ )2 + (L(0)

− )2
]

(37)
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≥1

2
min

∑
j∈V+

[
min
i∈I+

relu((w
(0)
j )⊤xi)

]2
,
∑
j∈V−

[
min
i∈I−

relu((w
(0)
j )⊤xi)

]2[L(0)
+ + L(0)

−

]2
(38)

=
1

2
min

∑
j∈V+

[
min
i∈I+

relu((w
(0)
j )⊤xi)

]2
,
∑
j∈V−

[
min
i∈I−

relu((w
(0)
j )⊤xi)

]2 (L(0))2

(39)

We construct an upper bound of the diffusion terms in the zeroth order approximation602

1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

=
1

2
σ2

n∑
i=1

{
ℓ(yi, f(xi;W

(0), v(0)))
}
·
{
∥relu((W (0))⊤xi)∥22

}
//by Lemma B.1

≤1

2
σ2

{
n∑

i=1

ℓ2(yi, f(xi;W
(0), v(0)))

}1/2

·

{
n∑

i=1

∥relu((W (0))⊤xi)∥42

}1/2

//by Lemma B.3

≤1

2
σ2

{
n∑

i=1

ℓ(yi, f(xi;W
(0), v(0)))

}
·

{
n∑

i=1

∥relu((W (0))⊤xi)∥42

}1/2

=
1

2
σ2L(0) ·

{
n∑

i=1

∥relu((W (0))⊤xi)∥42

}1/2

Then we have an upper bound603

L(0)(T ) ≤ 1
1

L(0)(0)
e−BT + A

B (1− e−BT )

where constants A,B are defined as604 A = 1
2 min

{∑
j∈V+

[
mini∈I+

relu((w
(0)
j )⊤xi)

]2
,
∑

j∈V−

[
mini∈I− relu((w

(0)
j )⊤xi)

]2}
B = 1

2σ
2
{∑n

i=1 ∥relu((W (0))⊤xi)∥42
}1/2

605

We give the lower bound of approxiamte DP-LP below. We first give a loose lower bound as a606

warm-up. Then we improve the techniques and provide a tight lower bound.607

Loose lower bound proof of Theorem 4.2. We rewrite the Langevin diffusion by asymptotic expan-608

sion (Freidlin et al., 2012, Equation 2.1, Chapter 2.2)609

L̇(0) =− ∥∇vL(0)∥22 +
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

=− ∥∇vL(0)∥22 +
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

≥− ∥∇vL(0)∥22 +

(
min
i∈V(0)

+

∥relu((W (0))⊤xi)∥22

)
· 1
2
σ2

∑
i∈V(0)

+

ℓ(yi, f(xi;W
(0), v(0)))
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+

(
min
i∈V(0)

−

∥relu((W (0))⊤xi)∥22

)
· 1
2
σ2

∑
i∈V(0)

−

ℓ(yi, f(xi;W
(0), v(0)))

=− ∥∇vL(0)∥22 +
(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2
∑
i∈[n]

ℓ(yi, f(xi;W
(0), v(0)))

=− ∥∇vL(0)∥22 +
(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2L(0)

=−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

+

(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2L(0)

//by trapping

=−
∑

j∈V(0)
+

∑
i∈I+

exp(−f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

2

−
∑

j∈V(0)
−

∑
i∈I−

exp(f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

2

+

(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2L(0)

≥−
(

max
j∈[h],i∈[n]

(relu((w
(0)
j )⊤xi))

2

) ∑
j∈V(0)

+

∑
i∈I+

exp(−f(xi;W
(0), v(0)))

2

−
(

max
j∈[h],i∈[n]

(relu((w
(0)
j )⊤xi))

2

) ∑
j∈V(0)

−

∑
i∈I−

exp(f(xi;W
(0), v(0)))

2

+

(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2L(0)

//a2 + b2 ≤ (a+ b)2 when a > 0, b > 0

≥−
(

max
j∈[h],i∈[n]

(relu((w
(0)
j )⊤xi))

2

) ∑
j∈[h]

∑
i∈[n]

exp(−f(xi;W
(0), v(0)))

2

+

(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2L(0)

≥− h

(
max

j∈[h],i∈[n]
(relu((w

(0)
j )⊤xi))

2

)∑
i∈[n]

exp(−f(xi;W
(0), v(0)))

