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Abstract

Policy regularization methods such as maximum entropy regularization are widely used in
reinforcement learning to improve the robustness of a learned policy. In this paper, we
unify and extend recent work showing that this robustness arises from hedging against
worst-case perturbations of the reward function, which are chosen from a limited set by
an implicit adversary. Using convex duality, we characterize the robust set of adversarial
reward perturbations under kl- and α-divergence regularization, which includes Shannon
and Tsallis entropy regularization as special cases. Importantly, generalization guarantees
can be given within this robust set. We provide detailed discussion of the worst-case reward
perturbations, and present intuitive empirical examples to illustrate this robustness and its
relationship with generalization. Finally, we discuss how our analysis complements previous
results on adversarial reward robustness and path consistency optimality conditions.

1 Introduction
Regularization plays a crucial role in various settings across reinforcement learning (rl), such as trust-region
methods (Peters et al., 2010; Schulman et al., 2015; 2017; Bas-Serrano et al., 2021), offline learning (Levine
et al., 2020; Nachum et al., 2019a;b; Nachum & Dai, 2020), multi-task learning (Teh et al., 2017; Igl et al.,
2020), and soft Q-learning or actor-critic methods (Fox et al., 2016; Nachum et al., 2017; Haarnoja et al.,
2017; 2018; Grau-Moya et al., 2018). Various justifications have been given for policy regularization, such as
improved optimization (Ahmed et al., 2019), connections with probabilistic inference (Levine, 2018; Kappen
et al., 2012; Rawlik et al., 2013; Wang et al., 2021), and robustness to perturbations in the environmental
rewards or dynamics (Derman et al., 2021; Eysenbach & Levine, 2021; Husain et al., 2021).

In this work, we use convex duality to analyze the reward robustness which naturally arises from policy reg-
ularization in rl. In particular, we interpret regularized reward maximization as a two-player game between
the agent and an imagined adversary that modifies the reward function. For a policy π(a|s) regularized with
a convex function Ω(π) = Eπ[Ω̇(π)] and regularization strength 1/β, we investigate statements of the form

max
π(a|s)

(1− γ)Eτ(π)

[ ∞∑
t=0

γt
(
r(at, st)−

1
β

Ω̇
(
π(at|st)

))]
= max
π(a|s)

min
r′(a,s)∈Rπ

(1− γ)Eτ(π)

[ ∞∑
t=0

γtr′(at, st)
]
, (1)

where r′(a, s) indicates a modified reward function chosen from an appropriate robust set Rπ (see Fig. 1-
2). Eq. (1) suggests that an agent may translate uncertainty in its estimate of the reward function into
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Figure 1: Robust setRπ (red region) of perturbed reward functions to which a stochastic policy generalizes,
in the sense of Eq. (2). Red star indicates the worst-case perturbed reward r′

π∗
= r−∆rπ∗ (Prop. 2) chosen

by the adversary. The robust set also characterizes the set of reward perturbations ∆r(a, s) that are feasible
for the adversary, which differs based on the choice of regularization function, regularization strength β, and
reference distribution π0 (see Sec. 4.1 and Fig. 2). We show the robust set for the optimal single-step policy
with value estimates Q(a, s) = r(a, s) and kl divergence regularization to a uniform π0, with β = 1. Our
robust set is larger and has a qualitatively different shape compared to the robust set of Derman et al. (2021)
(dotted lines, see Sec. 5.2).

regularization of a learned policy, which is particularly relevant in applications such as inverse rl (Ng et al.,
2000; Arora & Doshi, 2021) or learning from human preferences (Christiano et al., 2017).

This reward robustness further implies that regularized policies achieve a form of ‘zero-shot’ generalization to
new environments where the reward is adversarially chosen. In particular, for any given π(a|s) and a modified
reward r′ ∈ Rπ within the corresponding robust set, we obtain the following performance guarantee

Eτ(π)

[ ∞∑
t=0

γtr′(at, st)
]
≥ Eτ(π)

[ ∞∑
t=0

γt
(
r(at, st)−

1
β

Ω̇
(
πt
))]

. (2)

Eq. (2) states that the expected modified reward under π(a|s), with r′ ∈ Rπ as in Fig. 1, will be greater
than the value of the regularized objective with the original, unmodified reward. It is in this particular sense
that we make claims about robustness and zero-shot generalization throughout the paper.

Our analysis unifies recent work exploring similar interpretations (Ortega & Lee, 2014; Husain et al., 2021;
Eysenbach & Levine, 2021; Derman et al., 2021) as summarized in Sec. 5 and Table 1. Our contributions
include

• A thorough analysis of the robustness associated with kl and α-divergence policy regularization,
which includes popular Shannon entropy regularization as a special case. Our derivations for the
α-divergence generalize the Tsallis entropy rl framework of Lee et al. (2019).

• We derive the worst-case reward perturbations ∆rπ = r− r′
π corresponding to any stochastic policy

π and a fixed regularization scheme (Prop. 2).

• For the optimal regularized policy in a given environment, we show that the corresponding worst-case
reward perturbations match the advantage function for any α-divergence. We relate this finding to
the path consistency optimality condition, which has been used to construct learning objectives in
(Nachum et al., 2017; Chow et al., 2018), and a game-theoretic indifference condition, which occurs
at a Nash equilibrium between the agent and adversary (Ortega & Lee, 2014).

• We visualize the set Rπ of adversarially perturbed rewards against which a regularized policy is
robust in Fig. 1-2, with details in Prop. 1. Our use of divergence instead of entropy regularization
to analyze the robust set clarifies several unexpected conclusions from previous work. In particular,
similar plots in Eysenbach & Levine (2021) suggest that MaxEnt rl is not robust to the reward
function of the training environment, and that increased regularization strength may hurt robustness.
Our analysis in Sec. 5.1 and App. F.4 establishes the expected, opposite results.

• We perform experiments for a sequential grid-world task in Sec. 4 where, in contrast to previous
work, we explicitly visualize the reward robustness and adversarial strategies resulting from our
theory. We use the path consistency or indifference conditions to certify optimality of the policy.
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Ortega & Lee (2014) Eysenbach & Levine (2021) Husain et al. (2021) Derman et al. (2021) Ours
Multi-Step Analysis ✗ ✓ ✓ ✓ ✓
Worst-Case ∆r(a, s) policy form policy form value form policy (via dual lp Eq. (11)) policy & value forms
Robust Set ✗ ✓ (see our App. F.4) ✗ ✓(flexible specification) ✓
Divergence Used KL (α = 1) Shannon entropy (Sec. 5.1) any convex Ω derived from robust set any convex Ω, α-Div examples
µ(a, s) or π(a|s) Reg.? π(a|s) π(a|s) Both π(a|s) Both
Indifference ✓ ✗ ✗ ✗ ✓
Path Consistency ✗ ✗ ✗ ✗ ✓

Table 1: Comparison to related work.

2 Preliminaries
In this section, we review linear programming (lp) formulations of discounted Markov Decision Processes
(mdp) and extensions to convex policy regularization.

Notation For a finite set X , let RX denote the space of real-valued functions over X , with RX
+ indicating

restriction to non-negative functions. We let ∆|X | denote the probability simplex with dimension equal to
the cardinality of X . For µ, q ∈ RX , ⟨µ, q⟩ =

∑
x∈X µ(x)q(x) indicates the inner product in Euclidean space.

2.1 Convex Conjugate Function
We begin by reviewing the convex conjugate function, also known as the Legendre-Fenchel transform, which
will play a crucial role throughout our paper. For a convex function Ω(µ) which, in our context, has domain
µ ∈ RX

+ , the conjugate function Ω∗ is defined via the optimization

Ω∗(∆r) = sup
µ∈RX

+

〈
µ,∆r

〉
− Ω(µ), (3)

where ∆r ∈ RX . The conjugate operation is an involution for proper, lower semi-continuous, convex Ω
(Boyd & Vandenberghe, 2004), so that (Ω∗)∗ = Ω and Ω∗ is also convex. We can thus represent Ω(µ) via a
conjugate optimization

Ω(µ) = sup
∆r∈RX

〈
µ,∆r

〉
− Ω∗(∆r). (4)

Differentiating with respect to the optimization variable in Eq. (3) or (4) suggests the optimality conditions

µ∆r = ∇Ω∗(∆r) ∆rµ = ∇Ω(µ) . (5)

Note that the above conditions also imply relationships of the form µ∆r = (∇Ω)−1(∆r). This dual corre-
spondence between values of µ and ∆r will form the basis of our adversarial interpretation in Sec. 3.

2.2 Divergence Functions
We are interested in the conjugate duality associated with policy regularization, which is often expressed
using a statistical divergence Ω(µ) over a joint density µ(a, s) = µ(s)π(a|s) (see Sec. 2.3). In particular,
we consider the family of α-divergences (Amari, 2016; Cichocki & Amari, 2010), which includes both the
forward and reverse kl divergences as special cases. In the following, we consider extended divergences that
accept unnormalized density functions as input (Zhu & Rohwer, 1995) so that we may analyze function space
dualities and evaluate Lagrangian relaxations without projection onto the probability simplex.

KL Divergence The ‘forward’ kl divergence to a reference policy π0(a|s) is commonly used for policy
regularization in rl. Extending the input domain to unnormalized measures, we write the divergence as

Ωπ0(µ) = Eµ(s)

[
DKL[π : π0]

]
=
∑
s∈S

µ(s)
∑
a∈A

(
π(a|s) log π(a|s)

π0(a|s) − π(a|s) + π0(a|s)
)
. (6)

Using a uniform reference π0(a|s) = 1 ∀ (a, s), we recover the Shannon entropy up to an additive constant.

α-Divergence The α-divergence Eµ(s)
[
Dα[π0 : π]

]
over possibly unnormalized measures is defined as

Ω(α)
π0

(µ) = 1
α(1− α)

∑
s∈S

µ(s)
(

(1− α)
∑
a∈A

π0(a|s) + α
∑
a∈A

π(a|s)−
∑
a∈A

π0(a|s)1−απ(a|s)α
)

(7)
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Divergence Conjugate Conjugate Expression Optimizing Argument (π∆r or µ∆r)
1
βDKL[π : π0] 1

βΩ∗
π0,β

(∆r) 1
β

∑
a
π0(a|s) exp

{
β ·∆r(a, s)

}
− 1

β π0(a|s) exp
{
β ·∆r(a, s)

}
1
βDKL[µ : µ0] 1

βΩ∗
µ0,β

(∆r) 1
β

∑
a,s
µ0(a, s) exp

{
β ·∆r(a, s)

}
− 1

β µ0(a, s) exp
{
β ·∆r(a, s)

}
1
βDα[π0 : π] 1

βΩ∗(α)
π0,β

(∆r) 1
β

1
α

∑
a

π0(a|s) expα
{
β ·
(

∆r(a, s) − ψ∆r(s;β)
)}α

− 1
β

1
α

+ ψ∆r(s;β) π0(a|s) expα
{
β · (∆r(a, s)− ψ∆r(s;β))

}
1
βDα[µ0 : µ] 1

βΩ∗(α)
µ0,β

(∆r) 1
β

1
α

∑
a,s
µ0(a, s) expα

{
β ·∆r(a, s)

}α − 1
β

1
α µ0(a, s) expα

{
β ·∆r(a, s)

}
Table 2: Conjugate Function expressions for kl and α-divergence regularization of either the policy π(a|s)
or occupancy µ(a, s). See App. B.1-B.4 for derivations. The final column shows the optimizing argument
in the definition of the conjugate function 1

βΩ∗(∆r), for example µ∆r := arg maxµ⟨µ,∆r⟩ − 1
βΩµ0(µ). Note

that each conjugate expression for π(a|s) regularization also contains an outer expectation over µ(s).

Taking the limiting behavior, we recover the ‘forward’ kl divergence DKL[π : π0] as α → 1 or the ‘reverse’
kl divergence DKL[π0 : π] as α→ 0.

To provide intuition for the α-divergence, we define the deformed α-logarithm as in Lee et al. (2019), which
matches Tsallis’s q-logarithm (Tsallis, 2009) for α = 2− q. Its inverse is the α-exponential, with

logα(u) = 1
α− 1

(
uα−1 − 1

)
, expα(u) = [1 + (α− 1)u]

1
α−1
+ . (8)

where [·]+ = max(·, 0) ensures fractional powers can be taken and suggests that expα(u) = 0 for u ≤
1/(1− α). Using the α-logarithm, we can rewrite the α-divergence similarly to the kl divergence in Eq. (6)

Ω(α)
π0

(µ) = 1
α

∑
s∈S

µ(s)
(∑
a∈A

π(a|s) logα
π(a|s)
π0(a|s) − π(a|s) + π0(a|s)

)
.

For a uniform reference π0, the α-divergence differs from the Tsallis entropy by only the 1/α factor and an
additive constant (see App. F.1).

2.3 Unregularized MDPs
A discounted mdp is a tuple {S,A, P, ν0, r, γ} consisting of a state space S, action space A, transition
dynamics P (s′|s, a) for s, s′ ∈ S, a ∈ A, initial state distribution ν0(s) ∈ ∆|S| in the probability simplex,
and reward function r(a, s) : S ×A 7→ R. We also use a discount factor γ ∈ (0, 1) (Puterman (1994) Sec 6).

We consider an agent that seeks to maximize the expected discounted reward by acting according to
a decision policy π(a|s) ∈ ∆|A| for each s ∈ S. The expected reward is calculated over trajectories
τ ∼ π(τ) := ν0(s0)

∏
π(at|st)P (st+1|st, at), which begin from an initial s0 ∼ ν0(s) and evolve according

to the policy π(a|s) and mdp dynamics P (s′|s, a)

RL(r) := max
π(a|s)

(1− γ)Eτ∼π(τ)

[ ∞∑
t=0

γt r(st, at)
]
. (9)

We assume that the policy is stationary and Markovian, and thus independent of both the timestep and
trajectory history.

Linear Programming Formulation We will focus on a linear programming (lp) form for the objective
in Eq. (9), which is common in the literature on convex duality. With optimization over the discounted state-
action occupancy measure, µ(a, s) := (1− γ)Eτ∼π(τ) [

∑∞
t=0 γ

t I(at = a, st = s)], we rewrite the objective as

RL(r) := max
µ

〈
µ, r
〉

subject to µ(a, s) ≥ 0 ∀(a, s) ∈ A× S, (10)∑
a

µ(a, s) = (1− γ)ν0(s) + γ
∑
a′,s′

P (s|a′, s′)µ(a′, s′) ∀s ∈ S.

We refer to the constraints in the second line of Eq. (10) as the Bellman flow constraints, which force µ(a, s)
to respect the mdp dynamics. We denote the set of feasible µ as M ⊂ RA×S

+ . For normalized ν0(s) and
P (s|a′, s′), we show in App. A.2 that µ(a, s) ∈M implies µ(a, s) is normalized.
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It can be shown that any feasible µ(a, s) ∈ M induces a stationary π(a|s) = µ(a, s)/µ(s), where µ(s) :=∑
a′ µ(a′, s) and π(a|s) ∈ ∆|A| is normalized by definition. Conversely, any stationary policy π(a|s) induces

a unique state-action visitation distribution µ(a, s) (Syed et al. (2008), Feinberg & Shwartz (2012) Sec. 6.3).
Along with the definition of µ(a, s) above, this result demonstrates the equivalence of the optimizations in
Eq. (9) and Eq. (10). We will proceed with the lp notation from Eq. (10) and assume µ(s) is induced by
π(a|s) whenever the two appear together in an expression.

Importantly, the flow constraints in Eq. (10) lead to a dual optimization which reflects the familiar Bellman
equations (Bellman, 1957). To see this, we introduce Lagrange multipliers V ∈ RS for each flow constraint
and λ(a, s) ∈ RA×S

+ for the nonnegativity constraints. Summing over s ∈ S, and eliminating µ(a, s) by
setting d/dµ(a, s) = 0 yields the dual lp

RL∗(r) := min
V,λ

(1− γ)
〈
ν0, V

〉
subject to V (s) = r(a, s) + γEs

′

a,s

[
V (s′)

]
+ λ(a, s) ∀(a, s) ∈ A× S, (11)

where we have used Es′

a,s

[
V (s′)

]
as shorthand for EP (s′|a,s)[V (s′)] and reindexed the transition tuple from

(s′, a′, s) to (s, a, s′) compared to Eq. (10). Note that the constraint applies for all (a, s) ∈ A × S and that
λ(a, s) ≥ 0. By complementary slackness, we know that λ(a, s) = 0 for (a, s) such that µ(a, s) > 0.

2.4 Regularized MDPs
We now consider regularizing the objective in Eq. (10) using a convex penalty function Ω(µ) with coefficient
1/β. We primarily focus on regularization using a conditional divergence Ωπ0(µ) := Eµ(s)π(a|s)[Ω̇(π)] between
the policy and a normalized reference distribution π0(a|s), as in Sec. 2.2 and (Ortega & Braun, 2013; Fox
et al., 2016; Haarnoja et al., 2017; 2018). We also use the notation Ωµ0(µ) = Eµ(a,s)[Ω̇(µ)] to indicate
regularization of the full state-action occupancy measure to a normalized reference µ0(a, s), which appears,
for example, in Relative Entropy Policy Search (reps) (Peters et al., 2010; Belousov & Peters, 2019). The
regularized objective RLΩ,β(r) is then defined as

RLΩ,β(r) := max
µ∈M

〈
µ, r
〉
− 1
β

Ωπ0(µ) (12)

where Ωπ0(µ) contains an expectation under µ(a, s) as in Eq. (6)-(7). We can also derive a dual version of
the regularized lp, by first writing the Lagrangian relaxation of Eq. (12)

max
µ

min
V,λ

(1− γ)
〈
ν0, V

〉
+ ⟨µ, r + γEs

′

a,s

[
V
]
− V + λ⟩ − 1

β
Ωπ0(µ). (13)

Swapping the order of optimization under strong duality, we can recognize the maximization over µ(a, s) as
a conjugate function 1

βΩ∗
π0,β

, as in Eq. (3), leading to a regularized dual optimization

RL∗
Ω,β(r) = min

V,λ
(1− γ)

〈
ν0, V

〉
+ 1
β

Ω∗
π0,β

(
r + γEs

′

a,s

[
V
]
− V + λ

)
(14)

which involves optimization over dual variables V (s) only and is unconstrained, in contrast to Eq. (11).
Dual objectives of this form appear in (Nachum & Dai, 2020; Belousov & Peters, 2019; Bas-Serrano et al.,
2021; Neu et al., 2017). We emphasize the need to include the Lagrange multiplier λ(a, s), with λ(a, s) > 0
when the optimal policy has π∗(a|s) = 0, since an important motivation for α-divergence regularization is
to encourage sparsity in the policy (see Eq. (8), Lee et al. (2018; 2019); Chow et al. (2018)).

