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Abstract001

Recent research has increasingly focused on the002
extent to which large language models (LLMs)003
exhibit human-like behavior. In this study,004
we investigate whether the mental lexicon in005
LLMs resembles that of humans in terms of006
lexical organization. Using a word associa-007
tion task—a direct and widely used method008
for probing word meaning and relationships in009
the human mind—we evaluated the lexical rep-010
resentations of GPT-4 and Llama-3.1. Our find-011
ings reveal that LLMs closely emulate human012
mental lexicons in capturing semantic related-013
ness but exhibit notable differences in other014
properties, such as association frequency and015
dominant lexical patterns (e.g., top associates).016
Specifically, LLM lexicons demonstrate greater017
clustering and reduced diversity compared to018
the human lexicon, with KL divergence anal-019
ysis confirming significant deviations in word020
association patterns. Additionally, LLMs fail021
to fully capture word association responses pat-022
terns in different demographic human groups.023
Among the models, GPT-4 consistently exhib-024
ited a slightly higher degree of human-likeness025
than Llama-3.1. This study highlights both the026
potential and limitations of LLMs in replicat-027
ing human mental lexicons, offering valuable028
insights for applications in natural language029
processing and cognitive science research in-030
volving LLMs.031

1 Introduction032

Large language models (LLMs) have made sig-033

nificant progress in capturing complex linguistic034

patterns through self-supervised learning on vast035

corpora (Brown et al., 2020). Nevertheless, the036

question remains whether these models merely ap-037

proximate language based on surface regularities or038

if they meaningfully align with the deeper cognitive039

mechanisms underlying human language process-040

ing (Cai et al., 2024; Chomsky et al., 2023). Inves-041

tigating their internal lexical organization—what042

psycholinguists call the “mental lexicon”—can 043

shed light on whether LLMs’ representations go 044

beyond statistical pattern matching to reflect how 045

humans store and retrieve word meanings. 046

In this study, we examine whether two leading 047

LLMs (at the time of testing, GPT-4o and Llama- 048

3.1) replicate essential properties of the human 049

mental lexicon by leveraging a classic psycholin- 050

guistic paradigm: the word association task. By 051

systematically comparing LLM-generated word as- 052

sociations to large-scale human data from the Small 053

World of Words (SWOW) project (De Deyne et al., 054

2019), we explore how closely lexical organization 055

in LLMs resembles that in humans. In addition, 056

we investigate whether LLMs can accurately repro- 057

duce the lexical characteristics unique to different 058

demographic groups when instructed to generate 059

text from these perspectives. 060

1.1 The Mental Lexicon and Word 061

Association 062

The mental lexicon is commonly understood as 063

a highly structured, internal system that stores 064

and organizes word-related information, thereby 065

facilitating language comprehension and produc- 066

tion (Aitchison, 2012). It encompasses numer- 067

ous properties of words—including their semantic 068

content, phonological and orthographic represen- 069

tations, syntactic roles, morphological forms, and 070

frequency of use (Jarema and Libben, 2007). Schol- 071

ars often describe the mental lexicon as a network- 072

like structure, wherein words are interconnected 073

through semantic, phonological, and collocational 074

links (Monakhov and Diessel, 2024; Vitevitch et al., 075

2014). These networks enable rapid retrieval of 076

lexical information and guide the flow of language 077

processing. Although the mental lexicon cannot 078

be directly observed, a variety of empirical stud- 079

ies—ranging from lexical decision tasks (Balota 080

and Chumbley, 1984) and priming paradigms (Fer- 081

rand and New, 2003) to analyses of speech errors 082
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(Stemberger, 1982)—offer converging evidence for083