2

+

(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2L(0)

≥− h

(
max

j∈[h],i∈[n]
(relu((w

(0)
j )⊤xi))

2

)
(L(0))2 +

(
min
i∈[n]

∥relu((W (0))⊤xi)∥22
)
· 1
2
σ2L(0)

In linear probing, the coefficients h
(
maxj∈[h],i∈[n](relu((w

(0)
j )⊤xi))

2
)

and610

1
2σ

2
(
mini∈[n] ∥relu((W (0))⊤xi)∥22

)
are constants. We replace them with dummy notation A611

and B. We solve the first-order nonlinear ODE by turning it into a first-order linear ODE.612

L̇(0) ≥−A(L(0))2 +BL(0)

1

(L(0))2
L̇(0) ≥−A+B

1

L(0)
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− d

dt

(
1

L(0)

)
≥−A+B

1

L(0)

L(0)(T ) ≥ 1
1

L(0)(0)
e−BT + A

B (1− e−BT )

613

Remark D.1 (On the qualitative properties of loose DP-LP lower bound). If we take the limit to614

initial point, then the lower bound degenerate to the initial loss value.615

lim
t→0

1
1

L(0)(0)
e−BT + A

B (1− e−BT )
= L(0)(t = 0) = L(t = 0) (40)

If we take the limit to infinite time,616

lim
t→∞

1
1

L(0)(0)
e−BT + A

B (1− e−BT )
=

B

A
=

1
2σ

2
(
mini∈[n] ∥relu((W (0))⊤xi)∥22

)
h
(
maxj∈[h],i∈[n](relu((w

(0)
j )⊤xi))2

) (41)

the following interpretation holds:617

1. For larger noise σ ↑, the lower bound is higher, i.e. worse performance.618

2. For bad alignment between pretrained features W (0) and data points, both the denominator and619

the numerator could shrink. It is not obvious how the lower bound changes.620

In the following result, we modify the proof, replace the min(·), and provide a tighter bound.621

Tight lower bound proof of Theorem 4.2. This is an alternative construction of a lower bound for622

drift terms in the zeroth order approximation623

∥∇vL(0)∥22 =

h∑
j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

=
∑

j∈V(0)
+

∑
i∈I+

exp(−f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

2

+
∑

j∈V(0)
−

∑
i∈I−

exp(f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

2

//by Lemma B.3

≤

 ∑
j∈V(0)

+

∑
i∈I+

exp(−f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)


2

+

 ∑
j∈V(0)

−

∑
i∈I−

exp(f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)


2

≤

∑
j∈[h]

∑
i∈[n]

exp(−f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

2

=

∑
i∈[n]

∑
j∈[h]

exp(−f(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

2
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≤

∑
i∈[n]

[
max
j∈[h]

relu((w
(0)
j )⊤xi)

]
exp(−f(xi;W

(0), v(0)))

2

//by Lemma B.1

≤

∑
i∈[n]

[
max
j∈[h]

relu((w
(0)
j )⊤xi)

]2∑
i∈[n]

exp(−f(xi;W
(0), v(0)))2


//by Lemma B.3

≤

∑
i∈[n]

[
max
j∈[h]

relu((w
(0)
j )⊤xi)

]2∑
i∈[n]

exp(−f(xi;W
(0), v(0)))

2

≤

∑
i∈[n]

[
max
j∈[h]

relu((w
(0)
j )⊤xi)

]2 (L(0))2

We replace the A constant by
∑

i∈[n]

[
maxj∈[h] relu((w

(0)
j )⊤xi)

]2
. This is an alternative construc-624

tion of a lower bound for diffusion-resulted terms in the zeroth order approximation625

1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

=
1

2
σ2

n∑
i=1

{
ℓ(yi, f(xi;W

(0), v(0)))
}
·
{
∥relu((W (0))⊤xi)∥22

}
//by Lemma B.2

≥1

2
σ2

{
n∑

i=1

ℓ1/2(yi, f(xi;W
(0), v(0)))

}2

·

{
n∑

i=1

∥relu((W (0))⊤xi)∥−2
2

}−1

//by Lemma B.3

≥1

2
σ2

{
n∑

i=1

ℓ(yi, f(xi;W
(0), v(0)))

