

000 001 002 003 004 005 VARIATIONAL QUANTUM ALGORITHMS ARE 006 LIPSCHITZ SMOOTH 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 The successful gradient-based training of Variational Quantum Algorithms (VQAs)
029 hinges on the L -smoothness of their optimization landscapes—a property that
030 bounds curvature and ensures stable convergence. While L -smoothness is a com-
031 mon assumption for analyzing VQA optimizers, there has been a need for a more di-
032 rect proof for general circuits, a tighter bound for practical guidance, and principled
033 methods that connect landscape geometry to circuit design. We address these gaps
034 with **Four** core contributions. First, we provide an intuitive proof of L -smoothness
035 and derive a new bound on the smoothness constant, $L \leq 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$,
036 that is never looser and often strictly tighter than previously known. Second, we
037 show that this bound reliably predicts the scaling behavior of curvature in deep
038 circuits and identify a saturation effect that serves as a direct geometric signature
039 of inefficient overparameterization. Third, we leverage this predictable scaling
040 to introduce an efficient heuristic for setting near-optimal learning rates. **Fourth**
041 **we demonstrate that our heuristic remains robust in noisy environments enabling**
042 **Adam and SGD to achieve convergence rates competitive with the Quantum Natural**
043 **Gradient optimizer.**

1 INTRODUCTION

044 Variational Quantum Algorithms (VQAs) are a cornerstone of near-term quantum computing Peruzzo
045 et al. (2014), but a complete theoretical understanding of their optimization landscapes is still
046 developing McClean et al. (2018). The performance of gradient-based optimization algorithms used
047 to train these models fundamentally relies on the geometry of the objective function’s landscape
048 Schuld et al. (2019). A key property for guaranteeing the convergence of these optimizers is L -
049 *smoothness*. This property has direct practical consequences: by placing an upper bound on the
050 landscape’s maximum curvature, it ensures that the gradient cannot change arbitrarily fast, preventing
051 the unstable training dynamics that can arise from an optimizer overshooting sharp valleys. Crucially,
052 a bound on the smoothness constant, L , provides a theoretical basis for learning rate selection moving
053 this critical hyperparameter choice from a heuristic art to a more grounded science Nesterov (2013).
054 Although this property has been discussed and global smoothness constants have been derived in prior
055 work, the proofs often rely on bounding techniques that are less tight or less directly constructive.
056 Here, we build on the trigonometric polynomial formulation to provide a streamlined proof of
057 smoothness and, crucially, derive a bound on the curvature that highlights how circuit architecture
058 and generator norms directly determine optimization geometry. Our main contributions are:

059 **A Formal Proof of L -Smoothness:** We leverage the established trigonometric polynomial structure
060 of VQA objectives Wierichs et al. (2022) to provide a direct and intuitive proof of their L -smoothness.
061 **While this structure has been used for gradient analysis, we exploit it to derive a bound on the curvature.**
062 **A Tight and Explicit Upper Bound:** We derive a novel upper bound for the smoothness constant L
063 that is never looser and often tighter than previously known, with strict improvements when generator
064 norms are heterogeneous or observables have non-commuting terms. The bound scales linearly with
065 the number of parameters P and is given by: $L \leq 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$. For VQAs using standard
066 single or two-qubit Pauli-rotation gates, this bound takes the remarkably simple form $L \leq P\|M\|_2$
067 and can sometimes be simplified further to $L \leq P$ for several observables. **Practical Landscape-
068 Based Tools:** We empirically validate our bound, confirming that the landscape’s maximum curvature
069 scales in a predictable linear fashion with circuit depth. This stable geometric behavior yields two
070

054
 055 Table 1: Comparison of VQA smoothness bounds. P is the number of parameters, G_k are the gate
 056 generators, and μ_k are the coefficients for observable M . Our bound is never looser, and can be up to
 057 a factor of P tighter than Liu et al. (2025) and $\Theta(\sqrt{r})$ tighter than Gu et al. (2021).

058 Bound	059 Assumptions / Setting	060 Tightness / Notes
060 Gu et al. Gu et al. (2021) $061 L \leq P \sum_k \mu_k $	062 Gates must be Pauli rotations.	063 Often the loosest. Our bound is 064 tighter by up to $\Theta(\sqrt{r})$ for observ- 065 ables with r anti-commuting terms.
062 Liu et al. Liu et al. (2025) $063 L \leq 4\ M\ _2 P (\max_k \ G_k\ _2)^2$	064 General gates (no Pauli-only re- 065 striction).	066 Our bound is tighter by up to a fac- 067 tor of P (non-uniform generators).
064 Ours $065 L \leq 4\ M\ _2 \sum_{k=1}^P \ G_k\ _2^2$	066 General gates (no Pauli-only re- 067 striction).	068 Correctly captures individual gen- 069 erator contributions and is general.

066
 067 powerful, practical applications. First, the predictable scaling allows us to introduce a computationally
 068 efficient heuristic for setting near-optimal learning rates, grounding this critical hyperparameter choice
 069 in landscape properties. Second, we show that the saturation point itself serves as a direct geometric
 070 signature of the circuit reaching its expressibility limit, offering a novel diagnostic for identifying
 071 inefficient overparameterization. **Validation in Noisy Environments:** Finally we demonstrate that
 072 our learning rate heuristic remains robust in NISQ environments, enabling Adam and SGD to achieve
 073 convergence rates competitive with the computationally expensive Quantum Natural Gradient (QNG)
 074 optimizer.

075 2 RELATED WORK

076 Although the optimization of VQAs is a central challenge, theoretical guarantees for the stability
 077 of gradient-based methods often rely on unproven smoothness assumptions or overly conservative
 078 bounds. Our work addresses these gaps by formally proving that VQA objective functions are globally
 079 L-smooth and by deriving a tight, computable expression for the smoothness constant. The concept
 080 of Lipschitz smoothness in VQAs is not entirely new: Gu et al. (2021) provided an observable-based
 081 upper bound used in adaptive shot allocation finding $L \leq P \sum |\mu_k|$, and Liu et al. (2025) introduced a
 082 “strong smoothness” property to analyze noisy optimization finding $L \propto P \cdot \max(\|G_k\|_2)^2$. However,
 083 both bounds are coarse. In contrast, we prove that the ideal VQA objective is globally smooth
 084 and derive an explicit, generator-aware bound. We show in Appendix C our bound is never looser,
 085 and often significantly tighter than both Gu et al. (2021) and Liu et al. (2025) bounds, in realistic
 086 Hamiltonians and non-uniform VQAs. Complementary to our work on inherent landscape geometry,
 087 other research has focused on bounding the statistical errors that arise when estimating derivatives
 088 from finite samples Teo (2023).

089 A key motivation for our work is that L-smoothness is a standard assumption in classical optimization,
 090 yet it is often assumed without proof in the VQA literature. For instance, convergence theories
 091 for over-parameterized VQEs You et al. (2022) and geometric methods like the Quantum Natural
 092 Gradient Stokes et al. (2020); Amari (1998) implicitly rely on a well-behaved landscape. More
 093 explicitly Koridon et al. (2024); Sweke et al. (2020); Gu et al. (2021) assume a Lipschitz-continuous
 094 Hessian. Our work replaces this common assumption with a provable guarantee, strengthening the
 095 theoretical foundations of these analyses. Furthermore, while other studies have provided valuable
 096 local characterizations of the Hessian Sen et al. (2022) or the related Fisher Information Matrix
 097 Abbas et al. (2021), our analysis establishes a formal and *global* property. We prove the Hessian
 098 norm is universally bounded, providing the theoretical guarantee that underpins these observations.
 099 Much foundational research on VQA landscapes has focused on first-order properties, driven by the
 100 need to mitigate the “barren plateau” phenomenon where gradients vanish McClean et al. (2018).
 101 This issue is deeply connected to ansatz expressibility, with highly expressive circuits being more
 102 prone to flat landscapes Sim et al. (2019); Holmes et al. (2022); Wang et al. (2021). These studies
 103 were driven from methods for calculating gradients, such as the parameter-shift rule Schuld et al.
 104 (2019), and deriving tight bounds on gradient concentrations Letcher et al. (2024). However these
 105 first-order characteristics are not sufficient for stable optimization. Our work provides the necessary
 106 second-order control by establishing an upper bound on landscape curvature, ensuring that the
 107 gradients obtained via these methods can be used effectively for training. This theoretical result also

108 informs practical VQA design; for instance, it provides a tool to quantify how circuit compression
 109 techniques Sim et al. (2019); Hu et al. (2022); Kulshrestha et al. (2024); Kverne et al. (2025) affect
 110 global landscape geometry. Finally, we distinguish our work, which proves smoothness with respect
 111 to circuit *parameters* for optimization stability, from research on the Lipschitz continuity of the
 112 objective function itself Sweke et al. (2020), a property that bounds the gradient’s magnitude, or
 113 Lipschitz continuity with respect to *input data*, which addresses model robustness Berberich et al.
 114 (2024).

3 PRELIMINARIES

In this section, we formally define the components of a Variational Quantum Algorithm (VQA) and the concept of L-smoothness, establishing the notation used throughout our theoretical analysis.

3.1 VARIATIONAL QUANTUM CIRCUITS

A VQA operates on an n -qubit system, whose state is a vector in a 2^n -dimensional Hilbert space \mathcal{H} Nielsen & Chuang (2010). The algorithm begins with the system in a fixed initial state, typically the all-zeros state $|\psi_0\rangle = |0\rangle^{\otimes n}$ Peruzzo et al. (2014). A parameterized quantum circuit, or ansatz, is a unitary operator $U(\theta)$ that depends on a vector of P real-valued parameters $\theta \in \mathbb{R}^P$. This unitary transforms the initial state into a final parameterized state:

$$|\psi(\theta)\rangle = U(\theta) |\psi_0\rangle \quad (1)$$

The ansatz $U(\theta)$ is constructed from a sequence of quantum gates. A common structure consists of D layers, where each layer contains a set of parameterized gates followed by a set of fixed gates:

$$U(\theta) = \prod_{d=D}^1 U_d(\theta_d) W_d \quad (2)$$

Here, $U_d(\theta_d)$ is the unitary corresponding to the parameterized gates in layer d , and W_d is the unitary for the fixed gates (e.g., CNOTs for entanglement).

3.2 PARAMETERIZED GATES AND GENERATORS

The parameterized gates are the core trainable components of the ansatz. Each gate $U_k(\theta_k)$ corresponding to a single parameter θ_k is generated by a Hermitian operator G_k according to the Schrödinger equation:

$$U_k(\theta_k) = \exp(-i\theta_k G_k) \quad (3)$$

3.3 THE OBJECTIVE FUNCTION

The output of a VQA is the expectation value of a Hermitian operator M , known as an observable, with respect to the final state $|\psi(\theta)\rangle$. This expectation value serves as the objective function $f(\theta)$ that is minimized or maximized during training. For machine learning applications where a classical loss $\mathcal{C}(\bar{y}_{true}, f(\theta))$ is used, our smoothness results for $f(\theta)$ extend directly, as standard loss functions are themselves smooth:

$$f(\theta) \triangleq \langle \psi(\theta) | M | \psi(\theta) \rangle = \langle \psi_0 | U^\dagger(\theta) M U(\theta) | \psi_0 \rangle \quad (4)$$

The observable M is chosen based on the problem of interest. For example, in the Variational Quantum Eigensolver (VQE), M is the Hamiltonian of a physical system whose ground state energy is sought.

3.4 DEFINITION: L-SMOOTHNESS

Our analysis centers on the smoothness of the objective function $f(\theta)$. A differentiable function is said to be L-smooth if its gradient is Lipschitz continuous.

162 **Definition 1.** A function $f : \mathbb{R}^P \rightarrow \mathbb{R}$ is L -smooth for a constant $L \geq 0$ if $\forall \boldsymbol{\theta}_1, \boldsymbol{\theta}_2 \in \mathbb{R}^P$, the
 163 following inequality holds Nesterov (2013):

$$164 \quad \|\nabla f(\boldsymbol{\theta}_1) - \nabla f(\boldsymbol{\theta}_2)\|_2 \leq L\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|_2 \quad (5)$$

166 For a twice-differentiable function, a sufficient condition for L -smoothness is that the spectral norm
 167 of its Hessian matrix is globally bounded Nesterov (2013):

$$168 \quad \|\nabla^2 f(\boldsymbol{\theta})\|_2 \leq L \quad (6)$$

170 4 CHARACTERISTICS OF VQA FUNCTIONS

172 In this section, we present our core theoretical results. We first prove that the objective function of
 173 a VQA is a multivariate trigonometric polynomial (MTP), as shown in Lemma 1. This structural
 174 property is a key insight, as it means the function is a finite sum of sinusoids and therefore analytic
 175 and infinitely differentiable, which is the underlying reason its landscape is well-behaved. Building
 176 on this, we then derive an explicit upper bound on the L -smoothness constant by directly bounding
 177 the spectral norm of the Hessian matrix, formally proving that VQAs are L -smooth. Further details
 178 and a warm-up example are provided in Lemma 3 and Appendix B.

180 4.1 EXISTENCE OF A SMOOTHNESS BOUND

182 **Lemma 1.** The objective function $f(\boldsymbol{\theta})$ of a VQA, as defined in Section 3, is a multivariate trigono-
 183 metric polynomial of the circuit parameters $\boldsymbol{\theta}$.

184 We show the proof of Lemma 1 in Appendix A.1. Because the objective function is a multivariate
 185 trigonometric polynomial, its derivatives have a structured Fourier form. This representation provides
 186 a route to establish smoothness: one can show that the Hessian operator norm is globally bounded
 187 in terms of Fourier amplitudes and frequencies. We give this derivation in Appendix A.6; while
 188 somewhat more technical, it yields the same upper bound as our generator-norm proof from Theorem
 189 1. In the main text, we proceed with the generator-norm route, which provides a simpler and more
 190 direct path to the explicit smoothness constant.

