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Abstract001

Document-level relation extraction (DocRE)002
aims to identify relations for an entity pair003
within a document. Existing methods can be004
broadly classified into two categories: direct en-005
coding of the entire document or enhancement006
using extracted evidence sentences. However,007
the former often introduces noise unrelated to008
relations, while the latter is heavily dependent009
on the quality of evidence extraction. More-010
over, these DocRE models typically use an011
adaptive threshold to predict all potential rela-012
tions for an entity pair. As a result, class imbal-013
ance in DocRE often leads the model to learn a014
high throshold for an entity pair, which in turn015
causes the model to frequently predict that the016
entity pair has no relation. To address these is-017
sues, we propose a Multi-Discrimination frame-018
work (MD-RE) that does not rely on evidence019
sentences. MD-RE employs three discrimina-020
tors with dynamically adjusted thresholds to021
independently predict relations, and aggregates022
their outputs via a weighted fusion strategy.023
Furthermore, we propose an Adaptive Thresh-024
old Shifted Loss (ATSL), which encourages025
lower threshold to alleviate the high false neg-026
ative rate resulting from class imbalance. Ex-027
periments on three datasets demonstrate that028
MD-RE achieves new state-of-the-art results.029
In addition, ATSL significantly improves the030
performance of various existing DocRE mod-031
els. Moreover, combining other losses with032
MD-RE also yields competitive results1.033

1 Introduction034

Document-level relation extraction (DocRE) aims035

to extract relations for an entity pair from multiple036

sentences within a document. Since entities may037

span multiple sentences, the model must reason038

over more complex contexts and handle more rela-039

tion types, making DocRE more challenging than040

sentence-level relation extraction. DocRE supports041

1Code: https://anonymous.4open.science/r/MD-RE

tasks such as knowledge graph construction (Mon- 042

dal et al., 2021), information retrieval (Zeng et al., 043

2024), and question answering (Liu et al., 2024). 044

Most existing DocRE models are based on Trans- 045

former or graph-based architectures. Representa- 046

tive methods, such as ATLOP (Zhou et al., 2021), 047

employ localized context pooling to guide atten- 048

tion toward relation-relevant regions, while KD- 049

DocRE (Tan et al., 2022a) enhances multi-hop re- 050

lation modeling via axial attention. In addition, 051

some graph-based methods construct graphs and 052

use graph neural networks to reason about rela- 053

tions between entities (Peng et al., 2022; Sun et al., 054

2023). Most of these models use the entire doc- 055

ument as input context, but studies (Huang et al., 056

2021a,b) suggest that this may introduce noise ir- 057

relevant to relations. To mitigate this issue, recent 058

works (Xie et al., 2022; Ma et al., 2023; Lu et al., 059

2023) propose extracting evidence sentences rele- 060

vant to a given entity pair. However, these methods 061

depend on the quality of evidence extraction and 062

often exhibit limited effectiveness in low-resource 063

scenarios (e.g., without evidence annotations). 064

To address these challenges, we propose a 065

Multi-Discrimination framework (MD-RE), which 066

does not rely on evidence sentences and reduces 067

noise from the entire document through multi- 068

discrimination perspectives. Specifically, MD-RE 069

employs three discriminators with varying recall 070

rates, each adopting a different threshold to deter- 071

mine the existence of relations for an entity pair. 072

Higher-recall discriminators apply lower thresholds 073

to retain more candidate relations, whereas lower- 074

recall ones use higher thresholds to filter them more 075

strictly. To enable each discriminator to use a dif- 076

ferent threshold for an entity pair, we propose a 077

Loss-aware Negative Selection (LNS) method: for 078

each batch, we retain all positive examples2 and 079

2If an entity pair has at least one relation, then the entity
pair is a positive example, otherwise it is a negative example.
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Figure 1: (a) Impact of ATSL threshold bias on the
logits of the threshold and the positive class. (b) Recall
changes across different threshold bias of ATSL.

select the top-k negative examples based on their080

loss. By reducing the number of negative examples,081

we can initially adjust the threshold and recall rate082

of each discriminator.083

Furthermore, in order to more flexibly adjust the084

threshold and recall rate of each discriminator by085

introducing different threshold biases, we propose086

a novel Adaptive Threshold Shifted Loss (ATSL).087

The existing DocRE models usually employ an088

adaptive threshold loss (ATL) (Zhou et al., 2021) to089

predict relations for an entity pair, where a relation090

exists if its predicted logit exceeds the threshold. In091

the meantime, real-world datasets often face class092

imbalance3. This imbalance drives the model to093

learn a higher threshold for an entity pair, which in094

turn causes the model to frequently predict that the095

entity pair has no relation. An intuitive method is096

to lower the threshold at the initial stage of predic-097

tion, allowing more entity pairs to be classified as098

having relations. Motivated by this idea, we pro-099

pose the ATSL, which introduces threshold biases100

based on the ATL loss, and improves the recall101

rate by lowering the threshold, thereby reducing102

the high false negative rate caused by class imbal-103

ance. In addition, we further observe that ATSL104

loss has two key capabilities that enable the dis-105

criminators to flexibly control both thresholds and106

recall rates: 1) ATSL can flexibly adjust the bound-107

ary between the positive class and the threshold,108

giving the model a more fine-grained logit judg-109

ment ability. In Fig. 1(a), as the threshold bias110

increases, both the threshold and the positive class111

logit decrease, while the boundary between the pos-112

itive class and the threshold shrinks; 2) ATSL also113

3Class imbalance: negative examples significantly outnum-
ber positive ones. For instance, in the Re-DocRED (Tan et al.,
2022b) dataset, about 94% of entity pairs have no relation.