its functional organization. Moreover, its structure084

likely emerges from distributed neural processes085

underlying language (Jarema and Libben, 2007).086

A cornerstone method for probing these lexi-087

cal connections is the word association task, in088

which participants list the first words that come089

to mind given a cue (Rodd et al., 2016; Nelson090

et al., 2004; Szalay and Deese, 2024). By having091

participants produce the first word(s) that come to092

mind, this paradigm helps to reveal associative con-093

nections within the mental lexicon (De Deyne and094

Storms, 2008; Ufimtseva et al., 2020). To capture095

a richer and more diverse perspective on word re-096

lationships, large-scale studies such as the Small097

World of Words (SWOW) project (De Deyne et al.,098

2013) employ a multiple-response format in which099

participants generate three different associative re-100

sponses for each cue. By assembling extensive101

datasets from participants of various demographic102

backgrounds, SWOW enables in-depth investiga-103

tions of individual and demographic differences104

in lexical organization (De Deyne et al., 2019).105

When aggregated across many individuals, these106

data yield large-scale semantic networks that ro-107

bustly predict behavioral measures such as lexical108

decision, naming reaction time, and human-rated109

word relationships beyond the influence of straight-110

forward lexical statistics like word frequency (Bar-111

ber et al., 2013; De Deyne et al., 2019; (Li et al.,112

2024)). The SWOW norm has proven robust across113

multiple languages, leading to the construction of114

mental lexicons for Dutch (De Deyne et al., 2013),115

English (De Deyne et al., 2019), , Mandarin Chi-116

nese (Li et al., 2024), and Rioplatense Spanish117

(Cabana et al., 2024), among others.118

1.2 Exploring the Black Box of LLMs Using119

Behavioral Experimentation120

Recent advancements in natural language process-121

ing (NLP) benchmarks—including SuperGLUE122

(Wang et al., 2019) and BIG-bench (Srivastava123

et al., 2022)—have demonstrated that LLMs ex-124

cel in tasks such as translation, question answering,125

cloze tests, textual entailment, and diverse forms126

of reasoning (Wang, 2018; Srivastava et al., 2022).127

While these accomplishments highlight the models’128

versatility and the human-like character of their129

outputs, they do not clarify whether the underly-130

ing processes genuinely resemble human language131

comprehension or merely represent sophisticated132

pattern matching (Chomsky et al., 2023; Piantadosi,133

2023; Futrell and Mahowald, 2025). 134

One promising way to bridge this gap is by 135

leveraging behavioral experiments as downstream 136

tasks to evaluate LLMs. These experiments have 137

been instrumental in modeling the cognitive mech- 138

anisms that shape human behavior. When adapted 139

for LLMs, they provide a framework to examine 140

whether these models display cognitive patterns 141

comparable to those found in humans. By compar- 142

ing LLM performance against human responses in 143

well-designed experiments, researchers can gain 144

valuable insights into the language capabilities of 145

these systems. For instance, various psycholinguis- 146

tic methodologies (e.g., priming) have been em- 147

ployed to explore whether LLMs exhibit language 148

processing patterns akin to human cognition (e.g., 149

Ettinger, 2020; Prasad, 2019; Sinclair et al., 2022). 150

Several recent studies have applied this method- 151

ology to illuminate LLMs’ capabilities. Cai et al. 152

(2024) subjected LLMs to a variety of psycholin- 153

guistic tasks, finding that the models success- 154

fully replicated numerous human-like language 155

processes: forming sound-based associations for 156

unfamiliar words, displaying priming effects in am- 157

biguous word or sentence retrieval, interpreting 158

implausible sentences adaptively, overlooking mi- 159

nor semantic errors, and generating bridging in- 160

ferences. These models also adjusted causality 161

interpretations in response to verb semantics and 162

tailored language retrieval based on the interlocu- 163

tor’s role. Extending this line of research, Duan 164

et al. (2024b) devised a benchmark to quantify how 165

closely LLMs mirror human language use in phe- 166

nomena like priming and adaptive sentence inter- 167

pretation, showing that models such as Llama-3.1 168

and GPT-4o achieve appreciable levels of human- 169

likeness. Hu et al. (2024) likewise demonstrated 170

that LLMs can replicate human intuitive judgments 171

on diverse grammatical structures. 172

Despite these promising parallels, researchers 173

have identified key divergences from human cog- 174

nition. Qiu et al. (2023) reported that LLMs en- 175

counter difficulties in pragmatic reasoning, while 176

Cai et al. (2024) highlighted issues such as a fail- 177

ure to prefer shorter words for less informative 178

content and an inability to optimally use context to 179

resolve syntactic ambiguities. Likewise, Dentella 180

et al. (2023) noted that LLMs fall short of humans 181

in accuracy and consistency of grammatical judg- 182

ments. 183

Taken together, behavioural experimentation has 184

deepened our understanding of LLMs’ language 185
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processing abilities and underscored both their186