}
·

{
n∑

i=1

∥relu((W (0))⊤xi)∥−2
2

}−1

≥1

2
σ2L(0) ·

{
n∑

i=1

∥relu((W (0))⊤xi)∥−2
2

}−1

We replace the B constant by
{∑n

i=1 ∥relu((W (0))⊤xi)∥−2
2

}−1
in the previous proof of loose lower626

bound of Theorem 4.2. Similarly,627

L(0)(T ) ≥ 1
1

L(0)(0)
e−BT + A

B (1− e−BT )

where A =
∑

i∈[n]

[
maxj∈[h] relu((w

(0)
j )⊤xi)

]2
, B = 1

2σ
2
{∑n

i=1 ∥relu((W (0))⊤xi)∥−2
2

}−1
.628

The limit of this lower bound is629

lim
t→∞

1
1

L(0)(0)
e−BT + A

B (1− e−BT )
=
B

A
=

1

2
σ2

{
n∑

i=1

∥relu((W (0))⊤xi)∥−2
2

}−1
∑

i∈[n]

[
max
j∈[h]

relu((w
(0)
j )⊤xi)

]2
−1

630

Example D.2 (On the downstream alignment of pretrained features (Theorem 4.2)). Here we pro-631

vide an example on how the pretrained feature space affects the linear probing lower bound in The-632

orem 4.2 in the overparametrized regime. Consider one data point x+ and two pretrained features633

w+,1, w+,2 with ∥x+∥2 = ∥w+,1∥2 = ∥w+,2∥2 = 1, cos(x+, w+,2) =
1
3π.634
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1. If we get lucky such that w+,1 = x+, then the limit is B
A = 15

24σ
2.635

2. If the w+,1 is not so good for the downstream task such that cos(x+, w+,1) = 1
6π, then the636

limit becomes B
A = 16

24σ
2.637

Since 16
24 > 15

24 , we can tell that when the pretrained features do not align well with the downstream638

task, the lower bound gets higher, i.e. worse performance.639

D.2 Approximate DP-FT convergence640

Analysis of DP-FFT loss diffusion. In the following 0th-order approximation of loss Langevin641

diffusion, denote the drift term by W -gradient as T1, the drift term by v-gradient as T2, the diffusion642

term by W -hessian as T3, the diffusion term by v-hessian as T4.643

L̇(0) =−
∥∥∥∇WL(0)

∥∥∥2
F︸ ︷︷ ︸

T1

−
∥∥∥∇vL(0)

∥∥∥2
2︸ ︷︷ ︸

T2

(42)

+
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))

∥relu((W (0))⊤xi)∥22 +
h∑

j=1

(v
(0)
j )2[relu′((w

(0)
j )⊤xi)]

2∥xi∥22


(43)

=−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

(44)

−
h∑

j=1

∥∥∥∥∥
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

xi

∥∥∥∥∥
2

2

(45)

+
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))

∥relu((W (0))⊤xi)∥22 +
h∑

j=1

(v
(0)
j )212

(w
(0)
j )⊤xi>0

∥xi∥22


(46)

=−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

︸ ︷︷ ︸
T2

(47)

−
h∑

j=1

∥∥∥∥∥
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

xi

∥∥∥∥∥
2

2︸ ︷︷ ︸
T1

(48)

+
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22︸ ︷︷ ︸
T4

(49)

+
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))

h∑
j=1

(v
(0)
j )212

(w
(0)
j )⊤xi>0

∥xi∥22︸ ︷︷ ︸
T3

(50)

Upper bound proof of Theorem 4.3. 1. Upper bounds for T1, T3. For T1, the key idea is ∥x∥22 ≥644

⟨x, z⟩2 for any unit vector z.645

T1 =−
h∑

j=1

∥∥∥∥∥
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

xi

∥∥∥∥∥
2

2
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//since ∀x ∈ RD, z ∈ SD−1, ∥x∥22 ≥ ⟨x, z⟩2

≤−
h∑

j=1

〈
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

xi, z

〉2

=−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

⟨xi, z⟩

)2

=−
h∑

j=1

(v
(0)
j )2

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))1

(w
(0)
j )⊤xi>0

⟨xi, z⟩

)2

//pick z =
y1x1

∥x1∥2
, by Corollary B.5

≤− γ2
h∑

j=1

(v
(0)
j )2

(
n∑

i=1

exp(−yif(xi;W
(0), v(0)))1

(w
(0)
j )⊤xi>0

)2

=− γ2
h∑

j=1

(v
(0)
j )2

 ∑
i∈I (w

(0)
j )

exp(−yif(xi;W
(0), v(0)))