enables flexible control of the recall rate. In Fig. 114

1(b), increasing the threshold bias leads to an in- 115

crease in recall. To summarize, the contributions 116

of our work are as follows: 117

• We propose a Multi-Discrimination frame- 118

work (MD-RE) for DocRE, consisting of three 119

discriminators with different discrimination 120

criteria. Unlike previous methods, MD-RE 121

does not rely on evidence sentences and effec- 122

tively reduces document-level noise by incor- 123

porating multiple discrimination perspectives. 124

• We propose a Loss-aware Negative Selection 125

(LNS) method to initially adjust the threshold 126

and recall rate of each discriminator, and de- 127

sign a weighted fusion strategy to aggregate 128

their outputs, aiming to achieve better predic- 129

tion performance. 130

• We propose ATSL, a novel loss that introduces 131

threshold biases to more flexibly adjust the 132

threshold and recall rate of each discriminator 133

and effectively mitigate class imbalance. 134

• Experiments on three datasets show that MD- 135

RE achieves state-of-the-art (SOTA) results. 136

In addition, ATSL consistently enhances per- 137

formance and generalizes well across different 138

baseline models. Moreover, combining other 139

losses with MD-RE yields competitive results. 140

2 Related Work 141

Document-Level Relation Extraction. DocRE 142

methods can be broadly categorized into: (1) di- 143

rectly encoding the entire document, such as GAIN 144

(Zeng et al., 2020), ATLOP (Zhou et al., 2021), Do- 145

cuNet (Zhang et al., 2021), KMGRE (Jiang et al., 146

2022), KD-DocRE (Tan et al., 2022a), TTM-RE 147

(Gao et al., 2024), ABRE (Xu et al., 2024), and 148

VaeDiff-DocRE (Tran et al., 2025); (2) introduc- 149

ing evidence sentences, including Eider (Xie et al., 150

2022), SAIS (Xiao et al., 2022), DREEAM (Ma 151

et al., 2023), and AA (Lu et al., 2023). 152

Loss for DocRE. DocRE typically employs the 153

ATL (Zhou et al., 2021) loss, which adaptively as- 154

signs a threshold to each entity pair, considering 155

a relation to exist only when its predicted logit 156

surpasses the threshold. Based on this, Tan et al. 157

(2022a); Zhou and Lee (2022) find that the class 158

imbalance is prevalent in DocRE. To address this, 159

some subsequent studies have enhanced ATL, in- 160

cluding Balanced-Softmax (Zhang et al., 2021), 161
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AML (Wei and Li, 2022), AFL (Tan et al., 2022a),162

SSR-PU (Wang et al., 2022), NCRL (Zhou and Lee,163

2022), PEMSCL (Guo et al., 2023), and HingeABL164

(Wang et al., 2023). AML (Wei and Li, 2022) and165

HingeABL (Wang et al., 2023) aim to maximize166

the margin between positive and negative classes.167

The above losses mitigate the class imbalance to168

some extent by optimizing the decision boundary169

between positive and negative classes. However,170

they lack the flexibility to adjust thresholds and171

recall rates, and their effectiveness in addressing172

class imbalance remains limited. To this end, we173

extend ATL by proposing the Adaptive Threshold174

Shifted Loss (ATSL).175

Incomplete Labeling in DocRE. Due to preva-176

lent false negatives in the DocRED (Yao et al.,177

2019) dataset, Tan et al. (2022b) introduces the178

revised version, Re-DocRED. To evaluate model179

robustness under incomplete annotations, a new180

task is proposed: train on DocRED, test on Re-181

DocRED. Some of the effective methods for this182

task include SSR-PU (Wang et al., 2022), CAST183

(Tan et al., 2023), and P3M (Wang et al., 2024).184

3 Methodology185

Our MD-RE framework in Fig. 2 consists of four186

main parts: Document Encoding module, Discrimi-187

nation and Loss-aware Negative Selection module,188

Fusion module, and our loss ATSL.189

3.1 Problem Formulation190

The goal of DocRE is to predict relations R∪{NA}191

for entity pairs (eh, et)nh,t=1, h ̸= t within a docu-192

ment D. Here, {ei}ni=1 denotes the set of entities193

in the document, and eh and et refer to the head194

and tail entities, respectively. R is a predefined195

set of relations, while NA indicates the absence of196

any relation. For a given entity pair T=(eh, et), the197

positive classes PT ⊆ R correspond to relations198

expressed by any entity mention pair of eh and et,199

whereas the negative classes NT ⊆ R represent re-200

lations not expressed between them. If T expresses201

no relations, PT is empty, and NT = R.202

3.2 Document Encoding Module203

The token sequence of a document D is denoted204

as TD = {ti}|TD|
i=1 , where a special token "*" is in-205

serted at the beginning and end of each entity men-206

tion. Following ATLOP (Zhou et al., 2021) and207

DREEAM (Ma et al., 2023), we obtain token-level208

hidden states H ∈ R|TD|×d and attention weights209

A ∈ R|TD|×|TD| by averaging outputs and last-head 210

attentions from the last three encoder layers, re- 211

spectively, where d is the hidden size: 212

H, A = PLM(TD) (1) 213

The embedding he for each entity e is obtained 214

by aggregating information from all its mentions 215

Me = {mi}|Me|
i=1 , where Hmi denotes the embed- 216

ding of the special token "*" that marks the starting 217

position of the i-th mention: 218

he = log
∑|Me|

i=1 exp(Hmi) (2) 219

Then we use the localized context pooling 220

method to compute ch,t from token embeddings 221

H and cross-token attention A, where Ah and At 222

represent attention for entities eh and et, and ⊗ 223

denotes element-wise product. 224

ch,t = H⊤ Ah⊗At

A⊤
h At

(3) 225

The localized context ch,t is concatenated with 226

the head heh and tail entity het individually. Here, 227

∥ denotes concatenation, Wh,Wt are trainable 228

weights, and bh, bt are the biases for head and tail 229

entities. Finally, zh and zt are fed into a bilinear 230

classifier to compute the relation scores logith,t for 231

the entity pair (eh, et): 232

zh = tanh(Wh[heh∥ch,t] + bh)