Soft Value Aggregation In iterative algorithms such as (regularized) modified policy iteration (Puterman
& Shin, 1978; Scherrer et al., 2015), it is useful to consider the regularized Bellman optimality operator (Geist
et al., 2019). For given estimates of the state-action value Q(a, s) := r(a, s) + γEs′

a,s

[
V (s′)

]
, the operator

T ∗
Ωπ0,β

updates V (s) as

V (s)← 1
β

Ω∗
π0,β(Q) = max

π∈∆|A|

〈
π,Q

〉
− 1
β

Ωπ0(π). (15)

Note that this conjugate optimization is performed in each state s ∈ S and explicitly constrains each π(a|s)
to be normalized. Although we proceed with the notation of Eq. (12) and Eq. (14), our later developments
are compatible with the ‘soft-value aggregation’ perspective above. See App. C for detailed discussion.
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3 Adversarial Interpretation
In this section, we interpret regularization as implicitly providing robustness to adversarial perturbations
of the reward function. To derive our adversarial interpretation, recall from Eq. (4) that conjugate duality
yields an alternative representation of the regularizer

1
β

Ω(α)
π0

(µ) = max
∆r∈RA×S

⟨µ,∆r⟩ − 1
β

Ω∗(α)
π0,β

(∆r). (16)

Using this conjugate optimization to expand the regularization term in the primal objective of Eq. (12),

RLΩ,β(r) = max
µ∈M

min
∆r∈RA×S

⟨µ, r −∆r⟩+ 1
β

Ω∗(α)
π0,β

(
∆r
)
. (17)

We interpret Eq. (17) as a two-player minimax game between an agent and an implicit adversary, where
the agent chooses an occupancy measure µ(a, s) ∈ M or its corresponding policy π(a|s), and the adversary
chooses reward perturbations ∆r(a, s) subject to the convex conjugate 1

βΩ∗(α)
π0,β

(∆r) as a penalty function
(Ortega & Lee, 2014).

To understand the limitations this penalty imposes on the adversary, we transform the optimization over
∆r in Eq. (17) to a constrained optimization in Sec. 3.1. This allows us to characterize the feasible set of
reward perturbations available to the adversary or, equivalently, the set of modified rewards r′(a, s) ∈ Rπ
to which a particular stochastic policy is robust. In Sec. 3.2 and 3.4, we interpret the worst-case adversarial
perturbations corresponding to an arbitrary stochastic policy and the optimal policy, respectively.

3.1 Robust Set of Modified Rewards
In order to link our adversarial interpretation to robustness and zero-shot generalization as in Eq. (1)-(2), we
characterize the feasible set of reward perturbations in the following proposition. We state our proposition
for policy regularization, and discuss differences for µ(a, s) regularization in App. D.2.
Proposition 1. Assume a normalized policy π(a|s) for the agent is given, with

∑
a π(a|s) = 1 ∀s ∈ S.

Under α-divergence policy regularization to a normalized reference π0(a|s), the optimization over ∆r(a, s) in
Eq. (17) can be written in the following constrained form

min
∆r∈R∆

π

〈
µ, r −∆r

〉
where R∆

π :=
{

∆r ∈ RA×S
∣∣∣∣Ω∗(α)

π0,β
(∆r) ≤ 0

}
, (18)

We refer to R∆
π ⊂ RA×S as the feasible set of reward perturbations available to the adversary. This translates

to a robust set Rπ of modified rewards r′(a, s) = r(a, s) −∆r(a, s) for the given policy. These sets depend
on the α-divergence and regularization strength β via the conjugate function.

For kl divergence regularization, the constraint is∑
a∈A

π0(a|s) exp
{
β ·∆r(a, s)

}
≤ 1 . (19)

See App. D.1 for proof, and Table 2 for the convex conjugate function 1
βΩ∗(α)

π0,β
(∆r) associated with various

regularization schemes. The proof proceeds by evaluating the conjugate function at the minimizing argument
∆rπ in Eq. (17) (see Sec. 3.2), with Ω∗(α)

π0,β
(∆rπ) = 0 ∀α for normalized π(a|s) and π0(a|s). The constraint

then follows from the fact that Ω∗(α)
π0,β

(∆rπ) is convex and increasing in ∆r (Husain et al., 2021). We visualize
the robust set for a two-dimensional action space in Fig. 2, with additional discussion in Sec. 4.1.

As in Eq. (2), we can provide ‘zero-shot’ performance guarantees using this set of modified rewards. For any
perturbed reward in the robust set r′ ∈ Rπ, we have ⟨µ, r′⟩ ≥ ⟨µ, r⟩ − 1

βΩ(α)
π0 (µ), so that the policy achieves

an expected modified reward which is at least as large as the regularized objective. However, notice that this
form of robustness is sensitive to the exact value of the regularized objective function. Although entropy
regularization and divergence regularization with a uniform reference induce the same optimal µ(a, s), we
highlight crucial differences in their reward robustness interpretations in Sec. 5.1.
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3.2 Worst-Case Perturbations: Policy Form

From the feasible set in Prop. 1, how should the adversary select its reward perturbations? In the following
proposition, we use the optimality conditions in Eq. (5) to solve for the worst-case reward perturbations
∆rπ(a, s) which minimize Eq. (17) for an fixed but arbitrary stochastic policy π(a|s).
Proposition 2. For a given policy π(a|s) or state-action occupancy µ(a, s), the worst-case adversarial reward
perturbations ∆rπ or ∆rµ associated with a convex function Ω(µ) and regularization strength 1/β are

∆rπ = ∇µ
1
β

Ω(µ) . (20)

See App. A.1 for proof. We now provide example closed form expressions for the worst-case reward per-
turbations under common regularization schemes. We emphasize that the same stochastic policy π(a|s) or
joint occupancy measure µ(a, s) can be associated with different adversarial perturbations depending on the
choice of α-divergence and strength β.1

KL Divergence For kl divergence policy regularization, the worst-case reward perturbations are

∆rπ(a, s) = 1
β

log π(a|s)
π0(a|s) , (21)

which corresponds to the pointwise regularization ∆rπ(a, s) = Ω̇π0(π(a|s) for each state-action pair, with
Ωπ0(µ) = Eµ(a,s)[Ω̇π0(π(a|s)]. See App. B.1. We show an analogous result in App. B.2 for state-action
occupancy regularization DKL[µ : µ0], where ∆rµ(a, s) = 1

β log µ(a,s)
µ0(a,s) = Ω̇µ0(µ(a, s)).

α-Divergence For kl divergence regularization, the worst-case reward perturbations had a similar expres-
sion for conditional and joint regularization. However, we observe notable differences for the α-divergence
in general. For policy regularization to a reference π0,

∆rπ(a, s) = 1
β

logα
π(a|s)
π0(a|s) + ψ∆r(s;β), (22)

where we define ψ∆r(s;β) as

ψ∆r(s;β) := 1
β

1
α

(∑
a∈A

π0(a|s)−
∑
a∈A

π0(a|s)1−απ(a|s)α
)
. (23)

As we discuss in App. B.3, ψ∆r(s;β) plays the role of a normalization constant for the optimizing argument
π∆r(a|s) in the definition of 1

βΩ∗(α)
π0,β

(∆r) (see Eq. (3), Table 2). This term arises from differentiating Ω(α)
π0 (µ)

with respect to µ(a, s) instead of from an explicit constraint. Assuming the given π(a|s) and reference
π0(a|s) are normalized, note that ψ∆r(s;β) = 1

β (1−α)Dα[π0 : π]. With normalization, we also observe that
ψ∆r(s;β) = 0 for kl divergence regularization (α = 1), which confirms Eq. (21) is a special case of Eq. (22).

For any given state-action occupancy measure µ(a, s) and joint α-divergence regularization to a reference
µ0(a|s), the worst-case perturbations become

∆rµ(a, s) = 1
β

logα
µ(a, s)
µ0(a, s) , (24)

with detailed derivations in App. B.4. In contrast to Eq. (22), this expression lacks an explicit normalization
constant, as this constraint is enforced by the Lagrange multipliers V (s) and µ(a, s) ∈M (App. A.2).

1One exception is that a policy with a′ s.t. π(a′|s) = 0 can only be represented using kl regularization if π0(a′|s) = 0.
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3.3 Worst-Case Perturbations: Value Form

In the previous section, we analyzed the implicit adversary corresponding to any stochastic policy π(a|s) for
a given Ω, π0, and β. We now take a dual perspective, where the adversary is given access to a set of dual
variables V (s) across states s ∈ S and selects reward perturbations ∆rV (a, s). We will eventually show in
Sec. 3.4 that these perturbations match the policy-form perturbations at optimality.

Our starting point is Theorem 3 of Husain et al. (2021), which arises from taking the convex conjugate
(−RLΩ,β(r))∗ of the entire regularized objective RLΩ,β(r), which is concave in µ(a, s). See App. E.1.
Theorem 1 (Husain et al. (2021)). The optimal value of the regularized objective RLΩ,β(r) in Eq. (12), or
its dual RL∗

Ω,β(r) in Eq. (14), is equal to

inf
V,λ

inf
∆rV

(1− γ)
〈
ν0, V

〉
+ 1
β

Ω∗(α)
π0,β

(∆rV ) (25)

subject to V (s) = r(a, s) + γEs
′

a,s

[
V (s′)

]
−∆rV (a, s) + λ(a, s) ∀(a, s) ∈ A× S.

Rearranging the equality constraint to solve for ∆rV (a, s) and substituting into the objective, this opti-
mization recovers the regularized dual problem in Eq. (14). We can also compare Eq. (25) to the un-
regularized dual problem in Eq. (11), which does not include an adversarial cost and whose constraint
V (s) = r(a, s)+γEs′

a,s

[
V (s′)

]
+λ(a, s) implies an unmodified reward, or ∆rV (a, s) = 0. Similarly to Sec. 3.2,

the adversary incorporates the effect of policy regularization via the reward perturbations ∆rV (a, s).

3.4 Policy Form = Value Form at Optimality

In the following proposition, we provide a link between the policy and value forms of the adversarial reward
perturbations, showing that ∆rπ∗(a, s) = ∆rV∗(a, s) for the optimal policy π∗(a|s) and value V∗(s). As
in Eysenbach & Levine (2021), the uniqueness of the optimal policy implies that its robustness may be
associated with an environmental reward r(a, s) for a given regularized mdp.
Proposition 3. For the optimal policy π∗(a|s) and value function V∗(s) corresponding to α-divergence policy
regularization with strength β, the policy and value forms of the worst-case adversarial reward perturbations
match, ∆rπ∗ = ∆rV∗ , and are related to the advantage function via

∆rπ∗(a, s) = Q∗(a, s)− V∗(s) + λ∗(a, s), (26)

where we define Q∗(a, s) := r(a, s)+γEs′

a,s

[
V∗(s′)

]
and recall λ∗(a, s)π∗(a|s) = 0 by complementary slackness.

Note that V∗(s) depends on the regularization scheme via the conjugate function 1
βΩ∗(α)

π0,β
(∆rV ) in Eq. (25).

Proof. See App. A.3. We consider the optimal policy in an mdp with α-divergence policy regularization
1
βΩ(α)

π0 (µ), which is derived via similar derivations as Lee et al. (2019) or by eliminating µ(a, s) in Eq. (13).

π∗(a|s) = π0(a|s) expα
{
β ·
(
Q∗(a, s)− V∗(s) + λ(a, s)− ψ∆rπ∗ (s;β)

)}
. (27)

We prove Prop. 3 by plugging this optimal policy into the worst-case reward perturbations from Eq. (22),
∆rπ∗(a, s) = 1

β logα
π∗(a|s)
π0(a|s) + ψ∆rπ∗

(s;β). We can also use Eq. (26) to verify π∗(a|s) is normalized, since
ψ∆rπ∗

ensures normalization for the policy corresponding to ∆rπ∗ . In App. C.3, we also show ψQ∗(s;β) =
V∗(s) + ψ∆rπ∗

(s;β), where ψQ∗(s;β) is a Lagrange multiplier enforcing normalization in Eq. (15).

Path Consistency Condition The equivalence between ∆rπ∗(a, s) and ∆rV∗(a, s) at optimality matches
the path consistency conditions from (Nachum et al., 2017; Chow et al., 2018) and suggests generalizations
to general α-divergence regularization. Indeed, combining Eq. (22) and (26) and rearranging,

r(a, s) + γEs
′
a,s

[
V∗(s′)

]
− 1
β

logα
π∗(a|s)
π0(a|s) − ψ∆rπ∗ (s;β) = V∗(s)− λ∗(a, s) (28)
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Figure 2: Robust Set (red region) of perturbed reward functions to which a stochastic policy generalizes,
in the sense that the policy is guaranteed to achieve an expected modified reward greater than or equal to
the value of the regularized objective (Eq. (2)). The robust set characterizes the perturbed rewards which
are feasible for the adversary. Red stars indicate the worst-case perturbed reward r′

π∗
= r−∆rπ∗ (Prop. 2).

We show robust sets for the optimal π∗(a|s) with fixed Q(a, s) = r(a, s) values (blue star), where the optimal
policy differs based on the regularization parameters α, β, π0 (see Eq. (27)). The robust set is more restricted
with decreasing regularization strength (increasing β), implying decreased generalization. Importantly, the
slope of the robust set boundary can be linked to the action probabilities under the policy (see Sec. 4.1).

for all s ∈ S and a ∈ A. This is a natural result, since path consistency is obtained using the kkt optimality
condition involving the gradient with respect to µ of the Lagrangian relaxation in Eq. (13). Similarly, we
have seen in Prop. 2 that ∆rπ = ∇µ 1

βΩ(α)
π0 (µ). See App. A.4.

Path consistency conditions were previously derived for the Shannon entropy (Nachum et al., 2017) and
Tsallis entropy with α = 2 (Chow et al., 2018), but our expression in Eq. (28) provides a generalization to
α-divergences with arbitrary reference policies. We provide more detailed discussion in App. E.2.

Indifference Condition As Ortega & Lee (2014) discuss for the single step case, the saddle point of the
minmax optimization in Eq. (17) reflects an indifference condition which is a well-known property of Nash
equilibria in game theory (Osborne & Rubinstein, 1994). Consider Q(a, s) = r(a, s) +γEs′

a,s

[
V (s′)

]
to be the

agent’s estimated payoff for each action in a particular state. For the optimal policy, value, and worst-case
reward perturbations, Eq. (28) shows that the pointwise modified reward Q∗(a, s) − ∆rπ∗(a, s) = V∗(s) is
equal to a constant.2 Against the optimal strategy of the adversary, the agent becomes indifferent between
the actions in its mixed strategy. The value or conjugate function V∗(s) = 1

βΩ∗
π0,β

(Q∗) (see App. C) is known
as the certainty equivalent (Fishburn, 1988; Ortega & Braun, 2013), which measures the total expected utility
for an agent starting in state s, in a two-player game against an adversary defined by the regularizer Ω with
strength β. We empirically confirm the indifference condition in Fig. 3 and 8.

4 Experiments
In this section, we visualize the robust set and worst-case reward perturbations associated with policy
regularization, using intuitive examples to highlight theoretical properties of our adversarial interpretation.

4.1 Visualizing the Robust Set
In Fig. 2, we visualize the robust set of perturbed rewards for the optimal policy in a two-dimensional action
space for the kl or α-divergence, various β, and a uniform or non-uniform prior policy π0. Since the optimal
policy can be easily calculated in the single-step case, we consider fixed Q∗(a, s) = r(a, s) = {1.1, 0.8} and
show the robustness of the optimal π∗(a|s), which differs based on the choice of regularization scheme using
Eq. (27). We determine the feasible set of ∆r using the constraint in Prop. 1 (see App. D.3 for details), and
plot the modified reward r′

π∗
(a, s) = Q∗(a, s)−∆rπ∗(a, s) for each action.

Inspecting the constraint for the adversary in Eq. (19), note that both reward increases ∆r(a, s) < 0 and
reward decreases ∆r(a, s) > 0 contribute non-negative terms at each action, which either up- or down-weight

2This holds for actions with π∗(a|s) > 0 and λ(a, s) = 0. Note that we treat Q(a, s) as the reward in the sequential case.