2

=− γ2
h∑

j=1

(v
(0)
j )2

 ∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))


2

For T3, we align its form with T1.646

T3 =
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))

h∑
j=1

(v
(0)
j )212

(w
(0)
j )⊤xi>0

∥xi∥22

//since ∀i ∈ [n], |yi| = 1

=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))

h∑
j=1

(v
(0)
j )21

(w
(0)
j )⊤xi>0

∥xi∥22

=
1

2
σ2

h∑
j=1

(v
(0)
j )2

n∑
i=1

∥xi∥221(w
(0)
j )⊤xi>0

ℓ(yi, f(xi;W
(0), v(0)))

≤1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

(v
(0)
j )2

n∑
i=1

1
(w

(0)
j )⊤xi>0

ℓ(yi, f(xi;W
(0), v(0)))

=
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

(v
(0)
j )2

∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))

2. Upper bounds of T2, T4. For T2, we use linear separability.647

T2 =−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

//by Corollary B.5

≤−
h∑

j=1

∑
i∈[n]

exp(−yif(xi;W
(0), v(0)))1

(w
(0)
j )⊤xi>0

γ∥w(0)
j ∥2

2

=− γ2
h∑

j=1

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

exp(−yif(xi;W
(0), v(0)))


2

22



=− γ2
h∑

j=1

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))


2

For T4, we align its form with T3.648

T4 =
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

//since ∀i ∈ [n], |yi| = 1

=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))

∑
j∈[h]

1
(w

(0)
j )⊤xi>0

⟨w(0)
j , xi⟩2

≤1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))

∑
j∈[h]

1
(w

(0)
j )⊤xi>0

∥w(0)
j ∥22∥xi∥22

≤1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

∥w(0)
j ∥22

∑
i∈[n]

1
(w

(0)
j )⊤xi>0

ℓ(yi, f(xi;W
(0), v(0)))

=
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

∥w(0)
j ∥22

∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))

3. Combine upper bounds of T1, T2, T3, T4.649

L̇(0) =T1 + T2 + T3 + T4

≤− γ2
h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑

i∈I (w
(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))

//abbr. ℓi := ℓ(yi, f(xi;W
(0), v(0)))

=− γ2
h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑

i∈I (w
(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑
i∈I (w

(0)
j )

ℓi

=

h∑
j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
]−γ2

 ∑
i∈I (w

(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) ∑

i∈I (w
(0)
j )

ℓi




∵ (v
(0)
j )2 + ∥w(0)

j ∥22 ≥ (v
(0)
j,t=0)

2 + ∥w(0)
j,t=0∥22650

∴ When the drift term (negative) still dominates the dynamics, we take t = 0 for (v(0)j )2 + ∥w(0)
j ∥22.651

L̇(0) ≤
h∑

j=1

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥

2
2

]−γ2

 ∑
i∈I (w

(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) ∑

i∈I (w
(0)
j )

ℓi



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4. Decompose loss by trapping. If the trapping condition holds, we can decompose the loss652

L(0) = L(0)
+ + L(0)

− , where L(0)
∗ is only controlled by wj if w(0)

j ∈ S∗ (∗ ∈ {+,−}).653

L̇(0)
∗ ≤

∑
j∈[h],w

(0)
j ∈S∗

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥

2
2

]−γ2

 ∑
i∈I (w

(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) ∑

i∈I (w
(0)
j )

ℓi




≤
∑

j∈[h],w
(0)
j ∈S∗

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥

2
2

]{
−γ2

(
L(0)
∗

)2
+

1

2
σ2

(
max
i∈[n]

∥xi∥22
)
L(0)
∗

}

Let u = 1/L(0)
∗ , A =

∑
j∈[h],w

(0)
j ∈S∗

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥22

]
, B = γ2, C =654

1
2σ

2
(
maxi∈[n] ∥xi∥22

)
. Then655

−du

dt
≤−AB +ACu

AB exp(ACt) ≤ d

dt
(ueACt)