human-like traits and their limitations. The mixed187

results highlight the importance of continued re-188

search aimed at refining our grasp of these models’189

strengths and shortcomings, particularly through190

systematic examinations of foundational aspects of191

language cognition, such as lexical organization.192

1.3 Exploring the Mental Lexicon in LLMs193

Using Word Association194

Since LLMs are trained on vast amounts of text195

data but lack embodied sensory experience, an in-196

triguing question arises: can they understand word197

relationships purely through textual associations,198

or is there a crucial role for non-linguistic sensory199

experience in forming a rich, human-like mental200

lexicon? Unlike humans, who accumulate word as-201

sociations through multisensory interactions with202

the world, LLMs can only infer relationships from203

the patterns present in the text they are trained on.204

This raises the central challenge of whether LLMs205

can approximate the depth of human lexical orga-206

nization without shared lived experiences.207

A promising approach to enhance our under-208

standing of LLMs’ lexical organization is by209

examining their mental lexicon using the well-210

established psycholinguistic method of word as-211

sociation (Kumar et al., 2021)). The method al-212

lows us to probe the associative networks within213

LLMs and directly compare their lexical structures214

to those of humans, providing insight into both215

shared and distinct properties of word processing.216

The Small World of Words - English (SWOW-EN)217

corpus (De Deyne et al., 2019), with over 12,000218

cue words and contributions from approximately219

80,000 participants, serves as a robust baseline for220

comparing human and LLM mental lexicons. A221

recent study, the LLM World of Words project,222

has elicited English associations from three LLMs,223

Llama 3, Claude Haiku, and Mistral (Abramski224

et al., 2024).225

An important question not addressed by Abram-226

ski et al. (2024) is whether LLMs capture the de-227

mographic variability observed in human cognition.228

Human mental lexicons are shaped by factors such229

as age, education, and language background, which230

influence word associations and lexical activation231

patterns (Garimella et al., 2016; Garimella et al.,232

2017). Given that LLMs are trained on diverse233

linguistic inputs, it is crucial to examine whether234

their outputs systematically vary in response to de-235

mographic cues, mirroring human differences. In-236

vestigating this aspect could clarify whether LLMs 237

encode context-dependent linguistic variations akin 238

to those shaped by cultural and individual experi- 239

ences. 240

Building on these open questions, the current 241

study examines: 242

1. To what extent does the mental lexicon in 243

LLMs resemble that of humans in terms of their 244

associative structure and organization? 245

2. How do different LLM architectures and train- 246

ing approaches influence the human-likeness of 247

their mental lexicon? 248

3.To what extent does the mental lexicon of 249

LLMs capture demographic variability, akin to the 250

way human word associations vary across factors 251

such as age, cultural background, and personal ex- 252

perience? 253

To address these questions, we adapted the 254

SWOW-EN word association paradigm for LLMs, 255

using identical cue words and controlling for demo- 256

graphic factors wherever possible. We then mod- 257

eled each LLM’s mental lexicon, with a focus on 258

association frequency, semantic relationships, net- 259

work properties (such as clustering coefficients), 260

and vocabulary diversity. Our comparisons ex- 261

tended across different LLMs (e.g., GPT-4o and 262

Llama-3.1), as well as between LLMs and human 263

participants. We also examined how demographic 264

aspects might be encoded or omitted in their asso- 265

ciative structures. 266

2 Method 267

2.1 Models and Human Data 268

Two state-of-the-art transformer-based language 269

models (at the time of testing) were employed for 270

data collection: GPT-4o, developed by OpenAI, 271

and Llama 3.1-70b-instruct, developed by Meta. 272

For simplicity, these models are referred to as GPT 273

and Llama, respectively, throughout this paper. Hu- 274

man responses were drawn from the SWOW-EN 275

dataset (SWOW-EN.R100.20180827.csv). Only 276

trials contributed by native English speakers were 277

retained, thereby excluding data from non-native 278

speakers. Trials included in the analysis aligned 279

precisely with those replicated in the model experi- 280

ments. 281

2.2 Stimuli and Procedure 282

A total of 12,281 cue words from the SWOW-EN 283

project (De Deyne et al., 2019) served as stimuli. 284

In the original SWOW-EN dataset, thousands of 285
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participants each provided responses to 14–18 of286