9



Published in Transactions on Machine Learning Research (07/2022)

(i) β = 1.0

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0

1.5

2.0

r(a
,s

)

Environment r(a, s) 
= Agent Q-Values

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0
Policy (a|s)

a1 a2 a3 a4 a5 a6
-1.0

-0.5

0

0.5

1.0

r
(a

,s
)

Perturbation r (a, s)

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0

1.5

2.0

r′
(a

,s
)

Perturbed r′ = r r

(ii) β = 10

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0

Policy (a|s)

a1 a2 a3 a4 a5 a6
-1.0

-0.5

0

0.5

1.0

r
(a

,s
)

Perturbation r (a, s)

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0

1.5

2.0

r′
(a

,s
)

Perturbed r′ = r r

(a) Optimal Policy

(i) β = 1.0

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0

1.5

2.0

Q
(a

,s
)

Agent Q(a, s) Values
a1 a2 a3 a4 a5 a6

0.0

0.5

1.0
Policy (a|s)

a1 a2 a3 a4 a5 a6
-1.0

-0.5

0

0.5

1.0

r
(a

,s
)

Perturbation r (a, s)

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0

1.5

2.0

r′
(a

,s
)

Perturbed r′ = r r

(ii) β = 10

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0
Policy (a|s)

a1 a2 a3 a4 a5 a6
-1.0

-0.5

0

0.5

1.0

r
(a

,s
)

Perturbation r (a, s)

a1 a2 a3 a4 a5 a6
0.0

0.5

1.0

1.5

2.0

r′
(a

,s
)

Perturbed r′ = r r

(b) Suboptimal Policy

Figure 3: Single-Step Reward Perturbations for kl regularization to uniform reference policy π0(a|s).
Q-values in left columns are used for each β in columns 2-4. We report the worst-case −∆rπ∗(a, s) (Eq. (22)),
so negative values correspond to reward decreases. (a) Optimal policy (Q∗(a, s) = r(a, s)) using the environ-
ment reward, where the perturbed r′(a, s) = c ∀a reflects the indifference condition. (b) Suboptimal policy
where indifference does not hold. In all cases, actions with high Q(a, s) are robust to reward decreases.

the reference policy π0(a|s). The constraint on their summation forces the adversary to trade off between
perturbations of different actions in a particular state. Further, since the constraints in Prop. 1 integrate
over the action space, the rewards for all actions in a particular state must be perturbed together. While it
is clear that increasing the reward in both actions preserves the inequality in Eq. (2), Fig. 2 also includes
regions where one reward decreases.

For high regularization strength (β = 0.1), we observe that the boundary of the feasible set is nearly linear,
with the slope −π0(a1|s)

π0(a2|s) based on the ratio of action probabilities in a policy that matches the prior. The
boundary steepens for lower regularization strength. We can use the indifference condition to provide further
geometric insight. First, drawing a line from the origin with slope 1 will intersect the feasible set at the
worst-case modified reward (red star) in each panel, with r′

∗(a1, s) = r′
∗(a2, s). At this point, the slope of

the tangent line yields the ratio of action probabilities in the regularized policy, as we saw for the β = 0.1
case. With decreasing regularization as β → ∞, the slope approaches 0 or −∞ for a nearly deterministic
policy and a rectangular feasible region.

Finally, we show the α-divergence robust set with α ∈ {−1, 3} and β = 10 in Fig. 2 (d)-(e) and (i)-(j),
with further visualizations in App. H. Compared to the kl divergence, we find a wider robust set boundary
for α = −1. For α = 3 and β = 10, the boundary is more strict and we observe much smaller reward
perturbations as the optimal policy becomes deterministic (π(a1|s) = 1) for both reference distributions.
However, in contrast to the unregularized deterministic policy, the reward perturbations ∆rπ∗(a, s) ̸= 0 are
nonzero. We provide a worked example in App. G, and note that indifference does not hold in this case,
r′
π∗

(a1, s) ̸= r′
π∗

(a2, s), due to the Lagrange multiplier λ∗(a2, s) > 0.

4.2 Visualizing the Worst-Case Reward Perturbations
In this section, we consider kl divergence regularization to a uniform reference policy, which is equivalent
to Shannon entropy regularization but more appropriate for analysis, as we discuss in Sec. 5.1.

Single Step Case In Fig. 3, we plot the negative worst-case reward perturbations −∆rπ(a, s) and modified
reward for a single step decision-making case. For the optimal policy in Fig. 3(a), the perturbations match
the advantage function as in Eq. (26) and the perturbed reward for all actions matches the value function
V∗(s). While we have shown in Sec. 3.2 that any stochastic policy may be given an adversarial interpretation,
we see in Fig. 3(b) that the indifference condition does not hold for suboptimal policies.

The nearly-deterministic policy in Fig. 3(a)(ii) also provides intuition for the unregularized case as β →∞.
Although we saw in Sec. 3.3 that ∆rπ∗(a, s) = 0 ∀a in the unregularized case, Eq. (11) and (26) suggest that
λ(a, s) = V∗(s) − Q∗(a, s) plays a similar role to the (negative) reward perturbations in Fig. 3(a)(ii), with
λ(a1, s) = 0 and λ(a, s) > 0 for all other actions.
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Figure 4: Grid-World Reward Perturbations. (a) Sequential task. (b)-(d) Policies trained with Shan-
non entropy regularization of different strength. Action probabilities are indicated via relative arrow lengths;
the goal-state is gray and without annotations. Colors indicate worst-case adversarial reward perturbations
∆rπ(a, s) = 1

β log π(a|s)
π0(a|s) for each state and action (up, down, left, right) against which the policy is robust.

Red (or positive ∆rπ(a, s)) implies that the policy is robust to reward decreases (up to the value shown)
imposed by the adversary. These decreases are balanced by adversarial reward increases (blue) for other
actions in the same state. We confirm the optimality of each policy using path consistency in App. H Fig. 8.

Sequential Setting In Fig. 4(a), we consider a grid world where the agent receives +5 for picking up the
reward pill, −1 for stepping in water, and zero reward otherwise. We train an agent using tabular Q-learning
and a discount factor γ = 0.99. We visualize the worst-case reward perturbations ∆rπ(a, s) = 1

β log π(a|s)
π0(a|s)

in each state-action pair for policies trained with various regularization strengths in Fig. 4(b)-(d). While it
is well-known that there exists a unique optimal policy for a given regularized mdp, our results additionally
display the adversarial strategies and resulting Nash equilibria which can be associated with a regularization
scheme specified by Ω, π0, α, and β in a given mdp.

Each policy implicitly hedges against an adversary that perturbs the rewards according to the values and
colormap shown. For example, inspecting the state to the left of the goal state in panel Fig. 4(b)-(c), we
see that the adversary reduces the immediate reward for moving right (in red, ∆rπ∗ > 0). Simultaneously,
the adversary raises the reward for moving up or down towards the water (in blue). This is in line with the
constraints on the feasible set, which imply that the adversary must balance reward decreases with reward
increases in each state. In App. E.4 Fig. 8, we certify the optimality of each policy using the path consistency
conditions, which also confirms that the adversarial perturbations have rendered the agent indifferent across
actions in each state.

Although we observe that the agent with high regularization in Fig. 4(b) is robust to a strong adversary,
the value of the regularized objective is also lower in this case. As expected, lower regularization strength
reduces robustness to negative reward perturbations. With low regularization in Fig. 4(d), the behavior of
the agent barely deviates from the deterministic policy in the face of the weaker adversary.

5 Discussion
Our analysis in Sec. 3 unifies and extends several previous works analyzing the reward robustness of regular-
ized policies (Ortega & Lee, 2014; Eysenbach & Levine, 2021; Husain et al., 2021), as summarized in Table 1.
We highlight differences in the analysis of entropy-regularized policies in Sec. 5.1, and provide additional
discussion of the closely-related work of Derman et al. (2021) in Sec. 5.2.

5.1 Comparison with Entropy Regularization
As argued in Sec. 3, the worst-case reward perturbations preserve the value of the regularized objective
function. Thus, we should expect our robustness conclusions to depend on the exact form of the regularizer.
When regularizing with the Tsallis or Shannon (α = 1) entropy, the worst-case reward perturbations become

∆rπ(a, s) = 1
β

logα π(a|s) + 1
β

1
α

(
1−

∑
a∈A

π(a|s)α
)
. (29)
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See App. F.2, we also show that for 0 < α ≤ 1, these perturbations cannot decrease the reward, with
−∆rπ(a, s) ≥ 0 and r′

π(a, s) ≥ r(a, s). In the rest of this section, we argue that this property leads to several
unsatisfying conclusions in previous work (Lee et al., 2019; Eysenbach & Levine, 2021), which are resolved
by using the kl and α-divergence for analysis instead of the corresponding entropic quantities.3

First, this means that a Shannon entropy-regularized policy is only ‘robust’ to increases in the reward
function. However, for useful generalization, we might hope that a policy still performs well when the reward
function decreases in at least some states. Including the reference distribution via divergence regularization
resolves this issue, and we observe in Fig. 2 and Fig. 4 that the adversary chooses reward decreases in
some actions and increases in others. For example, for the kl divergence, ∆rπ∗(a, s) = 1

β log π∗(a|s)
π0(a|s) =

Q∗(a, s)− V∗(s) implies robustness to reward decreases when π∗(a|s) > π0(a|s) or Q∗(a, s) > V∗(s).
Similarly, Lee et al. (2019) note that for any α,

1
β

Ω∗(Hα)
β (Q) = max

π∈∆|A|
⟨π,Q⟩+ 1

β
Hα(π) ≥ Q(amax, s)

where amax = arg maxaQ(a, s) and the Tsallis entropy Hα(π) equals the Shannon entropy for α = 1. This
soft value aggregation yields a result that is larger than any particular Q-value. By contrast, for the α-
divergence, we show in App. F.3 that for fixed β and α > 0,

Q(amax, s) + 1
β

1
α

log2−α π(amax|s) ≤
1
β

Ω∗(α)
π0,β

(Q) ≤ Q(amax, s). (30)

This provides a more natural interpretation of the Bellman optimality operator V (s)← 1
βΩ∗(α)

π0,β
(Q) as a soft

maximum operation. As a function of β, we see in App. C.4 and F.3 that the conjugate ranges between
Eπ0 [Q(amax, s)] ≤ 1

βΩ∗(α)
π0,β

(Q) ≤ Q(amax, s).

Finally, using entropy instead of divergence regularization also affects interpretations of the feasible set.
Eysenbach & Levine (2021) consider the same constraint as in Eq. (19), but without the reference π0(a|s)∑

a∈A

exp
{
β ·∆r(a, s)

}
≤ 1 ∀s ∈ S . (31)

This constraint suggests that the original reward function (∆r = 0) is not feasible for the adversary. More
surprisingly, Eysenbach & Levine (2021) App. A8 argues that increasing regularization strength (with lower
β) may lead to less robust policies based on the constraint in Eq. (31). In App. F.4, we discuss how including
π0(a|s) in the constraint via divergence regularization (Prop. 1) avoids this conclusion. As expected, Fig. 2
shows that increasing regularization strength leads to more robust policies.

5.2 Related Algorithms
Several recent works provide algorithmic insights which build upon convex duality and complement or extend
our analysis. Derman et al. (2021) derive practical iterative algorithms based on a general equivalence
between robustness and regularization, which can be used to enforce robustness to both reward perturbations
(through policy regularization) and changes in environment dynamics (through value regularization). For
policy regularization, Derman et al. (2021) translate the specification of a desired robust set into a regularizer
using the convex conjugate of the set indicator function. In particular, Derman et al. (2021) associate kl
divergence or (scaled) Tsallis entropy policy regularization with the robust set R∆

π := {∆r |∆r(a, s) ∈
[ 1
β

1
α logα

π(a|s)
π0(a|s) ,∞) ∀ (a, s) ∈ A × S}. Our analysis proceeds in the opposite direction, from regularization

to robustness, using the conjugate of the divergence. While the worst-case perturbations result in the same
modified objective, our approach yields a larger robust set with qualitatively different shape (see Fig. 1).

Zahavy et al. (2021) analyze a general ‘meta-algorithm’ which alternates between updates of the occupancy
measure µ(a, s) and modified reward r′(a, s) in online fashion. This approach highlights the fact that the
modified reward r′

π or worst-case perturbations ∆rπ change as the policy or occupancy measure is optimized.
The results of Zahavy et al. (2021) and Husain et al. (2021) hold for general convex mdps, which encompass
common exploration and imitation learning objectives beyond the policy regularization setting we consider.

3Entropy regularization corresponds to divergence regularization with the uniform reference distribution π0(a|s).
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As discussed in Sec. 3.4, path consistency conditions have been used to derive practical learning objectives
in (Nachum et al., 2017; Chow et al., 2018). These algorithms might be extended to general α-divergence
regularization via Eq. (28), which involves an arbitrary reference policy π0(a|s) that can be learned adaptively
as in (Teh et al., 2017; Grau-Moya et al., 2018).

Finally, previous work has used dual optimizations similar to Eq. (14) to derive alternative Bellman error
losses (Dai et al., 2018; Belousov & Peters, 2019; Nachum & Dai, 2020; Bas-Serrano et al., 2021), highlighting
how convex duality can be used to bridge between policy regularization and Bellman error aggregation
(Belousov & Peters, 2019; Husain et al., 2021).

6 Conclusion
In this work, we analyzed the robustness of convex-regularized rl policies to worst-case perturbations of
the reward function, which implies generalization to adversarially chosen reward functions from within a
particular robust set. We have characterized this robust set of reward functions for kl and α-divergence
regularization, provided a unified discussion of existing works on reward robustness, and clarified apparent
differences in robustness arising from entropy versus divergence regularization. Our advantage function
interpretation of the worst-case reward perturbations provides a complementary perspective on how Q-values
appear as dual variables in convex programming forms of regularized mdps. Compared to a deterministic,
unregularized policy, a stochastic, regularized policy places probability mass on a wider set of actions and
requires state-action value adjustments via the advantage function or adversarial reward perturbations.
Conversely, a regularized agent, acting based on given Q-value estimates, implicitly hedges against the
anticipated perturbations of an appropriate adversary.
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A Implications of Conjugate Duality Optimality Conditions

In this section, we show several closely-related results which are derived from the conjugate optimality
conditions. We provide additional commentary in later Appendix sections which more closely follow the
sequence of the main text.

First, recall from Section 2.1 the definition of the conjugate optimizations for functions over X := A × S.
We restrict µ ∈ RA×S

+ to be a nonnegative function over X , so that
1
β

Ω∗(∆r) = sup
µ∈RA×S

+

〈
µ,∆r

〉
− 1
β

Ω(µ), 1
β

Ω(µ) = sup
∆r∈RA×S

〈
µ,∆r

〉
− 1
β

Ω∗(∆r), (32)

and the implied optimality conditions are

∆r = 1
β
∇µΩ(µ) =

(
∇∆r

1
β

Ω∗
)−1

(µ) µ = 1
β
∇∆rΩ∗(∆r) =

(
∇µ

1
β

Ω
)−1

(∆r) . (33)

A.1 Proof of Prop. 2 : Policy Form Worst-Case Reward Perturbations

Proposition 2. For a given policy π(a|s) or state-action occupancy µ(a, s), the worst-case adversarial reward
perturbations ∆rπ or ∆rµ associated with a convex function Ω(µ) and regularization strength 1/β are

∆rπ = ∇µ
1
β

Ω(µ) . (20)

Proof. The reward perturbations are defined via conjugate optimization for Ω(µ) in Eq. (32), where ∆r ∈
RA×S . The proposition follows directly from the optimality condition in Eq. (33), and we focus on the
∆r = 1

β∇µΩ(µ) condition for convenience.

In App. B, we derive the explicit forms for the worst-case reward perturbations for kl and α-divergence
regularization from Sec. 3.2 of the main text. See App. B Table 3 for references to particular derivations.

Note that we do not consider further constraints on µ in the conjugate optimization. Instead, we view the
Bellman flow constraints µ(a, s) ∈ M (and normalization constraint µ(a, s) ∈ ∆|A|×|S|) as arising from the
overall (regularized) mdp optimization in Eq. (10) or (12), as we discuss in the next subsection.

A.2 Optimal Policy in a Regularized MDP

In Lemma 1 below, we show that the Bellman flow constraints Eq. (10), which are enforced by the optimal
Lagrange multipliers V∗(s), ensure that the optimal µ∗(a, s) is normalized. This suggests that an explicit
normalization constraint is not required. In Prop. 4, we then proceed to derive the optimal policy in a
regularized mdp using the conjugate optimality conditions in Eq. (33).
Lemma 1 (Flow Constraints Ensure Normalization). Assume that the initial state distribution ν0(s) and
transition dynamics P (s′|a, s) are normalized, with

∑
s ν0(s) = 1 and

∑
s′ P (s′|a, s) = 1. If a state-occupancy

measure satisfies the Bellman flow constraints µ(a, s) ∈ M, then it is a normalized distribution µ(a, s) ∈
∆|A|×|S|.

Proof. Starting from the Bellman flow constraints
∑
a µ(a, s) = (1−γ)ν0(s)+γ

∑
a′,s′ P (s|a′, s′)µ(a′, s′), we

consider taking the summation over states s ∈ S,∑
a,s

µ(a, s) = (1 − γ)
∑
s

ν0(s) + γ
∑
s

∑
a′,s′

P (s|a′
, s

′)µ(a′
, s

′)
(1)
= (1 − γ) + γ

∑
s

P (s|a′
, s

′)
∑
a′,s′

µ(a′
, s

′)
(2)
= (1 − γ) + γ

∑
a′,s′

µ(a′
, s

′)

where (1) uses the normalization assumption on ν0(s) and the distributive law, and (2) uses the normalization
assumption on P (s|a′, s′). Finally, we rearrange the first and last equality to obtain

(1− γ)
∑
a,s

µ(a, s) = (1− γ) =⇒
∑
a,s

µ(a, s) = 1 (34)
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which shows that µ(a, s) is normalized as a joint distribution over a ∈ A, s ∈ S, as desired.

Proposition 4 (Optimal Policy in Regularized MDP). Given the optimal value function V∗(s) and Lagrange
multipliers λ∗(a, s), the optimal policy in the regularized mdp is given by

µ∗ = 1
β
∇Ω∗

(
r + Es

′
a,s

[
V∗
]
− V∗ + λ∗

)
=
(
∇µ

1
β

Ω
)−1(

r + Es
′
a,s

[
V∗
]
− V∗ + λ∗

)
.

This matches the conjugate conditions in Eq. (33) using the arguments ∆r(a, s) ← r(a, s) + Es′

a,s

[
V∗(s′)

]
−

V∗(s) + λ∗(a, s).