B

C
(exp(ACt)− 1) ≤ueACt − u0

B

C
(exp(ACt)− 1) + u0 ≤ueACt

B

C
(1− exp(−ACt)) + u0e

−ACt ≤u

L(0)
∗ ≤ 1

B
C (1− e−ACt) + 1

L(0)
t=0,∗

e−ACt

The time limit of the upper bound is656

lim
t→∞

L(0)
∗ ≤C

B
=

σ2

2γ2

(
max
i∈[n]

∥xi∥22
)

=
1

2

maxi∈[n] ∥xi∥22
mini∈[n] ∥xi∥22

σ2 1

µ2

5. Combine clustered losses.657

L(0) =L(0)
− + L(0)

+

≤ 1
B
C (1− e−A+Ct) + 1

L(0)
t=0,+

e−A+Ct
+

1
B
C (1− e−A−Ct) + 1

L(0)
t=0,−

e−A−Ct

658

Lower bound (type I) proof of Theorem 4.3. 1. Upper bounds for T1, T3. For T1, the key idea is659

∥x∥22 ≥ ⟨x, z⟩2 for any unit vector z.660

T1 =−
h∑

j=1

∥∥∥∥∥
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

xi

∥∥∥∥∥
2

2

//since ∀x ∈ RD, z ∈ SD−1, ∥x∥22 ≥ ⟨x, z⟩2

≤−
h∑

j=1

〈
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

xi, z

〉2

=−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

⟨xi, z⟩

)2

=−
h∑

j=1

(v
(0)
j )2

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))1

(w
(0)
j )⊤xi>0

⟨xi, z⟩

)2
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//pick z =
y1x1

∥x1∥2
, by Corollary B.5

≤− γ2
h∑

j=1

(v
(0)
j )2

(
n∑

i=1

exp(−yif(xi;W
(0), v(0)))1

(w
(0)
j )⊤xi>0

)2

=− γ2
h∑

j=1

(v
(0)
j )2

 ∑
i∈I (w

(0)
j )

exp(−yif(xi;W
(0), v(0)))


2

=− γ2
h∑

j=1

(v
(0)
j )2

 ∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))


2

For T3, we align its form with T1.661

T3 =
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))

h∑
j=1

(v
(0)
j )212

(w
(0)
j )⊤xi>0

∥xi∥22

//since ∀i ∈ [n], |yi| = 1

=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))

h∑
j=1

(v
(0)
j )21

(w
(0)
j )⊤xi>0

∥xi∥22

=
1

2
σ2

h∑
j=1

(v
(0)
j )2

n∑
i=1

∥xi∥221(w
(0)
j )⊤xi>0

ℓ(yi, f(xi;W
(0), v(0)))

≤1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

(v
(0)
j )2

n∑
i=1

1
(w

(0)
j )⊤xi>0

ℓ(yi, f(xi;W
(0), v(0)))

=
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

(v
(0)
j )2

∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))

2. Upper bounds of T2, T4. For T2, we use linear separability.662

T2 =−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

//by Corollary B.5

≤−
h∑

j=1

∑
i∈[n]

exp(−yif(xi;W
(0), v(0)))1

(w
(0)
j )⊤xi>0

γ∥w(0)
j ∥2

2

=− γ2
h∑

j=1

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

exp(−yif(xi;W
(0), v(0)))


2

=− γ2
h∑

j=1

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))


2

For T4, we align its form with T3.663

T4 =
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

//since ∀i ∈ [n], |yi| = 1
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=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))

∑
j∈[h]

1
(w

(0)
j )⊤xi>0

⟨w(0)
j , xi⟩2

≤1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))

∑
j∈[h]

1
(w

(0)
j )⊤xi>0

∥w(0)
j ∥22∥xi∥22

≤1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

∥w(0)
j ∥22

∑
i∈[n]

1
(w

(0)
j )⊤xi>0

ℓ(yi, f(xi;W
(0), v(0)))

=
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

∥w(0)
j ∥22

∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))

3. Combine upper bounds of T1, T2, T3, T4.664

L̇(0) =T1 + T2 + T3 + T4

≤− γ2
h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑

i∈I (w
(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑
i∈I (w

(0)
j )

ℓ(yi, f(xi;W
(0), v(0)))

//abbr. ℓi := ℓ(yi, f(xi;W
(0), v(0)))

=− γ2
h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑

i∈I (w
(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) h∑

j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑
i∈I (w

(0)
j )