these cue words, resulting in over one million trials.287

LLM data were collected in two experiments:288

one using GPT-4o and the other using Llama-3.1.289

Each experiment encompassed 1,061,729 trials,290

mirroring the number of trials from native English291

speakers in the SWOW-EN dataset. In the exper-292

iments, each trial consisted of a single cue word293

embedded in an instruction prompt (e.g. ...You will294

receive a cue word. Write the first word that comes295

to mind...The cue word is...), accompanied by a sys-296

tem prompt specifying the demographic informa-297

tion corresponding to a trial from the SWOW-EN298

dataset (i.e., educational level, age, gender, English299

dialect, and location) (e.g. You are 33 years old.300

You are a female...). This demographically targeted301

prompting strategy was designed, on one hand, to302

closely mimic human experimentation and, on the303

other hand, to provide demographic cues for explor-304

ing the potential influence of demographic factors305

on LLM responses, akin to the variability observed306

in human language processing. Full example of307

prompt and response are provided in Appendix B.308

All model responses were collected using the309

R MacBehaviour package (Duan et al., 2024a),310

a toolkit designed to facilitate behavioral exper-311

iments on LLMs. Each trial was run as a discrete312

chat session containing only one cue word to avoid313

memory effects, and the package automatically314

recorded all responses. The default temperature315

settings for each model were retained: temperature316

= 1 for GPT-4o and temperature = 0.6 for Llama-317

3.1.318

2.3 Data Preprocessing319

Preprocessing steps were performed for both LLM-320

derived and human-derived responses. Each partic-321

ipant—human or model—provided three responses322

per cue word, labeled R1, R2, and R3 according to323

their order. Any additional responses beyond the324

first three were truncated, and missing responses325

were coded as NA. Cue words that were not recog-326

nized (prompting the model to respond with “un-327

known word”) were also coded as NA. Responses328

in non-ASCII characters and duplicates within the329

same cue word were removed.330

Further cleaning was conducted using the331

SWOW-EN preprocessing script (preprocess-332

Data.R). This script removed repeated responses333

for specific cue words, corrected inconsistencies in334

missing responses (for example, NA coded in R2335

but not in R3), and standardized spelling variations.336

2.4 Data Analysis 337

Following data collection and preprocessing, 338

we obtained three datasets—Human, GPT, and 339

Llama—each containing the same cue words, up 340

to three associated responses per cue, and demo- 341

graphic information. Multiple metrics were com- 342

puted to assess how closely model outputs aligned 343

with human data. These metrics capture distinct yet 344

interrelated key aspects of lexical representation, 345

including word prominence, semantic organization, 346

network topology, and lexical diversity. 347

Association Frequency. Association frequency, 348

defined as the number of times a word appears as 349

an associate (De Deyne et al., 2019). This measure 350

reflects a word’s prominence in the mental lexicon 351

and predicts reaction time (RT) in tasks such as 352

lexical decision, naming, and semantic judgment. 353

We conducted three analyses: (1) correlating asso- 354

ciation frequencies across datasets, (2) examining 355

correlations between association frequencies and 356

RTs (Balota et al., 2007; Pexman et al., 2017), us- 357

ing both Pearson correlations and partial correla- 358

tions that controlled for word frequency (English 359

SUBTLEX-US (Brysbaert and New, 2009)), and 360

(3) comparing the top 100 most frequent associates 361

across datasets to evaluate overlap and relative lex- 362

ical prominence. 363

Semantic Similarity. Semantic similarity was 364

assessed using a random-walk algorithm based 365

on cue–associate relationships from word asso- 366

ciation tasks (De Deyne et al., 2016). In this 367

network-based framework, words function as 368