Proof. In Sec. 2.4, we moved from the regularized primal optimization (Eq. (12)) to the dual optimization
(Eq. (14)) via the regularized Lagrangian

min
V,λ

max
µ

(1− γ)
〈
ν0, V

〉
+ ⟨µ, r + γEs

′

a,s

[
V
]
− V + λ⟩ − 1

β
Ωπ0(µ)

Note that the Lagrange multipliers λ(a, s) enforce µ(a, s) ≥ 0 while V (s) enforces the flow constraints and
thus, by Lemma 1, normalization of µ(a, s). We recognized the final two terms as a conjugate optimization

1
β

Ω∗
π0,β

(
r + γEs

′

a,s

[
V
]
− V + λ

)
= max

µ

〈
µ, r + γEs

′

a,s

[
V
]
− V + λ

〉
− 1
β

Ωπ0(µ) (35)

to yield a dual optimization over V (s) and λ(a, s) only in Eq. (14). After solving the dual optimization for
the optimal V∗(s), λ∗(a, s), we can recover the optimal policy in the mdp using the optimizing argument of
Eq. (35). Differentiating Eq. (35) and solving for µ yields ∇µ 1

βΩ(µ) = r+ γEs′

a,s

[
V
]
−V +λ which we invert

to obtain Prop. 4. The other equality follows from the conjugate optimality conditions in Eq. (33).

For α-divergence regularization, the optimal policy or state-action occupancy is given by the ‘optimizing
argument’ column of Table 2, up to reparameterization of ∆r(a, s)← r(a, s) +Es′

a,s

[
V∗(s′)

]
−V∗(s) +λ∗(a, s)

as the dual variable. In this case, note that the argument to the conjugate function accounts for the flow
and nonnegativity constraints via V∗(s) and λ∗(a, s). In particular, we have

Policy Reg., App. B.3 Eq. (63)

µ∗(a, s) = µ(s)π0(a|s) expα
{
β ·
(
r(a, s) + γEs

′

a,s

[
V∗(s′)

]
− V∗(s) + λ(a, s)− ψ∆rπ∗

(s;β)
)}

(36)

Occupancy Reg., App. B.4 Eq. (68)

µ∗(a, s) = µ0(a, s) expα
{
β ·
(
r(a, s) + γEs

′

a,s

[
V∗(s′)

]
− V∗(s) + λ(a, s)

)}
(37)

where ψ∆rπ∗
(s;β) = 1

β
1
α (1−

∑
a π0(a|s)1−απ∗(a|s)α) appears from differentiating ∇ 1

βΩπ0(µ) as in Eq. (23)
or App. B.3. This means that the optimal policy is only available in self-consistent fashion, with the
normalization constant inside the expα, which can complicate practical applications (Lee et al., 2019; Chow
et al., 2018).

A.3 Proof of Prop. 3: Policy Form Worst-Case Perturbations match Value Form at Optimality

The substitution ∆r(a, s)← r(a, s) + Es′

a,s

[
V∗(s′)

]
− V∗(s) + λ∗(a, s) above already anticipates the result in

Prop. 3, which links the reward perturbations for the optimal policy ∆rπ∗ or state-action occupancy ∆rµ∗

to the advantage function. See the proof of Thm. 1 in App. E.1 for additional context in relation to the
value-form reward perturbations ∆rV (a, s).
Proposition 3. For the optimal policy π∗(a|s) and value function V∗(s) corresponding to α-divergence policy
regularization with strength β, the policy and value forms of the worst-case adversarial reward perturbations
match, ∆rπ∗ = ∆rV∗ , and are related to the advantage function via

∆rπ∗(a, s) = Q∗(a, s)− V∗(s) + λ∗(a, s), (26)

where we define Q∗(a, s) := r(a, s)+γEs′

a,s

[
V∗(s′)

]
and recall λ∗(a, s)π∗(a|s) = 0 by complementary slackness.

Note that V∗(s) depends on the regularization scheme via the conjugate function 1
βΩ∗(α)

π0,β
(∆rV ) in Eq. (25).
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Proof. The result follows by combining Prop. 2, which states that ∆rπ = ∇µ 1
βΩ(µ), and Prop. 4,

which implies ∇µ 1
βΩ(µ∗) = r(a, s) + γEs′

a,s

[
V∗(s′)

]
− V∗(s) + λ∗(a, s) as a condition for optimality of

{µ∗(a, s), V∗(s), λ∗(a, s)}. Thus, for the optimal policy π∗(a|s) and Lagrange multipliers {V∗(s), λ∗(a, s)},
we have ∆rπ∗(a, s) = r(a, s) + γEs′

a,s

[
V∗(s′)

]
− V∗(s) + λ∗(a, s) and similarly for ∆rµ∗(a, s).

We can confirm this using the expression for the optimal policy in Eq. (36) and the worst-case reward
perturbations in Sec. 3.2. For example, recalling µ∗(a, s) = µ(s)π∗(a|s), we can write the α-divergence
policy regularization case as ∆rπ∗(a, s) = 1

β logα
π∗(a|s)
π0(a|s) + ψ∆rπ∗

(s;β) = r(a, s) + γEs′

a,s

[
V∗(s′)

]
− V∗(s) +

λ(a, s) ±������
ψ∆rπ∗

(s;β).

A.4 Path Consistency and KKT Conditions

Finally, note that the kkt optimality conditions (Boyd & Vandenberghe, 2004) include the condition that
we have used in the proof of Prop. 3. At optimality, we have

r(a, s) + γEs
′

a,s

[
V∗(s′)

]
− V∗(s) + λ∗(a, s)−∇ 1

β
Ω(µ∗) = 0. (38)

This kkt condition is used to derive path consistency objectives in Nachum et al. (2017); Chow et al. (2018).

For general α-divergence policy regularization, we substitute ∇ 1
βΩ(α)

π0 (µ∗) = ∆rπ∗(a, s) = 1
β logα

π∗(a|s)
π0(a|s) +

ψ∆rπ∗
(s;β) using Eq. (22) (see App. B.3 for detailed derivations). This leads to the condition

r(a, s) + γEs
′

a,s

[
V∗(s′)

]
− V∗(s) + λ∗(a, s)− 1

β
logα

π∗(a|s)
π0(a|s) − ψ∆rπ∗

(s;β) = 0, (39)

which matches Eq. (28). We compare our α-divergence path consistency conditions to previous work in
App. E.2.

A.5 Modified Rewards and Duality Gap for Suboptimal Policies

We can also use the conjugate duality of state-action occupancy measures and reward functions (r(a, s) or
r′(a, s)) to express the optimality gap for a suboptimal µ(a, s). Consider the regularized primal objective as
a (constrained) conjugate optimization,

RLΩ,β(r) := 1
β

Ω∗(r) = max
µ∈M

〈
µ, r
〉
− 1
β

Ω(µ) (40)

≥
〈
µr′ , r

〉
− 1
β

Ω(µr′) (41)

where the inequality follows from the fact that any feasible µr′ ∈M provides a lower bound on the objective.
We use the notation µr′ to anticipate the fact that, assuming appropriate domain considerations, we would
like to associate this occupancy measure with a modified reward function r′ using the conjugate optimality
conditions in Eq. (33) (with r′ as the dual variable). In particular, for a given Ω, we use the fact that
µr′ = 1

β∇Ω∗(r′) to recognize the conjugate duality gap as a Bregman divergence. Rearranging Eq. (41),

1
β

Ω∗(r)−
〈
µr′ , r

〉
+ 1
β

Ω(µr′) ≥ 0 (42)

1
β

Ω∗(r)−
〈
µr′ , r

〉
+
〈
µr′ , r′〉− 1

β
Ω∗(r′) ≥ 0 (43)

1
β

Ω∗(r)− 1
β

Ω∗(r′)−
〈
r − r′,

1
β
∇Ω∗(r′)︸ ︷︷ ︸
µr′

〉
≥ 0 (44)

DΩ∗ [r : r′] ≥ 0 (45)

where the last line follows from the definition of the Bregman divergence (Amari, 2016). For example, using
the kl divergence Ω(µ) = DKL[µ : µ0], one can confirm that the Bregman divergence generated by Ω∗ is
also a kl divergence, DKL[µr′ : µr∗ ] (Belousov, 2017; Banerjee et al., 2005).
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B Convex Conjugate Derivations

In this section, we derive the convex conjugate associated with kl and α-divergence regularization of the
policy π(a|s) or state-action occupancy µ(a, s). We summarize these results in Table 2, with equation
references in Table 3. In both cases, we treat the regularizer 1

βΩ(µ) as a function of µ(a, s) and optimize
over all states jointly,

1
β

Ω∗(·) = sup
µ∈RA×S

+

〈
µ, ·
〉
− 1
β

Ω(µ). (46)

These conjugate derivations can be used to reason about the optimal policy via 1
βΩ∗(r+ γEs′

a,s

[
V
]
−V −λ

)
,

as argued in App. A.2, or the worst case reward perturbations using 1
βΩ∗(∆r). We use ∆r as the argument

or dual variable throughout this section.

In App. C, we derive alternative conjugate functions which optimize over the policy in each state, where
π(a|s) ∈ ∆|A| is constrained to be a normalized probability distribution. This conjugate arises in considering
soft value aggregation or regularized iterative algorithms as in Sec. 2.4. See Table 4 for equation references.

Divergence Ω 1
βΩ∗(∆r) ∆rµ(a, s) µ∆r(a, s)

1
βDKL[π : π0] Eq. (47) Eq. (50) Eq. (51)
1
βDKL[µ : µ0] Eq. (55) Eq. (53) Eq. (54)
1
βDα[π0 : π] Eq. (56) Eq. (62) Eq. (63)
1
βDα[µ0 : µ] Eq. (66) Eq. (67) Eq. (68)

Table 3: Equations for ∆r or ‘mdp Optimality’ Conjugate
(µ Optimization, No Normalization Constraint)

Divergence Ω 1
βΩ∗(Q) Qπ(a, s) πQ(a, s)

1
βDKL[π : π0] Eq. (78) Eq. (75) Eq. (76)
1
βDα[π0 : π] Eq. (82) Eq. (81) Eq. (80)

Table 4: Equations for ‘Soft Value’ V∗(s) Conjugates
(π Optimization, Normalization Constraint)

B.1 KL Divergence Policy Regularization: 1
βΩ∗

π0,β
(∆r)

The conjugate function for kl divergence from the policy π(a|s) to a reference π0(a|s) has the following
closed form

1
β

Ω∗
π0,β(∆r) = 1

β

∑
s

µ(s)
(∑

s

π0(a|s) exp
{
β ·∆r(a, s)

}
− 1
)
. (47)

Proof. We start from the optimization in Eq. (3) or (32), using conditional kl divergence regularization
Ωπ0(µ) = Eµ(s)[DKL[π : π0]] as in Eq. (6).

1
β

Ω∗
π0,β(∆r) = max

µ

〈
µ,∆r

〉
− 1
β

∑
a,s

µ(a, s) log µ(a, s)
µ(s)π0(a|s) + 1

β

∑
a,s

µ(a, s)− 1
β

∑
a,s

µ(s)π0(a|s) (48)

=⇒ ∆r = ∇µ

(
1
β

∑
a,s

µ(a, s) log µ(a, s)
µ(s)π0(a|s) + 1

β

∑
a,s

µ(a, s)− 1
β

∑
a,s

µ(s)π0(a|s)
)

(49)

Worst-Case Reward Perturbations ∆rπ(a|s) We can recognize Eq. (49) as an instance of Prop. 2.
Noting that the marginal µ(s) depends on µ(a, s), we make use of the identity

∑
s′

∂
∂µ(a,s)µ(s′) =∑

s′,a′
∂

∂µ(a,s)µ(a′, s′) =
∑
s′,a′ δ(a′, s′ = a, s) = 1 as in (Neu et al., 2017; Lee et al., 2019). Differentiat-
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ing, we obtain

∆r(a, s) = 1
β

log µ(a, s)
µ(s)π0(a|s) −

1
β

∑
a,s

∂µ(a, s)
∂µ(a′, s′)︸ ︷︷ ︸

1

+ 1
β

∑
a,s

µ(a, s)
µ(s)

∂
∑

a′′ µ(a′′, s)
∂µ(a′, s′)︸ ︷︷ ︸
δ(s=s′)

+ 1
β
− 1
β

∑
a,s

∂
∑

a′′ µ(a′′, s)
∂µ(a′, s′)︸ ︷︷ ︸
δ(s=s′)

π0(a|s)

= 1
β

log µ(a, s)
µ(s)π0(a|s) + 1

β

∑
a

µ(a, s)
µ(s) −

1
β

∑
a

π0(a|s)

= 1
β

log µ(a, s)
µ(s)π0(a|s) . (50)

In the last line, we assume
∑
a π0(a|s) = 1 and note that

∑
a
µ(a,s)
µ(s) =

∑
a
µ(a,s)
µ(s) = µ(s)

µ(s) = 1.

Optimizing Argument π∆r(a|s) We derive the conjugate function by solving for the optimizing argument
µ(a, s) in terms of ∆r(a, s) and substituting back into Eq. (48). Defining π∆r(a|s) = µ∆r(a,s)

µ∆r(s) as the policy
induced by the optimizing argument µ∆r(a, s) in Eq. (50), we can solve for π∆r to obtain

π∆r(a|s) = π0(a|s) exp
{
β ·∆r(a, s)

}
(51)

Conjugate Function 1
βΩ∗

π0,β
(∆r) We plug this back into the conjugate optimization Eq. (48), with

µ∆r(a, s) = µ(s)π∆r(a, s). Assuming π0(a|s) is normalized, we also have
∑
a,s µ(s)π0(a|s) = 1 and

1
β

Ω∗
π0,β(∆r) =

∑
a,s

µ(s)π∆r(a|s) · ∆r(a, s) −
1
β

(∑
a,s

µ(s)π∆r(a|s) ·��log
�
�
π0

π0
��exp{β∆r(a, s)} − µ(s)π0(a|s) exp

{
β∆r(a, s)

}
+ µ(s)π0(a|s)

)
=

1
β

∑
s

µ(s)

(∑
s

π0(a|s) exp
{
β · ∆r(a, s)

}
− 1

)
(52)

as desired. Note that the form of the conjugate function also depends on the regularization strength β.

Finally, we verify that our other conjugate optimality condition ∆rπ =
(
∇∆r

1
βΩ∗

π0,β

)−1(µ∆r), or µ∆r =
∇∆r

1
βΩ∗

π0,β
(∆rπ) holds for this conjugate function. Indeed, differentiating with respect to ∆r(a, s) above, we

see that ∂
∂∆r(a,s)

1
βΩ∗

π0,β
(∆r) = µ(s)π0(a|s) exp{β ·∆r(a, s)} matches µ∆r(a, s) = µ(s)π∆r(a|s) via Eq. (51).

Although our regularization Ωπ0(µ) = Eµ(s)[DKL[π : π0]] applies at each π0(a|s), we saw that performing
the conjugate optimization over µ(a, s) led to an expression for a policy π∆r(a|s) = µ∆r(a, s)/µ(s) that is
normalized by construction

∑
a π∆r(a|s) =

∑
a
µ∆r(a,s)
µ(s) = 1. Conversely, for a given normalized π(a|s), the

above conjugate conditions yield ∆rπ(a, s) such that Eq. (51) is also normalized.

B.2 KL Divergence Occupancy Regularization: 1
βΩ∗

µ0,β
(∆r)

Nearly identical derivations as App. B.1 apply when regularizing the divergence Ωµ0(µ) = DKL[µ : µ0]
between the joint state-action occupancy µ(a, s) and a reference µ0(a, s). This leads to the following results

Worst-Case Perturbations: ∆rµ(a, s) = 1
β

log µ(a, s)
µ0(a, s) (53)

Optimizing Argument: µ∆r(a, s) = µ0(a, s) exp {β ·∆r(a, s)} . (54)

Conjugate Function: 1
β

Ω∗
µ0,β(∆r) = 1

β

∑
a,s

µ0(a, s) exp
{
β ·∆r(a, s)

}
− 1
β

∑
a,s

µ0(a, s) (55)

Such regularization schemes appear in reps (Peters et al., 2010), while Bas-Serrano et al. (2021) consider
both policy and occupancy regularization.
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B.3 α-Divergence Policy Regularization: 1
βΩ∗(α)

π0,β
(∆r)

The conjugate for α-divergence regularization of the policy π(a|s) to a reference π0(a|s) takes the form

1
β

Ω∗(α)
π0,β

(∆r) = 1
β

1
α

∑
a,s

µ(s)
(
π0(a|s)

[
1 + β(α− 1)

(
∆r(a, s)− ψ∆r(s;β)

)] α
α−1

− 1
)

+
∑
s

µ(s)ψ∆r(s;β). (56)

where ψ∆r(s;β) is a normalization constant for the optimizing argument π∆r(a|s) corresponding to ∆r(a, s).

We provide explicit derivations of the conjugate function instead of leveraging f -divergence duality (Belousov
& Peters, 2019; Nachum & Dai, 2020) in order to account for the effect of optimization over the joint
distribution µ(a, s). We will see in App. C.2 see that the conjugate in Eq. (56) takes a similar to form
as the conjugate with restriction to normalized π(a|s) ∈ ∆|A|, where this constraint is not captured using
f -divergence function space duality.

Proof. We begin by writing the α-divergence Ω(α)
π0 (µ) = Eµ(s)[Dα[π0 : π]] as a function of the occupancy

measure µ, with π(a|s) = µ(a,s)
µ(s) . As in Prop. 2, the conjugate optimization implies an optimality condition

for ∆r(a, s).

