
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CTGC: CLUSTER-AWARE TRANSFORMER FOR GRAPH
CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph clustering is a fundamental unsupervised task in graph mining. However,
mainstream clustering methods are built on graph neural networks, thus inevitably
suffer from the difficulty in long-range dependencies capturing. Moreover, current
two-stage clustering scheme, consisting of representation learning and clustering,
limits the ability of the graph encoder to fully exploit task-related information,
resulting in suboptimal embeddings. In this work, we propose CTGC (Cluster-
Aware Transformer for Graph Clustering) to mitigate these issues. Specifically,
considering the excellence of transformer in long-range dependencies modeling,
we first introduce transformer to graph clustering as the crucial graph encoder.
To further enhance the task awareness of encoder during representation learning,
we presents two mechanisms: momentum cluster-aware attention and cluster-
aware regularization. In momentum cluster-aware attention, previous clustering
results are adopted to guide the node embedding production with specially de-
signed cluster-aware queries. Cluster-aware regularization is designed to fuse the
cluster information into bordering nodes through minimizing the overlap between
different clusters while maximizing the completeness of each cluster. We eval-
uate our method on seven real-world graph datasets and achieve superior results
compared to existing state-of-the-art methods, demonstrating its effectiveness in
improving the quality of graph clustering.

1 INTRODUCTION

Graph clustering is an unsupervised task that partitions nodes into several distinct and non-
overlapping clusters. It has numerous applications across various domains, including social net-
works and recommender systems. Currently, Graph Neural Networks (GNNs) methods, in con-
junction with contrastive learning, are extensively employed for graph clustering. MVGRL (Has-
sani & Khasahmadi, 2020) uses graph diffusion to generate additional structural views and contrast
them with regular views to learn node representations. BGRL (Thakoor et al., 2021) removes the
requirement for negative sampling by minimizing an invariance-based loss on augmented graphs
within each batch. Dink-Net (Liu et al., 2023b) initially pretrains the model by contrasting dropped
and shuffled views, followed by fine-tuning that minimizes distances between samples and cluster
centers, thereby drawing samples closer to the centers. MAGI (Liu et al., 2024) proposes to use
modularity maximization as a contrastive pretext task to avoid the problem of semantic drift.

As indicated by the “no free lunch” theorem (Wolpert & Macready, 1997), the GNN-based en-
coders used in existing clustering methods exhibit significant limitations. Most GNNs are designed
to be equivalent to first-order Weisfeiler-Lehman test, learning node representations by locally ag-
gregating features of neighboring nodes in each layer, which makes it difficult to effectively capture
long-range dependencies (Dai et al., 2018). While layer stacking has the potential to enhance long-
range information propagation, it also introduces challenges such as over-smoothing (Chen et al.,
2020a) and over-squashing (Alon & Yahav, 2021). To intuitively illustrate this issue, we selected
three commonly used graph datasets (i.e., Cora, CiteSeer and PubMed) to analyze the shortest path
distances between nodes within the same cluster. The results, presented in Figure 1, shows that a
significant portion of the shortest path distances between nodes exceeds three, even within the same
cluster. Most current graph clustering methods are designed with a model depth of only two or three
layers, limiting their ability to fully propagate information. This underscores the need to account for
long-range dependencies in clustering models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25
%

Cora
CiteSeer
PubMed

Figure 1: Data statistics of the shortest path distances
between nodes within the same cluster on the Cora, Cite-
Seer and PubMed datasets. For better visualization, we
truncated the part with x ≥ 13, which is reasonable as
they account for less than 2% of the total dataset.

Furthermore, current graph clustering
methods predominantly adopt a two-
stage clustering scheme. Typically, this
involves using a GNN to encode raw
node features into embeddings, followed
by clustering using traditional methods
like KMeans or spectral clustering to
generate cluster assignments for evalua-
tion. However, a critical flaw exists in
this sheme. The representation learning
and clustering stages are entirely decou-
pled within the framework, preventing
the model from accessing sufficient task-
specific information, namely, feedback
on clustering results to produce more ef-
fective embeddings. While several works try to alleviate this issue, they are primarily limited to
utilizing clustering results from a regularization perspective (Liu et al., 2023b; 2024), with no in-
tegration of task-specific information in the forward pass of the model. Therefore, we decide to
directly incorporate clustering information into the core mechanism of the model, specifically, the
attention mechanism in our approach, to enhance the model’s task awareness.

In this work, we propose CTGC (Cluster-Aware Transformer for Graph Clustering) to solve these
issues. Specifically, we first introduce transformer in light of its superior ability of modeling long-
range dependencies. To address the lack of task-related information during the representation learn-
ing stage, we propose momentum cluster-aware attention and cluster-aware regularization. Momen-
tum cluster-aware attention uses prior clustering results to generate a cluster index for each node,
then produces embeddings based on cluster-related queries, and finally assigns embeddings accord-
ing to each node’s cluster index. Furthermore, considering that there exists data points may be
difficult to distinguish between multiple clusters, we propose cluster-aware regularization, which
minimizes the overlap between different clusters while maximizing the completeness of each clus-
ter. This enhancement of task-related information helps guide the model towards producing more
coherent and accurate clusters. Overall, the main contributions are summarized as follows:

• In this work, we propose CTGC, to address the issues of long-range dependency and task-
related information missing in current graph clustering methods.