nodes, and associative strengths as weighted edges. 369

A “walker” traverses these edges in proportion to 370

their weights, producing transition probabilities 371

that reflect semantic relatedness (De Deyne et al., 372

2019). Random-walk values for the human dataset 373

were obtained from SWOW-EN, while those for 374

GPT and Llama were computed using the origi- 375

nal SWOW-EN script (graphRandomWalk.R). Two 376

analyses were conducted: (1) correlating random- 377

walk metrics across datasets, and (2) examining 378

correlations between random-walk values and hu- 379

man direct judgments of semantic similarity from 380

MEN (Bruni et al., 2012), MTURK-771 (Halawi 381

et al., 2012), and SimLex-999 (Hill et al., 2015). 382

Given the strong correlation between random-walk 383

scores and direct human ratings of word similarity 384

(De Deyne et al., 2019), these analyses provide an 385

additional measure of human-likeness. 386

Network attributes. Network science of- 387
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Figure 1: Examples of high and low clustering coeffi-
cients. “Family” (left) demonstrates a high clustering
coefficient, reflecting dense interconnections among its
neighbors, whereas “time” (right) has a low coefficient,
indicating sparse connections. Although both words
share the same number of immediate neighbors (degree),
their internal connectivity differs markedly.

fers a systematic framework for analyzing struc-388

tural properties across diverse domains (Barabási,389

2013; Lewis, 2011), including semantic networks390

(Steyvers and Tenenbaum, 2005). The cluster-391

ing coefficient is a key metric within this frame-392

work, indicating how tightly interconnected the393

neighbors of a given node are (Newman, 2003;394

Saramäki et al., 2007). In semantic networks,395

higher clustering coefficients signify denser inter-396

connections among words, resulting in community-397

like structures (Palla et al., 2005), as illustrated by398

Figure 1. In this study, cue–response data were399

transformed into a weighted directed graph using400

the igraph package in R, creating edges for every401

cue–response pair. The local clustering coefficient402

for each node was then computed using the stan-403

dard formula:404

C(v) =
2× ei

ki(ki − 1)
405

where ei represents the edges among neighbors of406

node i, and ki denotes the degree of node i. The407

distributions of clustering coefficients were com-408

pared across human, GPT and Llama networks to409

assess similarities and differences in structural con-410

nectivity.411

Vocabulary Diversity. Vocabulary diversity412

gauges the breadth and variety of words pro-413

duced, reflecting linguistic adaptability and flex-414

ibility (Malvern et al., 2004; Laufer and Nation,415

1995). To assess this property, we calculated as-416

sociation entropy for each cue word to evaluate417

variability in word associations. Shannon entropy418

H was computed as: 419

H(X) = −
n∑

i=1

p(xi) log2 p(xi) 420

where p(xi) is the proportion of a particular word 421

i among all responses to a given cue. Higher en- 422

tropy values reflected a greater spread of responses, 423

whereas lower entropy indicated stronger consen- 424

sus. These entropy distributions were then com- 425

pared across the human data and each LLM dataset. 426

Furthermore, we analyzed demographic variability 427

by incorporating demographic factors (e.g., educa- 428

tion level, gender) into entropy calculations. We 429

examined interaction effects between demographic 430

levels and groups (human, GPT, Llama) to deter- 431

mine whether demographic factors influence asso- 432

ciation variability similarly in humans and LLMs 433

or exhibit distinct patterns. 434

KL divergence. In addition to the aforemen-
tioned metrics, we computed Kullback-Leibler
(KL) divergence to assess the degree of divergence
between human-generated and model-generated
word association distributions. KL divergence
quantifies how much one probability distribution P
differs from a reference distribution Q, with lower
values indicating greater similarity, defined as:

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)