1
β

Ω∗(α)
π0,β

(∆r) = max
µ

〈
µ,∆r

〉
−

1
β

1
α(1 − α)

(
(1 − α)

∑
a,s

µ(s)π0(a|s) + α
∑
a,s

µ(a, s) −
∑
a,s

µ(s)π0(a|s)1−α
(
µ(a, s)
µ(s)

)α)
(57)

=⇒ ∆r = ∇µ
1
β

1
α(1 − α)

(
(1 − α)

∑
a,s

µ(s)π0(a|s) + α
∑
a,s

µ(a, s) −
∑
a,s

µ(s)π0(a|s)1−α
(
µ(a, s)
µ(s)

)α)
(58)

Worst-Case Reward Perturbations ∆rπ(a|s) We now differentiate with respect to µ(a, s), using similar
derivations as in Lee et al. (2019). While we have already written Eq. (58) using µ(a, s) = µ(s)π(a|s), we
again emphasize that µ(s) depends on µ(a, s). Differentiating, we obtain

∆r(a, s) = ∇µ
1
β

Ω(α)
π0 (µ) (59)

=
1
β

1
α(1 − α)

∑
a′,s′

∂

∂µ(a, s)

(
(1 − α)µ(s′)π0(a′|s′) + αµ(a′, s′) − µ(s′)1−απ0(a′|s′)1−αµ(a′, s′)α

)
=

1
β

1
α(1 − α)

(
(1 − α)

∑
s′

∂
∑

a′ µ(a′, s′)
∂µ(a, s)︸ ︷︷ ︸
δ(s=s′)

∑
a′

π0(a′|s) + α
∑
a′,s′

∂µ(a′, s′)
∂µ(a, s)︸ ︷︷ ︸

δ(a′,s′=a,s)

−

−
∑
a′,s′

αµ(a′, s′)α−1 ∂µ(a′, s′)
∂µ(a, s)︸ ︷︷ ︸

δ(a′,s′=a,s)

µ(s′)1−απ0(a′|s′)1−α − (1 − α)
∑
a′,s′

µ(s′)−α ∂
∑

a′ µ(a′, s′)
∂µ(a, s)︸ ︷︷ ︸
δ(s=s′)

π0(a′|s′)1−αµ(a′, s′)α
)

=
1
β

1
α(1 − α)

(
(1 − α)

∑
a

π0(a|s) + α− α

(
µ(a, s)

µ(s)π0(a|s)

)α−1
− (1 − α)

∑
a′

π0(a|s)1−α
(
µ(a, s)
µ(s)

)α )
(1)
=

1
β

1
α

+
1
β

1
1 − α

−
1
β

1
1 − α

(
π(a|s)
π0(a|s)

)α−1
−

1
β

1
α

∑
a

π0(a|s)1−απ(a|s)α

=
1
β

1
α− 1

((
π(a|s)
π0(a|s)

)α−1
− 1
)

+
1
β

1
α

(
1 −
∑
a

π0(a|s)1−απ(a|s)α
)

(60)

where we have rewritten (1) in terms of the policy π(a|s) = µ(a,s)
µ(s) and assumed π0(a|s) is normalized.

Letting π∆r(a|s) indicate the policy which is in dual correspondence with ∆r(a, s), we would eventually like
to invert the equality in Eq. (60) to solve for π(a|s) in each (a, s). However, the final term depends on a
sum over all actions. To handle this, we define

ψ∆r(s;β) = 1
β

1
α

(∑
a

π0(a|s)−
∑
a

π0(a|s)1−απ∆r(a|s)α
)
. (61)
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Since π∆r(a|s) = µ∆r(a,s)
µ(s) is normalized by construction, the constant ψ∆r(s;β) with respect to actions has

appeared naturally when optimizing with respect to µ(a, s). In App. C.2-C.3, we will relate this quantity to
the Lagrange multiplier used to enforce normalization when optimizing over π(a|s) ∈ ∆|A|.

Finally, we use Eq. (60) to write ∆rπ(a, s) as

∆rπ(a, s) = 1
β

logα
π(a|s)
π0(a|s) + ψ∆r(s;β) . (62)

Optimizing Argument π∆r(a|s) Solving for the policy in Eq. (62) and denoting this as π∆r(a|s),

π∆r(a|s) = π0(a|s) expα
{
β ·
(
∆r(a, s)− ψ∆r(s;β)

)}
= π0(a|s)

[
1 + β(α− 1) (∆r(a, s)− ψ∆r(s;β))

] 1
α−1
+

. (63)

Note that ∆rπ(a|s) is defined in self-consistent fashion due to the dependence of ψ∆r(s;β) on π∆r(a|s) in
Eq. (61). Further, ψ∆r(s;β) does not appear as a divisive normalization constant for general α, which is
inconvenient for practical applications (Lee et al., 2019; Chow et al., 2018).

Conjugate Function 1
βΩ∗(α)

π0,β
(∆r) Finally, we plug this into the conjugate optimization Eq. (57). Although

we eventually need to obtain a function of ∆r(a, s) only, we write π∆r(a|s) in initial steps to simplify notation.

1
β

Ω∗(α)
π0,β

(∆r) =
∑
a,s

µ(s)π∆r(a|s) · ∆r(a, s) −
1
β

1
α(1 − α)

(
(1 − α)

∑
a,s

µ(s)π0(a|s) + α

∑
a,s

µ(s)π∆r(a|s) −
∑
a,s

µ(s)π∆r(a|s)
(
π∆r(a|s)
π0(a|s)

)α−1)
=
∑
a,s

µ(s)π∆r(a|s) · ∆r(a, s) −
1
β

1
α

∑
a,s

µ(s)π0(a|s) −
1
β

1
1 − α

∑
a,s

µ(s)π∆r(a|s) (64)

+
1
β

1
α(1 − α)

∑
a,s

µ(s)π∆r(a|s)
(

1 +����β(α − 1)︸ ︷︷ ︸
−1

(
∆r(a, s) − ψ∆r(s; β)

))
(1)
=
(

1 −
1
α︸ ︷︷ ︸

α−1
α

)∑
a,s

µ(s)π∆r(a|s) · ∆r(a, s) −
1
β

1
α

∑
a,s

µ(s)π0(a|s) −
(

1
β

1
1 − α

−
1
β

1
α(1 − α)︸ ︷︷ ︸

− 1
β

1
α

)∑
a,s

µ(s)π∆r(a|s) +
1
α
ψ∆r(s; β)

(2)
=

1
β

1
α

∑
a,s

µ(s)π∆r(a|s) +
β

β

α − 1
α

∑
a,s

µ(s)π∆r(a|s) · ∆r(a, s) ±
β

β

α − 1
α

ψ∆r(s; β) +
1
α
ψ∆r(s; β) −

1
β

1
α

∑
a,s

µ(s)π0(a|s)

where in (1) we note that 1
β

1
α(1−α) ·β(α− 1) = − 1

α . In (2), we add and subtract the term in blue, which will
allow to factorize an additional term of [1 +β(α− 1)(∆r−ψ∆r(s;β))] and obtain a function of ∆r(a, s) only

1
β

Ω∗(α)
π0,β

(∆r) =
1
β

1
α

∑
a,s

µ(s)π∆r(a|s)
(

1 + β(α − 1)
(

∆r(a, s) − ψ∆r(s; β)
))

+
(
α − 1
α

+
1
α︸ ︷︷ ︸

1

)
ψ∆r(s; β) −

1
β

1
α

∑
a,s

µ(s)π0(a|s)

(1)
=

1
β

1
α

∑
a,s

µ(s)
(
π0(a|s)

[
1 + β(α − 1)

(
∆r(a, s) − ψ∆r(s; β)

)] α
α−1

− 1
)

+
∑
s

µ(s)ψ∆r(s; β)⟩ (65)

where in (1) we have used Eq. (63) and 1
α−1 + 1 = α

α−1 , along with
∑
a π0(a|s) = 1.

Confirming Conjugate Optimality Conditions Finally, we confirm that differentiating Eq. (65) with
respect to ∆r(a, s) yields the conjugate condition π∆r = ∇ 1

βΩ∗(α)
π0,β

(∆r). Noting that α
α−1 − 1 = 1

α−1 ,

∇ 1
βΩ∗(α)

π0,β
(∆r) = β(α−1)

β α
α
α−1

∑
s

µ(s)
∑
a

π0(a|s)
[

1 + β(α − 1)
(

∆r(a, s) − ψ∆r(s; β)
)] 1

α−1
(
∂∆r(a,s)
∂∆r(a′,s′) − ∂ψ∆r(s;β)

∂∆r(a′,s′)

)
+
∑
s

µ(s) ∂ψ∆r(s;β)
∂∆r(a′,s′)

which simplifies to π∆r(a|s) = ∂
∂∆r(a,s)

1
βΩ∗(α)

π0,β
(∆r) = π0(a|s)

[
1 + β(α − 1)

(
∆r(a, s) − ψ∆r(s;β)

)] 1
α−1 and

matches Eq. (63).
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B.4 α-Divergence Occupancy Regularization: 1
βΩ∗(α)

µ0,β
(∆r)

The conjugate function 1
βΩ∗(α)

µ0,β
(∆r) for α-divergence regularization of the state-action occupancy µ(a, s) to

a reference µ0(a, s) can be written in the following form

1
β

Ω∗(α)
µ0,β

(∆r) = 1
β

1
α

∑
a,s

µ0(a, s)
[
1 + β(α− 1)∆r(a, s)

] α
α−1 − 1

β

1
α

(66)

Note that this conjugate function can also be derived directly from the duality of general f -divergences, and
matches the form of conjugate considered in (Belousov & Peters, 2019; Nachum & Dai, 2020).

Proof. Worst-Case Reward Perturbations ∆rµ(a|s)

∆r(a, s) = 1
β

1
α(1− α)∇µ

(
(1− α)

∑
a,s

µ0(a, s) + α
∑
a,s

µ(a, s)−
∑
a,s

µ0(a, s)1−αµ(a, s)α
)

(67)

= 1
β

1
1− α −

1
β

1
1− αµ0(a, s)1−αµ(a, s)α−1

Optimizing Argument µ∆r(a, s). Solving for µ∆r(a, s),

µ∆r(a, s) = µ0(a, s) expα{β ·∆r(a, s)} = µ0(a, s)[1 + β(1− α)∆r(a, s)]
1

α−1
+ (68)

Conjugate Function 1
βΩ∗(α)

µ0,β
(∆r). Plugging this back into the conjugate optimization, we finally obtain

1
β

Ω∗(α)
µ0,β

=
∑
a,s

µ∆r(a, s) ·∆r(a, s)−
1
β

1
α(1− α)

(
(1− α)

∑
a,s

µ0(a, s) + α
∑
a,s

µ∆r(a, s)−
∑
a,s

µ∆r(a, s)
(
µ∆r(a, s)
µ0(a, s)

)α−1

︸ ︷︷ ︸
=1+β(α−1)∆r(a,s)(Eq. (68))

)

=
(

1− 1
α

)∑
a,s

µ∆r(a, s) ·∆r(a, s)−
1
β

1
α

∑
a,s

µ0(a, s) +
(

1
β

1
α(1− α) −

1
β

1
1− α

)∑
a,s

µ∆r(a, s) (69)

= α − 1
α

∑
a,s

µ0(a, s)
[

1 + β(α − 1)∆r(a, s)
] 1
α−1 · ∆r(a, s) +

1
β

1
α

∑
a,s

µ0(a, s)
[

1 + β(α − 1)∆r(a, s)
] 1
α−1 −

1
β

1
α

∑
a,s

µ0(a, s)

=
∑
a,s

µ0(a, s)
[
1 + β(α− 1)∆r(a, s)

] 1
α−1 · 1

β

1
α

(
1 + β(α− 1)∆r(a, s)

)
− 1
β

1
α

∑
a,s

µ0(a, s) (70)

= 1
β

1
α

∑
a,s

µ0(a, s)
[
1 + β(α− 1)∆r(a, s)

] α
α−1 − 1

β

1
α

∑
a,s

µ0(a, s) (71)

where, to obtain the exponent in the last line, note that 1
α−1 + 1 = α

α−1 .

C Soft Value Aggregation

Soft value aggregation (Fox et al., 2016; Haarnoja et al., 2017) and the regularized Bellman optimality
operator (Neu et al., 2017; Geist et al., 2019) also rely on the convex conjugate function, but with a slightly
different setting than our derivations for the optimal regularized policy or reward perturbations in App. B. In
particular, in each state we optimize over the policy π(a|s) ∈ ∆|A| using an explicit normalization constraint
(Eq. (74)).

We derive the regularized Bellman optimality operator from the primal objective in Eq. (12). Factorizing
µ(a, s) = µ(s)π(a|s), we can imagine optimizing over µ(s) and π(a|s) ∈ ∆|A| separately,

max
µ(s)→M

max
π(a|s)∈∆|A|

min
V (s)

(1− γ)
〈
ν0(s), V (s)

〉
+
〈
µ(a, s), r(a, s) + γEs

′

a,s

[
V (s′)

]
− V (s)

〉
− 1
β

Ωπ0(µ). (72)
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Eliminating µ(s) (by setting d/dµ(s) = 0) leads to a constraint on the form of V (s), since both may be
viewed as enforcing the Bellman flow constraints.

V (s) =
〈
π(a|s), r(s, a) + γEs

′

a,s

[
V (s′)

]〉
− 1
β

Ωπ0(π). (73)

We define Q(s, a) := r(s, a) + γEs′

a,s

[
V (s′)

]
and write V (s) = ⟨π, Q⟩ − 1

βΩπ0(π) moving forward.

As an operator for iteratively updating V (s), Eq. (73) corresponds to the regularized Bellman operator
TΩπ0 ,β

and may be used to perform policy evaluation for a given π(a|s) (Geist et al., 2019). The regularized
Bellman optimality operator T ∗

Ωπ0 ,β
, which can be used for value iteration or modified policy iteration (Geist

et al., 2019), arises from including the maximization over π(a|s) ∈ ∆|A| from Eq. (72)

V (s)← 1
β

Ω∗
π0,β(Q) = max

π∈∆|A|

〈
π,Q

〉
− 1
β

Ωπ0(π) . (74)

Comparison of Conjugate Optimizations Eq. (74) has the form of a conjugate optimization 1
βΩ∗

π0,β
(Q)

(Geist et al., 2019). However, in contrast to the setting of App. A.2 and App. B, we optimize over the
policy in each state, rather than the state-action occupancy µ(a, s). Further, we must include normalization
and nonnegativity constraints π(a|s) ∈ ∆|A|, which can be enforced using Lagrange multipliers ψQ(s;β) and
λ(a, s). We derive expressions for this conjugate function for the kl divergence in App. C.1 and α-divergence
in App. C.2, and plot the value V∗(s) as a function of α and β in App. C.4.

Compared with the optimization for the optimal policy in Eq. (35), note that the argument of the conjugate
function does not include the value function V (s) in this case. We will highlight relationship between the
normalization constants ψQ∗(s;β), ψ∆rπ∗

(s;β), and V∗(s) in App. C.3, where ψQ∗(s;β) = V∗(s)+ψ∆rπ∗
(s;β)

as in Lee et al. (2019) App. D.

C.1 KL Divergence Soft Value Aggregation: 1
βΩ∗

π0,β
(Q)

We proceed to derive a closed form for the conjugate function of the kl divergence Ωπ0(π) as a function of
π(a|s) ∈ ∆|A|, which we write using the Q-values as input

1
β

Ω∗
π0,β(Q) = max

π(a|s)
⟨π,Q⟩ −

1
β

(∑
a

π(a|s) log
π(a|s)
π0(a|s)

+
∑
a

π(a|s) −
∑
a

π0(a|s)

)
− ψQ(s; β)

(∑
a∈A

π(a|s) − 1

)
+
∑
a∈A

λ(a, s)

=⇒ Q(a, s) =
1
β

log
π(a|s)
π0(a|s)

+ ψQ(s;β) − λ(a, s) (75)

Optimizing Argument Solving for π yields the optimizing argument

πQ(a|s) = π0(a|s) exp
{
β ·
(
Q(a, s)− ψQ(s;β))

)}
(76)

where we can ignore the Lagrange multiplier for the nonnegativity constraint λ(a, s) since exp{·} ≥ 0 ensures
πQ(a|s) ≥ 0. We can pull the normalization constant out of the exponent to solve for

ψQ(s;β) = 1
β

log
∑
a

π0(a|s) exp
{
β ·Q(a, s)

}
. (77)

Plugging Eq. (76) into the conjugate optimization,

1
β

Ω∗
π0,β(Q) =

〈
πQ, Q

〉
−

1
β

(∑
a

πQ(a|s) ·��log
�
�
�π0(a|s)

π0(a|s)��
exp
{
β ·
(
Q(a, s) − ψQ(s; β)

)}
+
∑
a

πQ(a|s)︸ ︷︷ ︸
1

−1
)

− ψQ(s; β)
(∑
a∈A

πQ(a|s)︸ ︷︷ ︸
1

−1
)
.
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Conjugate Function We finally recover the familiar log-mean-exp form for the kl-regularized value
function

V (s)← 1
β

Ω∗
π0,β(Q) = ψQ(s;β) = 1

β
log
∑
a

π0(a|s) exp
{
β ·Q(a, s)

}
. (78)

Notice that the conjugate or value function V (s)← 1
βΩ∗

π0,β
(Q) is exactly equal to the normalization constant

of the policy ψQ(s;β). We will show in App. C.2 that this property does not hold for general α-divergences,
with example visualizations in App. C.3 Fig. 5.

C.2 α-Divergence Soft Value Aggregation: 1
βΩ∗

π0,β
(Q)

We now consider soft value aggregation using the α-divergence, where in contrast to App. B.3, we perform
the conjugate optimization over π(a|s) ∈ ∆|A| in each state, with Lagrange multipliers ψQ(s;β) and λ(a, s)
to enforce normalization and nonnegativity.

1
β

Ω∗
π0,β(Q) = max

π(a|s)

〈
π,Q

〉
− 1
β

1
α

∑
a

π0(a|s)− 1
β

1
1− α

∑
a

π(a|s) + 1
β

1
α(1− α)

∑
a

π0(a|s)1−απ(a|s)α (79)

− ψQ(s;β)

(∑
a

π(a|s)− 1

)
+
∑
a

λ(a, s)

=⇒ Q(a, s) = 1
β

logα
π(a|s)
π0(a|s) + ψQ(s;β)− λ(a, s) (80)

Optimizing Argument Solving for π yields the optimizing argument for the soft value aggregation con-
jugate,

πQ(a|s) = π0(a|s) expα
{
β ·
(
Q(a, s) + λ(a, s)− ψQ(s;β))

)}
. (81)

Unlike the case of the standard exponential, we cannot easily derive a closed-form solution for ψQ(s;β).

Note that the expressions in Eq. (80) and Eq. (81) are similar to the form of the worst-case reward perturba-
tions ∆rπ(a|s) in Eq. (62) and optimizing policy π∆r(a|s) in Eq. (63), except for the fact that ψQ(s;β) arises
as a Lagrange multiplier and does not have the same form as ψ∆r(s;β) = 1

β (1− α)Dα[π0 : π] as in Eq. (23)
and Eq. (61). We will find that ψQ(s;β) and ψ∆r(s;β) differ by a term of V∗(s) in App. C.3 (Eq. (86)).