192 4.2 FINDING AN EXPLICIT UPPER BOUND

193 **Theorem 1.** The entries of the hessian matrix, $H = \nabla^2 f(\boldsymbol{\theta})$, are element-wise bounded by: $|H_{kl}| \leq$
 194 $4\|M\|_2\|G_k\|_2\|G_l\|_2$

196 *Proof.* We begin with the exact expression for the Hessian entries of the objective function
 197 $f(\boldsymbol{\theta}) = \langle \psi(\boldsymbol{\theta}) | M | \psi(\boldsymbol{\theta}) \rangle$ where $|\psi(\boldsymbol{\theta})\rangle = U(\boldsymbol{\theta}) |\psi_0\rangle$ and the unitary $U(\boldsymbol{\theta}) = \prod_{j=1}^P U_j(\theta_j) =$
 198 $U_P(\theta_P) \cdots U_k(\theta_k) \cdots U_1(\theta_1)$ is composed of gates $U_k(\theta_k) = \exp(-i\theta_k G_k)$. As derived in Ap-
 199 pendix B Lemma 3, this is given by:

$$201 \quad H_{kl} = \frac{\partial^2 f}{\partial \theta_l \partial \theta_k} = 2\text{Re} \left(\frac{\partial \langle \psi(\boldsymbol{\theta}) |}{\partial \theta_l} M \frac{\partial \langle \psi(\boldsymbol{\theta}) |}{\partial \theta_k} + \langle \psi(\boldsymbol{\theta}) | M \frac{\partial^2 \langle \psi(\boldsymbol{\theta}) |}{\partial \theta_l \partial \theta_k} \right)$$

204 To bound $|H_{kl}|$, we first establish bounds on the norms of the first and second derivatives of the
 205 statevector $|\psi(\boldsymbol{\theta})\rangle$. The first partial derivative with respect to θ_k is:

$$207 \quad \frac{\partial |\psi(\boldsymbol{\theta})\rangle}{\partial \theta_k} = \left(\prod_{j=P}^{k+1} U_j(\theta_j) \right) (-iG_k U_k(\theta_k)) \left(\prod_{j=k-1}^1 U_j(\theta_j) \right) |\psi_0\rangle$$

210 To bound its norm, we apply the submultiplicativity of the spectral norm ($\|AB\|_2 \leq \|A\|_2\|B\|_2$).
 211 Since all U_j are unitary operators ($\|U_j\|_2 = 1$) and the initial state is a unit vector ($\|\psi_0\|_2 = 1$), the
 212 expression simplifies:

$$214 \quad \left\| \frac{\partial |\psi(\boldsymbol{\theta})\rangle}{\partial \theta_k} \right\|_2 \leq \left(\prod_{j=P}^{k+1} \|U_j\|_2 \right) \left\| -iG_k \|U_k\|_2 \left(\prod_{j=k-1}^1 \|U_j\|_2 \right) \|\psi_0\|_2 \right\|_2 = \|G_k\|_2$$

216 The bound for the second derivative follows the same logic. For $l \neq k$ (assuming $l > k$ without loss
 217 of generality):
 218

$$219 \left\| \frac{\partial^2 |\psi(\theta)\rangle}{\partial \theta_l \partial \theta_k} \right\|_2 = \left(\prod_{j=P}^{l+1} \|U_j\|_2 \right) \| -iG_l \|_2 \|U_l\|_2 \left(\prod_{j=l-1}^{k+1} \|U_j\|_2 \right) \| -iG_k \|_2 \|U_k\|_2 \left(\prod_{j=k-1}^1 \|U_j\|_2 \right) \|\psi_0\rangle\|_2$$

222 Taking the norm yields:
 223

$$224 \left\| \frac{\partial^2 |\psi(\theta)\rangle}{\partial \theta_l \partial \theta_k} \right\|_2 \leq \| -iG_l \|_2 \cdot \| -iG_k \|_2 = \|G_l\|_2 \|G_k\|_2$$

226 For the unmixed case where $l = k$, the derivative contains a factor of $(-iG_k)^2$, leading to a norm
 227 bound of $\|G_k^2\|_2 \leq \|G_k\|_2^2$. Thus, the general bound $\left\| \frac{\partial^2 |\psi(\theta)\rangle}{\partial \theta_l \partial \theta_k} \right\|_2 \leq \|G_l\|_2 \|G_k\|_2$ holds for all k, l .
 228

229 Now we can bound the magnitude of each element $|H_{kl}|$ using the triangle inequality and the
 230 generalized Cauchy-Schwarz inequality ($|\langle u | A | v \rangle| \leq \|u\|_2 \|A\|_2 \|v\|_2$):
 231

$$232 |H_{kl}| \leq 2 \left(\left| \frac{\partial \langle \psi(\theta) |}{\partial \theta_l} M \frac{\partial |\psi(\theta)\rangle}{\partial \theta_k} \right| + \left| \langle \psi(\theta) | M \frac{\partial^2 |\psi(\theta)\rangle}{\partial \theta_l \partial \theta_k} \right| \right) \\ 233 \leq 2 \left(\left\| \frac{\partial |\psi(\theta)\rangle}{\partial \theta_l} \right\|_2 \|M\|_2 \left\| \frac{\partial |\psi(\theta)\rangle}{\partial \theta_k} \right\|_2 + \|\langle \psi(\theta) |\|_2 \|M\|_2 \left\| \frac{\partial^2 |\psi(\theta)\rangle}{\partial \theta_l \partial \theta_k} \right\|_2 \right)$$

236 Applying the bounds for the second and first derivatives of the state vector and noting that
 237 $\|\langle \psi(\theta) |\|_2 = 1$:
 238

$$239 |H_{kl}| \leq 2 (\|G_l\|_2 \|M\|_2 \|G_k\|_2 + 1 \cdot \|M\|_2 (\|G_l\|_2 \|G_k\|_2)) = 4 \|M\|_2 \|G_k\|_2 \|G_l\|_2$$

□

242 Theorem 1 establishes that every entry of the Hessian matrix is globally bounded by a finite constant.
 243 This result is significant because a matrix with universally bounded entries necessarily has a bounded
 244 spectral norm. By definition 1, since a globally bounded Hessian norm is a sufficient condition for
 245 L-smoothness we have now formally proven that the VQA objective function is an L -smooth function.
 246 The remaining task is to find a tight, explicit value for the smoothness constant, L . The following
 247 theorem achieves this by deriving a closed-form upper bound on the Hessian's spectral norm.
 248

249 **Lemma 2.** *Let $A, B \in \mathbb{R}^{n \times n}$. If $|A_{ij}| \leq B_{ij}$ for all i, j and B has non-negative entries, then
 250 $\|A\|_2 \leq \|B\|_2$.*

251 *Proof.* For any vector $x \in \mathbb{R}^n$, $\|Ax\|_2 = \|\sum_j A_{ij}x_j\|_2 \leq \|\sum_j |A_{ij}|x_j\|_2 \leq \|B|x\|_2$, where $|x|$
 252 denotes the component wise absolute value. Taking the maximum over all unit vectors x yields:
 253 $\|A\|_2 \leq \max_{\|y\|_2=1, y \geq 0} \|By\|_2 \leq \|B\|_2$. □

254 **Theorem 2.** *The objective function $f(\theta)$ is L -smooth, with the smoothness constant L satisfying the
 255 upper bound:*

$$258 \boxed{L \leq 4 \|M\|_2 \sum_{k=1}^P \|G_k\|_2^2}$$

262 *Proof.* From Theorem 1, we have the element-wise inequality $|H_{kl}| \leq B_{kl}$, where B is a matrix
 263 with non-negative entries $B_{kl} = 4 \|M\|_2 \|G_k\|_2 \|G_l\|_2$. Following Lemma 2 we can denote that
 264 $\|H\|_2 \leq \|B\|_2$. The matrix B has a specific, low-rank structure. It can be expressed as the outer
 265 product of a vector with itself making it a positive semidefinite rank-1 matrix:
 266

$$267 B = (4 \|M\|_2) \cdot vv^T, \quad \text{where } v = (\|G_1\|_2, \dots, \|G_P\|_2)^T$$

268 The spectral norm of a rank-1 matrix is equal to its single non-zero eigenvalue, which can be calculated
 269 directly. The norm is given by: $\|B\|_2 = (4 \|M\|_2) \cdot \|v\|_2^2$. The squared norm of the vector v is simply

270 the sum of the squares of its components: $\|v\|_2^2 = \sum_{k=1}^P (\|G_k\|_2)^2 = \sum_{k=1}^P \|G_k\|_2^2$. Combining
 271 these steps, we arrive at the explicit bound for the spectral norm of B : $\|B\|_2 = 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$. Since
 272 $\|H\|_2 \leq L$ and we've shown $\|H\|_2 \leq \|B\|_2$, we have our final bound on the smoothness
 273 constant: $L \leq 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$ \square
 274

275 This bound provides a clear theoretical prediction for the scaling of landscape curvature. It establishes
 276 that the maximum curvature grows at most linearly with the number of parameters P and is scaled
 277 by both the observable norm ($\|M\|_2$) and the squared norms of the gate generators ($\|G_k\|_2^2$). This
 278 predicted linear scaling is a key feature of VQA landscapes, which we validate and analyze in detail
 279 in Section 5 (Fig. 1). A key advantage of our bound is its precision for circuits with non-uniform
 280 gate generators. By summing the individual squared norms, our formulation provides a provably
 281 tighter estimate than Liu et al. (2025) that scales with the maximum generator norm, as we confirm in
 282 Appendix C. The tightness of this bound is determined by the conditions under which the triangle and
 283 generalized Cauchy-Schwarz inequalities become equalities. While a gap between our theoretical
 284 limit and the true maximum curvature is inherent to this standard bounding technique, the crucial
 285 contribution is that our bound correctly captures the fundamental scaling relationships and provides
 286 the tightest known analytical estimate for general VQA landscapes.
 287

288 **Corollary 1.** *For a VQA constructed from common gate sets and observables, the general smoothness
 289 bound simplifies significantly. Key special cases include:* **Pauli Rotation Gates:** *If the circuit uses
 290 only standard single-qubit or two-qubit (e.g., R_x , R_{yy} , etc.) Pauli rotation gates the bound becomes:
 291 $L \leq P\|M\|_2$. **Pauli Gates and Normalized Observable:** If the VQA uses the Pauli rotation gates
 292 above and the observable is normalized such that $\|M\|_2 = 1$, the bound simplifies further to: $L \leq P$.*
 293

294 *Proof.* The proofs for these cases follow directly from Theorem 2.
 295

296 The generator for a single-qubit Pauli rotation is $G_k = \frac{1}{2}P_i$ (where $P_i \in \{X, Y, Z\}$), and for a
 297 two-qubit rotation is $G_k = \frac{1}{2}P_i \otimes P_j$. Since $\|P_i\|_2 = 1$ and the spectral norm is submultiplicative
 298 over the tensor product, we have $\|G_k\|_2 = \frac{1}{2}$ in both cases. Substituting this into the general bound
 299 from Theorem 2 gives:
 300

$$L \leq 4\|M\|_2 \sum_{k=1}^P \left(\frac{1}{2}\right)^2 = 4\|M\|_2 \sum_{k=1}^P \frac{1}{4} = P\|M\|_2$$

301 The condition $\|M\|_2 = 1$ is met in many common applications, such as when the observable is
 302 any Pauli operator (e.g., $M = Z_i$) or an average of Pauli operators like $M = \frac{1}{n} \sum_{i=0}^{n-1} Z_i$. With
 303 $\|M\|_2 = 1$, the bound $L \leq P\|M\|_2$ simplifies directly to $L \leq P$. \square
 304

305 **Remark on Generality:** While our derivation focuses on standard single-parameter gates, the bound
 306 extends naturally to other architectures. For multi-parameter gates generated by a single Hermitian G ,
 307 the bound remains valid using the spectral norm of G (Corollary 1). In architectures with parameter
 308 sharing (e.g., QCNN Cong et al. (2019)), the objective retains its trigonometric polynomial structure
 309 (Appendix A.1). In these cases, the smoothness constant is bounded by the sum of the norms of all
 310 generators influenced by the shared parameter.
 311

312 5 VALIDATING THE BOUND AND CONNECTING LANDSCAPE GEOMETRY TO 313 EXPRESSIBILITY

314 In this section, we empirically validate our theoretical bound and investigate the geometry of VQA
 315 optimization landscapes. Our derived bound, $L \leq 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$, provides an analytical
 316 baseline that links the landscape's maximum curvature to its core components. We use this framework
 317 to systematically answer a fundamental question in VQA design: how do architectural choices (width
 318 n vs. depth P), problem definition (observable norm $\|M\|_2$), and the choice of generators G_k impact
 319 the landscape's curvature and, consequently, the feasibility of training? Furthermore, our analysis
 320 reveals a direct connection between landscape curvature and ansatz expressibility, establishing a
 321 geometric signature for the onset of inefficient overparameterization. Our analysis throughout this
 322 section focuses on the idealized properties of VQA landscapes. This allows us to establish a theoretical
 323

324 baseline and understand the fundamental geometric contributions of circuit architecture, which is a
 325 prerequisite for analyzing more complex, noisy scenarios.
 326
 327
 328
 329

330 **5.1 EXPERIMENTAL SETUP**

332 Our setup consists of four numerical experiments to isolate the factors mentioned above. In all
 333 experiments, we estimated the true maximum curvature, $\tilde{L}_{max} = \max_{\theta \in S} \|\nabla^2 f(\theta)\|_2$, by sampling
 334 1000 random parameter vectors, $S = \{\theta_i\}_{i=1}^{1000}$, and reporting the largest observed Hessian norm,
 335 \tilde{L}_{max} . **While computing the global maximum curvature is provably intractable Bittel & Kliesch**
 336 **(2021)**, we found a sample set of $S = 1000$ to be sufficient for a stable estimate of the maximum
 337 curvature while being computationally feasible. As detailed in Appendix D.2, **our convergence**
 338 **analysis shows the estimate stabilizes rapidly, and independent runs yield low variance, confirming**
 339 **this method captures the characteristic geometry of the landscape without the prohibitive cost of**
 340 **global optimization**. Our baseline ansatz consists of D layers of single-qubit rotations (R_x, R_y, R_z)
 341 on each of the n qubits, followed by a cycle of CNOT gates for entanglement. Our analysis centers
 342 on the ratio of the empirical curvature to our theoretical upper bound, $\tilde{L}_{max}/L_{upper}$, to quantify
 343 the bound's tightness and understand the landscape's scaling properties. For further details see
 344 Appendix D. **Experiment 1 (Depth and Width):** To isolate the effect of P , we used standard
 345 Pauli rotation gates ($\|G_k\|_2 = 1/2$) and a normalized observable $M = \frac{1}{n} \sum_i Z_i$ ($\|M\|_2 = 1$),
 346 simplifying our bound to $L_{upper} = P$. We varied the qubit count $n \in \{1, 2, 4, 8, 10\}$ and depth
 347 up to $P = 120$. This experiment was repeated for different VQA architectures in Appendix D.3.
 348 **Experiment 2 (Observable Norm):** To test the linear scaling with $\|M\|_2$, we fixed the architecture
 349 ($n \in \{2, 4, 8\}$, $D = 2$) and used the observable $M = Z_0 \otimes Z_1 + w(X_0 + X_1)$, varying w from
 350 0.1 to 5.0 to monotonically increase $\|M\|_2$. This observable represents the Hamiltonian for the
 351 transverse-field Ising model, a classic problem in condensed matter physics and a standard benchmark
 352 for algorithms like VQEs Peruzzo et al. (2014).