We first derived probability distributions for each 435

cue word by calculating the relative frequency of 436

associates in the Human, GPT, and Llama datasets. 437

KL divergence was then computed by comparing 438

human association distributions against those of 439

GPT and Llama. Finally, we tested whether GPT 440

and Llama differed significantly in their KL diver- 441

gence scores. 442

3 Results 443

3.1 Association Frequency 444

Both GPT and Llama exhibited substantial correla- 445

tions with human association frequencies, though 446

GPT’s association frequency correlated more 447

closely with human data compared to Llama’s, a 448

difference confirmed by Steiger’s Z test (Z = 21.43, 449

p < 0.001). See Figure 7 in Appendix C for detail 450

illustration. 451

Despite the overall correlation among datasets, 452

model-human misalignment emerged when assess- 453

ing the relationship between association frequency 454
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and lexical processing speeds (lexical decision,455

naming, and semantic decision RTs). Human as-456

sociation frequencies showed the strongest corre-457

lations with RT data. While both GPT and Llama458

significantly predicted RTs, their correlations were459

consistently weaker than those observed for human460

data (Figure 2 and Table 1 in Appendix C). The461

results suggest that while LLM-derived association462

frequencies capture aspects of lexical processing,463

they remain less predictive than human-derived464

frequencies. Partial correlation analyses control-465

ling for word frequency yielded a similar conclu-466

sion. While human association frequency contin-467

ued to show notable correlations with RTs, GPT468

and Llama each accounted for less variance once469

word frequency was taken into account (refer to470

Figure 2 and Table 2 in Appendix C for statistical471

details)472

A comparison of the top 100 words by associ-473

ation frequency (Figure 3 and Figure 4; see Fig-474

ure 8 Appendix C for Llama’s. ) revealed both475

overlap and divergence. Words such as “water”476

and “money” appeared prominently in all lexicons,477

whereas “sex” was more prominent among hu-478

mans and “computer” among LLMs. Overall, GPT479

shared 54% of its top 100 list with humans, com-480

pared to Llama’s 43%, suggesting that GPT’s core481

associations more closely mirrored human lexical482

prominence.483

3.2 Semantic Similarity484

Random-walk measures based on all three asso-485

ciates (R1, R2, R3) showed that GPT and Llama486

each correlated strongly with human data, although487

GPT achieved a higher alignment (Z = 489.38; p488

< 0.001). See Figure 9 in Appendix C for detail489

illustration.490

The models—particularly GPT—consistently491

aligned closely with humans in the random walk-492

semantic judgment benchmark correlation analysis.493

There was no significant difference between GPT494

and human correlation sizes across all three bench-495

marks (MEN, MTurk, and SimLex999), according496

to Steiger’s Z test (p > 0.05). Meanwhile, Llama’s497

performance matched human results on SimLex999498

alone, as shown in Figure 5. These findings suggest499

that the models exhibit considerable human-like se-500

mantic relatedness capabilities, with GPT showing501

stronger alignment to humans.502

3.3 Network Attributes 503

A linear mixed-effects (LME) model revealed that 504

both GPT and Llama exhibited significantly higher 505

clustering coefficients than humans (β = 0.043, t 506

= 36.08, p < 0.001; β = 0.047, t = 35.93, p 507

< 0.001). When comparing the models, Llama’s 508

clustering coefficient was significantly higher than 509

GPT’s (β = 0.004, t = 2.58, p = 0.01). See also Fig- 510

ure 10 in Appendix C. These findings suggest that 511

LLM-based semantic networks are more densely 512

interconnected than human networks, with Llama 513

showing the highest degree of local clustering. 514

3.4 Vocabulary Diversity 515

An LME analysis showed that both GPT (β = - 516

2.863, t = -497.6, p < 0.001) and Llama (β = 517

-2.913, t = -506.3, p < 0.001) had significantly 518

lower association entropy compared to humans, 519

indicating reduced lexical diversity. Furthermore, 520

Llama exhibited lower entropy than GPT (β = - 521

0.050, t = -8.674, p < 0.001; see Figure 11 in 522

Appendix C). 523

3.5 KL Divergence 524

The KL divergence analysis revealed notable differ- 525

