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Abstract

Document-level relation extraction (DocRE)
aims to identify relations for an entity pair
within a document. Existing methods can be
broadly classified into two categories: direct en-
coding of the entire document or enhancement
using extracted evidence sentences. However,
the former often introduces noise unrelated to
relations, while the latter is heavily dependent
on the quality of evidence extraction. More-
over, these DocRE models typically use an
adaptive threshold to predict all potential rela-
tions for an entity pair. As a result, class imbal-
ance in DocRE often leads the model to learn a
high throshold for an entity pair, which in turn
causes the model to frequently predict that the
entity pair has no relation. To address these is-
sues, we propose a Multi-Discrimination frame-
work (MD-RE) that does not rely on evidence
sentences. MD-RE employs three discrimina-
tors with dynamically adjusted thresholds to
independently predict relations, and aggregates
their outputs via a weighted fusion strategy.
Furthermore, we propose an Adaptive Thresh-
old Shifted Loss (ATSL), which encourages
lower threshold to alleviate the high false neg-
ative rate resulting from class imbalance. Ex-
periments on three datasets demonstrate that
MD-RE achieves new state-of-the-art results.
In addition, ATSL significantly improves the
performance of various existing DocRE mod-
els. Moreover, combining other losses with
MD-RE also yields competitive results'.

1 Introduction

Document-level relation extraction (DocRE) aims
to extract relations for an entity pair from multiple
sentences within a document. Since entities may
span multiple sentences, the model must reason
over more complex contexts and handle more rela-
tion types, making DocRE more challenging than
sentence-level relation extraction. DocRE supports
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tasks such as knowledge graph construction (Mon-
dal et al., 2021), information retrieval (Zeng et al.,
2024), and question answering (Liu et al., 2024).

Most existing DocRE models are based on Trans-
former or graph-based architectures. Representa-
tive methods, such as ATLOP (Zhou et al., 2021),
employ localized context pooling to guide atten-
tion toward relation-relevant regions, while KD-
DocRE (Tan et al., 2022a) enhances multi-hop re-
lation modeling via axial attention. In addition,
some graph-based methods construct graphs and
use graph neural networks to reason about rela-
tions between entities (Peng et al., 2022; Sun et al.,
2023). Most of these models use the entire doc-
ument as input context, but studies (Huang et al.,
2021a,b) suggest that this may introduce noise ir-
relevant to relations. To mitigate this issue, recent
works (Xie et al., 2022; Ma et al., 2023; Lu et al.,
2023) propose extracting evidence sentences rele-
vant to a given entity pair. However, these methods
depend on the quality of evidence extraction and
often exhibit limited effectiveness in low-resource
scenarios (e.g., without evidence annotations).

To address these challenges, we propose a
Multi-Discrimination framework (MD-RE), which
does not rely on evidence sentences and reduces
noise from the entire document through multi-
discrimination perspectives. Specifically, MD-RE
employs three discriminators with varying recall
rates, each adopting a different threshold to deter-
mine the existence of relations for an entity pair.
Higher-recall discriminators apply lower thresholds
to retain more candidate relations, whereas lower-
recall ones use higher thresholds to filter them more
strictly. To enable each discriminator to use a dif-
ferent threshold for an entity pair, we propose a
Loss-aware Negative Selection (LNS) method: for
each batch, we retain all positive examples® and

%If an entity pair has at least one relation, then the entity
pair is a positive example, otherwise it is a negative example.
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Figure 1: (a) Impact of ATSL threshold bias on the
logits of the threshold and the positive class. (b) Recall
changes across different threshold bias of ATSL.

select the top-k negative examples based on their
loss. By reducing the number of negative examples,
we can initially adjust the threshold and recall rate
of each discriminator.

Furthermore, in order to more flexibly adjust the
threshold and recall rate of each discriminator by
introducing different threshold biases, we propose
a novel Adaptive Threshold Shifted Loss (ATSL).
The existing DocRE models usually employ an
adaptive threshold loss (ATL) (Zhou et al., 2021) to
predict relations for an entity pair, where a relation
exists if its predicted logit exceeds the threshold. In
the meantime, real-world datasets often face class
imbalance®. This imbalance drives the model to
learn a higher threshold for an entity pair, which in
turn causes the model to frequently predict that the
entity pair has no relation. An intuitive method is
to lower the threshold at the initial stage of predic-
tion, allowing more entity pairs to be classified as
having relations. Motivated by this idea, we pro-
pose the ATSL, which introduces threshold biases
based on the ATL loss, and improves the recall
rate by lowering the threshold, thereby reducing
the high false negative rate caused by class imbal-
ance. In addition, we further observe that ATSL
loss has two key capabilities that enable the dis-
criminators to flexibly control both thresholds and
recall rates: 1) ATSL can flexibly adjust the bound-
ary between the positive class and the threshold,
giving the model a more fine-grained logit judg-
ment ability. In Fig. 1(a), as the threshold bias
increases, both the threshold and the positive class
logit decrease, while the boundary between the pos-
itive class and the threshold shrinks; 2) ATSL also

3Class imbalance: negative examples significantly outnum-

ber positive ones. For instance, in the Re-DocRED (Tan et al.,
2022b) dataset, about 94% of entity pairs have no relation.

enables flexible control of the recall rate. In Fig.
1(b), increasing the threshold bias leads to an in-
crease in recall. To summarize, the contributions
of our work are as follows:

* We propose a Multi-Discrimination frame-
work (MD-RE) for DocRE, consisting of three
discriminators with different discrimination
criteria. Unlike previous methods, MD-RE
does not rely on evidence sentences and effec-
tively reduces document-level noise by incor-
porating multiple discrimination perspectives.