zt = tanh(Wt[het∥ch,t] + bt)
(4) 233

logith,t = z⊤hWrzt + br (5) 234

3.3 Discrimination and Loss-aware Negative 235

Selection Module 236

The core idea of our MD-RE framework is to pro- 237

gressively refine candidate relations through mul- 238

tiple stages. To achieve this, we employ three 239

discriminators with distinct criteria, each apply- 240

ing a differently adjustable threshold to determine 241

whether relations exist between an entity pair. The 242

motivation for designing the three discriminators 243

and the details of each one are described in the 244

corresponding sections below. 245

Recall Discriminator. This discriminator is de- 246

signed to achieve a high recall rate by applying 247

lower thresholds to retain more candidate relations. 248

Specifically, given an entity pair, we obtain its 249

logith,t (see Eq. (5)), and then evaluate it using 250

our ATSL loss (see Section 3.5). By adjusting the 251

hyperparameter λ of ATSL, we can flexibly control 252

the threshold and recall rate of the discriminator. 253
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Figure 2: Overview of our MD-RE framework. In training, three discriminators with distinct decision criteria apply
different thresholds to determine whether a relation exists for an entity pair. The Loss-aware Negative Selection
(LNS) and Adaptive Threshold Shifted Loss (ATSL) jointly enable dynamic adjustment of threshold and recall for
each discriminator. In inference, we adopt a weighted fusion strategy to integrate the outputs of three discriminators.

Loss-aware Negative Selection. After the recall254

discriminator, there are still a large number of nega-255

tive samples, most of which are easy for the model256

to classify. This causes the model to focus on triv-257

ial instances while overlooking harder, more in-258

formative ones. To address this, we introduce the259

Loss-aware Negative Selection (LNS) method. By260

applying LNS, we effectively reduce the impact261

of too many negative samples, which helps to im-262

prove the performance of subsequent coarse and263

fine discriminators. In addition, LNS can also co-264

operate with ATSL loss to further dynamically ad-265

just the threshold and recall of each discriminator.266

Specifically, for each batch, we retain all positive267

examples and select the Top-k negative examples268

based on their loss, defined as:269

k = min(ρ · |Spos|, |Sneg|)
Sneg-hard = Top-k

(
Sneg

) (6)270

Here, Spos and Sneg denote the sets of positive and271

negative examples within the batch, respectively. ρ272

controls the ratio of selected negatives relative to273

the number of positives.274

Coarse Discriminator. Subsequently, we feed275

all positive samples along with the negative sam-276

ples selected by the LNS method into the coarse277

discriminator, and incorporate the ATSL loss to278

dynamically set a moderate threshold for each en-279

tity pair. This discriminator aims to further filter 280

candidate relations at a coarse granularity. 281

Fine Discriminator. The fine discriminator is 282

trained similarly to the coarse discriminator but 283

with a higher threshold. It applies stricter criteria 284

than the coarse discriminator to further refine can- 285

didate relations and improve prediction reliability. 286

3.4 Fusion Module 287

Since the three discriminators use different decision 288

criteria, we design a weighted fusion strategy to ef- 289

fectively integrate their outputs and make the final 290

decision, fully leveraging their respective strengths. 291

Specifically, we directly accept the prediction for a 292

triplet (h, r, t) if all three discriminators predict its 293

existence; otherwise, we compute a fused score: 294

logitfinal
h,r,t = logitrecall

h,r,t + logitcoarse
h,r,t + logitfine

h,r,t
(7) 295

We further define an adaptive threshold based on 296

the threshold of each discriminator: 297

logitfinal
h,TH,t = α · logitrecall

h,TH,t + logitcoarse
h,TH,t + logitfine

h,TH,t

(8) 298

A relation r exists if logitfinal
h,r,t > logitfinal

h,TH,t. The 299

method leverages complementary decision patterns 300

of discriminators to improve performance. Since 301

the recall discriminator plays a more dominant role 302

in controlling recall, we apply the weighting factor 303

α only to its threshold. 304
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3.5 Loss Design305

An Empirical Analysis of ATL. As shown in306

Eq. (9), the Adaptive Threshold Loss (ATL) (Zhou307

et al., 2021) divides the set R of predefined rela-308

tions into two subsets: the positive classes PT and309

the negative classes NT , with an external threshold310

class TH used to distinguish between them. The311

objective is to encourage the logits of PT to be312

higher than that of the TH class, and the logits of313

NT to be lower than that of the TH class.314

L1 = −
∑
r∈PT

log

(
exp(logitr)∑

r′∈PT∪{TH} exp(logitr′)

)

L2 = − log

(
exp(logitTH)∑

r′∈NT∪{TH} exp(logitr′)

)
LATL = L1 + L2

(9)315

Wang et al. (2023)’s analysis finds a significant316

difference in the number of relations between PT317

and NT , with NT being larger, causing L2 to dom-318

inate the loss calculation. Building on this analysis,319

we find that the dominance of L2 stems not only320

from the imbalance between PT and NT , but more321

fundamentally from the overwhelming proportion322

of negative examples. When no relation exists be-323

tween an entity pair, PT is empty, resulting in no324

contribution from L1, and the loss is solely de-325

termined by L2. Since most entity pairs have no326

relation, L2 dominates. Building on this and Wang327

et al. (2023), we reformulate L2 as in Eq. (10).328

When logitr′ − logitTH → −∞, L2 → 0, indicat-329

ing that logitTH ≫ logitr′ . This suggests that ATL330

learns a relatively high threshold for an entity pair.331

L2 = − log

(
exp(logitTH)∑

r′∈NT∪{TH} exp(logitr′)