ences between human word associations and those 526

generated by GPT and Llama. The average KL 527

divergence between human and GPT was 11.09, 528

while the divergence between human and Llama 529

was 12.46, both indicating substantial deviations 530

from human data. A t-test comparing the KL diver- 531

gence scores for GPT and Llama revealed a signifi- 532

cant difference (t = -49.04, p < 0.001), suggesting 533

that GPT’s word association distributions are sta- 534

tistically closer to human responses than those of 535

Llama. 536

3.6 Examining Demographic Variability in 537

LLM Mental Lexicon 538

A demographic analysis using association entropy 539

and linear regression revealed significant interac- 540

tions between education and group. While models 541

captured general education-related entropy trends, 542

they diverged from human patterns, particularly 543

among higher education groups (Figure 6). In hu- 544

man data, bachelor’s degrees exhibited significantly 545

higher entropy than master’s (β = 0.136, p < .001), 546

a difference absent in GPT and Llama (GPT: β = 547

-0.025, p = 0.960; Llama: β = 0.005, p > 0.999). 548

Llama also failed to replicate entropy differences 549

between high school and bachelor’s (β = -0.022, 550

p > 0.999) or master’s degrees (β = -0.017, p > 551
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Figure 2: Pearson correlations of association frequencies with lexical decision, naming, and semantic decision RTs.
Pink and gray bars depict partial correlations controlling for word frequency (SUBTLEX-US). Freq.R123 is defined
as the number of times being an associate, regardless of cue(s), across all associates (R1, R2, and R3) collected in
the experiment. For readability, RTs were z-transformed and log-transformed and then shifted to positive values by
adding the minimal z-score, while association frequencies were log-transformation after adding a constant of 1.
The key finding is that model-derived correlations were significantly weaker than human-derived ones, as indicated
by Steiger’s Z test (p < 0.001 for most comparisons, except for the partial correlation between Llama and human
association frequency-RT correlations, where p = 0.03). Significance levels: *: p < 0.05; **: p < 0.01; ***: p <
0.001.

Figure 3: Top 100 words ranked by association fre-
quency in Human.

0.999), compared to humans (high school vs bach-552

elor: β = -0.311, p < 0.001; high school vs master:553

β = -0.174, p < 0.001). GPT captured these dif-554

ferences with slightly smaller effect sizes for the555

high school-bachelor comparison (β = -0.046, p =556

0.030). These findings suggest that while models557

capture broad demographic-related entropy trends558

(and align with human data in some aspects, such559

as gender variability; see Figure 12 in Appendix560

C), they exhibit limited capacity for capturing fine-561

grained differences, particularly in educational en-562

tropy. Llama deviates more from human patterns563

in educational contexts than GPT does.564

4 Discussion565

Our study provides mixed findings regarding the566

human-likeness of LLMs in replicating the men-567

Figure 4: Top 100 words ranked by association fre-
quency in GPT.

tal lexicon, with semantic similarity emerging as 568

the most consistent parallel to human performance. 569

This aligns with Abramski et al. (2024), who 570

noted comparable semantic priming effects in both 571

human and model-based networks, highlighting 572

human-like features in LLMs’ semantic associa- 573

tions. While association frequency analysis sug- 574

gests LLMs capture some aspects of human-like 575

prominence in word associations, they primarily 576

encode straightforward lexical statistics like word 577

frequency, rather than deeper cognitive associa- 578

tions. 579

A significant divergence was observed in the 580

higher clustering coefficient and lower lexical diver- 581

sity of LLM-based semantic networks compared to 582

human counterparts. Additionally, KL divergence 583

analysis revealed discrepancies between human 584

7



Figure 5: Pearson correlations and 95% confidence intervals between random-walk measures and direct semantic
ratings from MEN, MTurk, and SimLex999. *: p < 0.05; **: p < 0.01.

Figure 6: Entropy differences in association for educa-
tion groups across Human, GPT, and Llama datasets.
**: p < 0.01; ***: p < 0.001.