* We propose a Loss-aware Negative Selection
(LNS) method to initially adjust the threshold
and recall rate of each discriminator, and de-
sign a weighted fusion strategy to aggregate
their outputs, aiming to achieve better predic-
tion performance.

* We propose ATSL, a novel loss that introduces
threshold biases to more flexibly adjust the
threshold and recall rate of each discriminator
and effectively mitigate class imbalance.

* Experiments on three datasets show that MD-
RE achieves state-of-the-art (SOTA) results.
In addition, ATSL consistently enhances per-
formance and generalizes well across different
baseline models. Moreover, combining other
losses with MD-RE yields competitive results.

2 Related Work

Document-Level Relation Extraction. DocRE
methods can be broadly categorized into: (1) di-
rectly encoding the entire document, such as GAIN
(Zeng et al., 2020), ATLOP (Zhou et al., 2021), Do-
culNet (Zhang et al., 2021), KMGRE (Jiang et al.,
2022), KD-DocRE (Tan et al., 2022a), TTM-RE
(Gao et al., 2024), ABRE (Xu et al., 2024), and
VaeDiff-DocRE (Tran et al., 2025); (2) introduc-
ing evidence sentences, including Eider (Xie et al.,
2022), SAIS (Xiao et al., 2022), DREEAM (Ma
et al., 2023), and AA (Lu et al., 2023).

Loss for DocRE. DocRE typically employs the
ATL (Zhou et al., 2021) loss, which adaptively as-
signs a threshold to each entity pair, considering
a relation to exist only when its predicted logit
surpasses the threshold. Based on this, Tan et al.
(2022a); Zhou and Lee (2022) find that the class
imbalance is prevalent in DocRE. To address this,
some subsequent studies have enhanced ATL, in-
cluding Balanced-Softmax (Zhang et al., 2021),



AML (Wei and Li, 2022), AFL (Tan et al., 2022a),
SSR-PU (Wang et al., 2022), NCRL (Zhou and Lee,
2022), PEMSCL (Guo et al., 2023), and HingeABL
(Wang et al., 2023). AML (Wei and Li, 2022) and
HingeABL (Wang et al., 2023) aim to maximize
the margin between positive and negative classes.

The above losses mitigate the class imbalance to
some extent by optimizing the decision boundary
between positive and negative classes. However,
they lack the flexibility to adjust thresholds and
recall rates, and their effectiveness in addressing
class imbalance remains limited. To this end, we
extend ATL by proposing the Adaptive Threshold
Shifted Loss (ATSL).

Incomplete Labeling in DocRE. Due to preva-
lent false negatives in the DocRED (Yao et al.,
2019) dataset, Tan et al. (2022b) introduces the
revised version, Re-DocRED. To evaluate model
robustness under incomplete annotations, a new
task is proposed: train on DocRED, test on Re-
DocRED. Some of the effective methods for this
task include SSR-PU (Wang et al., 2022), CAST
(Tan et al., 2023), and P°M (Wang et al., 2024).

3 Methodology

Our MD-RE framework in Fig. 2 consists of four
main parts: Document Encoding module, Discrimi-
nation and Loss-aware Negative Selection module,
Fusion module, and our loss ATSL.

3.1 Problem Formulation

The goal of DocRE is to predict relations RU{NA}
for entity pairs (ep, e)}, ;_q, h # ¢ within a docu-
ment D. Here, {e;}?_; denotes the set of entities
in the document, and ¢j, and e; refer to the head
and tail entities, respectively. R is a predefined
set of relations, while NA indicates the absence of
any relation. For a given entity pair T'=(ep,, e;), the
positive classes Pr C R correspond to relations
expressed by any entity mention pair of e, and ey,
whereas the negative classes N C R represent re-
lations not expressed between them. If 1" expresses
no relations, Pr is empty, and N7 = R.

3.2 Document Encoding Module

The token sequence of a document D is denoted
asTp = {tz}LT:L{| where a special token "*" is in-
serted at the beginning and end of each entity men-
tion. Following ATLOP (Zhou et al., 2021) and
DREEAM (Ma et al., 2023), we obtain token-level

hidden states H € RIT2!%4 and attention weights

A € RITpIXITpl by averaging outputs and last-head
attentions from the last three encoder layers, re-
spectively, where d is the hidden size:

H, A =PLM(Tp) (D

The embedding h. for each entity e is obtained
by aggregating information from all its mentions
M, = {mz}‘lh:dj‘, where H,,, denotes the embed-
ding of the special token "*" that marks the starting

position of the i-th mention:

he = log ZLI\:%' exp(Hpm,) (2)

Then we use the localized context pooling
method to compute ¢y, ; from token embeddings
H and cross-token attention A, where A and A;
represent attention for entities e, and e, and ®
denotes element-wise product.