Conjugate Function Plugging Eq. (81) into the conjugate optimization, we use similar derivations as in
Eq. (64)-Eq. (65) to write the conjugate function, or regularized Bellman optimality operator as

V (s)← 1
β

Ω∗(α)
π0,β

(Q) = 1
β

1
α

∑
a

π0(a|s)
[
1 + β(α− 1)

(
Q(a, s) + λ(a, s)− ψQ(s;β)

)] α
α−1

+
− 1
β

1
α

+ ψQ(s;β)

(82)

= 1
β

1
α

∑
a

π0(a|s) expα
{
β ·
(
Q(a, s) + λ(a, s)− ψQ(s;β)

)}α
− 1
β

1
α

+ ψQ(s;β)

Comparison with KL Divergence Regularization Note that for general α, the conjugate or value
function V (s) = 1

βΩ∗
π0,β

(Q) in Eq. (82) is not equal to the normalization constant of the policy ψQ(s;β).
We discuss this further in the next section.

We also note that the form of the conjugate function is similar using two different approaches: optimizing
over π with an explicit normalization constraint, as in Eq. (82), or optimizing over µ with regularization
of π but no explicit normalization constraint, as in App. B.3 or Table 2. This is in contrast to the kl
divergence, where the normalization constraint led to a log-mean-exp conjugate in Eq. (75) which is different
from App. B Eq. (47).
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C.3 Relationship between Normalization Constants ψ∆rπ∗
, ψQ∗ , and Value Function V∗(s)

In this section, we analyze the relationship between the conjugate optimizations that we have considered
above, either optimizing over µ(a, s) as in deriving the optimal policy, or optimizing over π(a|s) ∈ ∆|A| as in
the regularized Bellman optimality operator or soft-value aggregation. Using Q(a, s) = r(a, s)+γEs′

a,s

[
V (s′)

]
,

Optimal Policy (or Worst-Case Reward Perturbations) (App. B.3) (83)
1
β

Ω∗(α)
π0,β

(
r + γEs

′
a,s

[
V
]
− V + λ

)
= max
µ(a,s)∈F

〈
µ, r + γEs

′
a,s

[
V
]
− V + λ

〉
− 1
β

Ω(α)
π0 (µ)

Soft Value Aggregation (App. C.2), (84)

V (s)← 1
β

Ω∗(α)
π0,β

(
r + γEs

′
a,s

[
V
])

= max
π∈∆|A|

〈
µ, r + γEs

′
a,s

[
V
]〉
− 1
β

Ω(α)
π0 (π)

Note that the arguments differ by a term of V (s). We ignore the apparent difference in the λ(a, s) term,
which can be considered as an argument of the conjugate in Eq. (84) since a linear term of ⟨µ, λ⟩ appears
when enforcing π ∈ ∆|A|. Evaluating the optimizing arguments,

Optimal Policy (or Worst-Case Reward Perturbations) (App. B.3, Eq. (63), Table 2)

π(a|s) = π0(a|s) expα
{
β ·
(
Q(a, s) + λ(a, s)− V (s)− ψ∆r(s;β)

)}
(85)

Soft Value Aggregation (App. C.2, Eq. (82)),

π(a|s) = π0(a|s) expα
{
β ·
(
Q(a, s) + λ(a, s)− ψQ(s;β)

)
For the optimal V∗(s) and Q∗(a, s) = r(a, s) + γEs′

a,s

[
V∗(s′)

]
− V∗(s), the two policies match. This can be

confirmed using similar reasoning as in Lee et al. (2019) App. D-E or (Geist et al., 2019) to show that
iterating the regularized Bellman optimality operator leads to the optimal policy and value.

Relationship between V∗(s) and ψQ∗(s;β) This implies the condition which is the main result of this
section.

ψQ∗(s;β) = V∗(s) + ψ∆rπ∗
(s;β) . (86)

In Fig. 5 we empirically confirm this identity and inspect how each quantity varies with β and α (App. C.4)4

Eq. (86) highlights distinct roles for the value function V∗(s) and the Lagrange multiplier ψQ∗(s;β) enforcing
normalization of π(a|s) in soft-value aggregation ( Eq. (79) or Eq. (84)). It is well known that these coincide
in the case of kl divergence regularization, with V∗(s) = ψQ∗(s;β) as in App. C.1. We can also confirm
that ψ∆rπ∗

(s;β) = 1
β

1
α

(∑
a π0(a|s)−

∑
a π0(a|s)1−απ∗(a|s)α

)
= 0 vanishes for kl regularization (α = 1)

and normalized π0 and the normalized optimal policy π∗.

However, in the case of α-divergence regularization, optimization over the joint µ(a, s) in Eq. (83) introduces
the additional term ψ∆rπ∗

(s;β), which is not equal to 0 in general.

Relationship between Conjugate Functions We might also like to compare the value of the conjugate
functions in Eq. (83) and Eq. (84), in particular to understand how including V∗(s) as an argument and
optimizing over π versus µ affect the optima. We write the expressions for the conjugate function in each

4Note that ψ∆rπ∗
(s;β) = 1

β
1
α

(∑
a
π0(a|s) −

∑
a
π0(a|s)1−απ∗(a|s)α

)
appears from differentiating 1

β
Ω(α
π0 )(µ) with respect

to µ (App. B.3 Eq. (61)). We also write this as ψ∆rπ∗
(s;β) = 1

β
(1 − α)Dα[π0 : π∗] for normalized π0 and π∗.
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Figure 5: Value Function V∗(s) = 1
βΩ∗(α)

π0,β
(Q∗) (first row) and Normalization Constant ψQ∗(s;β) (second

row) as a function of α for various regularization strengths β. We use the same rewards as in Fig. 3 and
Fig. 7 and a uniform reference. We plot ψ∆r(s;β) = 1

β (1− α)Dα[π0 : π∗] in the third row, and confirm the
identity V∗(s) = ψQ∗(s;β) − ψ∆r(s;β) from Eq. (86) and (90) in the last row. We find that this equality
holds for all α up to small optimization errors on the order of 10−3.
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Figure 7: Value function V (s) = 1
βΩ∗(α)

µ0,β
(Q) as a function of β (x-axis) and α (colored lines), using Q(a, s)

and π0(a|s) from the left inset. See Eq. (78) and Eq. (82) for closed forms.
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case, highlighting the terms from Eq. (86) in blue.
Optimal Policy (or Worst-Case Reward Perturbations) (App. B.3, Eq. (56), Table 2)

1
β

Ω∗(α)
π0,β

(
r + γEs

′
a,s

[
V∗
]
− V∗ + λ∗

)
(87)

= 1
β

1
α

∑
a

π0(a|s) expα
{
β ·
(
Q∗(a, s) + λ∗(a, s)− V∗(s)− ψ∆r(s;β)

)}α
− 1
β

1
α

+ ψ∆rπ∗ (s;β)

Soft Value Aggregation (App. C.2, Eq. (82)),

V∗(s)← 1
β

Ω∗
π0,β

(
r + γEs

′
a,s

[
V∗
])

(88)

= 1
β

1
α

∑
a

π0(a|s) expα
{
β ·
(
Q∗(a, s) + λ∗(a, s)− ψQ(s;β)

)}α
− 1
β

1
α

+ ψQ(s;β)

Note that we have rewritten V∗(s)← 1
βΩ∗

π0,β
(r+ γEs′

a,s

[
V∗
]
) directly as V∗(s). To further simplify, note that

the optimal policy matches as in Eq. (85), with
π∗(a|s) = π0(a|s) expα{β · (Q∗(a, s) + λ∗(a, s)− ψQ∗(s;β))}

= π0(a|s) expα{β · (Q∗(a, s) + λ∗(a, s)− V∗(s)− ψ∆rπ∗
(s;β))}.

Since π∗(a|s) = π0(a|s) expα{·}, we can write terms of the form π0(a|s) expα{·}α in Eq. (87)-(88) as
π0(a|s)1−απ∗(a|s)α, where the exponents of π0(a|s) add to 1. Finally, we use this expression to simplify
the value function expression in Eq. (88), eventually recovering the equality in Eq. (86)

1
β

Ω∗(α)
π0,β

(
r + γEs

′

a,s

[
V∗
])

= V∗(s) = 1
β

1
α

∑
a

π0(a|s)1−απ∗(a|s)α − 1
β

1
α

+ ψQ(s;β) (89)

= ψQ(s;β)− ψ∆rπ∗
(s;β) (90)

In the second line, we use the fact that ψ∆rπ∗
(s;β) = 1

β
1
α

∑
a π0(a|s) − 1

β
1
α

∑
a π0(a|s)1−απ∗(a|s)α from

Eq. (61). We can use the same identity to show that the conjugate in Eq. (87) evaluates to zero,
1
β

Ω∗(α)
π0,β

(
r + γEs

′

a,s

[
V∗
]
− V∗ + λ∗

)
= 1
β

1
α

∑
a

π0(a|s)1−απ∗(a|s)α − 1
β

1
α︸ ︷︷ ︸

ψ∆rπ∗ (s;β)

+ψ∆rπ∗
(s;β) = 0 (91)

In Lemma 2, we provide a more detailed proof and show that this identity also holds for suboptimal policies
and their worst-case reward perturbations, 1

βΩ∗(α)
π0,β

(∆rπ) = 0, where Eq. (91) is a special case for ∆rπ∗(a, s) =
r(a, s) + γEs′

a,s

[
V∗(s′)

]
− V∗(s) + λ∗(a, s).

Finally, note that the condition in Eq. (91) implies that for the optimal V∗(s), the regularized dual objective
RL∗

Ω,β(r) = minV,λ (1− γ)⟨ν0, V ⟩+ 1
βΩ∗

π0,β

(
r + γEs′

a,sV − V + λ
)

in Eq. (14) reduces to the value function
averaged over initial states, RL∗

Ω,β(r) = (1−γ)⟨ν0, V∗⟩. This is intuitive since V∗(s) measures the regularized
objective attained from running the optimal policy for infinite time in the discounted mdp.

C.4 Plotting Value Function as a Function of Regularization Parameters α, β

Confirming Relationship between Normalization ψ∆rπ∗
(s;β), ψQ∗(s;β) and Value Function V∗(s)

In Fig. 5, we plot both V∗(s) and ψQ∗(s;β) for various values of α (x-axis) and β (in each panel). We also
plot ψ∆rπ∗

(s;β) = 1
β (1− α)Dα[π0 : π∗] in the third row, and confirm the identity in Eq. (86) in the fourth

row.

As we also observe in Fig. 7, the soft value function or certainty equivalent V∗(s) = 1
βΩ∗(α)

π0,β
(Q) is not

monotonic in α for this particular set of single-step rewards (the same r(a, s) as in Fig. 3 or Fig. 7). Note
the small scale of the y-axis in the top row of Fig. 5.

While it can be shown that ψ∆r(s;β) is convex as a function of β, we see that ψ∆r(s;β) is not necessarily
convex in α and appears to be monotonically decreasing in α. Finally, we find that the identity in Eq. (86)-
(90) holds empirically, with only small numerical optimization issues.
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Value V∗(s) as a Function of β, α In Fig. 7, we visualize the optimal value function V∗(s) = 1
βΩ∗

π0,β
(Q),

for kl or α-divergence regularization and different choices of regularization strength 1/β. The choice of
divergence particularly affects the aggregated value at low regularization strength, although we do not
observe a clear pattern with respect to α.5 In all cases, the value function ranges between maxaQ(a, s) for
an unregularized deterministic policy as β →∞, and the expectation under the reference policy Eπ0 [Q(a, s)]
for strong regularization as β → 0. We also discuss this property in Sec. 5.1.

D Robust Set of Perturbed Rewards

In this section, we characterize the robust set of perturbed rewards to which a given policy π(a|s) or µ(a, s)
is robust, which also provides performance guarantees as in Eq. (2) and also describes the set of strategies
available to the adversary. For proving Prop. 1, we focus our discussion on policy regularization with kl or
α-divergence regularization and compare with state-occupancy regularization in App. D.2.

D.1 Proof of Prop. 1: Robust Set of Perturbed Rewards for Policy Regularization

We begin by stating two lemmas, which we will use to characterize the robust set of perturbed rewards. All
proofs are organized under paragraph headers below the statement of Prop. 1.
Lemma 2. For the worst-case reward perturbation ∆rπ(a, s) associated with a given, normalized policy
π(a|s) and α- or kl-divergence regularization, the conjugate function evaluates to zero,

1
β

Ω∗(α)
π0,β

(∆rπ) = 0 . (92)

Lemma 3. The conjugate function 1
βΩ∗(α)

π0,β
(∆r) is increasing in ∆r. In other words, if ∆r̃(a, s) ≥ ∆r(a, s)

for all (a, s) ∈ A× S, then 1
βΩ∗(α)

π0,β
(∆r̃) ≥ 1

βΩ∗(α)
π0,β

(∆r).
Proposition 1. Assume a normalized policy π(a|s) for the agent is given, with

∑
a π(a|s) = 1 ∀s ∈ S.

Under α-divergence policy regularization to a normalized reference π0(a|s), the optimization over ∆r(a, s) in
Eq. (17) can be written in the following constrained form

min
∆r∈R∆

π

〈
µ, r −∆r

〉
where R∆

π :=
{

∆r ∈ RA×S
∣∣∣∣Ω∗(α)

π0,β
(∆r) ≤ 0

}
, (18)

We refer to R∆
π ⊂ RA×S as the feasible set of reward perturbations available to the adversary. This translates

to a robust set Rπ of modified rewards r′(a, s) = r(a, s) −∆r(a, s) for the given policy. These sets depend
on the α-divergence and regularization strength β via the conjugate function.

For kl divergence regularization, the constraint is∑
a∈A

π0(a|s) exp
{
β ·∆r(a, s)

}
≤ 1 . (19)

Proof. Recall the adversarial optimization in Eq. (17) for a fixed µ(a, s) = µ(s)π(a|s)

min
∆r
⟨µ, r −∆r⟩+ 1

β
Ω∗(α)
π0,β

(
∆r
)
, (93)

which we would like to transform into a constrained optimization. From Lemma 2, we know that
1
βΩ∗(α)

π0,β
(∆rπ) = 0 for the optimizing argument ∆rπ in Eq. (93), but it is not clear whether this should

appear as an equality or inequality constraint. We now show that the constraint 1
βΩ∗(α)

π0,β
(∆r) ≥ 0 changes

5See Belousov & Peters (2019); Lee et al. (2018; 2019), or Appendix C.4 for additional discussion of the effect of α-divergence
regularization on learned policies.
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the value of the objective, whereas the constraint 1
βΩ∗(α)

π0,β
(∆r) ≤ 0 does not change the value of the opti-

mization.

≥ Inequality First, consider the optimization min∆r⟨µ, r −∆r⟩ subject to 1
βΩ∗(α)

π0,β
(∆r) ≥ 0. From the

optimizing argument ∆rπ, consider an increase in the reward perturbations ∆r̃(a, s) ≥ ∆rπ(a, s) ∀(a, s)
where ∃(a, s) s.t. µ(a, s) > 0 and ∆r̃(a, s) > ∆rπ(a, s). By Lemma 3, we have 1

βΩ∗(α)
π0,β

(∆r) ≥ 1
βΩ∗(α)

π0,β
(∆rπ) =

0. However, the objective now satisfies ⟨µ, r −∆r̃⟩ < ⟨µ, r −∆rπ⟩ for fixed µ(a, s), which is a contradiction
since ∆rπ provides a global minimum of the convex objective in Eq. (93).

≤ Inequality We would like to show that this constraint does not introduce a different global minimum
of Eq. (93). Assume there exists ∆r̃(a, s) with 1

βΩ∗(α)
π0,β

(∆r̃) < 0 and ⟨µπ, r − ∆r̃⟩ < ⟨µπ, r − ∆rπ⟩ for
the occupancy measure µπ associated with the given policy π. By convexity of 1

βΩ∗(α)
π0,β

(∆r), we know
that a first-order Taylor approximation around ∆rπ everywhere underestimates the function, 1

βΩ∗(α)
π0,β

(∆r̃) ≥
1
βΩ∗(α)

π0,β
(∆rπ) + ⟨∆r̃ −∆rπ,∇ 1

βΩ∗(α)
π0,β

(∆rπ)⟩. Noting that µπ = ∇ 1
βΩ∗(α)

π0,β
(∆rπ) by the conjugate optimality

conditions (Eq. (5), App. A), we have 1
βΩ∗(α)

π0,β
(∆r̃) − 1

βΩ∗(α)
π0,β

(∆rπ) ≥ ⟨µπ,∆r̃⟩ − ⟨µπ,∆rπ⟩. This now
introduces a contradiction, since we have assumed both that 1

βΩ∗(α)
π0,β

(∆r̃) − 1
βΩ∗(α)

π0,β
(∆rπ) < 0, and that

∆r̃(a, s) provides a global minimum, where ⟨µπ, r −∆r̃⟩ < ⟨µπ, r −∆rπ⟩ implies ⟨µπ,∆r̃⟩ − ⟨µπ,∆rπ⟩ > 0.
Thus, including the inequality constraint 1

βΩ∗(α)
π0,β

(∆r̃) ≤ 0 cannot introduce different minima.

This constraint is consistent with the constrained optimization and generalization guarantee in Eq. (1)-
(2), where it is clear that increasing the modified reward away from the boundary of the robust set (i.e.
decreasing ∆r(a, s) and 1

βΩ∗(α)
π0,β

(∆r)) is feasible for the adversary and preserves our performance guarantee.
See Eysenbach & Levine (2021) A2 and A6 for alternative reasoning.