353 **Experiment 3 (Expressibility):** Third, we investigate the link between landscape geometry and the
 354 ansatz's "expressibility". A highly expressive model can uniformly explore the entire Hilbert space,
 355 which is crucial for its potential to solve a wide range of problems. We quantify this using the method
 356 from Sim et al. (2019), which compares the model's output distribution to a theoretical ideal using KL
 357 divergence. First, we create an empirical distribution by sampling pairs of random parameter vectors
 358 (θ_1, θ_2) , generating the corresponding states $(|\psi(\theta_1)\rangle, |\psi(\theta_2)\rangle)$, and calculating their similarity,
 359 or fidelity, $F = |\langle\psi(\theta_1)|\psi(\theta_2)\rangle|^2$. This distribution is then compared to the theoretical fidelity
 360 distribution of "Haar-random" states, which represent a perfectly uniform sampling of the state space.
 361 A low KL divergence (D_{KL}) signifies that the ansatz is not confined to a small corner of the state space
 362 but can generate outputs that are representative of the space as a whole, making it highly expressive.
 363 This metric is known to exhibit "expressibility saturation": as circuit depth increases, expressivity
 364 improves (lower D_{KL}), but eventually plateaus. At this point, adding more parameters yields
 365 diminishing returns in representative power, a direct analogue to inefficient overparameterization in
 366 classical models Larocca et al. (2023); You et al. (2022). We extended Experiment 1 to test whether
 367 this saturation point has a direct geometric signature in our landscape curvature metric, allowing for a
 368 side-by-side comparison of the landscape's geometry with the circuit's state-space coverage. Further
 369 details are in Appendix D.1.1.

370 **Experiment 4 (Generator Norms):** To validate the tightness and practical advantages of our bound,
 371 we conducted two distinct numerical experiments comparing it against prior work. Comparison with
 372 Liu et al. (2025): We test our general bound in scenarios with non-uniform generators. We fixed the
 373 architecture ($D = 2, n = \{2, 4, 8\}$) and observable ($\|M\|_2 = 1$). We then constructed circuits by
 374 mixing standard Pauli rotations ($\|G_k\|_2^2 = 1/4$) and weighted rotations where $\|G_k^W\| = 4$. we varied
 375 the ratio of Pauli and weighted gates between 0% and 100%. Comparison with Gu et al. (2021): We
 376 compared our simplified bound $L \leq P\|M\|_2$ for circuits with standard Pauli rotations for physically-
 377 motivated Hamiltonians. We used the same fixed ansatz ($D = 2, n = \{2, 4, 8\}$) and measure the
 378 landscape curvature for three different observables being the Ising Model (non-commuting Pauli X
 379 and Z terms), Heisenberg Model (non-commuting XX, YY, and ZZ terms), and Mixed-Field Model
 380 (more complex with several non-commuting terms) Results are shown in Appendix C.

Figure 1: Empirical validation of the smoothness bound and demonstration of the link between landscape curvature and expressibility.

5.1.1 FINDING 1: CURVATURE VANISHES WITH WIDTH — A GEOMETRIC VIEW OF BARREN PLATEAUS

As shown in Figure 1a and 1b, when the number of qubits n increases while depth is held constant, the ratio $\tilde{L}_{max}/L_{upper}$ decreases rapidly. This demonstrates that the true landscape curvature collapses far more rapidly than our bound, which is linear in P . This finding provides a new, second-order signature of the barren plateau phenomenon. While prior work focused on vanishing gradients (a first-order effect), our results show that as the Hilbert space grows, the landscape undergoes a geometric phase transition into a flat regime where second-order information also vanishes, making gradient-based optimization challenging to use with more qubits.

5.2 FINDING 2: PREDICTABLE CURVATURE SCALING AND ITS LINK TO OVERPARAMETERIZATION

In stark contrast, our experiments focused on depth and observable norm reveal a stable and predictable landscape geometry. As shown in Figure 1a, for a fixed number of qubits n , increasing the number of parameters P (i.e., depth) causes the ratio $\tilde{L}_{max}/L_{upper}$ to stabilize to a constant, non-zero value. We observe the exact same stabilization behavior in Figure 1b, where we fix the circuit architecture and increase the observable's norm, $\|M\|_2$. This stabilization is a crucial finding as the constant ratio implies that the true maximum curvature scales linearly with both the number of parameters and the observable's norm. In other words, the true maximum curvature obeys:

$$\tilde{L}_{max} \propto P \quad \text{and} \quad \tilde{L}_{max} \propto \|M\|_2$$

This predictable linear scaling is a key theoretical finding. It demonstrates that landscape curvature grows in a controlled manner with circuit depth, rather than becoming unstable or chaotic. This regularity is crucial, as it ensures the robustness of gradient-based optimizers and establishes that VQA landscapes possess a far more manageable structure than worst-case analyses might suggest. As shown in Figure 1c, as we add parameters to the circuit, the landscape curvature ratio ($\tilde{L}_{max}/L_{upper}$) initially decreases rapidly. This happens in lockstep with the expressibility metric (D_{KL}), which also decreases as the circuit becomes more capable of exploring the Hilbert space. However, as more parameters are added, both curves eventually begin to plateau (we observe the plateau effect for a wider range of architectures in Appendix D.3). This indicates that the circuit has hit its "expressibility limit" for a given width, where adding more layers provides diminishing returns. **This observation aligns with recent theoretical work on overparameterization based on Dynamical Lie Algebras Larocca et al. (2023), providing a complementary, landscape-based signature of when the ansatz becomes inefficient.** The patterns of initial decrease followed by saturation are remarkably similar for both our geometric metric and the expressibility metric. We theorize that the underlying reason for this strong correlation lies in the concept of parameter redundancy. When a circuit is underparameterized, each parameter is largely non-redundant, providing access to new regions of the Hilbert space and thus having a unique and strong influence on the objective function's gradient, which leads to a landscape with high maximum curvature. Conversely, in the saturated regime, parameters become

increasingly redundant as the transformations from new gates can be approximated by combinations of existing ones. As this functional overlap increases, the landscape’s curvature stops growing relative to its theoretical bound, causing the $\tilde{L}_{max}/L_{upper}$ ratio to flatten out precisely when the circuit’s expressibility saturates. Therefore, the plateau in the $\tilde{L}_{max}/L_{upper}$ ratio is the geometric manifestation of the circuit reaching the limit of its representative power for a given width. This establishes our curvature ratio as a powerful and practical diagnostic tool. It can signal the onset of inefficient overparameterization directly from the properties of the optimization landscape, providing a complementary and computationally accessible method for guiding ansatz design.

5.3 HEURISTIC FOR SETTING NEAR OPTIMAL LEARNING RATES

The optimal learning rate, η_{local}^* , at any point in the landscape is inversely proportional to the local curvature, $L_{\theta} = \|\nabla^2 f(\theta)\|_2$. Since computing this local value at every step is intractable, a common strategy is to use a single global learning rate, η_{global} , chosen to be stable even in the regions of highest curvature. This choice is ideally based on the global maximum curvature, \tilde{L}_{max} . Our findings, however, show that \tilde{L}_{max} scales linearly with our bound allowing us to form a much tighter estimate of the true maximum curvature by defining an *effective smoothness constant*:

$$L_{\text{effective}} \triangleq \kappa(n) \cdot L_{\text{upper}}$$

where $\kappa(n)$ is a scaling factor. The stability in $\tilde{L}_{max}/L_{upper}$ for a given width (n) enables an efficient calibration procedure. Let the target circuit have a depth D with a corresponding parameter vector $\theta \in \mathbb{R}^{P(D)}$. A practitioner can estimate $\kappa(n)$ using a computationally inexpensive, shallow circuit of depth $D_{\text{cal}} \ll D$ with its own parameter vector $\theta_{\text{cal}} \in \mathbb{R}^{P(D_{\text{cal}})}$:

$$\kappa(n) \approx \frac{\max_{\theta_{\text{cal}}} \|\nabla^2 f(\theta_{\text{cal}})\|_2}{L_{\text{upper}}(P(D_{\text{cal}}))}$$

This pre-computed factor can then be used to set a near-optimal global learning rate for the much deeper target circuit of depth D :

$$\eta_{\text{global}}^* \approx \frac{1}{L_{\text{effective}}} = \frac{1}{\kappa(n) \cdot L_{\text{upper}}(P(D))}$$

This method replaces blind hyperparameter searches with a theoretically-grounded and empirically-calibrated strategy, directly connecting the learning rate to the circuit’s fundamental geometric properties. We show that this method has a quadratic advantage with minimal error in Appendix 5.3 and find that the “plateau” effect can be observed in a broader range of VQA architectures in Appendix D.3 making this method general. **Crucially, this heuristic is compatible with adaptive methods. The calculated η_{global}^* serves as the optimal base learning rate for optimizers like Adam.** To demonstrate the practical value of our heuristic, we applied it to a common VQA task: finding the ground state energy of the transverse-field Ising model using a Variational Quantum Eigensolver (VQE). For 1, 2, and 4-qubit systems, we first calibrated the scaling factor $\kappa(n)$ on a shallow circuit. We then used the resulting “optimal” learning rate to train much deeper VQEs with both SGD and ADAM Kingma & Ba (2014) optimizers. We compared its performance against three other learning rates: a high rate ($5 \times \eta_{\text{global}}^*$), a low rate ($0.2 \times \eta_{\text{global}}^*$), and a standard default rate (0.01 for SGD, 0.001 for ADAM). As shown in Figures 9 and 10 and summarized in Table 2 (Appendix 5.3), the calibrated learning rate consistently enables faster and more stable convergence than the other learning rates (on average the low learning rate converged 21% slower than the optimal one for ADAM, the high one was on average 54% slower for ADAM and the standard one was 582% slower for ADAM). Additional experimental details are given in Appendix F.2 with detailed results shown in Appendix F.2.1.

5.4 VALIDATION IN NOISY ENVIRONMENTS AND COMPARISON WITH QNG

Finally, to validate our bound in realistic settings, we extended the learning rate heuristic experiment to a noisy environment by inducing depolarizing noise channels after every single and double-qubit

486 gate, coupled with shot-based measurements (1000 shots). We applied our heuristic in this setting and
 487 compared it against the Quantum Natural Gradient (QNG) optimizer to assess its relative value. While
 488 QNG explicitly accounts for geometry by computing the Fubini-Study metric tensor at every step,
 489 this operation is computationally expensive ($\mathcal{O}(P^2)$). As shown in our results in Appendix F (Figure
 490 11, Table 3), our heuristic enables significantly faster convergence while reaching lower energies
 491 compared to standard baselines even in this noisy regime, signaling that our bound accurately captures
 492 the landscape curvature despite the noise. Furthermore, the calibrated learning rate yields more
 493 stable convergence (lower standard deviation) than uncalibrated variants and achieves performance
 494 competitive with the far more expensive QNG optimizer, offering a highly efficient alternative for
 495 NISQ training.

496 6 DISCUSSION

497 In this work, we formally established that VQA objective functions are inherently L-smooth and
 498 derived a tight upper bound for the smoothness constant, $L \leq 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$, which outper-
 499 forms previous estimates. Our empirical analysis revealed that landscape curvature scales predictably
 500 and linearly with circuit depth. We demonstrate that the saturation of this scaling provides a direct,
 501 geometric signature of expressibility saturation, offering a powerful diagnostic tool to identify the
 502 onset of inefficient overparameterization. Additionally we utilize this plateau to develop a heuristic
 503 for setting near optimal learning rates for deep circuits. Our analysis is conducted in a, noiseless
 504 setting or artificially induced noisy environments, allowing for a precise study of the fundamental
 505 geometric properties of VQA landscapes. This approach is intentional and serves as a theoretical
 506 baseline. Future work should investigate how our smoothness bounds and the observed scaling
 507 phenomena behave on real quantum hardware. Specifically, a formal analytical derivation of the
 508 plateau factor $\kappa(n)$ remains an open theoretical challenge, likely requiring random matrix theory
 509 and integration over the Haar measure. Additionally, while our work establishes an upper bound
 510 on the Hessian, investigating lower bounds would be valuable for establishing Polyak-Łojasiewicz
 511 (PL) conditions to guarantee global convergence. Finally, exploring how this calibration integrates
 512 with parameter-free methods (e.g., COCOB) presents a promising direction for fully automated
 513 quantum optimization. Our estimates of the maximum curvature are obtained by random sampling
 514 of parameter vectors rather than solving the global maximization problem $\max_{\theta} \|\nabla^2 f(\theta)\|_2$. While
 515 this stochastic approach cannot guarantee identification of the true maximum, our convergence
 516 experiments (Appendix D.2) demonstrate that a sample size of 1000 is sufficient for the estimates to
 517 stabilize with minimal variation, indicating that the values we report are reliable and representative
 518 of curvature. Importantly this method is computationally feasible as large-scale QML experiments
 519 are notoriously expensive due to the derivative computation methods (i.e. no backpropagation) and
 520 exponentially large Hilbert spaces they operate in opposed to the classical linear growth of neural
 521 networks.

522 523 REPRODUCIBILITY STATEMENT

524 We are committed to ensuring the reproducibility of our work. All theoretical claims are formally
 525 proven in the main text, with detailed derivations presented in Section 4. Further justifications,
 526 including a step-by-step example of the trigonometric polynomial form and an expanded derivation of
 527 the Hessian, are provided in Appendices A and B. The setup for all numerical experiments is detailed
 528 in Section 5, with specific implementation details, software versions (PennyLane v0.38.0), and the
 529 methodology for quantifying expressibility further elaborated in Appendix D. The complete source
 530 code required to replicate our experiments, validate our bounds, and generate all figures is included
 531 in the supplementary materials.

532 REFERENCES

533
 534 Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and Stefan Woerner.
 535 The power of quantum neural networks. *Nature Computational Science*, 1(6):403–409, 2021.
 536
 537 Shun-Ichi Amari. Natural gradient works efficiently in learning. *Neural computation*, 10(2):251–276,
 538 1998.

540 Julian Berberich, Daniel Fink, Daniel Pranjić, Christian Tutschku, and Christian Holm. Training
 541 robust and generalizable quantum models. *Physical Review Research*, 6(4):043326, 2024.
 542

543 Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith,
 544 M Sohaib Alam, Guillermo Alonso-Linaje, B AkashNarayanan, Ali Asadi, et al. PennyLane: Auto-
 545 matic differentiation of hybrid quantum-classical computations. *arXiv preprint arXiv:1811.04968*,
 546 2018.

547 Lennart Bittel and Martin Kliesch. Training variational quantum algorithms is np-hard. *Physical
 548 review letters*, 127(12):120502, 2021.

549 Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles. Cost function
 550 dependent barren plateaus in shallow parametrized quantum circuits. *Nature communications*, 12
 551 (1):1791, 2021.

552 Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. *Nature
 553 Physics*, 15(12):1273–1278, 2019.