Ch,t AZAt

The localized context ¢y, ; is concatenated with
the head h,, and tail entity h., individually. Here,
| denotes concatenation, W}, W; are trainable
weights, and by, b; are the biases for head and tail
entities. Finally, z;, and z; are fed into a bilinear
classifier to compute the relation scores logit,, ; for
the entity pair (ep,, e;):

2p = tanh(Wh[heh HCh,t] + bh)

4)
2z = tanh(We[he, |lcn.] + br)

logithi = ZZWth + b, 5)

3.3 Discrimination and Loss-aware Negative
Selection Module

The core idea of our MD-RE framework is to pro-
gressively refine candidate relations through mul-
tiple stages. To achieve this, we employ three
discriminators with distinct criteria, each apply-
ing a differently adjustable threshold to determine
whether relations exist between an entity pair. The
motivation for designing the three discriminators
and the details of each one are described in the
corresponding sections below.

Recall Discriminator. This discriminator is de-
signed to achieve a high recall rate by applying
lower thresholds to retain more candidate relations.
Specifically, given an entity pair, we obtain its
logit, , (see Eq. (5)), and then evaluate it using
our ATSL loss (see Section 3.5). By adjusting the
hyperparameter A of ATSL, we can flexibly control
the threshold and recall rate of the discriminator.
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Figure 2: Overview of our MD-RE framework. In training, three discriminators with distinct decision criteria apply
different thresholds to determine whether a relation exists for an entity pair. The Loss-aware Negative Selection
(LNS) and Adaptive Threshold Shifted Loss (ATSL) jointly enable dynamic adjustment of threshold and recall for
each discriminator. In inference, we adopt a weighted fusion strategy to integrate the outputs of three discriminators.

Loss-aware Negative Selection. After the recall
discriminator, there are still a large number of nega-
tive samples, most of which are easy for the model
to classify. This causes the model to focus on triv-
ial instances while overlooking harder, more in-
formative ones. To address this, we introduce the
Loss-aware Negative Selection (LNS) method. By
applying LNS, we effectively reduce the impact
of too many negative samples, which helps to im-
prove the performance of subsequent coarse and
fine discriminators. In addition, LNS can also co-
operate with ATSL loss to further dynamically ad-
just the threshold and recall of each discriminator.
Specifically, for each batch, we retain all positive
examples and select the Top-k negative examples
based on their loss, defined as:

k = min(p - ’Sp05’7 ‘SﬂegD

6
Sneg—hard = TOP-k (Sneg) ©

Here, Spos and Syeg denote the sets of positive and
negative examples within the batch, respectively. p
controls the ratio of selected negatives relative to
the number of positives.

Coarse Discriminator. Subsequently, we feed
all positive samples along with the negative sam-
ples selected by the LNS method into the coarse
discriminator, and incorporate the ATSL loss to
dynamically set a moderate threshold for each en-

tity pair. This discriminator aims to further filter
candidate relations at a coarse granularity.

Fine Discriminator. The fine discriminator is
trained similarly to the coarse discriminator but
with a higher threshold. It applies stricter criteria
than the coarse discriminator to further refine can-
didate relations and improve prediction reliability.

3.4 Fusion Module

Since the three discriminators use different decision
criteria, we design a weighted fusion strategy to ef-
fectively integrate their outputs and make the final
decision, fully leveraging their respective strengths.
Specifically, we directly accept the prediction for a
triplet (h, r, t) if all three discriminators predict its
existence; otherwise, we compute a fused score:
logit%f‘ilt + logitgi‘f’t
(N

We further define an adaptive threshold based on
the threshold of each discriminator:

recall

= logity "y + logity’ 3¢

logitg?{i}_u =a- logit}befﬁl{li + logity iy + logit?L?%H’t
‘ ‘ (®)
A relation r exists if logitg?ilt > logitz?%ht. The

method leverages complementary decision patterns
of discriminators to improve performance. Since
the recall discriminator plays a more dominant role
in controlling recall, we apply the weighting factor
« only to its threshold.



3.5 Loss Design

An Empirical Analysis of ATL. As shown in
Eq. (9), the Adaptive Threshold Loss (ATL) (Zhou
et al., 2021) divides the set R of predefined rela-
tions into two subsets: the positive classes Pr and
the negative classes N7, with an external threshold
class TH used to distinguish between them. The
objective is to encourage the logits of P to be
higher than that of the TH class, and the logits of
N7 to be lower than that of the TH class.

L= Z log ( exp(logit,) )

rePr ZT’EPTU{TH} exp(logit,,)

exp(logityy)

; 1 )
= —1lo -
: s ZT’ENTU{TH} exp(logit,.)

Lary = L1+ Lo

Wang et al. (2023)’s analysis finds a significant
difference in the number of relations between Pp
and N, with N7 being larger, causing Lo to dom-
inate the loss calculation. Building on this analysis,
we find that the dominance of Lo stems not only
from the imbalance between P and N7, but more
fundamentally from the overwhelming proportion
of negative examples. When no relation exists be-
tween an entity pair, Pp is empty, resulting in no
contribution from £, and the loss is solely de-
termined by L. Since most entity pairs have no
relation, £o dominates. Building on this and Wang
et al. (2023), we reformulate £ as in Eq. (10).
When logit,, — logityy — —o0, Lo — 0, indicat-
ing that logitryy > logit,,. This suggests that ATL
learns a relatively high threshold for an entity pair.

exp(logitry)
EQ = — log 7
(Zr’eNTU{TH} exp(logltr/)

(10)

1
= —log - -
s (1 + 2 en, exp(logit,, — logltTH)>

Adaptive Threshold Shifted Loss. As analyzed
above, we extend the findings of Wang et al. (2023)
and further reveal the limitations: when the num-
ber of entity pairs with no relations significantly
exceeds the number of entity pairs with relations
(class imbalance), the logit of threshold class TH in-
creases and eventually surpasses the logits of many
candidate relations, leading to a large number of
false negative predictions.