)

= − log

(
1

1 +
∑

r′∈NT
exp(logitr′ − logitTH)

) (10)332

Adaptive Threshold Shifted Loss. As analyzed333

above, we extend the findings of Wang et al. (2023)334

and further reveal the limitations: when the num-335

ber of entity pairs with no relations significantly336

exceeds the number of entity pairs with relations337

(class imbalance), the logit of threshold class TH in-338

creases and eventually surpasses the logits of many339

candidate relations, leading to a large number of340

false negative predictions.341

To address this issue, we introduce a threshold342

bias λ > 0 in the TH class to ensure that:343

L′
2 = − log

(
exp(logitTH + λ)

exp(logitTH + λ) +
∑

r′∈NT
exp(logitr′)

)

= − log

(
1

1 +
∑

r′∈NT
exp(logitr′ − (logitTH + λ))

) (11)344

Minimizing L′
2 requires that: 345

logitr′ − (logitTH + λ) → −∞ (12) 346

Consequently, we have: 347

logitTH + λ ≫ logitr′
logitTH ≫ logitr′ − λ

(13) 348

This shows that λ effectively reduces the logitTH 349

in the optimization process. From Eq. (13), adding 350

λ to the target logit boosts its value in the softmax 351

calculation, allowing the model to achieve the same 352

margin with a smaller logitTH. 353

Similarly, we add a threshold bias β to the other 354

part of the loss L′
1, as shown in Eq. (14). When 355

L′
1 → 0, it implies that logitTH+β−logitr → −∞. 356

From this, we can derive that logitTH +β ≪ logitr. 357

L′
1 = −

∑
r∈PT

log

(
exp(logitr)

exp(logitTH + β) +
∑

r′∈PT
exp(logitr′)

)

= −
∑
r∈PT

log

(
1

1 + exp(logitTH + β − logitr) +
∑

r′∈PT ,r′ ̸=r exp(logitr′ − logitr)

)
(14) 358

Finally, we obtain the Adaptive Threshold 359

Shifted Loss (ATSL), as shown in Eq. (15). 360

L′
1 = −

∑
r∈PT

log

(
exp(logitr)

exp(logitTH + β) +
∑

r′∈PT
exp(logitr′)

)

L′
2 = − log

(
exp(logitTH + λ)

exp(logitTH + λ) +
∑

r′∈NT
exp(logitr′)

)
LATSL = L′

1 + L′
2

(15) 361

4 Experimental Setup 362

Implementation Details. Our experiments are 363

implemented using PyTorch (Paszke, 2019) and 364

Transformers (Wolf et al., 2020), using BERTbase 365

(Devlin et al., 2019) and RoBERTalarge (Liu et al., 366

2019) as encoders. See Appendix A.1 for details. 367

Datasets and Metrics. We experiment on the 368

DocRED (Yao et al., 2019), DWIE (Zaporojets 369

et al., 2021), and Re-DocRED (Tan et al., 2022b) 370

datasets, which are detailed in Appendix A.2. We 371

follow Zhou et al. (2021) and evaluate using F1 372

and Ign-F1, where F1 represents the standard F1, 373

while Ign-F1 is computed by excluding relational 374

facts shared between the train and dev/test sets. 375

5 Main Results and Analysis 376

We conduct experiments to answer questions about 377

our main contributions: MD-RE and ATSL. 378

• Q1: How does our MD-RE framework perform? 379

(Section 5.1) 380
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Model Dev Test
F1 Ign-F1 F1 Ign-F1

with BERTbase
ATLOP (Zhou et al., 2021) 74.22 ⋄ 73.35 ⋄ 74.02 ⋄ 73.22 ⋄

DocuNET (Zhang et al., 2021) 74.65 ⋄ 73.68 ⋄ 74.49 ⋄ 73.60 ⋄

KD-DocRE (Tan et al., 2022a) 74.69 ⋄ 73.76 ⋄ 74.55 ⋄ 73.67 ⋄

DREEAM (Ma et al., 2023) 74.58 △ 73.74 △ 74.23 △ 73.42 △

CAST (Tan et al., 2023) - - 74.67 ‡ 73.32 ‡

SA-KD (Zhang et al., 2023) 75.85 ⋄ 75.03 ⋄ 75.77 ⋄ 74.85 ⋄

ABRE (Xu et al., 2024) 76.26 * 75.54 * 76.30 * 75.70 *

VaeDiff-DocRE (Tran et al., 2025) 75.89 ‡ 74.96 ‡ 75.07 ‡ 74.13 ‡

MD-RE (ours) 77.70±0.10 76.46±0.07 77.80±0.04 76.63±0.02

with RoBERTalarge
ATLOP (Zhou et al., 2021) 77.63 † 76.88 † 77.73 † 76.94 †

DocuNET (Zhang et al., 2021) 78.16 † 77.53 † 77.92 † 77.27 †

KD-DocRE (Tan et al., 2022a) 78.65 † 77.92 † 78.35 † 77.63 †

PEMSCL (Guo et al., 2023) 79.89 † 79.02 † 79.86 † 79.01 †

AA (Lu et al., 2023) 81.15 † 80.04 † 81.20 † 80.12 †

TTM-RE (Gao et al., 2024) 78.13 * 78.05 * 79.95 * 78.20 *

VaeDiff-DocRE (Tran et al., 2025) 79.19 ‡ 78.35 ‡ 79.03 ‡ 78.22 ‡

MD-RE (ours) 81.44±0.12 80.38±0.12 81.49±0.05 80.45±0.06

Table 1: Results on Re-DocRED. The underlined values indicate the results of the previous SOTA. † from Lu et al.
(2023), * from original paper, ⋄ from Zhang et al. (2023), ‡ from Tran et al. (2025), and △ our reproduced results.