554 Yuxuan Du, Zhuozhuo Tu, Xiao Yuan, and Dacheng Tao. Efficient measure for the expressivity of
 555 variational quantum algorithms. *Physical Review Letters*, 128(8):080506, 2022.

556 Andi Gu, Angus Lowe, Pavel A Dub, Patrick J Coles, and Andrew Arrasmith. Adaptive shot allocation
 557 for fast convergence in variational quantum algorithms. *arXiv preprint arXiv:2108.10434*, 2021.

558 Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Connecting ansatz expressibility to
 559 gradient magnitudes and barren plateaus. *PRX quantum*, 3(1):010313, 2022.

560 Zhirui Hu, Peiyan Dong, Zhepeng Wang, Youzuo Lin, Yanzhi Wang, and Weiwen Jiang. Quantum
 561 neural network compression. In *Proceedings of the 41st IEEE/ACM International Conference on
 562 Computer-Aided Design*, pp. 1–9, 2022.

563 Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow,
 564 and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and
 565 quantum magnets. *nature*, 549(7671):242–246, 2017.

566 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 567 arXiv:1412.6980*, 2014.

568 Emiel Koridon, Joana Fraxanet, Alexandre Dauphin, Lucas Visscher, Thomas E O’Brien, and Stefano
 569 Polla. A hybrid quantum algorithm to detect conical intersections. *Quantum*, 8:1259, 2024.

570 Ankit Kulshrestha, Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, Bao Bach, and Ilya Safro. Qadaprune:
 571 Adaptive parameter pruning for training variational quantum circuits. In *2024 IEEE International
 572 Conference on Quantum Computing and Engineering (QCE)*, volume 2, pp. 120–125. IEEE, 2024.

573 Christopher Kverne, Mayur Akewar, Yuqian Huo, Tirthak Patel, and Janki Bhimani. Quantum neural
 574 networks need checkpointing. In *Proceedings of the 17th ACM Workshop on Hot Topics in Storage
 575 and File Systems*, pp. 93–99, 2025.

576 Martin Larocca, Nathan Ju, Diego García-Martín, Patrick J Coles, and Marco Cerezo. Theory of
 577 overparametrization in quantum neural networks. *Nature Computational Science*, 3(6):542–551,
 578 2023.

579 Alistair Letcher, Stefan Woerner, and Christa Zoufal. Tight and efficient gradient bounds for
 580 parameterized quantum circuits. *Quantum*, 8:1484, 2024.

581 Junyu Liu, Frederik Wilde, Antonio Anna Mele, Xin Jin, Liang Jiang, and Jens Eisert. Stochastic
 582 noise can be helpful for variational quantum algorithms. *Physical Review A*, 111(5):052441, 2025.

583 Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren
 584 plateaus in quantum neural network training landscapes. *Nature communications*, 9(1):4812, 2018.

585 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 586 *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814,
 587 2010.

594 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
 595 Science & Business Media, 2013.

596

597 Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge
 598 university press, 2010.

599

600 Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe. Entanglement-induced barren plateaus.
 601 *PRX quantum*, 2(4):040316, 2021.

602

603 Taylor L Patti, Khadijeh Najafi, Xun Gao, and Susanne F Yelin. Entanglement devised barren plateau
 mitigation. *Physical Review Research*, 3(3):033090, 2021.

604

605 Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love,
 606 Alán Aspuru-Guzik, and Jeremy L O'brien. A variational eigenvalue solver on a photonic quantum
 607 processor. *Nature communications*, 5(1):4213, 2014.

608

609 Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating
 analytic gradients on quantum hardware. *Physical Review A*, 99(3):032331, 2019.

610

611 Pinaki Sen, Amandeep Singh Bhatia, Kamalpreet Singh Bhangu, and Ahmed Elbeltagi. Variational
 612 quantum classifiers through the lens of the hessian. *Plos one*, 17(1):e0262346, 2022.

613

614 Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entangling capability of
 615 parameterized quantum circuits for hybrid quantum-classical algorithms. *Advanced Quantum
 Technologies*, 2(12):1900070, 2019.

616

617 James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo. Quantum natural gradient. *Quantum*,
 4:269, 2020.

618

619 Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K Fährmann, Barthélémy Meynard-
 620 Piganeau, and Jens Eisert. Stochastic gradient descent for hybrid quantum-classical optimization.
 621 *Quantum*, 4:314, 2020.

622

623 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricuț,
 624 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

625

626 YS Teo. Optimized numerical gradient and hessian estimation for variational quantum algorithms.
 627 *Physical Review A*, 107(4):042421, 2023.

628

629 Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and
 630 Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. *Nature commu-
 nications*, 12(1):6961, 2021.

631

632 David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin. General parameter-shift rules for
 633 quantum gradients. *Quantum*, 6:677, 2022.

634

635 Xuchen You, Shouvanik Chakrabarti, and Xiaodi Wu. A convergence theory for over-parameterized
 636 variational quantum eigensolvers. *arXiv preprint arXiv:2205.12481*, 2022.

637

638

639

640

641

642

643

644

645

646

647

648 Appendices

651 A JUSTIFICATION FOR THE TRIGONOMETRIC POLYNOMIAL FORM

653 In the main text, we show that VQAs belong to a well behaved continuous class of functions being
 654 multivariate trigonometric polynomial. A critical step in this induction relies on the fact that the
 655 matrix elements of a parameterized unitary gate, $U_k(\theta_k)$, are themselves trigonometric polynomials
 656 of the parameter θ_k . Here, we provide additional details for this property and show the proof for
 657 Lemma 1.

659 A.1 PROOF OF LEMMA 1

661 *Proof.* We prove by induction on the number of applied gates, k , that each amplitude $c_i(\theta)$ of
 662 the state vector $|\psi(\theta)\rangle$ is a multivariate trigonometric polynomial. A function is a multivariate
 663 trigonometric polynomial if it can be expressed as a finite linear combination of complex exponentials.
 664 Mathematically, this means each amplitude $c_i(\theta)$ can be written in the form:

$$665 \quad c_i(\theta) = \sum_{\omega \in \Omega_i} d_{\omega}^{(i)} e^{i(\omega \cdot \theta)}$$

667 where: Ω_i is a finite set of real-valued frequency vectors $\omega = (\omega_1, \dots, \omega_P)$, and $d_{\omega}^{(i)}$ are complex
 668 coefficients.
 669

670 **Inductive Hypothesis:** Assume that after $k - 1$ gates, the amplitudes of the state $|\psi_{k-1}\rangle$ are
 671 trigonometric polynomials of the parameters applied so far.

672 **Base Case ($k = 0$):** The circuit has no gates. The state is the initial state $|\psi_0\rangle = |0\rangle^{\otimes n}$, whose
 673 amplitudes are constants ($c_0 = 1$, and $c_{i>0} = 0$). Constants are trivial trigonometric polynomials of
 674 degree zero.

675 **Inductive Step:** Consider the k -th gate, U_k . The new state is $|\psi_k\rangle = U_k |\psi_{k-1}\rangle$, and its amplitudes
 676 c'_i are given by the linear transformation $c'_i = \sum_j (U_k)_{ij} c_j$. We examine two cases for U_k :

678 **Case 1. U_k is a parameterized gate:** Consider the k -th gate, $U_k(\theta_k) = \exp(-i\theta_k G_k)$. By the
 679 spectral theorem (see Appendix A.3), the matrix elements $(U_k)_{ij}$ are finite sums of terms like
 680 $a_{lm} e^{-i\theta_k \lambda_m}$, where λ_m are the real eigenvalues of the generator G_k . Since the set of multivariate
 681 trigonometric polynomials is closed under addition and multiplication, the new amplitudes, which are
 682 linear combinations of the old amplitudes and the elements $(U_k)_{ij}$, are also multivariate trigonometric
 683 polynomials. The frequencies of the resulting polynomial are sums of the frequencies from previous
 684 steps and the eigenvalues of the generators applied.

685 **Case 2. U_k is a fixed gate:** The matrix elements $(U_k)_{ij}$ are constant complex numbers. The new
 686 amplitudes are finite linear combinations of the previous amplitudes. By the inductive hypothesis,
 687 the previous amplitudes are trigonometric polynomials, and a linear combination of trigonometric
 688 polynomials is itself a trigonometric polynomial.

689 By the principle of induction, the amplitudes $c_i(\theta)$ of the final state vector are multivariate trigono-
 690 metric polynomials. Finally, the objective function is given by $f(\theta) = \sum_{i,j} c_i^*(\theta) M_{ij} c_j(\theta)$. Since
 691 the complex conjugate of a trigonometric polynomial is also a trigonometric polynomial, $f(\theta)$ is a
 692 sum of products of trigonometric polynomials and constants (M_{ij}). It is therefore itself a multivariate
 693 trigonometric polynomial. \square

695 A.2 WARM UP EXAMPLE FOR QUANTUM STATE EVOLUTIONS

697 To demonstrate the trigonometric polynomial property of VQAs (Lemma 1) let's begin our warm up
 698 example with a simple 2-qubit case initialized in:

$$699 \quad |\psi_0\rangle = |0\rangle^{\otimes 2} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

as our basecase follows each amplitude c_1, c_2, c_3, c_4 is a trigonometric polynomial of an arbitrary degree (i.e. $\sin^0(x)$ or $0 \cdot \sin(x)$). **Step 1: Applying a parametrized gate.** Let $U_1(\theta_1) = e^{-i\theta_1 X} = R_x(\theta_1)$. Its matrix form is:

$$R_x(\theta_1) = \begin{pmatrix} \cos(\theta_1/2) & -i \sin(\theta_1/2) \\ -i \sin(\theta_1/2) & \cos(\theta_1/2) \end{pmatrix}$$

To apply this gate to the first qubit of our 2-qubit system, we must apply the identity operator I to the second qubit. The full operator for the system is the tensor product of the two, which results in a 4×4 matrix:

$$\begin{aligned} U_{full}(\theta_1) &= R_x(\theta_1) \otimes I = \begin{pmatrix} \cos(\theta_1/2) & -i \sin(\theta_1/2) \\ -i \sin(\theta_1/2) & \cos(\theta_1/2) \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos(\theta_1/2) & 0 & -i \sin(\theta_1/2) & 0 \\ 0 & \cos(\theta_1/2) & 0 & -i \sin(\theta_1/2) \\ -i \sin(\theta_1/2) & 0 & \cos(\theta_1/2) & 0 \\ 0 & -i \sin(\theta_1/2) & 0 & \cos(\theta_1/2) \end{pmatrix} \end{aligned}$$

The new state $|\psi_1\rangle$ is then given by applying this operator to the initial state $|\psi_0\rangle$:

$$\begin{aligned} |\psi_1\rangle &= U_{full}(\theta_1)|\psi_0\rangle = \begin{pmatrix} \cos(\theta_1/2) & 0 & -i \sin(\theta_1/2) & 0 \\ 0 & \cos(\theta_1/2) & 0 & -i \sin(\theta_1/2) \\ -i \sin(\theta_1/2) & 0 & \cos(\theta_1/2) & 0 \\ 0 & -i \sin(\theta_1/2) & 0 & \cos(\theta_1/2) \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} \cos(\theta_1/2) \\ 0 \\ -i \sin(\theta_1/2) \\ 0 \end{pmatrix} \end{aligned}$$

We can see that the new amplitudes of $|\psi_1\rangle$ are $\{\cos(\theta_1/2), 0, -i \sin(\theta_1/2), 0\}$. Each of these is a trigonometric polynomial of the parameter θ_1 , which is consistent with the inductive step for a parameterized gate

Step 2: Applying a Fixed Gate. Next, let's apply a fixed (non-parameterized) entangling gate, such as a CNOT gate where the first qubit is the control and the second is the target. The matrix for this gate is:

$$\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

We apply this to our current state $|\psi_1\rangle$ to get the final state $|\psi_2\rangle$:

$$|\psi_2\rangle = \text{CNOT}|\psi_1\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\theta_1/2) \\ 0 \\ -i \sin(\theta_1/2) \\ 0 \end{pmatrix} = \begin{pmatrix} \cos(\theta_1/2) \\ 0 \\ 0 \\ -i \sin(\theta_1/2) \end{pmatrix}$$

The final amplitudes are linear combinations of the previous amplitudes. Since the previous amplitudes were trigonometric polynomials, the new amplitudes are also trigonometric polynomials. This example demonstrates both cases of the inductive proof and shows how the amplitudes of the state vector maintain their trigonometric polynomial form throughout the circuit's evolution.

Finally let's measure the system by applying an observation $M = Z_0$. The matrix is given by the tensor product of the Pauli Z matrix on the first qubit and the Identity on the second: $Z \otimes I$:

$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

756 Then we compute $\langle \psi_2 | M | \psi_2 \rangle$ which is:
 757

$$(\cos(\theta_1/2) \quad 0 \quad i \sin(\theta_1/2) \quad 0) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \cos(\theta_1/2) \\ 0 \\ 0 \\ -i \sin(\theta_1/2) \end{pmatrix}$$

763 Computing this gives $\langle \psi_2 | M | \psi_2 \rangle = \cos^2(\theta_1/2) - \sin^2(\theta_1/2) = \cos(\theta_1)$, making the final term for
 764 the objective function is still a trigonometric polynomial.
 765

766 A.3 THE SPECTRAL THEOREM

767 The foundation for the proof of Lemma 1 is the spectral theorem, which states that any Hermitian
 768 operator G_k can be diagonalized Nielsen & Chuang (2010). We can express G_k as:
 769

$$770 \quad G_k = VDV^\dagger \quad (7)$$

771 where:

- 772 • D is a real diagonal matrix containing the eigenvalues $(\lambda_1, \lambda_2, \dots, \lambda_N)$ of G_k .
 773
- 774 • V is a unitary matrix whose columns are the corresponding eigenvectors of G_k .
 775
- 776 • V^\dagger is the conjugate transpose of V .
 777

778 A key property of this decomposition is that applying a function f to the matrix G_k is equivalent to
 779 applying the function to its eigenvalues in the diagonal matrix D :
 780

$$781 \quad f(G_k) = Vf(D)V^\dagger \quad (8)$$

782 A.4 DERIVING THE FORM OF A PARAMETERIZED GATE

783 The parameterized gate is defined by the matrix exponential function $f(x) = e^{-i\theta_k x}$ applied to G_k . Using the property from the spectral theorem, we can write the gate $U_k(\theta_k)$ as:
 784

$$785 \quad U_k(\theta_k) = \exp(-i\theta_k G_k) = V \exp(-i\theta_k D) V^\dagger \quad (9)$$

786 Since D is a diagonal matrix, its exponential is simply the exponential of each of its diagonal
 787 elements:
 788

$$789 \quad \exp(-i\theta_k D) = \begin{pmatrix} e^{-i\theta_k \lambda_1} & 0 & \dots & 0 \\ 0 & e^{-i\theta_k \lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{-i\theta_k \lambda_N} \end{pmatrix} \quad (10)$$

793 A.5 THE FORM OF A SINGLE MATRIX ELEMENT

794 To find the form of an individual entry $(U_k)_{ij}$ of the gate, we write out the full matrix multiplication
 795 $U_k = V \exp(-i\theta_k D) V^\dagger$. The entry at the i -th row and j -th column is given by:
 796

$$797 \quad (U_k)_{ij} = \sum_{m=1}^N V_{im} (\exp(-i\theta_k D))_{mm} (V^\dagger)_{mj} \quad (11)$$

800 Substituting the diagonal elements of the exponential matrix, we get:
 801

$$802 \quad (U_k)_{ij} = \sum_{m=1}^N V_{im} (e^{-i\theta_k \lambda_m}) (V^\dagger)_{mj} \quad (12)$$

803 Let's analyze this expression. For a given gate, the eigenvector matrices V and V^\dagger are constant.
 804 Therefore, the terms V_{im} and $(V^\dagger)_{mj}$ are simply complex coefficients. The only dependence on the
 805 parameter θ_k is contained within the complex exponential terms $e^{-i\theta_k \lambda_m}$. This shows that any matrix
 806 element $(U_k)_{ij}$ is a finite linear combination of complex exponentials of θ_k . This is precisely the
 807 definition of a trigonometric polynomial. By Euler's formula, $e^{ix} = \cos(x) + i \sin(x)$, this sum can
 808 be equivalently expressed as a finite sum of sine and cosine functions of θ_k , which completes the
 809 justification required for the inductive proof in the main text.