To address this issue, we introduce a threshold
bias A > 0 in the TH class to ensure that:

£, = —log exp(logitry + )
2 exp(logityy + A) + 3/, exp(logit,)

) 1D

1
= —log . .
(1 + 2 en, exp(logit,, — (logitpy + )\))>

Minimizing £/, requires that:

logit,r — (logityy + \) — —o0 (12)
Consequently, we have:
logitty + A > logit,., (13)

logityy > logit,, — A

This shows that \ effectively reduces the logityy
in the optimization process. From Eq. (13), adding
A to the target logit boosts its value in the softmax
calculation, allowing the model to achieve the same
margin with a smaller logityy.

Similarly, we add a threshold bias 3 to the other
part of the loss £}, as shown in Eq. (14). When
L} — 0, it implies that logit+ 3 —logit, — —oc.
From this, we can derive that logitry + 8 < logit,..

exp(logit,.)
o= log T
! Z 8 (exp(logitm +B) + X epy, exp(logit,)

rePr

- EZPT log (1 T exp(logityy + B — logit, ) +1Z,,,€pﬂ,¢7, exp(logit,, — 1ogn,,)>

(14)

Finally, we obtain the Adaptive Threshold
Shifted Loss (ATSL), as shown in Eq. (15).

exp(logit, )

L) =— log . .
b Z <exp(10g1tTH +8)+ X ep, exp(logltr,)>

rE€Pp

o exp(logityy + A) )
L=—

lo - -
s (exp(]OgItTH +A) + 2 e, exp(logit,)

Larsy = Ly + L
(15)

4 Experimental Setup

Implementation Details. Our experiments are
implemented using PyTorch (Paszke, 2019) and
Transformers (Wolf et al., 2020), using BERT 55
(Devlin et al., 2019) and RoOBERTajyge (Liu et al.,
2019) as encoders. See Appendix A.1 for details.

Datasets and Metrics. We experiment on the
DocRED (Yao et al., 2019), DWIE (Zaporojets
et al., 2021), and Re-DocRED (Tan et al., 2022b)
datasets, which are detailed in Appendix A.2. We
follow Zhou et al. (2021) and evaluate using F1
and Ign-F1, where F1 represents the standard F1,
while Ign-F1 is computed by excluding relational
facts shared between the train and dev/test sets.

S Main Results and Analysis

We conduct experiments to answer questions about

our main contributions: MD-RE and ATSL.

* Q1: How does our MD-RE framework perform?
(Section 5.1)



Model Dev Test
F1 Ign-F1 F1 Ign-F1
with BERTpyse
ATLOP (Zhou et al., 2021) 74.22° 73.35° 74.02 © 73.22°
DocuNET (Zhang et al., 2021) 74.65 © 73.68 © 74.49 © 73.60 °
KD-DocRE (Tan et al., 2022a) 74.69 © 73.76 © 74.55° 73.67°
DREEAM (Ma et al., 2023) 74.58 & 73.74 & 74.23 & 73.42 4
CAST (Tan et al., 2023) - - 74.67 * 73.32°F
SA-KD (Zhang et al., 2023) 75.85° 75.03 © 75.77° 74.85°
ABRE (Xu et al., 2024) 76.26 " 75.54 " 76.30 7570
VaeDiff-DocRE (Tran et al., 2025)  75.89 * 74.96 % 75.07 % 74.13 %

MD-RE (ours)

77.70£0.10 76.46+0.07 77.80+0.04 76.63+0.02

with RoOBERTay,ge

ATLOP (Zhou et al., 2021) 7763 % 76.88 7773 F 76.94 %
DocuNET (Zhang et al., 2021) 78.16 77531 77.92F 77.27°%
KD-DocRE (Tan et al., 2022a) 78.65F 77921 7835 F 7763 %
PEMSCL (Guo et al., 2023) 79.89 79.02 f 79.86 79.01
AA (Lu et al., 2023) 81.15F 80.04 81.20 80.12
TTM-RE (Gao et al., 2024) 78.13 ° 78.05 " 79.95 " 78.20 "
VaeDiff-DocRE (Tran et al., 2025)  79.19 # 78.35% 79.03 # 78.22%

MD-RE (ours)

81.44+0.12 80.38+0.12 81.49+0.05 80.45+0.06

Table 1: Results on Re-DocRED. The underlined values indicate the results of the previous SOTA. T from Lu et al.
(2023), * from original paper, ¢ from Zhang et al. (2023), i from Tran et al. (2025), and A our reproduced results.