Proof of Lemma 2 For α-divergence policy regularization and a given π(a|s), we substitute the worst-case
reward perturbations ∆rπ(a, s) = 1

β logα
π(a|s)
π0(a|s) + ψ∆r(s;β) (Eq. (22) or Eq. (62)) in the conjugate function

1
βΩ∗(α)

π0,β
(∆rπ) (Eq. (56) or Table 2). Assuming

∑
a π(a|s) =

∑
a π0(a|s) = 1, we have

1
β

Ω∗(α)
π0,β

(∆rπ) = 1
β

1
α

∑
a

π0(a|s) expα
{
β ·
(
∆rπ(a, s)− ψ∆r(s;β)

)}α − 1
β

1
α

+ ψ∆r(s;β)

= 1
β

1
α

∑
a

π0(a|s)
[
1 + β(α− 1)

(
1
β

1
α− 1

( π(a|s)
π0(a|s)

α−1
− 1
)

+ ψ∆r(s;β)− ψ∆r(s;β)
)] α

α−1

+
− 1
β

1
α

+ ψ∆r(s;β)

= 1
β

1
α

∑
a

π0(a|s)1−απ(a|s)α − 1
β

1
α

+ ψ∆r(s;β)

= 0.

In the last line, we recall that ψ∆r(s;β) = 1
β

1
α

∑
a π0(a|s)− 1

β
1
α

∑
a π0(a|s)1−απ(a|s)α from Eq. (23) or (61).

For kl regularization, we plug ∆rπ(a, s) = 1
β log π(a|s)

π0(a|s) (Eq. (21),(50)) into the conjugate in Eq. (47) or
Table 2,

1
β

Ω∗
π0,β

(∆rπ) =
1
β

∑
a

π0(a|s) exp
{
β∆rπ(a, s)

}
−

1
β

=
1
β

∑
a

π0(a|s) exp
{
β

1
β

log
π(a|s)
π0(a|s)

}
−

1
β

=
1
β

∑
a

π(a|s) −
1
β

= 0.

Proof of Lemma 3 See Husain et al. (2021) Lemma 3.

D.2 Robust Set for α-Divergence under µ(a, s) Regularization

For state-action occupancy regularization and kl divergence, Lemma 2 holds with 1
βΩ∗

µ0,β
(∆rµ) = 0 for

normalized µ(a, s) and ∆rµ(a, s) = 1
β log µ(a,s)

µ0(a,s) . However, the reasoning in App. D no longer holds for α-
divergence regularization to a reference µ0(a, s). Substituting the worst-case reward perturbations (Eq. (24)
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or (67)) into the conjugate function (Eq. (66) or Table 2)

1
β

Ω∗(α)
µ0,β

(∆rµ) = 1
β

1
α

∑
a

µ0(a, s) expα
{
β ·∆rµ(a, s)

}α − 1
β

1
α

(94)

= 1
β

1
α

∑
a

µ0(a, s)
[
1 + β(α− 1)

(
1
β

1
α− 1

( µ(a, s)
µ0(a, s)

α−1
− 1
))] α

α−1

+
− 1
β

1
α

= 1
β

1
α

∑
a

µ0(a, s)1−αµ(a, s)α − 1
β

1
α

whose value is not equal to 0 in general and instead is a function of the given µ(a, s). This may result in the
original environmental reward not being part of the robust set, since substituting ∆r(a, s) = 0 into Eq. (94)
results in 1

βΩ∗(α)
µ0,β

(∆r) = 0.

D.3 Plotting the α-Divergence Feasible Set

To plot the boundary of the feasible set in the single step case, for the kl divergence regularization in two
dimensions, we can simply solve for the ∆r(a2, s) which satisfies the constraint

∑
a π0(a|s) exp{β∆r(a|s)} =

1 for a given ∆r(a1, s)

∆r(a2, s) = 1
β

log 1
π0(a2|s)

(1− π0(a1|s) exp
{
β ·∆r(a1, s)

}
) . (95)

The interior of the feasible set contains ∆r(a1, s) and ∆r(a2, s) that are greater than or equal to these values.

However, we cannot analytically solve for the feasible set boundary for general α-divergences, since the
conjugate function 1

βΩ∗(α)
π0,β

(∆r) depends on the normalization constant of π∆r(a, s). Instead, we perform
exhaustive search over a range of ∆r(a1, s) and ∆r(a2, s) values. For each pair of candidate reward per-
turbations, we use cvx-py (Diamond & Boyd, 2016) to solve the conjugate optimization and evaluate
1
βΩ∗(α)

π0,β
(∆r). We terminate our exhaustive search and record the boundary of the feasible set when we find

that 1
βΩ∗(α)

π0,β
(∆r) = 0 within appropriate precision.

E Value Form Reward Perturbations

E.1 Proof of Thm. 1 (Husain et al. (2021))

We rewrite the derivations of Husain et al. (2021) for our notation and setting, where Ω
(
µ
)

represents a
convex regularizer. Starting from the regularized objective in Eq. (12),

max
µ∈M

RLΩ,β(µ) = max
µ∈M

〈
µ, r⟩ − 1

β
Ω
(
µ
)
, (96)

note that the objective is concave, as the sum of a linear term and the concave −Ω. Since the conjugate
is an involution for convex functions, we can rewrite RLΩ,β(r) = −(−RLΩ,β(r)) = −((−RLΩ,β)∗)∗, which
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yields

RLΩ,β(r) = sup
µ∈M

−((−RLΩ,β)∗)∗

(1)= sup
µ∈M

−
(

sup
r′∈RA×S

⟨µ, r′⟩ − (−RLΩ,β)∗(r′)
)

= sup
µ∈M

inf
r′∈RA×S

⟨µ,−r′⟩+ (−RLΩ,β)∗(r′)

(2)= sup
µ∈M

inf
r′∈RA×S

⟨µ, r′⟩+ (−RLΩ,β)∗(−r′)

(3)= sup
µ∈M

inf
r′∈RA×S

⟨µ, r′⟩+
(

sup
µ′
⟨µ′,−r′⟩+RLΩ,β(µ′)

)
(4)= sup

µ∈M
inf

r′∈RA×S
⟨µ, r′⟩+

(
sup
µ′
⟨µ′,−r′⟩+ ⟨µ′, r⟩ − 1

β
Ω(µ′)

)
= sup
µ∈M

inf
r′∈RA×S

⟨µ, r′⟩+ 1
β

(
sup
µ′
⟨µ′, β ·

(
r − r′)⟩ − Ω(µ′)

)
(5)= sup

µ∈M
inf

r′∈RA×S
⟨µ, r′⟩+ 1

β
Ω∗(β · (r − r′)

)
(6)= inf

r′∈RA×S
sup
µ∈M
⟨µ, r′⟩+ 1

β
Ω∗(β · (r − r′)

)
(97)

where (1) applies the definition of the conjugate of (−RLΩ,β)∗, (2) reparameterizes the optimization in terms
of r′ → −r′, (3) is the conjugate for (−RLΩ,β), and (4) uses the definition of the regularized RL objective
for occupancy measure µ′(a, s) with the reward r(a, s). Finally, (5) recognizes the inner maximization as
the conjugate function for a modified reward and (6) swaps the order of inf and sup assuming the problem
is feasible.

Note that Eq. (97) is a standard unregularized rl problem with modified reward r′(a, s). As in Sec. 2,
introducing Lagrange multipliers V (s) to enforce the flow constraints and λ(a, s) for the nonnegativity
constraint,

RLΩ,β(r) = inf
r′

inf
V,λ

sup
µ

〈
µ, r′ + γEs

′

a,s

[
V
]
− V + λ

〉
+ 1
β

Ω∗(β · (r − r′)
)

+ (1− γ)
〈
ν0, V

〉
(98)

Now, eliminating µ(a, s) yields the condition

r′(a, s) + γEs
′

a,s

[
V (s′)

]
− V (s) + λ(a, s) = 0 =⇒ V (s) = r′(a, s) + γEs

′

a,s

[
V (s′)

]
+ λ(a, s) . (99)

Letting ∆rV (a, s) = r(a, s)− r′(a, s), we can consider Eq. (99) as a constraint and rewrite Eq. (98) as

RLΩ,β(r) = inf
∆rV

inf
V,λ

(1− γ)
〈
ν0, V

〉
+ 1
β

Ω∗(β ·∆rV ) (100)

subj. to V (s) = r(a, s) + γEs
′

a,s

[
V (s′)

]
−∆rV (a, s) + λ(a, s)

which matches Theorem 1. See Husain et al. (2021) for additional detail.

See App. A.3 for the proof of Prop. 3, which equates the form of ∆rV (a, s) and ∆rπ(a, s) at optimality in
the regularized mdp.

E.2 Path Consistency (Comparison with Nachum et al. (2017); Chow et al. (2018))

We have seen in Sec. 3.3 and App. E.2 that the path consistency conditions arise from the kkt conditions.
For kl divergence regularization, Nachum et al. (2017) observe the optimal policy π∗(a|s) and value V∗(s)
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satisfy

r(a, s) + γEs
′

a,s

[
V∗(s′)

]
− 1
β

log π∗(a|s)
π0(a|s) = V∗(s) , (101)

where the Lagrange multiplier λ∗(a, s) is not necessary since the π∗(a|s) > 0 unless π0(a|s) = 0 or the rewards
or values are infinite. This matches our condition in Eq. (39), where we can also recognize ∆rπ∗(a, s) =
1
β log π∗(a|s)

π0(a|s) = r(a, s)+γEs′

a,s

[
V∗(s′)

]
−V∗(s)−λ∗(a, s) as the identity from Prop. 3. Nachum et al. (2017) use

Eq. (101) to derive a learning objective, with the squared error Ea,s,s′
[(
r(a, s)+γEs′

a,s

[
V (s′)

]
− 1
β log π(a|s)

π0(a|s)−
V (s)

)2] used as a loss for learning π(a|s) and V (s) (or simply Q(a, s), Nachum et al. (2017) Sec. 5.1) using
function approximation.

Similarly, Chow et al. (2018) consider a (scaled) Tsallis entropy regularizer, 1
βΩ(π) = 1

β
1

α(α−1) (
∑
a π(a|s)−∑

a π(a|s)α). For α = 2, the optimal policy and value function satisfy

r(a, s) + γEs
′

a,s

[
V∗(s′)

]
+ λ(a, s) + 1

β

1
α(α− 1) −

1
β

1
α− 1π(a|s)α−1 = V∗(s) + Λ(s) (102)

where Λ(s) is a Lagrange multiplier whose value is learned in Chow et al. (2018). However, inspecting
the proof of Theorem 3 in Chow et al. (2018), we see that this multiplier is obtained via the identity
Λ(s) := ψQ∗(s;β) − V∗(s) = ψ∆rπ∗

(s;β) (see Eq. (23), App. C.3). Our notation in Eq. (102) differs from
Chow et al. (2018) in that we use 1

β as the regularization strength (compared with their α). We have also
written Eq. (102) to explicitly include the constant factors appearing in the α-divergence.

In generalizing the path consistency equations, we will consider the α-divergence, with Ω(π) = 1
α(α−1) ((1−

α)
∑
a π0(a|s) + α

∑
a π(a|s)−

∑
a π0(a|s)1−απ(a|s)α). Note that this includes an additional α factor which

multiplies the
∑
a π(a|s) term, compared to the Tsallis entropy considered in Chow et al. (2018). In particular,

this scaling will change the 1
β

1
α(α−1) additive constant term in Eq. (102), to a term of 1

β
1

α−1 .

Our expression for α-divergence path consistency, derived using the identity r(a, s)+γEs′

a,s

[
V∗(s′)

]
+λ∗(a, s)−

1
β logα

π∗(a|s)
π0(a|s) = V∗(s) + ψ∆rπ∗

(s;β) in Eq. (39), becomes

r(a, s) + γEs
′

a,s

[
V∗(s′)

]
+ λ(a, s)− 1

β
logα

π∗(a|s)
π0(a|s) = V∗(s) + ψ∆rπ∗

(s;β) (103)

where we have rearranged terms from Eq. (28) in the main text to compare with Eq. (102). Note that we can
recognize ∆rπ(a, s) = 1

β logα
π∗(a|s)
π0(a|s) +ψ∆rπ∗

(s;β) and we substitute Λ(s) := ψQ∗(s;β)−V∗(s) = ψ∆rπ∗
(s;β)

compared to Eq. (102).

E.3 Indifference Condition

In the single step setting with kl divergence regularization, Ortega & Lee (2014) argue that the perturbed
reward for the optimal policy is constant with respect to actions

r(a)−∆rπ∗(a) = c ∀a ∈ A , (104)

when ∆rπ∗(a) are obtained using the optimal policy π∗(a|s). Ortega & Lee (2014) highlight that this
is a well-known property of Nash equilibria in game theory where, for the optimal policy and worst-case
adversarial perturbations, the agent obtains equal perturbed reward for each action and thus is indifferent
between them.

In the sequential setting, we can consider Q(a, s) = r(a, s) + γEs′

a,s

[
V (s′)

]
as the analogue of the single-step

reward or utility function. Using our advantage function interpretation for the optimal policy in Prop. 3, we
directly obtain an indifference condition for the sequential setting

Q∗(a, s)−∆rπ∗(a, s) = V∗(s) (105)
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(a) Environment
(r(a, s) = −1 for water,
r(a, s) = 5 for goal)
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(b) β = 0.2 (High Reg.)
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(c) β = 1
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(d) β = 10 (Low Reg.)

Figure 8: Confirming Optimality of the Policy. We show the perturbed rewards r′(a, s) = Q(a, s) −
∆r(a, s) for policies trained with kl divergence regularization. The indifference condition holds in all cases,
with r′(a, s) = c(s) for each state-action pair, with c(s) = V (s) for kl regularization. This confirms that the
policy is optimal (Ortega & Lee, 2014; Nachum et al., 2017).

for actions with λ∗(a, s) = 0 and nonzero probability under π∗(a|s). Observe that V∗(s) is a constant with
respect to a ∈ A for a given state s ∈ S. Recall that our notation for V∗(s) omits its dependence on β and α.
This indifference condition indeed holds for arbitrary regularization strengths β and choices of α-divergence,
since our proof of the advantage function interpretation in App. A.3 is general. Finally, we emphasize that
the indifference condition holds only for the optimal policy with a given reward r(a, s) (see Fig. 3).

E.4 Confirming Optimality using Path Consistency and Indifference

In Fig. 4, we plotted the regularized policies and worst-case reward perturbations for various regularziation
strength β and kl divergence regularization. In Fig. 8, we now seek to certify the optimality of each policy
using the path consistency or indifference conditions. In particular, we confirm the following equality holds

r(a, s) + γEs
′

a,s

[
V (s′)

]
− 1
β

log π(a|s)
π0(a|s) = V (s) ∀(a, s) ∈ A× S (106)

which aligns with the path consistency condition in (Nachum et al., 2017). Compared with Eq. (28)
or Eq. (103), Eq. (106) uses the fact that λ(a, s) = 0 and ψ∆r(s;β) = 0 in the case of kl diver-
gence regularization. This equality also confirms the indifference condition since the right hand side
V∗(s) is a constant with respect to actions. Finally, we can recognize our advantage function interpre-
tation Q∗(a, s) − ∆rπ∗(a, s) = V∗(s) in Eq. (106), by substituting Q∗(a, s) = r(a, s) + γEs′

a,s

[
V∗(s′)

]
and

∆rπ∗(a, s) = 1
β log π∗(a|s)

π0(a|s) for kl divergence regularization.

In Fig. 8, we plot r(a, s) + γEs′

a,s

[
V (s′)

]
− 1

β log π(a|s)
π0(a|s) = Q(a, s) − ∆rπ(a, s) for each state-action pair to

confirm that it yields a constant value and conclude that the policy and values are optimal. Note that
this constant is different across states based on the soft value function V∗(s), which also depends on the
regularization strength.

F Comparing Entropy and Divergence Regularization

In this section, we provide proofs and discussion to support our observations in Section 5.1 on the benefits
of divergence regularization over entropy regularization.

F.1 Tsallis Entropy and α-Divergence

To show a relationship between the Tsallis entropy and the α-divergence, we first recall the definition of the
q-exponential function logq (Tsallis, 2009). We also define logα(u), with α = 2− q, so that our use of logα(u)
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matches Lee et al. (2019) Eq. (5)

logq(u) = 1
1− q

(
u1−q − 1

)
logα(u) := log2−q(u) = 1

α− 1

(
uα−1 − 1

)
(107)

The Tsallis entropy of order q (Tsallis, 2009; Naudts, 2011) can be expressed using either logq or logα

HT
q [π(a)] = 1

q − 1

(
1−

∑
a∈A

π(a)q
)

=
∑
a∈A

π(a) logq
( 1
π(a)

)
(108)

= −
∑
a∈A

π(a) · log2−q
(
π(a)

)
(109)

Eq. (108) and Eq. (109) mirror the two equivalent ways of writing the Shannon entropy for q = 1. In
particular, we have q = 2− q and H1[π(a)] =

∑
π(a) log 1

π(a) = −
∑
π(a) log π(a). See Naudts (2011) Ch. 7

for discussion of these two forms of the deformed logarithm.
To connect the Tsallis entropy and the α-divergence in Eq. (7), we can consider a uniform reference measure
π0(a) = 1 ∀a. For normalized

∑
a π(a) = 1,

Dα[π0(a) : π(a)] = 1
α(1− α)

(
(1− α)

∑
a∈A

π0(a) + α
∑
a∈A

π(a)−
∑
a∈A

π0(a)1−απ(a|s)α
)

(110)

= 1
α(1− α)

(
α+(1− α)−

∑
a∈A

π(a|s)α
)

+ 1
α(1− α)

(
(1− α)

∑
a∈A

π0(a)−(1− α)

)
(111)

= − 1
α
HT
α [π(a)] + c (112)

which recovers the negative Tsallis entropy of order α, up to an multiplicative factor 1
α and additive constant.

Note that including this constant factor via α-divergence regularization allows us to avoid an inconvenient
1
α factor in optimal policy solutions (Eq. (27)) compared with Eq. 8 and 10 of Lee et al. (2019).