810 A.6 PROVING L-SMOOTHNESS BY ANALYZING TRIGONOMETRIC POLYNOMIALS
811812 As proven in Lemma 1 the objective function is a multivariate trigonometric polynomial and can
813 therefore be written as a finite Fourier series:
814

815
$$f(\boldsymbol{\theta}) = \sum_{\omega \in \Omega} d_{\omega} e^{i\omega \cdot \boldsymbol{\theta}}$$

816
817

818 We find the hessian entries by differentiating twice:
819

820
$$H_{kl} = \frac{\partial^2}{\partial \theta_k \partial \theta_l} \sum_{\omega \in \Omega} d_{\omega} e^{i\omega \cdot \boldsymbol{\theta}} = \sum_{\omega \in \Omega} (i\omega_k)(i\omega_l) d_{\omega} e^{i\omega \cdot \boldsymbol{\theta}}$$

821
822

823 This simplifies to:
824

825
$$H_{kl} = - \sum_{\omega \in \Omega} \omega_k \omega_l d_{\omega} e^{i\omega \cdot \boldsymbol{\theta}}$$

826
827

828 Now, we take the magnitude of a single Hessian entry and apply the triangle inequality:
829

830
$$|H_{kl}| = \left| - \sum_{\omega \in \Omega} \omega_k \omega_l d_{\omega} e^{i\omega \cdot \boldsymbol{\theta}} \right| \leq \sum_{\omega \in \Omega} |\omega_k \omega_l d_{\omega} e^{i\omega \cdot \boldsymbol{\theta}}|$$

831
832

833 This can be broken down further:
834

835
$$|H_{kl}| \leq \sum_{\omega \in \Omega} |\omega_k| |\omega_l| |d_{\omega}| |e^{i\omega \cdot \boldsymbol{\theta}}|$$

836
837

838 Since $|e^{i\omega \cdot \boldsymbol{\theta}}| = 1$, we get our final bound for a single element:
839

840
$$|H_{kl}| \leq \sum_{\omega \in \Omega} |\omega_k| |\omega_l| |d_{\omega}|$$

841
842

843 Bounding the frequencies: In the expansion of the expectation value $f(\boldsymbol{\theta}) = \langle \psi(\boldsymbol{\theta}) | M | \psi(\boldsymbol{\theta}) \rangle$,
844 the Fourier frequencies along coordinate k arise from *differences* of eigenvalues of the Hermitian
845 generator G_k (bra vs. ket paths). Hence
846

847
$$|\omega_k| \leq |\lambda| + |\lambda'| \leq 2 \|G_k\|_2, \quad |\omega_l| \leq 2 \|G_l\|_2,$$

848

849 so that
850

851
$$|\omega_k \omega_l| \leq 4 \|G_k\|_2 \|G_l\|_2.$$

852

853 Fourier coefficients: Each Fourier coefficient can be written as a matrix element of M between unit
854 vectors generated by (products of) unitaries from the circuit; i.e., there exist unit vectors $(|u_{\omega}\rangle, |v_{\omega}\rangle)$
855 such that:
856

857
$$d_{\omega} = \langle u_{\omega} | M | v_{\omega} \rangle$$

858

859 By the Cauchy–Schwarz inequality, we obtain the uniform bound
860

861
$$|d_{\omega}| \leq \|M\|_2.$$

862
863

864 **Putting it together.** Substituting these bounds gives
 865

$$\begin{aligned} |H_{kl}| &\leq \sum_{\omega \in \Omega} |\omega_k| |\omega_l| |d_\omega| \leq \sum_{\omega \in \Omega} (2\|G_k\|_2)(2\|G_l\|_2) |d_\omega| \\ &\leq 4 \|M\|_2 \|G_k\|_2 \|G_l\|_2. \end{aligned}$$

869 Therefore, elementwise
 870

$$|H_{kl}| \leq B_{kl} \quad \text{with} \quad B_{kl} = 4 \|M\|_2 \|G_k\|_2 \|G_l\|_2.$$

872 As in the main text Theorem 2, defining $v \in \mathbb{R}^P$ by $v_k = \|G_k\|_2$ yields $B = 4\|M\|_2 vv^T$, so
 873 $\|H\|_2 \leq \|B\|_2 = 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$, recovering the bound in Theorem 2. This demonstrates that
 874 each entry H_{kl} is bounded by a constant value. A matrix whose entries are all globally bounded has a
 875 bounded spectral norm. This is a sufficient condition to prove that the VQA objective function is
 876 L-smooth using the trigonometric polynomial form of VQAs.
 877

878 B BOUNDING THE HESSIAN 879

880 Following Theorem 1 after reaching the inequality $|H_{kl}| \leq 4\|M\|_2 \|G_k\|_2 \|G_l\|_2$ we bound L by
 881 finding its spectral norm $L \leq \|B\|_2$. It is worth noting that one could also arrive at this same result
 882 by bounding the spectral norm with the Frobenius norm ($\|\cdot\|_2 \leq \|\cdot\|_F$). While this inequality
 883 can be loose, in our specific case the bound matrix B is a rank-1 matrix, for which the spectral and
 884 Frobenius norms are identical. Thus, both proof strategies are equally tight and yield the same bound.
 885

886 B.1 FINDING A TERM FOR THE HESSIAN ELEMENTS – DETAILED DERIVATION

888 The VQA objective function is defined as the expectation value of an observable M with respect to
 889 the parameterized state $|\psi(\theta)\rangle$:

$$f(\theta) = \langle \psi(\theta) | M | \psi(\theta) \rangle$$

890 Taking the first derivative with respect to a single parameter θ_k using the product rule yields:
 891

$$\frac{\partial f(\theta)}{\partial \theta_k} = \frac{\partial \langle \psi(\theta) |}{\partial \theta_k} M | \psi(\theta) \rangle + \langle \psi(\theta) | M \frac{\partial | \psi(\theta) \rangle}{\partial \theta_k}$$

894 Since the observable M is a Hermitian operator ($M = M^\dagger$), the two terms in the expression are
 895 complex conjugates of each other. Recall that for any complex number z , $z + z^* = 2\text{Re}(z)$. This
 896 allows for the simplification:
 897

$$\frac{\partial f(\theta)}{\partial \theta_k} = 2\text{Re} \left(\langle \psi(\theta) | M \frac{\partial | \psi(\theta) \rangle}{\partial \theta_k} \right)$$

900 Using this first derivative term we can now find a term for the second derivative or hessian element
 901 H_{kl} .

902 **Lemma 3.** *The elements of the Hessian matrix, $H_{kl} = \frac{\partial^2 f(\theta)}{\partial \theta_l \partial \theta_k}$, are given by the expression:*
 903

$$H_{kl} = 2\text{Re} \left(\frac{\partial \langle \psi(\theta) |}{\partial \theta_l} M \frac{\partial | \psi(\theta) \rangle}{\partial \theta_k} + \langle \psi(\theta) | M \frac{\partial^2 | \psi(\theta) \rangle}{\partial \theta_l \partial \theta_k} \right)$$

907 *Proof.* We begin with the simplified expression for the first partial derivative:
 908

$$\frac{\partial f(\theta)}{\partial \theta_k} = 2\text{Re} \left(\langle \psi(\theta) | M \frac{\partial | \psi(\theta) \rangle}{\partial \theta_k} \right)$$

911 To find the Hessian element H_{kl} , we differentiate this expression with respect to another parameter,
 912 θ_l :

$$H_{kl} = \frac{\partial}{\partial \theta_l} \left[2\text{Re} \left(\langle \psi(\theta) | M \frac{\partial | \psi(\theta) \rangle}{\partial \theta_k} \right) \right]$$

915 Since differentiation and the real part operator are both linear operations, their order can be inter-
 916 changed:

$$H_{kl} = 2\text{Re} \left[\frac{\partial}{\partial \theta_l} \left(\langle \psi(\theta) | M \frac{\partial | \psi(\theta) \rangle}{\partial \theta_k} \right) \right]$$

918 We now apply the product rule to the term inside the brackets:
 919

$$920 \frac{\partial}{\partial \theta_l} \left(\langle \psi(\theta) | M \frac{\partial |\psi(\theta)\rangle}{\partial \theta_k} \right) = \left(\frac{\partial \langle \psi(\theta) |}{\partial \theta_l} \right) \left(M \frac{\partial |\psi(\theta)\rangle}{\partial \theta_k} \right) + \langle \psi(\theta) | M \left(\frac{\partial^2 |\psi(\theta)\rangle}{\partial \theta_l \partial \theta_k} \right)$$

922 Substituting this result back into the expression for H_{kl} yields the final form, which matches the
 923 expression used in the main text:

$$924 H_{kl} = 2\text{Re} \left(\frac{\partial \langle \psi(\theta) |}{\partial \theta_l} M \frac{\partial |\psi(\theta)\rangle}{\partial \theta_k} + \langle \psi(\theta) | M \frac{\partial^2 |\psi(\theta)\rangle}{\partial \theta_l \partial \theta_k} \right)$$

926 This completes the derivation. \square
 927

928 **B.2 HESSIAN VIA THE PARAMETER-SHIFT RULE – PRACTICAL COMPUTE ON QUANTUM
 929 HARDWARE**

931 An alternative to direct analytical differentiation for finding the Hessian elements is to apply the
 932 parameter-shift rule successively. This method is particularly relevant for executing on quantum
 933 hardware, as it expresses the second derivatives in terms of expectation values of the original circuit
 934 with shifted parameters. The parameter-shift rule is applicable for gates of the form $U_k(\theta_k) =$
 935 $e^{-i\theta_k G_k}$, where the generator G_k has two unique eigenvalues, $\pm r_k$ Schuld et al. (2019); Wierichs
 936 et al. (2022).

937 The first derivative of the objective function $f(\theta)$ with respect to a parameter θ_k is given by:
 938

$$939 \frac{\partial f(\theta)}{\partial \theta_k} = r_k [f(\theta_k^+) - f(\theta_k^-)]$$

941 where $f(\theta_k^\pm)$ denotes an evaluation of the function with the k -th parameter shifted by an amount
 942 $s_k = \frac{\pi}{4r_k}$, i.e., $\theta_k \rightarrow \theta_k \pm s_k$. For standard single-qubit Pauli rotation gates (R_x, R_y, R_z), the
 943 generator is $G_k = \frac{1}{2}P_i$, which has eigenvalues $\pm \frac{1}{2}$. This results in $r_k = 1/2$ and a shift of $s_k = \pi/2$.
 944 To find the Hessian elements $H_{kl} = \frac{\partial^2 f(\theta)}{\partial \theta_l \partial \theta_k}$, we differentiate the expression for the first derivative.
 945 We consider two cases.
 946

947 **B.2.1 CASE 1: OFF-DIAGONAL ELEMENTS ($k \neq l$)**
 948

949 We differentiate the first derivative with respect to a different parameter θ_l :

$$950 H_{kl} = \frac{\partial}{\partial \theta_l} \left(\frac{\partial f(\theta)}{\partial \theta_k} \right) = \frac{\partial}{\partial \theta_l} [r_k (f(\theta_k^+) - f(\theta_k^-))]$$

952 Since differentiation is a linear operator, we can bring it inside the brackets:
 953

$$954 H_{kl} = r_k \left[\frac{\partial f(\theta_k^+)}{\partial \theta_l} - \frac{\partial f(\theta_k^-)}{\partial \theta_l} \right]$$

956 We now apply the parameter-shift rule again for the derivative with respect to θ_l on each term. The
 957 shift for θ_l is $s_l = \frac{\pi}{4r_l}$.
 958

$$959 \frac{\partial f(\theta_k^+)}{\partial \theta_l} = r_l [f(\dots, \theta_k + s_k, \dots, \theta_l + s_l, \dots) - f(\dots, \theta_k + s_k, \dots, \theta_l - s_l, \dots)]$$

$$961 \frac{\partial f(\theta_k^-)}{\partial \theta_l} = r_l [f(\dots, \theta_k - s_k, \dots, \theta_l + s_l, \dots) - f(\dots, \theta_k - s_k, \dots, \theta_l - s_l, \dots)]$$

963 Substituting these back and combining terms, we arrive at the general expression for the off-diagonal
 964 elements of the Hessian:
 965

$$966 H_{kl} = r_k r_l \left[f(\theta_{k,l}^{++}) - f(\theta_{k,l}^{+-}) - f(\theta_{k,l}^{-+}) + f(\theta_{k,l}^{--}) \right] \quad (13)$$

969 where $f(\theta_{k,l}^{\alpha\beta})$ denotes evaluating f with θ_k shifted by αs_k and θ_l shifted by βs_l , with $\alpha, \beta \in \{+, -\}$.
 970 For standard Pauli rotations, where $r_k = r_l = 1/2$ and $s_k = s_l = \pi/2$, this becomes:

$$971 H_{kl} = \frac{1}{4} \left[f(\theta_k + \frac{\pi}{2}, \theta_l + \frac{\pi}{2}) - f(\theta_k + \frac{\pi}{2}, \theta_l - \frac{\pi}{2}) - f(\theta_k - \frac{\pi}{2}, \theta_l + \frac{\pi}{2}) + f(\theta_k - \frac{\pi}{2}, \theta_l - \frac{\pi}{2}) \right]$$