Model Dev Test

F1 Ign-F1 F1 Ign-F1
GAIN * 62.55 58.63 67.57 62.37
ATLOP * 69.96 63.57 74.36 67.56
KMGRE * 71.40 65.56 76.71 69.94
MILR © 72.05 67.18 76.51 69.84
DREEAM # 72.40 65.93 74.66 67.27
TTM-RE * 64.51 56.62 65.01 54.71

MD-RE (ours) 73.81+£0.32 68.37+£0.36 78.32+0.12 71.28+0.10

Table 2: Results on DWIE with BERT,. * from Jiang
et al. (2022), © from original paper, and i from ours.

Model Test

F1 Ign-F1
ATLOP (Zhou et al., 2021) * 45.19 45.09
DocuNET (Zhang et al., 2021) T 45.99 45.88
KD-DOCRE (Tan et al., 2022a) 47.57 47.32
SSR-PU (Wang et al., 2022) * 59.50 58.68
CAST (Tan et al., 2023) T 65.32 64.25
P3M (Wang et al., 2024) * 64.34 63.16

MD-RE (ours) 65.93+0.04 64.96+0.03

Table 3: Results on DocRED using ROBERTay,ge. * Re-
sults from Wang et al. (2024); 1 from Tan et al. (2023).

* Q2: How effective is our ATSL loss when ap-
plied to different models? (Section 5.2)

* Q3: How does the performance of our ATSL loss
compare to other losses? (Section 5.2)

* Q4: An ablation study. (Section 5.3)

5.1 Main Results

Results on Re-DocRED. As shown in Table 1,
our MD-RE framework consistently outperforms

all strong baselines and the previous SOTA models.
Specifically, with the BERTy,s encoder, MD-RE
achieves F1 of 77.70 and 77.80 on the dev and
test sets, respectively, outperforming the previous
SOTA model ABRE by 1.44 and 1.50. Similarly,
with the ROBERTay,¢e encoder, MD-RE achieves
F1 of 81.44 and 81.49 on the dev and test sets,
respectively, outperforming the SOTA model AA
by 0.29 points on both splits.

Results on DWIE. As shown in Table 2, MD-RE
consistently outperforms baseline models on the
DWIE dataset, reaching 73.81 F1 and 68.37 Ign-F1
on the dev set, and 78.32 F1 and 71.28 Ign-F1 on
the test set. Compared with the strong baseline
MILR, MD-RE improves the F1 and Ign-F1 on
the test set by 1.81 and 1.44, respectively. Notably,
MD-RE also surpasses the recent DREEAM model,
further demonstrating its effectiveness across chal-
lenging DocRE benchmarks.

Results on DocRED. To evaluate the weakly su-
pervised generalization ability of MD-RE, we train
on the incomplete dataset DocRED and test on the
fully annotated dataset Re-DocRED. Table 3 shows
that MD-RE framework achieves the best results
among all compared methods, with an F1 of 65.93
and an Ign-F1 of 64.96 on the test set. Compared
to the previous competitive model CAST, MD-RE
obtains gains of 0.61 F1 and 0.71 Ign-F1. When
compared with other strong baselines such as P*M
and SSR-PU, MD-RE’s improvement ranges from
a minimum of 1.59 to a maximum of 6.43.



Model Dev Test
F1 F1 with ATSL  Ign-F1  Ign-F1 with ATSL F1 F1 with ATSL  Ign-F1  Ign-F1 with ATSL
Re-DocRED with BERT}sc
ATLOP (Zhou et al., 2021) 74225 7623 (+2.01) 7335% 74.83 (+1.48)  74.02° 7648 (+2.46) 73.22% 7512 (+1.90)
DocuNet (Zhang et al., 2021)  74.65%  76.26 (+1.61) 73.68 & 74.81 (+1.13) 74492  76.45(+1.96) 73.602  75.07 (+1.47)
KD-DocRE (Tan et al., 2022a) 74.69 2 76.70 (+2.01) 73.76 & 75.52 (+1.76) 74552  76.65(+2.10) 73.672  75.50 (+1.83)
DREEAM (Ma et al., 2023) 74587 76.08 (+1.50) 73.74 F 74.81 (+1.07) 74237 7614 (+1.91) 7342° 74.92 (+1.50)
TTM-RE (Gao et al., 2024) 76217 80.16 (+3.95) 74.74F 79.05 (+4.31) 76337 80.51 (+4.18) 74.89 7 79.48 (+4.59)
Re-DocRED with RoBERTajyge
ATLOP (Zhou et al., 2021) 77.63%  80.35(+2.72) 76.88 " 79.22 (+2.34) 7773 80.40 (+2.67) 76.94" 79.29 (+2.35)
DocuNet (Zhang et al., 2021)  78.16 " 79.76 (+1.60)  77.53 " 78.78 (+1.25) 77.92%  79.85(+1.93) 77.27" 78.91 (+1.64)
KD-DocRE (Tan et al., 2022a)  78.65 "  79.06 (+0.41) 77.92" 78.07 (+0.15) 78.35" 7876 (+0.41) 77.63 " 77.78 (+0.15)
DREEAM (Ma et al., 2023) 77.60 % 79.56 (+1.96) 77.20F 78.62 (+1.42) 77.94°  79.86 (+1.92) 77.34° 78.96 (+1.62)
TTM-RE (Gao et al., 2024) 78.13°  82.57 (+4.44) 78.05° 81.70 (+3.65) 79.95° 8236 (+2.41) 78.20° 81.53 (+3.33)

Table 4: Performance of different DocRE models using ATSL loss.