Model Dev Test

F1 Ign-F1 F1 Ign-F1

GAIN * 62.55 58.63 67.57 62.37
ATLOP * 69.96 63.57 74.36 67.56
KMGRE * 71.40 65.56 76.71 69.94
MILR ⋄ 72.05 67.18 76.51 69.84
DREEAM ‡ 72.40 65.93 74.66 67.27
TTM-RE ‡ 64.51 56.62 65.01 54.71
MD-RE (ours) 73.81±0.32 68.37±0.36 78.32±0.12 71.28±0.10

Table 2: Results on DWIE with BERTbase. * from Jiang
et al. (2022), ⋄ from original paper, and ‡ from ours.

Model Test

F1 Ign-F1

ATLOP (Zhou et al., 2021) * 45.19 45.09
DocuNET (Zhang et al., 2021) † 45.99 45.88
KD-DOcRE (Tan et al., 2022a) † 47.57 47.32
SSR-PU (Wang et al., 2022) * 59.50 58.68
CAST (Tan et al., 2023) † 65.32 64.25
P3M (Wang et al., 2024) * 64.34 63.16
MD-RE (ours) 65.93±0.04 64.96±0.03

Table 3: Results on DocRED using RoBERTalarge. * Re-
sults from Wang et al. (2024); † from Tan et al. (2023).

• Q2: How effective is our ATSL loss when ap-381

plied to different models? (Section 5.2)382

• Q3: How does the performance of our ATSL loss383

compare to other losses? (Section 5.2)384

• Q4: An ablation study. (Section 5.3)385

5.1 Main Results386

Results on Re-DocRED. As shown in Table 1,387

our MD-RE framework consistently outperforms388

all strong baselines and the previous SOTA models. 389

Specifically, with the BERTbase encoder, MD-RE 390

achieves F1 of 77.70 and 77.80 on the dev and 391

test sets, respectively, outperforming the previous 392

SOTA model ABRE by 1.44 and 1.50. Similarly, 393

with the RoBERTalarge encoder, MD-RE achieves 394

F1 of 81.44 and 81.49 on the dev and test sets, 395

respectively, outperforming the SOTA model AA 396

by 0.29 points on both splits. 397

Results on DWIE. As shown in Table 2, MD-RE 398

consistently outperforms baseline models on the 399

DWIE dataset, reaching 73.81 F1 and 68.37 Ign-F1 400

on the dev set, and 78.32 F1 and 71.28 Ign-F1 on 401

the test set. Compared with the strong baseline 402

MILR, MD-RE improves the F1 and Ign-F1 on 403

the test set by 1.81 and 1.44, respectively. Notably, 404

MD-RE also surpasses the recent DREEAM model, 405

further demonstrating its effectiveness across chal- 406

lenging DocRE benchmarks. 407

Results on DocRED. To evaluate the weakly su- 408

pervised generalization ability of MD-RE, we train 409

on the incomplete dataset DocRED and test on the 410

fully annotated dataset Re-DocRED. Table 3 shows 411

that MD-RE framework achieves the best results 412

among all compared methods, with an F1 of 65.93 413

and an Ign-F1 of 64.96 on the test set. Compared 414

to the previous competitive model CAST, MD-RE 415

obtains gains of 0.61 F1 and 0.71 Ign-F1. When 416

compared with other strong baselines such as P3M 417

and SSR-PU, MD-RE’s improvement ranges from 418

a minimum of 1.59 to a maximum of 6.43. 419
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Model Dev Test

F1 F1 with ATSL Ign-F1 Ign-F1 with ATSL F1 F1 with ATSL Ign-F1 Ign-F1 with ATSL

Re-DocRED with BERTbase
ATLOP (Zhou et al., 2021) 74.22 △ 76.23 (+2.01) 73.35 △ 74.83 (+1.48) 74.02 △ 76.48 (+2.46) 73.22 △ 75.12 (+1.90)
DocuNet (Zhang et al., 2021) 74.65 △ 76.26 (+1.61) 73.68 △ 74.81 (+1.13) 74.49 △ 76.45 (+1.96) 73.60 △ 75.07 (+1.47)
KD-DocRE (Tan et al., 2022a) 74.69 △ 76.70 (+2.01) 73.76 △ 75.52 (+1.76) 74.55 △ 76.65 (+2.10) 73.67 △ 75.50 (+1.83)
DREEAM (Ma et al., 2023) 74.58 † 76.08 (+1.50) 73.74 † 74.81 (+1.07) 74.23 † 76.14 (+1.91) 73.42 † 74.92 (+1.50)
TTM-RE (Gao et al., 2024) 76.21 † 80.16 (+3.95) 74.74 † 79.05 (+4.31) 76.33 † 80.51 (+4.18) 74.89 † 79.48 (+4.59)