972 B.2.2 CASE 2: DIAGONAL ELEMENTS ($k = l$)
973974 For the diagonal elements, we differentiate with respect to the same parameter θ_k twice. This is
975 equivalent to applying a central finite difference formula to the first derivative:
976

977
$$H_{kk} = \frac{\partial^2 f(\boldsymbol{\theta})}{\partial \theta_k^2} = r_k \left[\frac{\partial f(\boldsymbol{\theta}_k^+)}{\partial \theta_k} - \frac{\partial f(\boldsymbol{\theta}_k^-)}{\partial \theta_k} \right]$$

978

979 Applying the chain rule, $\frac{\partial f(\theta_k \pm s_k)}{\partial \theta_k}$ is simply the first derivative of f evaluated at the shifted point.
980 Using the parameter-shift rule for these terms gives:
981

982
$$\frac{\partial f(\boldsymbol{\theta}_k^+)}{\partial \theta_k} = r_k [f(\dots, (\theta_k + s_k) + s_k, \dots) - f(\dots, (\theta_k + s_k) - s_k, \dots)] = r_k [f(\boldsymbol{\theta}_k^{2+}) - f(\boldsymbol{\theta})]$$

983
984
$$\frac{\partial f(\boldsymbol{\theta}_k^-)}{\partial \theta_k} = r_k [f(\dots, (\theta_k - s_k) + s_k, \dots) - f(\dots, (\theta_k - s_k) - s_k, \dots)] = r_k [f(\boldsymbol{\theta}) - f(\boldsymbol{\theta}_k^{2-})]$$

985
986

987 where $\boldsymbol{\theta}_k^{2\pm}$ denotes a shift of $\theta_k \rightarrow \theta_k \pm 2s_k$. Substituting back, we obtain:
988

989
$$H_{kk} = r_k^2 [f(\boldsymbol{\theta}_k^{2+}) - 2f(\boldsymbol{\theta}) + f(\boldsymbol{\theta}_k^{2-})] \quad (14)$$

990

991 For standard Pauli rotations, $r_k = 1/2$ and $2s_k = \pi$, so the expression simplifies to:
992

993
$$H_{kk} = \frac{1}{4} [f(\theta_k + \pi) - 2f(\theta_k) + f(\theta_k - \pi)]$$

994

995 B.2.3 COMPUTE REQUIREMENTS – USING QUANTUM HARDWARE
996997 These formulas show that every element of the Hessian can be calculated by evaluating the original
998 objective function at different parameter values. This provides a practical, albeit potentially costly,
999 method for calculating the Hessian, whose spectral norm is shown to be globally bounded by our
1000 main result. Practically speaking this means you would need a total of 4 forward passes to compute a
1001 single hessian element H_{kl} at the shifts $\{s_k^+ s_l^+, s_k^+ s_l^-, s_k^- s_l^+, s_k^- s_l^-\}$. For the diagonal elements this
1002 reduces to 2 forward passes at the shifts $\{2s_k^+, 2s_l^-\}$. The total number of forward passes to compute
1003 a $P \times P$ hessian matrix for a parameter vector, $\boldsymbol{\theta}$, is then given by:
1004

1005
$$FP_{\boldsymbol{\theta}} = \mathcal{M}_s [4(P^2 - P) + 2P + 1] \quad (15)$$

1006

1007 Importantly on real quantum hardware each forward pass needs to be ran several times due to the
1008 quantum state collapse to get a final output distribution or objective value. The number of shots
1009 determines how many times you run the circuit where a higher value giving a more accurate measure
1010 of $f(\boldsymbol{\theta})$, this is denoted by \mathcal{M}_s where the number of shots is typically set around: $\mathcal{M}_s \sim 1000$.
10111012 C EMPIRICAL & ANALYTICAL COMPARISON WITH PRIOR SMOOTHNESS
1013 BOUNDS
10141015 C.1 TIGHTNESS ANALYSIS
10161017 The results from Experiment 4 confirm that our bound offers significant improvements over prior
1018 work in terms of tightness and applicability. As seen in Figure 2, for circuits with mixed-norm
1019 generators, our bound provides a far tighter estimate of the true curvature than the Liu et al. (2025)
1020 bound. For the 25% ratio of weighted and standard rotations our bound ratio $\tilde{L}_{max}/L_{upper}$ is 232.8%
1021 higher than the bound ratio from Liu et al. (2025). The Liu et al. (2025) bound scales with the single
1022 maximum generator norm, making it overly conservative when even one gate has a large norm. Our
1023 bound, by summing the individual contributions, more accurately reflects the landscape’s geometry.
1024 We see similar trends when comparing our bound with the one from Gu et al. (2021) using the three
1025 different observables we see our ratio in the Ising model being 41.4% higher than the \tilde{L}_{max}/L_{Gu}
ratio.
1026

Figure 2: $\tilde{L}_{max}/L_{upper}$ ratio using our upper bound and Liu et al. (2025) bound with different ratios of weighted generators G^W and standard Pauli gates.

Figure 3: $\tilde{L}_{max}/L_{upper}$ ratio using our upper bound and Gu et al. (2021) bound with three different observables.

C.2 DETAILED ANALYTICAL AND EMPIRICAL COMPARISON WITH PRIOR SMOOTHNESS BOUNDS

This section provides a formal mathematical comparison between our derived smoothness bound and the bounds from Gu et al. (2021) and Liu et al. (2025) seen in Table 1. We will prove that our bound is always at least as tight and quantify the **improvement factor** under various conditions, demonstrating its practical advantages, particularly for circuits with non-uniform gate generators or complex observables.

C.2.1 COMPARISON WITH GU ET AL. (2021)

The bound from Gu et al. (2021) is applicable to VQAs where parameterized gates are Pauli rotations. An observable M can be decomposed into a weighted sum of r Pauli strings ρ_k :

$$M = \sum_{k=1}^r \mu_k \rho_k$$

where μ_k are real coefficients.

- **Gu et al. (2021):** $L_{Gu} \leq P \sum_{k=1}^r |\mu_k|$

1080
1081
1082

- **Our Bound (simplified for Pauli rotations):** As shown in Corollary 1, when all gates are standard Pauli rotations ($\|G_k\|_2 = 1/2$), our general bound simplifies to $L_{ours} \leq P\|M\|_2$.

1083 **Proposition 1:** Our bound is always tighter than or equal to the Gu et al. (2021) bound.

1084 *Proof.* We compare the core components of the bounds: $\|M\|_2$ and $\sum_k |\mu_k|$. By applying the triangle
1085 inequality to the operator norm and using the fact that the spectral norm of any Pauli string is one
1086 ($\|\rho_k\|_2 = 1$), we have:

$$1087 \|M\|_2 = \left\| \sum_{k=1}^r \mu_k \rho_k \right\|_2 \leq \sum_{k=1}^r \|\mu_k \rho_k\|_2 = \sum_{k=1}^r |\mu_k| \cdot \|\rho_k\|_2 = \sum_{k=1}^r |\mu_k|$$

1090 Since $\|M\|_2 \leq \sum_k |\mu_k|$, it follows directly that $P\|M\|_2 \leq P \sum_k |\mu_k|$, and thus $L_{ours} \leq L_{Gu}$. \square
1091

1092 To quantify the advantage, we define the **improvement factor** $\mathcal{I}_{Gu \rightarrow ours}$:

$$1093 \mathcal{I}_{Gu \rightarrow ours} = \frac{L_{Gu}}{L_{ours}} = \frac{P \sum_{k=1}^r |\mu_k|}{P\|M\|_2} = \frac{\sum_{k=1}^r |\mu_k|}{\|M\|_2}$$

1096 The tightness of our bound is determined by the gap in the triangle inequality. We can characterize
1097 the range of this improvement: $\mathcal{I}_{Gu \rightarrow ours} \in [1, r]$.

1098
1099
1100
1101
1102

- **Case 1: Minimum Improvement ($\mathcal{I} = 1$)** The bounds are equal if $\|M\|_2 = \sum_k |\mu_k|$. This occurs in specific cases, such as when all Pauli strings in the decomposition of M commute and share an eigenbasis (e.g., $M = \mu_1 Z_1 + \mu_2 Z_2$). In this scenario, the eigenvalues of M are sums of the eigenvalues of the Pauli strings, and the largest eigenvalue's magnitude equals the sum of the coefficient magnitudes.
- **Case 2: Significant Improvement ($\mathcal{I} > 1$)** For many physically relevant Hamiltonians, the Pauli terms do not commute. Consider an observable composed of r pairwise anti-commuting Pauli strings, each with equal weight $|\mu_k| = \mu$. In this case, $M^2 = (\mu \sum_{k=1}^r \rho_k)^2 = \mu^2(rI) = r\mu^2 I$. The eigenvalues of M are $\pm\mu\sqrt{r}$, so the spectral norm is $\|M\|_2 = \mu\sqrt{r}$. The improvement factor is:

$$1108 \mathcal{I}_{Gu \rightarrow ours} = \frac{r \cdot \mu}{\mu\sqrt{r}} = \sqrt{r}$$

1110 For problems like the transverse-field Ising model on n qubits, where the Hamiltonian
1111 involves a sum of $\sim 2n$ non-commuting Pauli terms, our bound can be tighter by a factor of
1112 $\Theta(\sqrt{n})$.

1113 C.2.2 COMPARISON WITH LIU ET AL. (2025)

1114 This comparison applies to general VQA circuits, not just those with Pauli rotations.

1115
1116
1117

- **Liu et al. (2025):** $L_{Liu} \leq 4\|M\|_2 \cdot P \cdot (\max_k \|G_k\|_2)^2$
- **Our Bound:** $L_{ours} \leq 4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2$

1118 **Proposition 2:** Our bound is always tighter than or equal to the Liu et al. (2025) bound.

1119 *Proof.* Let $g_k = \|G_k\|_2^2$. The sum of these values is $\sum_{k=1}^P g_k$. The maximum value is $\max_k g_k$. It is
1120 a basic inequality that for any set of non-negative numbers $\{g_k\}$:

$$1121 \sum_{k=1}^P g_k \leq \sum_{k=1}^P (\max_j g_j) = P \cdot (\max_j g_j)$$

1122 Substituting $g_k = \|G_k\|_2^2$, we get $\sum_{k=1}^P \|G_k\|_2^2 \leq P \cdot (\max_k \|G_k\|_2)^2$. Multiplying by the common
1123 factor $4\|M\|_2$ preserves the inequality, proving $L_{ours} \leq L_{Liu}$. \square

1124 The **improvement factor** is the ratio of the two bounds:

$$1125 \mathcal{I}_{Liu \rightarrow ours} = \frac{L_{Liu}}{L_{ours}} = \frac{4\|M\|_2 \cdot P \cdot (\max_k \|G_k\|_2)^2}{4\|M\|_2 \sum_{k=1}^P \|G_k\|_2^2} = \frac{P \cdot (\max_k \|G_k\|_2)^2}{\sum_{k=1}^P \|G_k\|_2^2}$$

1126 The improvement factor lies in the interval $\mathcal{I}_{Liu \rightarrow ours} \in [1, P]$.

- **Case 1: Minimum Improvement** ($\mathcal{I} = 1$) The bounds are identical if and only if all generator norms are equal, i.e., $\|G_k\|_2 = c$ for all k . This corresponds to a circuit with **uniform generators**. In this case, $\sum_k \|G_k\|_2^2 = P \cdot c^2$ and $P \cdot (\max_k \|G_k\|_2)^2 = P \cdot c^2$, making the ratio 1.
- **Case 2: Maximum Improvement** ($\mathcal{I} \rightarrow P$) The bound from Liu et al. becomes least tight for circuits with **heterogeneous generators**, where one or a few generators have a significantly larger norm than the others. Consider a circuit where one generator has a large norm-squared, $\|G_1\|_2^2 = C_{\max}$, while the other $P - 1$ generators have a very small norm-squared, $\|G_{k>1}\|_2^2 = \epsilon \rightarrow 0$. The improvement factor becomes:

$$\mathcal{I}_{Liu \rightarrow ours} = \frac{P \cdot C_{\max}}{C_{\max} + (P - 1)\epsilon} \xrightarrow{\epsilon \rightarrow 0} \frac{P \cdot C_{\max}}{C_{\max}} = P$$

Our bound can be up to P times tighter in such highly non-uniform scenarios.

D SPECIFIC DETAILS: EXPERIMENTAL SETUP

D.1 QUANTIFYING ANSATZ EXPRESSIBILITY

In Experiment 3, we investigate the connection between the geometric properties of the optimization landscape and the ansatz’s “expressibility”. Expressibility is a measure of a parameterized quantum circuit’s (PQC) ability to generate quantum states that are well-representative of the entire Hilbert space Du et al. (2022); Sim et al. (2019). A highly expressive ansatz can explore a large volume of the state space, which is often considered a desirable trait for tackling a wide range of problems. To quantitatively measure this property, we adopt the statistical methodology proposed by Sim et al. (2019).

D.1.1 MATHEMATICAL FRAMEWORK

The core idea is to quantify the difference between the distribution of states generated by a PQC and the uniform distribution of states over the Hilbert space, known as the ensemble of Haar-random states. This comparison is performed not on the states themselves, but on the distribution of fidelities between pairs of states. Let $|\psi(\theta)\rangle$ and $|\psi(\phi)\rangle$ be two quantum states generated by the same PQC but with independently sampled parameter vectors θ and ϕ . The fidelity between these two pure states is given by:

$$F = |\langle\psi(\theta)|\psi(\phi)\rangle|^2 \quad (16)$$

For the ensemble of Haar-random states, the probability density function of these fidelities has a known analytical form:

$$P_{\text{Haar}}(F) = (N - 1)(1 - F)^{N-2} \quad (17)$$

where $N = 2^n$ is the dimension of the Hilbert space for an n -qubit system. The expressibility of a PQC, which we denote as $Expr$, is then defined as the Kullback-Leibler (KL) divergence between the PQC’s empirically estimated fidelity distribution, $\hat{P}_{PQC}(F)$, and the theoretical Haar distribution, $P_{\text{Haar}}(F)$:

$$Expr = D_{KL}(\hat{P}_{PQC}(F; \theta) \parallel P_{\text{Haar}}(F)) = \int_0^1 \hat{P}_{PQC}(F; \theta) \log \left(\frac{\hat{P}_{PQC}(F; \theta)}{P_{\text{Haar}}(F)} \right) dF \quad (18)$$

A lower D_{KL} value signifies higher expressibility, as it indicates that the distribution of states generated by the PQC is statistically closer to the uniform Haar distribution.