* from Lu et al. (2023), A from Zhang et al.

(2023), ¢ from original paper, and  our reproduced results.

Loss Function F1 Ign-F1
ATL (Zhou et al., 2021) * 73.29 72.46
Balanced-Softmax (Zhang et al., 2021) * 73.68 72.85
AML (Wei and Li, 2022) * 72.60 71.78
AFL (Tan et al., 2022a) * 74.15 73.20
HingeABLsar (Wang et al., 2023) * 73.46 72.61
Hinge ABLpeansaT (Wang et al., 2023) * 74.68 72.90
HingeABL (Wang et al., 2023) * 75.15 73.84
ATSL (Our Loss) 76.48 (1.331) 75.12 (1.2871)

Table 5: Results of different losses on Re-DocRED test
set. * from Wang et al. (2023). All results use ATLOP
(Zhou et al., 2021) and BERT},, for encoding.

5.2 Results of ATSL

Different DocRE Models with ATSL. To eval-
uate the generality of our loss, we apply ATSL to
different models by replacing their original losses.
Specifically, ATLOP and DREEAM use ATL loss,
DocuNet uses Balanced-Softmax loss, KD-DocRE
uses AFL loss, and TTM-RE uses S-PU loss.

Table 4 shows that the ATSL loss significantly
improves the performance of all baseline models.
Specifically, the TTM-RE model with BERTpqse
achieves improvements of 4.18 in F1 and 4.59 in
Ign-F1 on the test set. Similarly, the ATLOP model
with RoBERTay,e achieves gains of 2.67 in F1
and 2.35 in Ign-F1. Moreover, our loss achieves an
average improvement of 2.52 in F1 on the BERT
test set, and 2.23 in F1 on the RoBERTa dev set.
These results demonstrate the generality of ATSL
in enhancing different DocRE models.

ATSL vs. Other Loss. To verify the effective-
ness of ATSL compared to other losses, we evalu-
ate them using the ATLOP and BERT},,s. encoder.
Table 5 shows that ATSL achieves 76.48 in F1
and 75.12 in Ign-F1, outperforming other losses.
Specifically, compared to the current SOTA Hinge-
ABL loss, ATSL improves by 1.33in F1 and 1.28 in

Model F1  Ign-Fl
MD-RE (ours) 7770 76.46
w/o LNS 7752 7627
w/ o Fusion w Pipeline 72.83  72.27
w/ o Fusion w Add 77.02 7553
w/ o Coarse Discriminator 77.18  75.67
w/ o Fine Discriminator 76.38  74.58

Table 6: An ablation study on the Re-DocRED dev
set using BERT}, as the encoder, where w/o denotes
removal and w indicates inclusion.

Ign-F1, significantly boosting model performance
and demonstrating its effectiveness in DocRE task.

5.3 Ablation Study

We perform an ablation study to assess each com-
ponent’s impact. See Table 6 for results.

w/o LNS. After removing LNS, the F1 drops by
0.18, indicating that removing it does not affect
MD-RE’s ability to set different thresholds for in-
dividual discriminators, thanks to the ATSL loss.
In addition, the negative samples selected by LNS
also bring a slight performance gain.

w/ o Fusion w Pipeline. Replacing the fusion mod-
ule with a pipeline method severely reduces per-
formance, as it only retains triplets unanimously
judged as true by all three discriminators, discard-
ing many potential relations and lowering recall.

w/ o Fusion w Add. Replacing the fusion module
with a union method results in a performance drop.
Results indicate that the fusion module effectively
integrates information from different discrimina-
tors and exploits their complementary capabilities.
w /o Coarse Discriminator. Removing the coarse
discriminator results in a slight decrease of 0.52 in
the F1. This suggests that the coarse discriminator




Loss + Model F1 Ign-F1
ATL loss (Zhou et al., 2021)
-ATLOP 74.02 73.22
-MD-RE (ours) 77.06 (3.047) 76.02 (2.8071)
" AFL loss (Tan et al., 20222)
-KD-DocRE 74.55 73.67
-MD-RE (ours) 77.41 (2.867) 76.19 (2.521)

Table 7: MD-RE vs. baselines under same losses, all
using BERT},s. on the Re-DocRED test set.

brings a slight improvement.

w/ o Fine Discriminator. Removing the fine dis-
criminator results in a slightly larger performance
drop than removing the coarse one, with the F1
decreasing by 1.32. This suggests that the fine dis-
criminator contributes more to refining the process.

6 Further Analysis

To further investigate our method’s performance,

we answer the following research questions:

* Q5: How does our MD-RE compare to other
models under the same loss? (Section 6.1)

¢ Q6: Does the ATSL loss alleviate the class im-
balance? (Section 6.2)

* Q7: How does our MD-RE compare to other
models in resource efficiency? (Section 6.3)

* Q8: How does the hyperparameter ) influence
the performance of ATSL? (Appendix B.1)

* Q9: A case study. (Appendix B.2)
Due to space limitations, we provide detailed

analysis for Q8-Q9 questions in Appendix B.