ℓi

=

h∑
j=1

[
(v

(0)
j )2 + ∥w(0)

j ∥22
]−γ2

 ∑
i∈I (w

(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) ∑

i∈I (w
(0)
j )

ℓi




∵ (v
(0)
j )2 + ∥w(0)

j ∥22 ≥ (v
(0)
j,t=0)

2 + ∥w(0)
j,t=0∥22665

∴ When the drift term (negative) still dominates the dynamics, we take t = 0 for (v(0)j )2 + ∥w(0)
j ∥22.666

L̇(0) ≤
h∑

j=1

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥

2
2

]−γ2

 ∑
i∈I (w

(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) ∑

i∈I (w
(0)
j )

ℓi




4. Decompose loss by trapping. If the trapping condition holds, we can decompose the loss667

L(0) = L(0)
+ + L(0)

− , where L(0)
∗ is only controlled by wj if w(0)

j ∈ S∗ (∗ ∈ {+,−}).668

L̇(0)
∗ ≤

∑
j∈[h],w

(0)
j ∈S∗

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥

2
2

]−γ2

 ∑
i∈I (w

(0)
j )

ℓi


2

+
1

2
σ2

(
max
i∈[n]

∥xi∥22
) ∑

i∈I (w
(0)
j )

ℓi



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≤
∑

j∈[h],w
(0)
j ∈S∗

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥

2
2

]{
−γ2

(
L(0)
∗

)2
+

1

2
σ2

(
max
i∈[n]

∥xi∥22
)
L(0)
∗

}

Let u = 1/L(0)
∗ , A =

∑
j∈[h],w

(0)
j ∈S∗

[
(v

(0)
j,t=0)

2 + ∥w(0)
j,t=0∥22

]
, B = γ2, C =669

1
2σ

2
(
maxi∈[n] ∥xi∥22

)
. Then670

−du

dt
≤−AB +ACu

AB exp(ACt) ≤ d

dt
(ueACt)

B

C
(exp(ACt)− 1) ≤ueACt − u0

B

C
(exp(ACt)− 1) + u0 ≤ueACt

B

C
(1− exp(−ACt)) + u0e

−ACt ≤u

L(0)
∗ ≤ 1

B
C (1− e−ACt) + 1

L(0)
t=0,∗

e−ACt

The time limit of the upper bound is671

lim
t→∞

L(0)
∗ ≤C

B
=

σ2

2γ2

(
max
i∈[n]

∥xi∥22
)

=
1

2

maxi∈[n] ∥xi∥22
mini∈[n] ∥xi∥22

σ2 1

µ2

5. Combine clustered losses.672

L(0) =L(0)
− + L(0)

+

≤ 1
B
C (1− e−A+Ct) + 1

L(0)
t=0,+

e−A+Ct
+

1
B
C (1− e−A−Ct) + 1

L(0)
t=0,−

e−A−Ct

673

Lower bound (type III) proof of Theorem 4.3. 1. Lower bounds for T1, T3. For T1, we use674 (
maxk∈[n] ∥xk∥22

)
.675

T1 =−
h∑

j=1

∥∥∥∥∥
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))v

(0)
j 1

(w
(0)
j )⊤xi>0

xi

∥∥∥∥∥
2

2

//abbr. ℓi := exp(−yif(xi;W
(0), v(0)))

=−
h∑

j=1

∥∥∥∥∥∥∥
∑

i∈I (w
(0)
j )

yiℓiv
(0)
j xi

∥∥∥∥∥∥∥
2

2

=−
h∑

j=1

∥∥∥∥∥∥∥
∑

i∈I (w
(0)
j )

ℓiv
(0)
j xi

∥∥∥∥∥∥∥
2

2

=−
∑
j∈[h]

(v
(0)
j )2

∥∥∥∥∥∥∥
∑

i∈I (w
(0)
j )

ℓixi

∥∥∥∥∥∥∥
2

2

≥−
∑
j∈[h]

(v
(0)
j )2

 ∑
i∈I (w

(0)
j )

ℓi ∥xi∥2


2
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≥−
(
max
k∈[n]

∥xk∥22
) ∑

j∈[h]

(v
(0)
j )2

 ∑
i∈I (w

(0)
j )