D.1.2 NUMERICAL ESTIMATION

In practice, the continuous distribution $\hat{P}_{PQC}(F)$ must be estimated from a finite number of samples. Our implementation follows the procedure outlined by Sim et al. (2019) and is realized in our code by the `calculate_expressibility_kld` function. The process involves four main steps:

1. **Parameter Sampling:** We generate S pairs of parameter vectors, $\{(\theta_i, \phi_i)\}_{i=1}^S$. Each element of every vector is drawn independently from a uniform distribution over $[0, 2\pi]$. In our experiments, we used $S = 2000$ sample pairs.
2. **State Generation and Fidelity Calculation:** For each parameter vector pair (θ_i, ϕ_i) , we execute the ansatz to produce the corresponding state vectors $|\psi(\theta_i)\rangle$ and $|\psi(\phi_i)\rangle$. The fidelity $F_i = |\langle\psi(\theta_i)|\psi(\phi_i)\rangle|^2$ is then computed.
3. **Distribution Discretization:** To approximate the integral, we discretize the fidelity domain $[0, 1]$ into $k = 75$ bins, matching the methodology in the reference study. We then construct a normalized histogram of the S calculated fidelities to produce a discrete probability distribution for the PQC, \hat{P}_{PQC} . The theoretical Haar distribution, P_{Haar} , is also evaluated at the center of these bins to create a corresponding discrete distribution.
4. **KL Divergence Computation:** With the two discrete probability distributions, the KL divergence is calculated as a sum:

$$D_{KL} = \sum_{j=1}^k \hat{P}_{PQC}(\text{bin}_j) \log \left(\frac{\hat{P}_{PQC}(\text{bin}_j)}{P_{\text{Haar}}(\text{bin}_j)} \right) \quad (19)$$

where j indexes the histogram bins.

This numerical procedure provides the D_{KL} value used in our analysis to track how the expressibility of our ansatz changes with circuit depth.

Figure 4: Standard VQA architecture with data encoding, variational layers, and measurement. The circuit begins with an encoding block $\mathfrak{A}(\vec{x}_i)$ that maps classical data to quantum states, followed by alternating parametrized rotations (R_x, R_y, R_z) and entangling CNOT gates arranged in layers. The final measurement observable $\langle \psi | M | \psi \rangle$ extracts the computational result. This circuit represents the one used in Section 5.

D.2 JUSTIFICATION OF SAMPLING METHODOLOGY FOR CURVATURE ESTIMATION

To validate our theoretical bound, we conducted numerical experiments to isolate the impact of circuit depth/width (P/n), observable norm ($\|M\|_2$), and generator norms ($\|G_k\|_2$). A core component of this validation is estimating the true maximum landscape curvature, \tilde{L}_{max} .

Formally, the smoothness constant L is determined by the global maximum of the Hessian's spectral norm over the entire parameter space: $\tilde{L}_{max} = \max_{\theta \in \mathbb{R}^P} \|\nabla^2 f(\theta)\|_2$. The objective function is a mapping from a P -dimensional real vector space to a scalar, $f : \mathbb{R}^P \rightarrow \mathbb{R}$. As the number of parameters P increases, the dimensionality of this landscape grows, and its complexity can increase exponentially. The number of local minima, maxima, and saddle points can become vast, making an analytical or numerical search for the single global maximum curvature infeasible. Therefore, we adopt a practical method: we estimate \tilde{L}_{max} by sampling a large number of random parameter vectors and reporting the largest observed Hessian norm. This method provides a representative value for the maximum curvature that one would likely encounter during training. Our choice of 1000 random parameter samples, drawn uniformly from $\theta_i \in [0, 2\pi]$, is justified by the following analyses:

1. Convergence of the Estimate To ensure our sample size is sufficient, we first conducted a convergence study. As shown in Figure 5a, we repeatedly estimated \tilde{L}_{max} for circuits of varying widths while increasing the number of parameter samples from 10 to 4000. The plot clearly shows that

1242 the estimated maximum curvature stabilizes well before 1000 samples. Our choice of 1000 thus places
 1243 us firmly in the converged regime, ensuring a reliable estimate while maintaining computational
 1244 tractability.
 1245

1246 **2. Stability of the Estimate** To confirm that our 1000-sample estimate is not an arbitrary result but
 1247 a stable characteristic, we performed 10 independent runs for a 4-qubit VQA at three different depths:
 1248 1 layer ($P=12$), 5 layers ($P=60$), and 10 layers ($P=120$). The results are shown in Figure 7b, as seen:
 1249

- 1250 • $P=12$ ($L_{upper} = 12$): The mean \tilde{L}_{max} across 10 runs was **0.4997** with a standard deviation of
 1251 only **0.00022**.
- 1252 • $P=60$ ($L_{upper} = 60$): The mean \tilde{L}_{max} was **1.851** with a standard deviation of **0.025**.
- 1253 • $P=120$ ($L_{upper} = 120$): The mean \tilde{L}_{max} was **3.210** with a standard deviation of **0.050**.
 1254

1255 Despite the absolute standard deviation growing slightly with circuit depth (expected as growing the
 1256 parameter space grows the potential curvature), it remains exceptionally small relative to the mean in
 1257 all cases. This low variance demonstrates that our sampling methodology is robust and consistently
 1258 captures the characteristic maximum curvature of a given ansatz architecture that could be expected
 1259 to observe in practicality.
 1260

1261 **3. Capturing Landscape Trends** Finally, our sampling method effectively reveals key geometric
 1262 trends. Figure 5b shows the full distribution of 1000 sampled Hessian norms for circuits with $n=1$,
 1263 2, and 4 qubits. As the number of qubits increases, the mean, median, and overall variance of the
 1264 Hessian norms systematically decrease. The distributions become significantly more compressed
 1265 around a much lower average value. This provides a clear statistical picture of the landscape flattening
 1266 for wider circuits—a second-order signature of the barren plateau phenomenon—validating that our
 1267 sampling is sufficient to capture these essential structural properties.
 1268

1269 In summary, our methodology of using 1000 random samples provides a computationally feasible,
 1270 convergent, and statistically stable approach to estimating the maximum landscape curvature.
 1271

1272 (a) Convergence of the estimated maximum Hessian norm (\tilde{L}_{max}) with an increasing number of
 1273 parameter samples (10-4000) for circuits of varying width ($n = 1, 2, 4$).
 1274

1275 (b) Distribution of sampled Hessian norms for circuits of varying widths ($n = 1, 2, 4$). The mean and variance of the curvature distribution decrease as the number of qubits increases.
 1276

1277 D.3 TESTING VARIOUS VQA ARCHITECTURE

1278 A central finding of this work is that the maximum landscape curvature, \tilde{L}_{max} , grows in a predictable,
 1279 linear fashion that our theoretical bound captures. As demonstrated in Section 5.2, this predictable
 1280 scaling—observed as a stabilization of the $\tilde{L}_{max}/L_{upper}$ ratio—persists across variations in circuit
 1281 depth (P), width (n), observable norms ($\|M\|_2$), and gate generator norms ($\|G_k\|_2$). To further
 1282 substantiate the generality of this phenomenon, we extend our analysis to include additional VQA
 1283 architectures that are structurally distinct and commonly employed in the literature.
 1284

1285 We compare the baseline **Standard Ring** architecture from Section 5 (Figure 4) with two new designs
 1286 that feature fundamentally different entanglement strategies:
 1287

- 1288 1. **Linear CZ:** This architecture employs a linear entanglement topology, where qubit i acts
 1289 on qubit $i + 1$. Crucially, it uses a Controlled-Z (CZ) gate, which, unlike the CNOT gate,
 1290

(a) Linearly entangled VQA for 4 qubits, with CZ entanglement and R_x, R_y, R_z rotations.
 (b) Maximally entangled VQA for 4 qubits, with $CNOT$ entanglement and R_z, R_y, R_z rotations.

Figure 6: Additional VQA architectures studied for Experiment 1. We observe the same plateau behavior of $\tilde{L}_{\max}/L_{\text{upper}}$ in all cases.

creates symmetric correlations between qubits. This design is often used for its hardware efficiency on certain quantum computing platforms. An example is shown in Figure 6a.

2. **All-to-All CNOT:** This architecture implements a maximal entanglement strategy, connecting every qubit to every other qubit within a layer using CNOT gates. While computationally expensive, this topology facilitates the rapid scrambling of quantum information, allowing for the creation of highly complex correlations across the entire system. We also vary the parameterized rotations in this model to use an R_z, R_y, R_z sequence, as illustrated in Figure 6b.

For this analysis, we repeated the core experiment from the main text: for each architecture, we fixed the number of qubits to $n = 2$ and $n = 4$ and progressively increased the circuit depth, extending up to a total of $P = 120$ parameters. Our findings, presented in Figure 7a, confirm that the stabilization of the $\tilde{L}_{\max}/L_{\text{upper}}$ ratio is a robust and architecture-independent phenomenon. While the initial behavior and the exact value of the stabilized ratio differ between architectures—with the Linear CZ circuit showing an initial increase in relative curvature while the others show a decrease—all designs converge to a stable, constant ratio at sufficient depth. This result strongly reinforces our central claim: the “plateau effect” is not an artifact of a specific circuit design but rather a fundamental geometric property of VQA optimization landscapes. We theorize this behavior is intrinsically linked to expressibility saturation and parameter redundancy, phenomena that are universal to such models. The predictable scaling of landscape curvature across these diverse architectures validates the broad applicability of the practical tools derived from it, namely the learning rate calibration heuristic and the use of the curvature ratio as a diagnostic for inefficient overparameterization.

D.4 SOFTWARE AND TOOLS

All numerical simulations were implemented in Python (version 3.9.20), utilizing the PennyLane library Bergholm et al. (2018) (version 0.38.0) to construct, simulate, and differentiate the quantum circuits. The Hessian matrix for each parameter sample was computed using PennyLane’s automatic differentiation capabilities, specifically by composing the gradient and Jacobian functions (`qml.jacobian(qml.grad(...))`). Data visualization was performed using Matplotlib and Seaborn. The experiments were executed on a high-performance computing server equipped with dual Intel(R) Xeon(R) Gold 6258R CPUs, 1.5 TB of RAM, and eight NVIDIA A100 (40GB) GPUs. The simulations were run exclusively on the CPU via PennyLane’s `default.qubit` device. This was a necessary choice, as calculating the second-order derivatives required for our analysis is not supported on PennyLane’s GPU-accelerated devices `lightning.gpu`. All source code is made available in the supplementary materials with public release available on GitHub upon acceptance.

E WHEN L-SMOOTHNESS BREAKS

The L-smoothness property, which we prove holds for standard Variational Quantum Algorithms (VQAs), is not guaranteed if the architecture includes operations that introduce discontinuities with

(a) Generality of Curvature Stabilization Across VQA Architectures. The ratio of $\tilde{L}_{max}/L_{upper}$, is plotted against the number of parameters (P) for three distinct ansatz designs. While the initial scaling and stabilized values differ, all architectures exhibit a plateau pattern, confirming that this geometric stabilization is a general phenomenon.

(b) Stability of Maximum Curvature Estimation. The plot shows the mean estimated maximum curvature (\tilde{L}_{max}) for a 4-qubit circuit at three different depths, averaged over 10 independent runs of 1000 parameter samples each. The error bars, representing ± 1 standard deviation, demonstrate the high consistency and robustness of our sampling methodology.

respect to the circuit parameters. A canonical example would be a parameterized gate whose rotation angle is determined by a non-smooth function of a variational parameter θ_k . Formally, consider a gate U_k where the angle is governed by a function $g(\theta_k)$ analogous to the Rectified Linear Unit (ReLU) activation function common in classical neural networks Nair & Hinton (2010):

$$U_k(g(\theta_k)) \quad \text{where} \quad g(\theta_k) = \max(0, \theta_k - \tau) \quad (20)$$

or equivalently, using the Heaviside step function $\Theta(\cdot)$:

$$g(\theta_k) = (\theta_k - \tau) \cdot \Theta(\theta_k - \tau) \quad (21)$$

This conditional logic makes the objective function $f(\theta)$ non-differentiable at the threshold point $\theta_k = \tau$, violating the conditions for L-smoothness. It is important to note that such constructs are highly uncommon in the VQA literature. VQAs achieve non-linearity through the sinusoidal nature of quantum gate operations, obviating the need for explicit non-linear activation functions applied to the parameters themselves. A notable architecture that might initially appear to violate L-smoothness is the Quantum Convolutional Neural Network (QCNN) Cong et al. (2019). The QCNN pooling layer introduces a form of conditional logic: a fraction of qubits are measured, and the classical outcomes of these measurements determine which unitary rotations (V_j) are applied to adjacent qubits. This process could be misinterpreted as creating a discontinuity. However, the QCNN architecture remains L-smooth with respect to its variational parameters. The key distinction is that the conditional logic does not depend on a *variational parameter* θ_k crossing a threshold. Instead, it depends on the outcome of a quantum measurement, which is a stochastic event. The objective function $f(\theta)$ is an expectation value, which averages over all possible measurement outcomes. Let's consider a single pooling operation. Suppose a qubit is measured, yielding outcome $m \in \{0, 1\}$, and a conditional unitary V_m is applied. The unitaries V_0 and V_1 are themselves parameterized by smooth parameters. The objective function, which is an expectation value, is a sum over the probabilities of these outcomes, weighted by the resulting state expectation:

$$f(\theta) = P(m=0|\theta) \cdot \langle \psi_{m=0}(\theta) | M | \psi_{m=0}(\theta) \rangle + P(m=1|\theta) \cdot \langle \psi_{m=1}(\theta) | M | \psi_{m=1}(\theta) \rangle \quad (22)$$

Here, $|\psi_m(\theta)\rangle$ is the state after the conditional unitary V_m has been applied. Both the probabilities $P(m|\theta)$ and the final state vectors $|\psi_m(\theta)\rangle$ are smooth functions of the parameters θ that define the preceding circuit layers and the conditional unitaries V_m . Since $f(\theta)$ is a sum of products of smooth functions, it remains a smooth, twice-differentiable function of θ . This logic aligns with our inductive proof in Lemma 1; because the operations before and after the measurement are standard parameterized gates, the overall objective function remains a multivariate trigonometric polynomial. Therefore, the measurement-based conditional logic of QCNNs does not break the L-smoothness property. To the best of our knowledge, VQA architectures employing parameter-dependent, non-differentiable functions like the ReLU example have not yet been proposed in the literature.