6.1 MD-RE vs. Baselines under Same Losses

To verify the effectiveness and generalizability of
the MD-RE framework, Table 7 compares MD-RE
with strong baselines under the same losses. Under
the ATL loss, MD-RE significantly outperforms
ATLOP, achieving a 3.04 and 2.80 improvement in
F1 and Ign-F1 scores, respectively. Similarly, when
trained with the AFL loss, MD-RE surpasses KD-
DocRE by 2.86 in F1 and 2.52 in Ign-F1. These
consistent improvements across losses demonstrate
MD-RE’s effectiveness and generalizability.

6.2 Analyzing the Class Imbalance

To illustrate the effectiveness of our ATSL in al-
leviating the class imbalance, we apply ATSL to
the ATLOP and examine the number of two pre-
diction patterns: FN and FP. Table 8 shows that
applying ATSL leads to a substantial reduction in
false negatives, decreasing from 5833 to 4181. The

Model EN| FP| EN/FN+FP)|
ATLOP (Zhou et al., 2021) 5833 1942 0.75
ATLOP with ATSL (ours) 4181 4029 0.51

Table 8: FN (False Negative): Predicts a positive exam-
ple as negative. FP (False Positive): Predicts a negative
example as positive. BERT},s. on Re-DocRED dev set.

Method Memory Training Time  F1
(GiB) (Min)
without evidence
ATLOP 10.37 55.80 74.02
KD-DocRE 14.71 169.59 74.55
TTM-RE 20.30 208.37 -

* with evidence
Eider 43107 - -
SAIS 4620 - -
DREEAM 13.46 59.02 74.23

MD-RE (ours) 17.63 81.80 77.80

Table 9: Resource usage comparison. * from Ma et al.
(2023). BERT},se on Re-DocRED with batch size 4.

ratio FN/(FN+FP) also drops from 0.75 to 0.51,
indicating that the false negative issue caused by
class imbalance is effectively mitigated. However,
this improvement comes at the cost of a noticeable
increase in false positives, suggesting that while
ATSL helps capture more true positives, it may also
introduce more incorrect predictions.

6.3 Resource Efficiency

To assess the resource efficiency of MD-RE, Ta-
ble 9 presents a comparison of memory usage and
training time. MD-RE demonstrates favorable effi-
ciency, requiring only 17.63 GiB of memory, which
is lower than that of TTM-RE (without evidence),
as well as Eider and SAIS (both of which use ev-
idence). Its training time of 81.80 minutes is also
significantly shorter than that of KD-DocRE and
TTM-RE, both of which do not use evidence.

7 Conclusion

We propose a novel MD-RE framework that incor-
porates three discriminators with different decision
criteria. By leveraging the unique characteristics of
each discriminator, we integrate their outputs using
a weighted fusion method. This design alleviates
the issue of introducing noise unrelated to the re-
lation from the entire document and does not rely
on evidence sentences. In addition, we propose a
novel multi-label classification loss, ATSL, which
effectively mitigates the class imbalance. Extensive
experiments show the effectiveness and general ap-
plicability of both MD-RE and ATSL.



Limitations

Although our proposed MD-RE framework and
ATSL loss show promising results, there are still
some limitations. First, while MD-RE achieves
state-of-the-art performance with favorable effi-
ciency as shown in Section 6.3, the use of multiple
discriminators increases memory consumption and
training time, which may potentially limit its ap-
plicability in resource-constrained environments.
In addition, the weighted fusion method that com-
bines three discriminators requires manual setting
of the weight value «, which reduces its flexibil-
ity and applicability. This sensitivity to parameter
selection may affect the method’s generalization
ability across different datasets. Future work may
explore adaptive weighting strategies or parameter-
free fusion mechanisms to enhance the scalability
and generalization of the framework.
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A Datasets and Hyperparameters

A.1 Hyperparameter Settings

We summarize the hyperparameters used for train-
ing on three datasets in Table 10. To ensure robust



Dataset Re-DocRED DocRED DWIE Dataset Split #Docs. #Entities. #Rels.
BERT RoBERTa RoBERTa BERT train 3,053 59,493 96
epoch 20 0 " 30 DocRED dev; 500 9,684 96
Ir_encoder de-5 2e-5 le-5 5e-5 test 500 9,779 96
Ir_classifier le-4 le-4 le-4 le-4 train 602 16,494 65
batch size 4 4 4 4 DWIE dev 98 2,785 65
warmup_ratio  0.06 0.06 0.06 0.06 test 9 2,623 65
P 4 4 4 4 train 3,053 59,359 96
a 0.65 0.60 1.0 1.10 Re-DocRED  dev 500 9,684 96
ARecall 3.0 3.0 4.5 3.0 test’ 500 9,779 96
ACoarse 1.5 1.5 4.0 1.5
2::;“ 88 88 OjO 88 Table 11: Statistics of datasets.
ﬁCOarse 0.0 0.0 0.0 0.0
/6Fine 0.0 0.0 - 0.0

Table 10: Hyperparameters.

evaluation, we conduct experiments using three
different random seeds and report the averaged re-
sults. The batch size is set to 4, and learning rates
for the encoder and classifier are tuned separately:
a lower rate (le-5 to Se-5) for the encoder and a
higher rate (1e-4) for the classifier. A warm-up ra-
tio of 0.06 is applied across all settings to stabilize
the early stages of training. The ATSL-related hy-
perparameters include A = { ARecall; ACoarses AFine }
and B = {BRrecall, Bcoarse: BFine }» Which control the
weights for the recall, coarse, and fine discrimina-
tors, respectively. Since the hyperparameters )\ and
B in the ATSL loss serve the same purpose, we
adjust only A and set (5 to O to streamline the pro-
cess. The number of training epochs is determined
based on the dataset, ranging from 8 epochs on
DocRED (Yao et al., 2019) to 30 epochs on DWIE
(Zaporojets et al., 2021).