ℓi


2

For T3, we align its form with T1.676

T3 =
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))

h∑
j=1

(v
(0)
j )212

(w
(0)
j )⊤xi>0

∥xi∥22

=
1

2
σ2

n∑
i=1

ℓi

h∑
j=1

(v
(0)
j )21

(w
(0)
j )⊤xi>0

∥xi∥22

=
1

2
σ2
∑
j∈[h]

(v
(0)
j )2

∑
i∈I (w

(0)
j )

ℓi∥xi∥22

≥1

2
σ2

(
min
k∈[n]

∥xk∥22
) ∑

j∈[h]

(v
(0)
j )2

 ∑
i∈I (w

(0)
j )

ℓi


2. Lower bounds for T2, T4. For T2, we use ⟨x, y⟩ ≤ ∥x∥2∥y∥2.677

T2 =−
h∑

j=1

(
n∑

i=1

yi exp(−yif(xi;W
(0), v(0)))relu((w

(0)
j )⊤xi)

)2

=−
h∑

j=1

 ∑
i∈I (w

(0)
j )

yi exp(−yif(xi;W
(0), v(0)))(w

(0)
j )⊤xi


2

=−
∑
j∈[h]

 ∑
i∈I (w

(0)
j )

ℓi⟨w(0)
j , xi⟩


2

≥−
∑
j∈[h]

 ∑
i∈I (w

(0)
j )

ℓi∥w(0)
j ∥2∥xi∥2


2

≥−
(
max
k∈[n]

∥xk∥22
) ∑

j∈[h]

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

ℓi


2

For T4, we align its form with T2.678

T4 =
1

2
σ2

n∑
i=1

y2i ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

//since ∀i ∈ [n], |yi| = 1

=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))∥relu((W (0))⊤xi)∥22

=
1

2
σ2

n∑
i=1

ℓ(yi, f(xi;W
(0), v(0)))

∑
j∈[h]

1
(w

(0)
j )⊤xi>0

⟨w(0)
j , xi⟩2

=
1

2
σ2
∑
j∈[h]

∑
i∈I (w

(0)
j )

ℓi⟨w(0)
j , xi⟩2

//by Lemma B.4
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≥1

2
σ2
∑
j∈[h]

∑
i∈I (w

(0)
j )

ℓiµ
2∥w(0)

j ∥22∥xi∥22

=
1

2
σ2µ2

∑
j∈[h]

∥w(0)
j ∥22

∑
i∈I (w

(0)
j )

ℓi∥xi∥22

≥1

2
σ2µ2

(
min
k∈[n]

∥xk∥22
) ∑

j∈[h]

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

ℓi


3. Combine lower bounds of T1, T2, T3, T4.679

L̇(0) =T1 + T2 + T3 + T4

≥−
(
max
k∈[n]

∥xk∥22
) ∑

j∈[h]

[
(v

(0)
j )2 + ∥w(0)

j ∥22
] ∑

i∈I (w
(0)
j )

ℓi


2

+
1

2
σ2

(
min
k∈[n]

∥xk∥22
) ∑

j∈[h]

[
(v

(0)
j )2 + µ2∥w(0)

j ∥22
] ∑

i∈I (w
(0)
j )

ℓi


//by balancedness, ∥w(0)

j ∥22 = (v
(0)
j )2

≥− 2

(
max
k∈[n]

∥xk∥22
) ∑

j∈[h]

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

ℓi


2

+
σ2(1 + µ2)

2

(
min
k∈[n]

∥xk∥22
) ∑

j∈[h]

∥w(0)
j ∥22

 ∑
i∈I (w

(0)
j )

ℓi


4. Decompose loss by trapping. If the trapping condition holds, we can decompose the loss680

L(0) = L(0)
+ + L(0)

− , where L(0)
∗ is only controlled by wj if w(0)

j ∈ S∗ (∗ ∈ {+,−}).681

L̇(0)
∗ ≥− 2

(
max
k∈[n]

∥xk∥22
) ∑

j∈[h],w
(0)
j ∈S∗

∥w(0)
j ∥22(L

(0)
∗ )2 +

σ2(1 + µ2)

2

(
min
k∈[n]

∥xk∥22
) ∑

j∈[h],w
(0)
j ∈S∗

∥w(0)
j ∥22L

(0)
∗

=


∑

j∈[h],w
(0)
j ∈S∗

∥w(0)
j ∥22

 ·
{
−2

(
max
k∈[n]

∥xk∥22
)
(L(0)