Re-DocRED with RoBERTalarge
ATLOP (Zhou et al., 2021) 77.63 * 80.35 (+2.72) 76.88 * 79.22 (+2.34) 77.73 * 80.40 (+2.67) 76.94 * 79.29 (+2.35)
DocuNet (Zhang et al., 2021) 78.16 * 79.76 (+1.60) 77.53 * 78.78 (+1.25) 77.92 * 79.85 (+1.93) 77.27 * 78.91 (+1.64)
KD-DocRE (Tan et al., 2022a) 78.65 * 79.06 (+0.41) 77.92 * 78.07 (+0.15) 78.35 * 78.76 (+0.41) 77.63 * 77.78 (+0.15)
DREEAM (Ma et al., 2023) 77.60 † 79.56 (+1.96) 77.20 † 78.62 (+1.42) 77.94 ⋄ 79.86 (+1.92) 77.34 ⋄ 78.96 (+1.62)
TTM-RE (Gao et al., 2024) 78.13 ⋄ 82.57 (+4.44) 78.05 ⋄ 81.70 (+3.65) 79.95 ⋄ 82.36 (+2.41) 78.20 ⋄ 81.53 (+3.33)

Table 4: Performance of different DocRE models using ATSL loss. * from Lu et al. (2023), △ from Zhang et al.
(2023), ⋄ from original paper, and † our reproduced results.

Loss Function F1 Ign-F1

ATL (Zhou et al., 2021) * 73.29 72.46
Balanced-Softmax (Zhang et al., 2021) * 73.68 72.85
AML (Wei and Li, 2022) * 72.60 71.78
AFL (Tan et al., 2022a) * 74.15 73.20
HingeABLSAT (Wang et al., 2023) * 73.46 72.61
HingeABLMeanSAT (Wang et al., 2023) * 74.68 72.90
HingeABL (Wang et al., 2023) * 75.15 73.84

ATSL (Our Loss) 76.48 (1.33↑) 75.12 (1.28↑)

Table 5: Results of different losses on Re-DocRED test
set. * from Wang et al. (2023). All results use ATLOP
(Zhou et al., 2021) and BERTbase for encoding.

5.2 Results of ATSL420

Different DocRE Models with ATSL. To eval-421

uate the generality of our loss, we apply ATSL to422

different models by replacing their original losses.423

Specifically, ATLOP and DREEAM use ATL loss,424

DocuNet uses Balanced-Softmax loss, KD-DocRE425

uses AFL loss, and TTM-RE uses S-PU loss.426

Table 4 shows that the ATSL loss significantly427

improves the performance of all baseline models.428

Specifically, the TTM-RE model with BERTbase429

achieves improvements of 4.18 in F1 and 4.59 in430

Ign-F1 on the test set. Similarly, the ATLOP model431

with RoBERTalarge achieves gains of 2.67 in F1432

and 2.35 in Ign-F1. Moreover, our loss achieves an433

average improvement of 2.52 in F1 on the BERT434

test set, and 2.23 in F1 on the RoBERTa dev set.435

These results demonstrate the generality of ATSL436

in enhancing different DocRE models.437

ATSL vs. Other Loss. To verify the effective-438

ness of ATSL compared to other losses, we evalu-439

ate them using the ATLOP and BERTbase encoder.440

Table 5 shows that ATSL achieves 76.48 in F1441

and 75.12 in Ign-F1, outperforming other losses.442

Specifically, compared to the current SOTA Hinge-443

ABL loss, ATSL improves by 1.33 in F1 and 1.28 in444

Model F1 Ign-F1

MD-RE (ours) 77.70 76.46
w/o LNS 77.52 76.27
w/o Fusion w Pipeline 72.83 72.27
w/o Fusion w Add 77.02 75.53
w/o Coarse Discriminator 77.18 75.67
w/o Fine Discriminator 76.38 74.58

Table 6: An ablation study on the Re-DocRED dev
set using BERTbase as the encoder, where w/o denotes
removal and w indicates inclusion.

Ign-F1, significantly boosting model performance 445

and demonstrating its effectiveness in DocRE task. 446

5.3 Ablation Study 447

We perform an ablation study to assess each com- 448

ponent’s impact. See Table 6 for results. 449

w/o LNS. After removing LNS, the F1 drops by 450

0.18, indicating that removing it does not affect 451

MD-RE’s ability to set different thresholds for in- 452

dividual discriminators, thanks to the ATSL loss. 453

In addition, the negative samples selected by LNS 454

also bring a slight performance gain. 455

w/o Fusion w Pipeline. Replacing the fusion mod- 456

ule with a pipeline method severely reduces per- 457

formance, as it only retains triplets unanimously 458

judged as true by all three discriminators, discard- 459

ing many potential relations and lowering recall. 460

w/o Fusion w Add. Replacing the fusion module 461

with a union method results in a performance drop. 462

Results indicate that the fusion module effectively 463

integrates information from different discrimina- 464

tors and exploits their complementary capabilities. 465

w/o Coarse Discriminator. Removing the coarse 466

discriminator results in a slight decrease of 0.52 in 467

the F1. This suggests that the coarse discriminator 468
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Loss + Model F1 Ign-F1

ATL loss (Zhou et al., 2021)
-ATLOP 74.02 73.22
-MD-RE (ours) 77.06 (3.04↑) 76.02 (2.80↑)

AFL loss (Tan et al., 2022a)
-KD-DocRE 74.55 73.67
-MD-RE (ours) 77.41 (2.86↑) 76.19 (2.52↑)

Table 7: MD-RE vs. baselines under same losses, all
using BERTbase on the Re-DocRED test set.