and model-generated word associations, indicat-585

ing that while LLMs replicate certain human-like586

semantic relations, they lack the depth and range587

of human mental lexicons. This may be due to the588

absence of embodied sensory experience during589

model training, which limits their ability to fully590

capture the complexities of human language cogni-591

tion.592

Our findings also have implications for using593

LLMs as surrogate participants in cognitive sci-594

ence research, a concept explored by many re-595

searchers (e.g. Duan et al., 2024a; Qin et al., 2024).596

While LLMs offer a cost-effective alternative for597

semantic-relatedness studies, their discrepancies598

with human mental lexicons caution against overre-599

liance on them as surrogates. Issues such as the mis-600

representation of social identities, raised by Wang601

et al. (2025), are particularly relevant here, as our602

results suggest LLMs fail to fully capture demo- 603

graphic variability and diversity accurately, as least 604

in terms of word association. This reinforces con- 605

cerns that LLMs may oversimplify or misrepresent 606

human experiences, especially in studies involv- 607

ing identity and diversity. Moreover, the growing 608

reliance on synthetic data in model training (del 609

Rio-Chanona et al., 2024; Shumailov et al., 2024) 610

may exacerbate these issues, leading to even less 611

spontaneous and more constrained language repre- 612

sentations. 613

Finally, our comparison of GPT and Llama high- 614

lighted consistent patterns, with GPT generally dis- 615

playing stronger human-like qualities. This sug- 616

gests that variations in training strategies and data 617

sources significantly influence model performance, 618

underscoring the impact of model architecture and 619

training choices on LLM behavior. 620

5 Conclusion 621

In conclusion, while LLMs demonstrate some 622

human-like properties in their mental lexicons, they 623

fail to fully replicate the complexity of human se- 624

mantic networks. The observed discrepancies in 625

lexical diversity and network structure reveal fun- 626

damental differences between human and machine 627

cognition. As LLMs continue to evolve, further 628

research is essential to refine these models to bet- 629

ter capture the nuanced, multimodal nature of hu- 630

man language. Caution is also needed when using 631

LLMs as substitutes for human participants, par- 632

ticularly in studies involving social identity and 633

linguistic diversity. 634

8



References635

Katherine Abramski, Riccardo Improta, Giulio Rossetti,636
and Massimo Stella. 2024. The" llm world of words"637
english free association norms generated by large638
language models. arXiv preprint arXiv:2412.01330.639

Jean Aitchison. 2012. Words in the mind: An introduc-640
tion to the mental lexicon. John Wiley & Sons.641

David A Balota and James I Chumbley. 1984. Are642
lexical decisions a good measure of lexical access?643
the role of word frequency in the neglected decision644
stage. Journal of Experimental Psychology: Human645
perception and performance, 10(3):340.646

David A Balota, Melvin J Yap, Keith A Hutchison,647
Michael J Cortese, Brett Kessler, Bjorn Loftis,648
James H Neely, Douglas L Nelson, Greg B Simpson,649
and Rebecca Treiman. 2007. The english lexicon650
project. Behavior research methods, 39:445–459.651

Albert-László Barabási. 2013. Network science.652
Philosophical Transactions of the Royal Society A:653
Mathematical, Physical and Engineering Sciences,654
371(1987):20120375.655

Horacio A Barber, Leun J Otten, Stavroula-Thaleia656
Kousta, and Gabriella Vigliocco. 2013. Concreteness657
in word processing: Erp and behavioral effects in a658
lexical decision task. Brain and language, 125(1):47–659
53.660

Tom Brown, Benjamin Mann, Nick Ryder, Melanie661
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind662
Neelakantan, Pranav Shyam, Girish Sastry, Amanda663
Askell, et al. 2020. Language models are few-shot664
learners. Advances in neural information processing665
systems, 33:1877–1901.666

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-667
Khanh Tran. 2012. Distributional semantics in tech-668
nicolor. In Proceedings of the 50th Annual Meeting669
of the Association for Computational Linguistics (Vol-670
ume 1: Long Papers), pages 136–145.671

Marc Brysbaert and Boris New. 2009. Moving beyond672
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of the Poznań Linguistic Meeting, volume 1. Uniwer-857
sytet im. Adama Mickiewicza w Poznaniu.858

Alex Wang. 2018. Glue: A multi-task benchmark and859
analysis platform for natural language understanding.860
arXiv preprint arXiv:1804.07461.861

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-862
preet Singh, Julian Michael, Felix Hill, Omer Levy,863
and Samuel Bowman. 2019. Superglue: A stick-864
ier benchmark for general-purpose language under-865
standing systems. Advances in neural information866
processing systems, 32.867

Angelina Wang, Jamie Morgenstern, and John P Dick-868
erson. 2025. Large language models that replace869
human participants can harmfully misportray and870
flatten identity groups. Nature Machine Intelligence,871
pages 1–12.872

11