F.2 Non-Positivity of ∆rπ(a, s) for Entropy Regularization
We first derive the worst-case reward perturbations for entropy regularization, before analyzing the sign of
these reward perturbations for various values of α in Prop. 5. In particular, we have ∆rπ(a, s) ≤ 0 for entropy
regularization with 0 < α ≤ 1, which includes Shannon entropy regularization at α = 1. This implies that
the modified reward r′

π(a, s) ≥ r(a, s) for all (a, s).
Lemma 4. The worst-case reward perturbations for Tsallis entropy regularization correspond to

∆rπ(a, s) = 1
β

logα π(a|s) + 1
β

1
α

(
1−

∑
a∈A

π(a|s)α
)
. (113)

with limiting behavior of ∆rπ(a, s) = 1
β log π(a|s) for Shannon entropy regularization as α→ 1.

Proof. We can write the Tsallis entropy using an additional constant k, with k = 1
α mirroring the α-divergence

HT
α [π] = k

α− 1

(∑
a∈A

π(a|s)−
∑
a∈A

π(a|s)α
)
. (114)

Note that we use negative Tsallis entropy for regularization since the entropy is concave. Thus, the worst
case reward perturbations correspond to the condition ∆rπ(a, s) = ∇ 1

βΩ(Hα)
π0 (µ) = −∇Eµ(s)

[
HT
α [π]

]
. Differ-

entiating with respect to µ(a, s) using similar steps as in App. B.3 Eq. (59)-(60), we obtain

∆rπ(a, s) = k · 1
β
α logα π(a|s) + k · 1

β
(α− 1)HT

α [π] (115)

For k = 1
α and (α− 1)HT

α [π] = (
∑
a π(a|s)−

∑
a π(a|s)α), we obtain Eq. (113).
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Proposition 5. For 0 < α ≤ 1 and β > 0, the worst-case reward perturbations with Tsallis entropy
regularization from Lemma 4 are non-positive, with ∆rπ(a, s) ≤ 0. This implies that the entropy-regularized
policy is robust to only pointwise reward increases for these values of α.

Proof. We first show logα π(a|s) ≤ 0 for 0 < π(a|s) ≤ 1 and any α. Note that we may write

logα π(a|s) =
∫ π(a|s)

1
uα−2du = 1

α− 1u
α−1

∣∣∣∣π(a|s)

1
= 1
α− 1(π(a|s)α−1 − 1) . (116)

Since uα−2 is a non-negative function for 0 ≤ π(a|s) ≤ 1, then
∫ π(a|s)

1 uα−2du ≤ 0.

To analyze the second term, consider 0 < α ≤ 1. We know that π(a|s)α ≥ π(a|s) for 0 < π(a|s) ≤ 1,
so that

∑
a π(a|s)α ≥

∑
a π(a|s) = 1. Thus, we have

∑
a π(a|s) −

∑
a π(a|s)α ≤ 0 and α > 0 implies

1
α (
∑
a π(a|s)−

∑
a π(a|s)α) ≤ 0. Since both terms are non-positive, we have ∆rπ(a, s) ≤ 0 for 0 < α ≤ 1 as

desired.

However, for α > 1 or α < 0, we cannot guarantee the reward perturbations are non-positive. Writing the
second term in Eq. (113) as α−1

α HT
α [π], we first observe that that HT

α [π] ≥ 0. Now, α > 1 or α < 0 implies
that α−1

α > 0, so that the second term is non-negative, compared to the first term, which is non-positive.

F.3 Bounding the Conjugate Function

Conjugate for a Fixed α, β: We follow similar derivations as Lee et al. (2019) to bound the value function
for general α-divergence regularization instead of entropy regularization. We are interested in providing a
bound for 1

βΩ∗(α)
π0,β

(Q) with fixed α, β. To upper bound the conjugate, consider the optimum over each term
separately

1
β

Ω∗(α)
π0,β

(Q) = max
π∈∆|A|

〈
π,Q

〉
− 1
β
Dα[π0 : π]

≤ max
π∈∆|A|

〈
π,Q

〉
−min

π

1
β
Dα[π0 : π]

= max
π∈∆|A|

〈
π,Q

〉
− 0

= Q(amax, s) .

where we let amax := arg maxaQ(a, s).
We can also lower bound the conjugate function in terms of maxaQ(a, s). Noting that any policy π(a|s)
provides a lower bound on the value of the maximization objective, we consider πmax(a|s) = δ(a = amax).
For evaluating πmax(a|s)α, we assume 0α = 0 for α > 0 and undefined otherwise. Thus, we restrict our
attention to α > 0 to derive the lower bound

1
β

Ω∗(α)
π0,β

(Q) = max
π∈∆|A|

〈
π,Q

〉
− 1
β
Dα[π0 : π]

≥
〈
πmax, Q

〉
− 1
β
Dα[π0 : πmax]

(1)= Q(amax, s)−
1
β

( 1
α(1− α) −

1
α(1− α)π0(amax|s)1−α1α

)
= Q(amax, s) + 1

β

1
α

1
1− α

(
π0(amax|s)1−α − 1

)
= Q(amax, s) + 1

β

1
α

log2−α π0(amax|s).

where (1) uses πmax(a|s) = δ(a = amax) and simplifies terms in the α-divergence. One can confirm that
1
α log2−α π0(amax|s) = 1

α
1

1−α (π0(amax|s)1−α − 1) ≤ 0 for α > 0. Combining these bounds, we can write

For α > 0, Q(amax, s) + 1
β

1
α

log2−α π0(amax|s) ≤
1
β

Ω∗(α)
π0,β

(Q) ≤ Q(amax, s). (117)
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(a) Fig. 2 or Fig. 9 (left) of
Eysenbach & Levine (2021)

Constraint:
∑

a
exp{β∆r(a)} ≤ 1

(b) Shifted r′ = r −∆r− ln(2)

Constraint:
∑

a
exp{β∆r(a)} ≤ 1

(c) With prior π0(a|s) = u(a) = 1
2

Constraint
∑
a

π0(a) exp{β∆r(a)} ≤ 1

Figure 9: Analyzing the feasible set for entropy regularization (a) versus divergence regularization (b,c).

Conjugate as a Function of β: Finally, we can analyze the conjugate as a function of β. As β → 0
and 1/β → ∞, the divergence regularization forces π(a|s) = π0(a|s) for any α and the conjugate
1
βΩ∗(α)

π0,β
(Q) = ⟨π(a|s), Q(a, s)⟩ − 1

βΩ(π) → ⟨π(a|s), Q(a, s)⟩. As β → ∞ and 1/β → 0, the unregularized
objective yields a deterministic optimal policy with π(a|s) = maxaQ(a, s). In this case, the conjugate
1
βΩ∗(α)

π0,β
(Q)→ maxaQ(a, s). Thus, treating the conjugate as a function of β, we obtain

Eπ0(a|s) [Q(a, s)] ≤ 1
β

Ω∗(α)
π0,β

(Q) ≤ max
a

Q(a, s) (118)

For negative values of β, the optimization becomes a minimization, with the optimal solution approaching a
deterministic policy with π(a|s) = minaQ(a, s) as β → −∞, 1/β → 0.

F.4 Feasible Set for Entropy Regularization
In this section, we compare feasible sets derived from entropy regularization (Fig. 9a) with those derived
from the kl divergence (Fig. 2, Fig. 9b,Fig. 9c), and argue that entropy regularization should be analyzed
as a special case of the kl divergence to avoid misleading conclusions.

In their App. A8, Eysenbach & Levine (2021) make the surprising conclusion that policies with higher entropy
regularization are less robust, as they lead to smaller feasible or robust sets than for lower regularization.
This can be seen in the robust set plot for entropy regularization in Fig. 9a, where higher β indicates lower
regularization strength (1/β). The left panels in Eysenbach & Levine (2021) Fig. 2 or Fig. 9 match our
Fig. 9a. See their App. A8 for additional discussion.

To translate from Shannon entropy to kl divergence regularization, we include an additional additive con-
stant of 1

β log |A| corresponding to the (scaled) entropy of the uniform distribution, with − 1
βDKL[π : π0] =

1
βH(π) − 1

β log |A|. We obtain Fig. 9b by shifting each curve in Fig. 9a by this scaled constant . This
highlights the delicate dependence on the feasible set on the exact form of the objective function, as the
constant shifts the robust reward set by (r′(a1), r′(a2)) ← (r′(a1) − 1

β log 2, r′(a2) − 1
β log 2). For kl diver-

gence regularization, the feasible set now includes the original reward function. As expected, we can see that
policies with higher regularization strength are more robust with larger feasible sets.

An alternative approach to correct the constraint set is to include the uniform reference distribution as in
Prop. 1 and Eq. (19), so that we calculate

∑
a π0(a|s) exp

{
β ·∆r

}
≤ 1. Similarly, the constraint in Eysen-

bach & Levine (2021) can be modified to have
∑
a exp

{
β ·∆r

}
≤ |A| in the case of entropy regularization.

Our modifications to the feasible set constraints clarify interpretations of how changing regularization
strength affects robustness. We do not give detailed consideration to the other question briefly posed in
Eysenbach & Levine (2021) App. A8, of ‘if a reward function r′ is included in a robust set, what other reward
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functions are included in that robust set?’, whose solution is visualized in Eysenbach & Levine (2021) Fig. 9
(right panel) without detailed derivations. However, this plot matches our Fig. 9b and 9c. This suggests that
the constraint arising from kl divergence regularization with strength β,

∑
π0(a|s) exp

{
β ·∆r(a, s)

}
= 1,

is sufficient to define both the robust set for a given reward function and to characterize the other reward
functions to which an optimal policy is robust. The key observation is that the original reward function
is included in the robust set when explicitly including the reference distribution π0(a|s) as in divergence
regularization.

G Worked Example for Deterministic Regularized Policy (α = 2, β = 10)

We consider the single-step example in Sec. 4.1 Fig. 2 or App. H Fig. 10-11, with a two-dimensional action
space, optimal state-action value estimates, Q∗(a, s) = r(a, s) = {1.1, 0.8}, and uniform prior π0(a|s).
The case of policy regularization with α = 2 and β = 10 is particularly interesting, since the optimal policy is
deterministic with π∗(a1|s) = 1. 6 First, we solve for the optimal policy for Q∗(a, s) = r(a, s) as in App. C.2,

1
β

Ω∗
π0,β(Q∗) = max

π∈∆|A|

〈
π,Q∗

〉
− 1
β

Ω(α)
π0 (π)− ψQ(s;β)

(∑
a

π(a|s)− 1

)
+
∑
a

λ(a, s)

=⇒ π∗(a|s) = π0(a|s)
[
1 + β(α− 1)

(
Q∗(a, s) + λ∗(a, s) −V∗(s)− ψ∆rπ∗ (s;β)︸ ︷︷ ︸

=ψQ∗ (s;β) (see App. C.3 )

)] 1
α−1

.

where for α = 2, we obtain π∗(a|s) = π0(a|s)
[
1 + β

(
Q∗(a, s) + λ∗(a, s)− V∗(s)− ψ∆rπ∗

(s;β)
)]

.

Using cvx-py (Diamond & Boyd, 2016) to solve this optimization for α = 2, β = 10, π0(a|s) = 1
2 ∀a, and

the given Q∗(a, s), we obtain

Q∗(a1, s) = 1.1 Q∗(a2, s) = 0.8 λ∗(a1, s) = 0
π∗(a1|s) = 1 π∗(a2|s) = 0 λ∗(a2, s) = 0.1
V∗(s) = 1.05 ψ∆rπ∗

(s;β) = −0.05 ψQ∗(s;β) = 1.0 . (119)

Our first observation is that, although the policy is deterministic with π∗(a1|s) = 1, the value function
V∗(s) = 1.05 is not equal to maxaQ∗(a, s) = 1.1 as it would be in the case of an unregularized policy.
Instead, we still need to subtract the α-divergence regularization term, which is nonzero. With α = 2 and
1− α = −1, we have

V∗(s) = ⟨π∗(a|s), Q∗(a, s)⟩ − 1
β

1
α

1
1− α

(
1−

∑
a

π0(a|s)1−απ∗(a|s)α
)

︸ ︷︷ ︸
1
β
Dα[π0:π∗]

= 1.1− 1
10

1
2

1
−1
(
1− .5−1 · 12 − .5−1 · 02)

= 1.1 + .05 · (1− 2) = 1.05

Recall that for normalized π0, π, we have ψ∆rπ∗
(s;β) = − 1

β (1−α)Dα[π0(a|s) : π∗(a|s)] = −0.05, so that we
can confirm Eq. (119) for α = 2.
Finally, we confirm the result of Prop. 3 by calculating the reward perturbations in two different ways. For
a1, we have

∆rπ∗ (a1, s) = 1
β

1
α− 1

(
π∗(a1|s)
π0(a1|s)

α−1
− 1
)

+ ψ∆rπ∗ (s;β) = 1
10

1
1

(
1
.5

1
− 1
)
− .05 = .05

= Q∗(a1, s)− V∗(s) + λ∗(a1, s) = 1.1− 1.05 + 0 = .05,

and for a2,

∆rπ∗ (a2, s) = 1
β

1
α− 1

(
π∗(a2|s)
π0(a2|s)

α−1
− 1
)

+ ψ∆rπ∗ (s;β) = 1
10

1
1

(
0
.5

1
− 1
)
− .05 = −.15

= Q∗(a2, s)− V∗(s) + λ∗(a2, s) = 0.8− 1.05 + 0.1 = −.15

6We use α = 2 instead of α = 3 in Fig. 2 for simplicity of calculations. See App. H Fig. 10 for α = 2 robust set plots.
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so that we have ∆rπ∗(a1, s) = 0.05 and ∆rπ∗(a2, s) = −0.15.

We can observe that the indifference condition does not hold, since Q∗(a1, s)−∆rπ∗(a1, s) = 1.1−0.05 = 1.05
does not match Q∗(a2, s)−∆rπ∗(a2, s) = 0.8− (−0.15) = 0.95.
However, adding the Lagrange multiplier λ∗(a2, s) = 0.1 accounts for the difference in these values. This
allows us to confirm the path consistency condition (Eq. (28)),

r(a, s) + γEs
′
a,s

[
V∗(s′)

]
︸ ︷︷ ︸

Q∗(a,s)

− 1
β

logα
π∗(a|s)
π0(a|s) − ψ∆rπ∗ (s;β)︸ ︷︷ ︸

∆rπ∗ (a,s)

= V∗(s)− λ∗(a, s) ∀(a, s) ∈ A× S (120)

with Q∗(a1, s) −∆rπ∗(a1, s) − V∗(s) + λ∗(a1, s) = 1.1 − 0.05 − 1.05 + 0 = 0 and Q∗(a2, s) −∆rπ∗(a2, s) −
V∗(s) + λ∗(a2, s) = 0.8− (−0.15)− 1.05 + 0.1 = 0.

H Additional Feasible Set Plots

In Fig. 10 and 11, we provide additional feasible set plots for the α-divergence with α ∈ {−1, 1, 2, 3} and
β ∈ {0.1, 1.0, 5, 10} with r(a, s) = [1.1, 0.8]. As in Fig. 2, we show the feasible set corresponding to the
single-step optimal policy for Q∗(a, s) = r(a, s) for various regularization schemes. Since each policy is
optimal, we can confirm the indifference condition for the kl divergence, with Q∗(a, s)−∆rπ∗(a, s) = V∗(s)
constant across actions and equal to the soft value function, certainty equivalent, or conjugate function
V∗(s) = 1

βΩ∗(α)
π0,β

(Q). When the indifference condition holds, we can obtain the ratio of action probabilities
in the regularized policy by taking the slope of the tangent line to the feasible set boundary at r′

π∗
(a, s), as

in Sec. 4.1.

However, indifference does not hold in cases where the optimal policy sets π∗(a2|s) = 0, which occurs for
(α = 2, β = 10), (α = 3, β ∈ {5, 10}) for a uniform reference policy and additionally for (α = 2, β = 5) with
the nonuniform reference in Fig. 11. In these cases, we cannot ignore the Lagrange multiplier in Eq. (28),
r′
π∗

(a, s) = Q∗(a, s)−∆rπ∗(a, s) = V∗(s)−λ∗(a, s), and λ∗(a2, s) > 0 results in a different perturbed reward
r′
π∗

(a1, s) ̸= r′
π∗

(a2, s).

For α = −1 and low regularization strength (β = 10), we observe a wider feasible set boundary than for kl
divergence regularization. For α = 2 and α = 3, the boundary is more restricted and the worst-case reward
perturbations become notably smaller when the policy is deterministic. For example, we can compare β = 5
versus β = 10 for α = 2. However, as in Fig. 7, we do not observe notable differences in the robust sets at
lower regularization strengths based on the choice of α-divergence.

40



Published in Transactions on Machine Learning Research (07/2022)

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(a) α = −1, β = 0.1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(b) α = −1, β = 1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(c) α = −1, β = 5

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(d) α = −1, β = 10

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Feasible Set
Q(s,a)
Perturbed

(e) DKL, β = 0.1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Feasible Set
Q(s,a)
Perturbed

(f) DKL, β = 1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(g) DKL, β = 5

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Feasible Set
Q(s,a)
Perturbed

(h) DKL, β = 10

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(i) α = 2, β = 0.1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(j) α = 2, β = 1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(k) α = 2, β = 5

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(l) α = 2, β = 10

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(m) α = 3, β = 0.1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(n) α = 3, β = 1

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(o) α = 3, β = 5

0.6 0.8 1.0 1.2 1.4 1.6
r′(a1, s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

r′ (
a 2

,s
)

Robust Set
Q(s,a)
Worst-Case

(p) α = 3, β = 10

Figure 10: Reference distribution π0 = ( 1
2 ,

1
2 ). See caption of Fig. 11.
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Figure 11: Reference distribution π0 = ( 2
3 ,

1
3 ). Feasible Set (red region) of perturbed rewards available

to the adversary, for kl (α = 1) and α-divergence (α = {−1, 2, 3}) regularization, various β, and fixed
Q∗(a, s) = r(a, s) values (blue star). We consider the optimal π∗(a|s) with regularization parameters α, β, π0
and the given Q-values. Red star indicates worst-case perturbed reward r′

π∗
= r −∆rπ∗ for optimal policy.
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