brings a slight improvement.469

w/o Fine Discriminator. Removing the fine dis-470

criminator results in a slightly larger performance471

drop than removing the coarse one, with the F1472

decreasing by 1.32. This suggests that the fine dis-473

criminator contributes more to refining the process.474

6 Further Analysis475

To further investigate our method’s performance,476

we answer the following research questions:477

• Q5: How does our MD-RE compare to other478

models under the same loss? (Section 6.1)479

• Q6: Does the ATSL loss alleviate the class im-480

balance? (Section 6.2)481

• Q7: How does our MD-RE compare to other482

models in resource efficiency? (Section 6.3)483

• Q8: How does the hyperparameter λ influence484

the performance of ATSL? (Appendix B.1)485

• Q9: A case study. (Appendix B.2)486

Due to space limitations, we provide detailed487

analysis for Q8-Q9 questions in Appendix B.488

6.1 MD-RE vs. Baselines under Same Losses489

To verify the effectiveness and generalizability of490

the MD-RE framework, Table 7 compares MD-RE491

with strong baselines under the same losses. Under492

the ATL loss, MD-RE significantly outperforms493

ATLOP, achieving a 3.04 and 2.80 improvement in494

F1 and Ign-F1 scores, respectively. Similarly, when495

trained with the AFL loss, MD-RE surpasses KD-496

DocRE by 2.86 in F1 and 2.52 in Ign-F1. These497

consistent improvements across losses demonstrate498

MD-RE’s effectiveness and generalizability.499

6.2 Analyzing the Class Imbalance500

To illustrate the effectiveness of our ATSL in al-501

leviating the class imbalance, we apply ATSL to502

the ATLOP and examine the number of two pre-503

diction patterns: FN and FP. Table 8 shows that504

applying ATSL leads to a substantial reduction in505

false negatives, decreasing from 5833 to 4181. The506

Model FN ↓ FP ↓ FN/(FN+FP) ↓

ATLOP (Zhou et al., 2021) 5833 1942 0.75
ATLOP with ATSL (ours) 4181 4029 0.51

Table 8: FN (False Negative): Predicts a positive exam-
ple as negative. FP (False Positive): Predicts a negative
example as positive. BERTbase on Re-DocRED dev set.

Method Memory Training Time F1
(GiB) (Min)

without evidence
ATLOP 10.37 55.80 74.02
KD-DocRE 14.71 169.59 74.55
TTM-RE 20.30 208.37 -

with evidence
Eider 43.10 * - -
SAIS 46.20 * - -
DREEAM 13.46 59.02 74.23

MD-RE (ours) 17.63 81.80 77.80

Table 9: Resource usage comparison. * from Ma et al.
(2023). BERTbase on Re-DocRED with batch size 4.

ratio FN/(FN+FP) also drops from 0.75 to 0.51, 507

indicating that the false negative issue caused by 508

class imbalance is effectively mitigated. However, 509

this improvement comes at the cost of a noticeable 510

increase in false positives, suggesting that while 511

ATSL helps capture more true positives, it may also 512

introduce more incorrect predictions. 513

6.3 Resource Efficiency 514

To assess the resource efficiency of MD-RE, Ta- 515

ble 9 presents a comparison of memory usage and 516

training time. MD-RE demonstrates favorable effi- 517

ciency, requiring only 17.63 GiB of memory, which 518

is lower than that of TTM-RE (without evidence), 519

as well as Eider and SAIS (both of which use ev- 520

idence). Its training time of 81.80 minutes is also 521

significantly shorter than that of KD-DocRE and 522

TTM-RE, both of which do not use evidence. 523

7 Conclusion 524

We propose a novel MD-RE framework that incor- 525

porates three discriminators with different decision 526

criteria. By leveraging the unique characteristics of 527

each discriminator, we integrate their outputs using 528

a weighted fusion method. This design alleviates 529

the issue of introducing noise unrelated to the re- 530

lation from the entire document and does not rely 531

on evidence sentences. In addition, we propose a 532

novel multi-label classification loss, ATSL, which 533

effectively mitigates the class imbalance. Extensive 534

experiments show the effectiveness and general ap- 535

plicability of both MD-RE and ATSL. 536
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Limitations537

Although our proposed MD-RE framework and538

ATSL loss show promising results, there are still539

some limitations. First, while MD-RE achieves540

state-of-the-art performance with favorable effi-541

ciency as shown in Section 6.3, the use of multiple542

discriminators increases memory consumption and543

training time, which may potentially limit its ap-544

plicability in resource-constrained environments.545

In addition, the weighted fusion method that com-546

bines three discriminators requires manual setting547

of the weight value α, which reduces its flexibil-548

ity and applicability. This sensitivity to parameter549

selection may affect the method’s generalization550

ability across different datasets. Future work may551

explore adaptive weighting strategies or parameter-552

free fusion mechanisms to enhance the scalability553

and generalization of the framework.554
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A Datasets and Hyperparameters 750

A.1 Hyperparameter Settings 751

We summarize the hyperparameters used for train- 752

ing on three datasets in Table 10. To ensure robust 753
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Dataset Re-DocRED DocRED DWIE

BERT RoBERTa RoBERTa BERT

epoch 20 20 8 30
lr_encoder 4e-5 2e-5 1e-5 5e-5
lr_classifier 1e-4 1e-4 1e-4 1e-4
batch size 4 4 4 4
warmup_ratio 0.06 0.06 0.06 0.06
ρ 4 4 4 4
α 0.65 0.60 1.0 1.10
λRecall 3.0 3.0 4.5 3.0
λCoarse 1.5 1.5 4.0 1.5
λFine 0.0 0.0 - 0.0
βRecall 0.0 0.0 0.0 0.0
βCoarse 0.0 0.0 0.0 0.0
βFine 0.0 0.0 - 0.0

Table 10: Hyperparameters.