1404
1405 F SETTING OPTIMAL LEARNING RATES1406
1407 To estimate the scaling factor, one can perform a one-time pre-computation:1408
1409 1. Sample a set of S random parameter vectors, $\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_S\}$.
1410 2. For each sample $\boldsymbol{\theta}_i$, compute the Hessian matrix $\nabla^2 f(\boldsymbol{\theta}_i)$ and its spectral norm
1411 $\|\nabla^2 f(\boldsymbol{\theta}_i)\|_2$.
1412 3. Approximate \tilde{L}_{max} with the largest observed norm: $\tilde{L}_{max} \approx \max_i \{\|\nabla^2 f(\boldsymbol{\theta}_i)\|_2\}$.
1413 4. The estimated scaling factor is then $\kappa_{\text{est}}(n) = (\max_i \|\nabla^2 f(\boldsymbol{\theta}_i)\|_2) / L_{\text{upper}}$.
14141415 F.1 DEMONSTRATED PREDICTIVE POWER AND COMPUTATIONAL SAVINGS
14161417 To validate the practical utility of using the $\kappa(n)$ scaling factor as a predictive tool for estimating
1418 curvature in deep circuits, we conducted a numerical experiment for 1, 2, and 4-qubit circuits. The
1419 methodology was as follows:1420
1421 1. For each circuit width n , we first established a stable $\kappa(n)$ value by computing it for a single,
1422 moderately shallow “calibration circuit” ($D_{\text{cal}} = 10$ layers for $n=1$, and $D_{\text{cal}} = 5$ layers for
1423 $n=2, 4$). This step requires a one-time, upfront computation of \tilde{L}_{max} for this smaller circuit.
1424 2. We then used this single, fixed $\kappa(n)$ value to predict the effective smoothness constant
1425 ($L_{\text{effective}} = \kappa(n) \cdot L_{\text{upper}}$) and the corresponding optimal learning rate ($\eta_{\text{global}}^* \approx 1/L_{\text{effective}}$)
1426 for a range of much deeper target circuits.1427 Figure 8 demonstrates the heuristic’s accuracy. The predicted learning rate (dashed line) closely
1428 tracks the ideal learning rate (solid line) across all tested qubit widths and circuit depths. The average
1429 prediction error remains remarkably low, consistently falling between **6-9%**. This confirms that our
1430 calibration method is not a reliable and data-driven strategy for setting a near-optimal learning rate for
1431 deep circuits, sidestepping the need for costly hyperparameter sweeps. The primary advantage of this
1432 heuristic is the immense reduction in computational cost. The number of circuit executions required
1433 to estimate \tilde{L}_{max} scales quadratically with the number of parameters, P . Using the parameter-shift
1434 rule, the cost is given by $FP_{\theta} = \mathcal{M}_s \cdot S \cdot (4P^2 - 2P + 1)$, where S is the number of random
1435 parameter samples and \mathcal{M}_s is the number of shots per evaluation. For simplicity, we can say the
1436 cost is proportional to P^2 . We can quantify the savings with concrete examples from our 1-qubit
1437 experiment, where we used a 10-layer circuit to predict the learning rates for much deeper circuits.
14381439
1440 • **Target Circuit (D=40):** The circuit has $P_{\text{target}} = 40 \times 1 \times 3 = 120$ parameters. The
1441 computational cost is proportional to $P_{\text{target}}^2 = 120^2 = 14,400$.
1442 • **Our Heuristic (Calibration Circuit, D=10):** The calibration circuit has $P_{\text{cal}} = 10 \times 1 \times 3 =$
1443 30 parameters. The cost is proportional to $P_{\text{cal}}^2 = 30^2 = 900$.1444 By performing the expensive computation on the much smaller calibration circuit, our heuristic
1445 achieves a computational speedup of over **16×** (14,400/900) for this scenario while giving a learning
1446 rate extremely close to the true optimal one. The quadratic nature of the cost means these savings
1447 grow dramatically. In the following section we will explore how important an optimal learning rate is
1448 for deep VQAs.
1449

1450 F.2 VQE TRAINING WITH CALIBRATED LEARNING RATES

1451 This section provides the implementation details and full results for the VQE training experiments
1452 discussed in Section 5.3. These experiments validate the effectiveness of our proposed learning
1453 rate calibration heuristic. The Variational Quantum Eigensolver (VQE) is a quantum-classical
1454 algorithm designed for near-term quantum devices. Its goal is to find the ground state energy of a
1455 given Hamiltonian—the lowest possible energy eigenvalue of a quantum system—by leveraging the
1456 variational principle Peruzzo et al. (2014); Kandala et al. (2017). We conducted VQE experiments for
1457 1, 2, and 4-qubit systems to find the ground state energy of a target Hamiltonian. The architectures
1458 are as follows:

Figure 8: Empirical validation of the proposed learning rate heuristic: The predicted learning rate (dashed line), derived from a single calibration on a shallow circuit, accurately tracks the ideal learning rate (solid line, ground truth) for deeper target circuits across 1, 2, and 4-qubit systems. The low average prediction error (6-9%) demonstrates the heuristic’s effectiveness for efficiently setting near-optimal learning rates.

1. 1-Qubit System: The ansatz consisted of $D = \{20, 30, 40\}$ layers of (R_x, R_y, Rz) rotations. The Hamiltonian was $H = 0.6X_0 + 0.8Z_0$.
2. 2 and 4-Qubit Systems: The ansatz consisted of D layers of (R_x, R_y, Rz) rotations, followed by a chain of CNOT gates for entanglement. The Hamiltonian was the 1D transverse-field Ising model, $H = -\sum_i Z_i Z_{i+1} + 0.5 \sum_i X_i$. For the 2 qubit system $D = \{10, 15, 20\}$ and for the 4 qubit system $D = \{6, 8, 10\}$.

We calibrated the learning rates for the deep circuits by computing the scaling factor $\kappa(n)$ on a shallow circuit following. For the 1 qubit system we calibrated $\kappa(n)$ at $D = 10$ and for the 2 and 4 qubit system the scaling factor at $D = 5$. The optimal learning rate for the deep circuits was then set to $\eta_{global}^* = 1/(\kappa(n) \cdot L_{upper})$. For each target circuit depth we trained the VOEs using both the ADAM and SGD optimizers. We compared the performance of these optimizers using four different learning rates:

- Optimal η : the rate predicted by our calibration heuristic.
- High η : $5 \times$ the optimal learning rate, chosen to test for instability.
- Low η : $0.2 \times$ the optimal rate, chosen to test for slow convergence.
- Standard η : a commonly used default value like 0.01 for SGD and 0.001 for ADAM.

F.2.1 VQE TRAINING RESULTS

The full training histories are shown in Figure 9 for SGD and Figure 10 for ADAM. A summary of the relative convergence times is presented in Table 2. Convergence is defined as finding the target ground state energy. The results clearly demonstrate the effectiveness of our calibration method. For the SGD optimizer the low and standard learning rates converges between 17%-608% slower compared to the optimal value based on VQE size. The high learning rate showed clear instability failing to converge completely within the training window. The oscillating training behavior of the high learning rate (where $\eta > 2/L$) is common due to the step size overshooting valleys. We see similar trends for the ADAM optimizer where the low learning rate converged 21% slower on average than the optimal value and the high value 54% slower than the optimal value. The standard learning rate values for ADAM in larger more complex systems ($n = 2, 4$) showed poor performance converging on average 1200% slower. These findings highlight the importance of selecting an appropriate learning rate, a task our heuristic makes more effective.

1512
1513F.3 FUTURE WORK: TOWARDS A GENERAL FORMULA FOR $\kappa(n)$ 1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

It is important to note that the proposed calibration heuristic is designed specifically for setting learning rates for **deep circuits**. The method’s effectiveness relies on the observation that the scaling factor $\kappa(n)$ stabilizes after a certain number of layers. Consequently, if the target circuit is already very shallow (e.g., 1-5 layers), it may not be in the stabilized regime. In such cases, one cannot use an even shallower circuit to reliably estimate $\kappa(n)$, and the heuristic offers no advantage. The practitioner would be forced to either compute \tilde{L}_{\max} directly for their circuit—the very task our method seeks to avoid—or resort to standard hyperparameter tuning. This limitation strongly motivates the future work of developing a general, analytical formula for $\kappa(n)$, which would provide *a priori* estimates without the need for any empirical calibration. Such a formula would provide *a priori* guidance on optimization without the need for numerical pre-computation. We hypothesize that $\kappa(n)$ is not merely a fitting parameter but is deeply connected to fundamental properties of the quantum circuit and the problem Hamiltonian. Our work strongly suggests that the behavior of $\kappa(n)$ is a second-order signature of the barren plateau phenomenon (McClean et al., 2018; Holmes et al., 2022). The observed exponential decay, $\kappa(n) \approx Ae^{-\gamma n}$, mirrors the exponential vanishing of gradient variance. As the Hilbert space grows, the landscape not only becomes flat on average (vanishing gradients) but its maximum curvature also collapses relative to its theoretical potential. A general theory for $\kappa(n)$ would therefore likely depend on the same factors known to cause barren plateaus:

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

- **Ansatz Expressibility:** Highly expressive circuits that approximate unitary 2-designs are more prone to barren plateaus (Holmes et al., 2022; Sim et al., 2019), which would correspond to a smaller $\kappa(n)$. The saturation of $\kappa(n)$ with depth (Figure 1c) directly reflects the saturation of expressibility.
- **Locality of the Observable:** Global observables are known to induce more severe barren plateaus than local ones (Cerezo et al., 2021). We thus expect the decay rate γ to be significantly larger for global observables.
- **Entangling Structure:** The topology of entangling gates dictates the rate of information scrambling and thus the onset of the concentration effects underlying barren plateaus Ortiz Marrero et al. (2021); Patti et al. (2021).

1541
1542
1543
1544
1545
1546
1547

A promising path towards a formula for $\kappa(n)$ involves applying tools from random matrix theory, specifically integration over the unitary group with respect to the Haar measure. While prior work has focused on the first and second moments of the gradient, one could aim to compute the expected value of the Hessian’s spectral norm, $E_{U \sim \text{Haar}}[||\nabla^2 f(U)||_2]$. Though mathematically challenging, success in this endeavor would yield a foundational understanding of VQA landscape curvature and provide a powerful, predictive tool for algorithm design.

1548
1549

USE OF LARGE LANGUAGE MODELS

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

In preparing this manuscript, we used large language models (Google Gemini Team et al. (2023)) as a writing aid for grammar correction, rephrasing, and enhancing readability. All scientific contributions, mathematical derivations, and experimental results are the original work of the authors, who assume full responsibility for the final content.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

(a) SGD training curve for $n = 1$ and $D = \{20, 30, 40\}$.(b) SGD training curve for $n = 2$ and $D = \{10, 15, 20\}$.(c) SGD training curve for $n = 4$ and $D = \{6, 8, 10\}$.

Figure 9: Training curves for VQEs with $n = \{1, 2, 4\}$ qubits at different depths using the SGD optimizer with four different learning rates. The blue line represents the optimal learning rate calibrated using our heuristic. The black line shows the ground state energy of the Hamiltonian the VQE aims to reach.

Figure 10: Training curves for VQEs with $n = \{1, 2, 4\}$ qubits at different depths using the ADAM optimizer with four different learning rates.

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

Figure 11: Training curves for noisy VQEs with $n = 4$ qubits at $D = \{6, 8, 10\}$ layers and comparison with QNG optimizer. All optimizer were run 5 times per learning rate and the dotted line shows the average convergence with the standard deviation.

1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

(a) Training curves using the QNG, ADAM, and SGD optimizers. Adam and SGD are run with their calibrated learning rates and standard learning rates. The calibrated learning rates using ADAM/SGD shows competitive performance with QNG while being computationally cheaper.

1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

(b) Noisy SGD training curve for $n = 4$ and $D = \{6, 8, 10\}$. Five total runs per learning rate.

(c) Noisy ADAM training curve for $n = 4$ and $D = \{6, 8, 10\}$. Five total runs per learning rate.

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Table 2: Relative convergence times (ratio of steps compared to optimal LR). ∞ indicates no convergence within tolerance for the 400 step training process for the given optimizer.

System	Depth	High/Opt	Low/Opt	Std/Opt
SGD 1Q	20D	∞	1.67 \times	1.58 \times
	30D	∞	1.83 \times	1.42 \times
	40D	∞	1.75 \times	1.17 \times
SGD 2Q	10D	∞	3.39 \times	3.89 \times
	15D	∞	1.85 \times	1.77 \times
	20D	∞	2.25 \times	1.75 \times
SGD 4Q	6D	∞	3.16 \times	6.08 \times
	8D	∞	3.67 \times	5.12 \times
	10D	∞	2.80 \times	3.10 \times
ADAM 1Q	20D	1.47 \times	0.87 \times	1.77 \times
	30D	1.55 \times	1.23 \times	1.52 \times
	40D	1.73 \times	0.87 \times	1.07 \times
ADAM 2Q	10D	1.46 \times	1.17 \times	7.08 \times
	15D	1.48 \times	1.04 \times	2.24 \times
	20D	2.39 \times	1.11 \times	2.61 \times
ADAM 4Q	6D	1.48 \times	1.56 \times	15.84 \times
	8D	1.11 \times	1.78 \times	13.56 \times
	10D	1.22 \times	1.30 \times	6.70 \times

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797

Table 3: Noisy VQE training data. Shows the energy reached for each optimizer with their specific learning rate after 10 and 50 epochs and their standard deviation during the five runs. ADAM with the calibrated learning rate reaches a lower ground state energy than QNG and it does so faster. Similarly the calibrated learning rate beats the other values like the standard ones.

1798	Optimizer	LR Setting	Depth	Energy Epoch 10	Energy Epoch 50	Mean STD
1799	Adam	Optimal η	6	-2.337	-2.669	0.085
1800		High η	6	-1.970	-2.724	0.109
1801		Low η	6	-1.313	-2.493	0.142
1802		Standard (0.001)	6	-0.012	-0.453	0.507
1803		Optimal η	8	-2.124	-2.497	0.082
1804		High η	8	-1.662	-2.444	0.107
1805		Low η	8	-1.361	-2.165	0.135
1806		Standard (0.001)	8	-0.312	-0.762	0.417
1807		Optimal η	10	-1.790	-2.315	0.079
1808		High η	10	-1.494	-2.163	0.113
1809		Low η	10	-1.347	-1.999	0.117
1810		Standard (0.001)	10	0.032	-0.665	0.246
1811	SGD	Optimal η	6	-2.015	-2.482	0.087
1812		High η	6	-1.257	-2.050	0.279
1813		Low η	6	-0.671	-1.947	0.138
1814		Standard (0.01)	6	-0.356	-1.155	0.297
1815		Optimal η	8	-1.600	-2.207	0.208
1816		High η	8	-1.217	-2.081	0.209
1817		Low η	8	-0.574	-1.564	0.110
1818		Standard (0.01)	8	-0.274	-1.216	0.267
1819		Optimal η	10	-1.406	-1.938	0.089
1820		High η	10	-1.507	-1.850	0.122
1821		Low η	10	-0.179	-1.240	0.277
1822		Standard (0.01)	10	-0.303	-1.309	0.098
1823	QNG	Standard (0.01)	6	-1.298	-2.378	0.259
1824		Standard (0.01)	8	-1.216	-2.169	0.262
1825		Standard (0.01)	10	-1.235	-1.924	0.108
1826						
1827						
1828						
1829						
1830						
1831						
1832						
1833						
1834						
1835						