A.2 Datasets

The statistics of the three datasets are shown in Ta-
ble 11, with detailed descriptions provided below.

DocRED (Yao et al., 2019) is a large-
scale, human-annotated dataset constructed from
Wikipedia, specifically designed for DocRE task.
Although it contains 3,053 documents for train-
ing and 1,000 documents each for development
and testing, it suffers from a substantial number
of missing annotations. To address this issue, we
adopt the Re-DocRED (Tan et al., 2022b) dataset
for evaluation on the dev and test sets.

DWIE (Zaporojets et al., 2021) is a multi-task
dataset focused on entity-centric tasks, with 602
documents in the train set, 98 in the dev set, and 99
in the test set.

Re-DocRED (Tan et al., 2022b) is a revised ver-
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Figure 3: Performance under different )\ values of the
ATSL loss on the Re-DocRED dev set, using ATLOP
and BERT .

sion of the DocRED (Yao et al., 2019) dataset,
which has been reprocessed and manually vali-
dated to address the numerous false negative issues
present in the original DocRED. Additionally, the
validation and test sets of Re-DocRED are derived
by splitting the dev set of DocRED, with each con-
taining 500 documents. The number of documents
in the train set of Re-DocRED remains the same as
in DocRED, with a total of 3,053 documents.

B Further Analysis
B.1 Effect of Hyperparameter ) in ATSL

To evaluate the impact of the hyperparameter \ in
ATSL, we vary its value from 0.0 to 4.0 and sys-
tematically analyze its effect on performance. As
shown in Fig. 3, the F1 consistently improves with
increasing A, achieving the highest value of 76.23
at A = 3.0. A marginal decline in performance
is observed beyond this point. These observations
suggest that while ATSL is generally robust to the
choice of \, careful tuning around [2.0, 3.5] is ben-
eficial for maximizing performance.

B.2 Case Study

To better illustrate the effectiveness and inter-
pretability of our MD-RE framework, we present a



representative example in Fig. 4, where we provide
a detailed comparison between the results of our
MD-RE framework and those of the baseline model
ATLOP. In the predictions of the ATLOP model,
only two triples were correctly identified, with four
triples missing. In the predictions from the recall
discriminator combined with the coarse discrimina-
tor, compared to ATLOP, two additional triples
were correctly predicted. However, the triples
( , P607, World War II) and (World
War 11, P710, ) were still missed.
Moreover, the incorrect predictions (Britain, P607,
World War II) and (World War II, P156, World
War I) were introduced. This is because the recall
discriminator focuses on improving recall, lead-
ing to some triples being over-recalled, while the
coarse discriminator emphasizes initial filtering and
reducing excessive predictions, which introduces
incorrect predictions. In the predictions from the
recall discriminator combined with the fine dis-
criminator, the previously missed triples (

, P607, World War II) and (World War
11, P710, ) were successfully recov-
ered, and the incorrect prediction (World War 11,
P156, World War I) was corrected. This indi-
cates that the fine discriminator is more effective
at filtering out irrelevant or incorrect triples, thus
improving prediction accuracy. Finally, by integrat-
ing the recall, coarse, and fine discriminators, the
full MD-RE framework successfully predicted all
the triples. Furthermore, the incorrect prediction
(Britain, P607, World War II) from the combined
recall and fine discriminator was eliminated. These
results demonstrate that the integration of all three
discriminators substantially enhances the overall
performance of the framework.
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, the Royal Air Force and

(including the British Army , the

other elements ). [2] Ireland was then as part of the United Kingdom from 1800 ... in the British Army . [3] Different social .

missing predictions.
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[1] The Irish in the British... in the
with the British Empire , while others ... adventure . [4] Many Irishmen...Britain and also Ulster...World War | and World War
II... forces. [5) However ... still occur . [6] Since partition ... in the British Army . [7] Since 2007, ... since World War Il .
ATLOP Recall & Coarse Discriminator Recall & Fine Discriminator Recall & Coarse & Fine Discriminator
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Figure 4: Case study of the baseline model ATLOP and our proposed MD-RE framework on Re-DocRED dev set.

Black solid lines indicate correct predictions, red solid lines represent incorrect predictions, and dashed lines denote



	Introduction
	Related Work
	Methodology
	Problem Formulation
	Document Encoding Module
	Discrimination and Loss-aware Negative Selection Module
	Fusion Module
	Loss Design

	Experimental Setup
	Main Results and Analysis
	Main Results
	Results of ATSL
	Ablation Study

	Further Analysis
	MD-RE vs. Baselines under Same Losses
	Analyzing the Class Imbalance
	Resource Efficiency

	Conclusion
	Datasets and Hyperparameters
	Hyperparameter Settings
	Datasets

	Further Analysis
	Effect of Hyperparameter  in ATSL
	Case Study