∗ )2 +
σ2(1 + µ2)

2

(
min
k∈[n]

∥xk∥22
)
L(0)
∗

}

The time limit of the loss lower bound is682

lim
t→∞

L(0)
∗ ≥ 1

2

mink∈[n] ∥xk∥22
maxk∈[n] ∥xk∥22

σ2 1 + µ2

2

By the previous lower bound proof,683

∥W (0)∥2F ≤ ∥W (0)
0 ∥2F e2(maxk∈[n] ∥xi∥2)L(0)

0 t

Let u = 1

L(0)
∗

, A = ∥W (0)
0 ∥2F , λ2 = 2(maxk∈[n] ∥xi∥2)L(0)

0 , B = 2maxk∈[n] ∥xk∥22, C =684

σ2(1+µ2)
2 mink∈[n] ∥xk∥22. Then consider integrating factor exp(AC/λ2 exp(λ2t)).685

− d

dt
u ≥Aeλ2t(−B + Cu)

ABeλ2t ≥ACeλ2tu+
d

dt
u

ABeλ2t exp(AC/λ2 exp(λ2t)) ≥AC exp(AC/λ2 exp(λ2t))e
λ2tu+ exp(AC/λ2 exp(λ2t))

d

dt
u

B

C

d

dt
[exp(AC/λ2 exp(λ2t))] ≥

d

dt
(u · exp(AC/λ2 exp(λ2t)))
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B

C
[exp(AC/λ2 exp(λ2t))− exp(AC/λ2)] ≥u · exp(AC/λ2 exp(λ2t))− u0 · exp(AC/λ2)

B

C
[1− exp(AC/λ2(1− exp(λ2t)))] ≥u− u0 · exp(AC/λ2(1− exp(λ2t)))

L(0)
∗ ≥ 1

1

L(0)
∗,t=0

eAC/λ2(1−exp(λ2t)) + B
C

[
1− eAC/λ2(1−exp(λ2t))

]
5. Combine clustered losses.686

L(0) =L(0)
− + L(0)

+

≥ 1
1

L(0)
+,t=0

eAC/λ2(1−exp(λ2t)) + B
C

[
1− eAC/λ2(1−exp(λ2t))

] + 1
1

L(0)
−,t=0

eAC/λ2(1−exp(λ2t)) + B
C

[
1− eAC/λ2(1−exp(λ2t))

]
687

D.3 Privacy budget allocation688

Proof of Theorem 5.1. For any j ∈ [h], with probability 1 − ρ, its initial absolute value is bounded689

by690

|vj | ≤
√

2β2 ln(2/ρ) (51)

Then with probability (1− ρ)h, the maximum worse initial value is bounded by691

max
j∈[h]

(cj · vj) ≤
√
β2 ln(2/ρ) (52)

where we define cj by wj ∈ Scj . The approximate DP-LP dynamics is692

v̇j =

n∑
i=1

yiℓirelu(w
⊤
j xi) (53)

Say wj ∈ Sc for some c ∈ {−1, 1}, then during DP-LP, when sign(vj(T )) = sign(vj(0)),693

|vj(T )− vj(0)| =
∫ T

0

∑
yi=c

ℓirelu(w
⊤
j xi)dt (54)

≥min
yi=c

|relu(w⊤
j xi)|

∫ T

0

Lc(t)dt (55)

//by Theorem 4.2 (56)

≥min
yi=c

relu(w⊤
j xi)

1
2σ

2
{∑

yi=c ∥relu(W⊤xi)∥−2
2

}−1

∑
wj∈Sc

[
maxyi=c w⊤

j xi

]2 (57)

=
1

2
σ2

minyi=c relu(w
⊤
j xi)∑

wj∈Sc

[
maxyi=c w⊤

j xi

]2
{∑

yi=c

∥relu(W⊤xi)∥−2
2

}−1

(58)

=
1

2
σ2Q (59)

where we define a constant Q to describe the pre-training quality. If the pre-trained features are694

better, Q becomes larger. To mitigate the feature distortion, we need c · vj > 0, then the necessary695

DP-LP run-time is696

∆t ∝ σ2

Q

√
β2 ln(2/ρ) ∝ σ2

Q

√
ln(2/ρ) (60)

where we ignore β as it is typically pre-determined in real implementations (e.g. the Linear layers697

in PyTorch).698
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