evaluation, we conduct experiments using three754

different random seeds and report the averaged re-755

sults. The batch size is set to 4, and learning rates756

for the encoder and classifier are tuned separately:757

a lower rate (1e-5 to 5e-5) for the encoder and a758

higher rate (1e-4) for the classifier. A warm-up ra-759

tio of 0.06 is applied across all settings to stabilize760

the early stages of training. The ATSL-related hy-761

perparameters include λ = {λRecall, λCoarse, λFine}762

and β = {βRecall, βCoarse, βFine}, which control the763

weights for the recall, coarse, and fine discrimina-764

tors, respectively. Since the hyperparameters λ and765

β in the ATSL loss serve the same purpose, we766

adjust only λ and set β to 0 to streamline the pro-767

cess. The number of training epochs is determined768

based on the dataset, ranging from 8 epochs on769

DocRED (Yao et al., 2019) to 30 epochs on DWIE770

(Zaporojets et al., 2021).771

A.2 Datasets772

The statistics of the three datasets are shown in Ta-773

ble 11, with detailed descriptions provided below.774

DocRED (Yao et al., 2019) is a large-775

scale, human-annotated dataset constructed from776

Wikipedia, specifically designed for DocRE task.777

Although it contains 3,053 documents for train-778

ing and 1,000 documents each for development779

and testing, it suffers from a substantial number780

of missing annotations. To address this issue, we781

adopt the Re-DocRED (Tan et al., 2022b) dataset782

for evaluation on the dev and test sets.783

DWIE (Zaporojets et al., 2021) is a multi-task784

dataset focused on entity-centric tasks, with 602785

documents in the train set, 98 in the dev set, and 99786

in the test set.787

Re-DocRED (Tan et al., 2022b) is a revised ver-788

Dataset Split #Docs. #Entities. #Rels.

DocRED
train 3,053 59,493 96
dev† 500 9,684 96
test† 500 9,779 96

DWIE
train 602 16,494 65
dev 98 2,785 65
test 99 2,623 65

Re-DocRED
train 3,053 59,359 96
dev† 500 9,684 96
test† 500 9,779 96

Table 11: Statistics of datasets.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Threshold Bias

75.0

75.5

76.0

F1
74.66

74.84

75.30
75.59

75.82
75.95

76.23

75.63

74.93

Figure 3: Performance under different λ values of the
ATSL loss on the Re-DocRED dev set, using ATLOP
and BERTbase.

sion of the DocRED (Yao et al., 2019) dataset, 789

which has been reprocessed and manually vali- 790

dated to address the numerous false negative issues 791

present in the original DocRED. Additionally, the 792

validation and test sets of Re-DocRED are derived 793

by splitting the dev set of DocRED, with each con- 794

taining 500 documents. The number of documents 795

in the train set of Re-DocRED remains the same as 796

in DocRED, with a total of 3,053 documents. 797

B Further Analysis 798

B.1 Effect of Hyperparameter λ in ATSL 799

To evaluate the impact of the hyperparameter λ in 800

ATSL, we vary its value from 0.0 to 4.0 and sys- 801

tematically analyze its effect on performance. As 802

shown in Fig. 3, the F1 consistently improves with 803

increasing λ, achieving the highest value of 76.23 804

at λ = 3.0. A marginal decline in performance 805

is observed beyond this point. These observations 806

suggest that while ATSL is generally robust to the 807

choice of λ, careful tuning around [2.0, 3.5] is ben- 808

eficial for maximizing performance. 809

B.2 Case Study 810

To better illustrate the effectiveness and inter- 811

pretability of our MD-RE framework, we present a 812

11



representative example in Fig. 4, where we provide813

a detailed comparison between the results of our814

MD-RE framework and those of the baseline model815

ATLOP. In the predictions of the ATLOP model,816

only two triples were correctly identified, with four817

triples missing. In the predictions from the recall818

discriminator combined with the coarse discrimina-819

tor, compared to ATLOP, two additional triples820

were correctly predicted. However, the triples821

(Royal Navy, P607, World War II) and (World822

War II, P710, Royal Navy) were still missed.823

Moreover, the incorrect predictions (Britain, P607,824

World War II) and (World War II, P156, World825

War I) were introduced. This is because the recall826

discriminator focuses on improving recall, lead-827

ing to some triples being over-recalled, while the828

coarse discriminator emphasizes initial filtering and829

reducing excessive predictions, which introduces830

incorrect predictions. In the predictions from the831

recall discriminator combined with the fine dis-832

criminator, the previously missed triples (Royal833

Navy, P607, World War II) and (World War834

II, P710, Royal Navy) were successfully recov-835

ered, and the incorrect prediction (World War II,836

P156, World War I) was corrected. This indi-837

cates that the fine discriminator is more effective838

at filtering out irrelevant or incorrect triples, thus839

improving prediction accuracy. Finally, by integrat-840

ing the recall, coarse, and fine discriminators, the841

full MD-RE framework successfully predicted all842

the triples. Furthermore, the incorrect prediction843

(Britain, P607, World War II) from the combined844

recall and fine discriminator was eliminated. These845

results demonstrate that the integration of all three846

discriminators substantially enhances the overall847

performance of the framework.848
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【1】The Irish in the British... in the British Armed Forces ( including the British Army , the Royal Navy , the Royal Air Force and 

other elements ) .【2】Ireland was then as part of the United Kingdom from 1800 ... in the British Army .【3】Different social ... 

with the British Empire , while others ... adventure .【4】Many Irishmen...Britain and also Ulster...World War I and World War 

II ... forces .【5】However ... still occur .【6】Since partition ... in the British Army .【7】Since 2007 , ... since World War II .
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Figure 4: Case study of the baseline model ATLOP and our proposed MD-RE framework on Re-DocRED dev set.
Black solid lines indicate correct predictions, red solid lines represent incorrect predictions, and dashed lines denote
missing predictions.
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