• To the best of our knowledge, we are the first to introduce a pure attention-based trans-
former for graph clustering to alleviate the long-range dependency modeling.

• We propose two mechanism: momentum cluster-aware attention and cluster-aware regu-
larization, to mitigate the issue of task-related information missing.

• Comprehensive experiments on seven real-world graph datasets are conducted to validate
the effectiveness of our method in graph clustering.

2 RELATED WORK

Graph Clustering. Graph clustering is a widely studied problem in academia and industry. In
recent years, contrastive learning has emerged as a prominent approach in graph clustering, with
notable examples including MVGRL (Hassani & Khasahmadi, 2020), Dink-Net (Liu et al., 2023b),
and MAGI (Liu et al., 2024). MVGRL leverages graph diffusion to generate alternative structural
views and contrasts them with standard views to learn node representations. Dink-Net pretrains
the model by contrasting dropped and shuffled views, followed by fine-tuning, where it minimizes
the distances between samples and cluster centers, pulling samples closer to the respective centers.
MAGI introduces modularity maximization as a contrastive pretext task to mitigate the issue of se-
mantic drift. However, all of these methods follow a two-stage clustering scheme. This separation
between representation learning and clustering causes the model to lose task-related information dur-
ing embedding generation, ultimately limiting its performance. In our work, we integrate previous
clustering results directly into the attention mechanism, and then propose two mechanisms (momen-
tum cluster-aware attention and cluster-aware regularization) to alleviate this problem. More related
work on graph clustering is discussed in Appendix A.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Transformer in Graph. Transformer (Vaswani et al., 2017) has achieved remarkable success in
many fields such as computer vision and speech recognition. Recently, transformers emerge as an
alternative technique for graph learning. So far, a great variety of transformers have been proposed
to adapt graph structured data (Rong et al., 2020; Ying et al., 2021; Zhao et al., 2021; Xu et al.,
2021; Chen et al., 2021; Wu et al., 2022; Chen et al., 2023; Liu et al., 2023a; Shomer et al., 2024;
Rampášek et al., 2022; Nguyen et al., 2022). GROVER adopts a dynamic message passing strategy
and randomly selects propagation hops at each layer. Gophormer samples ego-graphs and con-
verts them into sequences as input to alleviate scalability issues. NodeFormer designs a kernelized
Gumbel-Softmax operator to reduce the algorithm complexity w.r.t node numbers. NAGphormer
proposes a novel neighborhood aggregation module to adaptively learn neighborhoods with differ-
ent hops. Gapformer proposes to combine the attention mechanism with graph coarsening and only
use pooled nodes to calculate attention. However, there is still none for graph clustering, and the
excellence of transformer in long-range dependency modeling inspires us the solution for graph
clustering. More related work on transformer in graph is provided in Appendix A.1.

3 NOTATIONS AND PRELIMINARIES

Notations. Consider a graph G = (V,E) with vertex set V = {v1, ..., vn}, where |V | = N , and
edge set E ⊆ V ×V , where |E| = m. Let A ∈ Rn×n be the adjacency matrix of G, where Aij = 1
if (vi, vj) ∈ E, and Aij = 0 otherwise. Let X ∈ Rn×d be the feature matrix, where the i-th row Xi

denotes the d-dimensional feature vector of node i.

Graph Clustering. Given the graph G and node attributes X , the goal is to partition the graph G
into |C| partitions {C1, ..., } such that nodes in the same cluster are similar/close to each other in
graph structure and features. The current mainstream methods often use GNNs as the encoder, then
optimize the problem and generate node embeddings under the framework of contrastive learning,
and finally use traditional algorithms such as KMeans to generate cluster assignments for evaluation.
Let zu and zu+ denote embeddings of a positive pair by a GNN encoder, we can then apply a loss
function such as InfoNCE for contrastive learning, defined as follows:

LInfoNCE = − 1

N

N∑
u=1

log
exp(sim(zu, zu+)/τ)

exp(sim(zu, zu+)/τ) +
∑Nneg

i=1 exp(sim(zu, zi)/τ)
(1)

where sim(·, ·) denotes the similarity function (often cosine similarity), τ is the adjustable tem-
perature parameter that controls local separation and global uniformity and Nneg is the number of
negative samples. Ultimately, the clustering partition is obtained through C = fC(Z), where fC(Z)
represents a clustering method, such as KMeans or spectral clustering. To maintain simplicity in our
framework, we only replace the GNN encoder with our momentum cluster-aware transformer and
introduce a cluster-aware regularization.

4 METHODS

4.1 OVERVIEW OF CTGC

As illustrated in Figure 2, the core idea of CTGC is to capture long-range dependencies by replacing
the basic graph encoder and to enhance task-related information by explicitly incorporating cluster-
ing information into it. Our method takes three steps: modeling long-range dependency, momentum
cluster-aware attention and cluster-aware regularization. In the first step (§ 4.2), we introduce trans-
former to model long-range node dependencies. In the second step (§ 4.3), we first generate cluster
embeddings using specially designed cluster-related queries, then assign them based on previous
clustering results, and finally fuse them with standard attention. In the final step (§ 4.3), we intro-
duce a regularization to handle cluster overlap. The underlying idea behind these improvements is
similar to leveraging global information. In graph clustering, cluster information not only captures
the overall structure information of a graph’s substructure but also carries task-specific information,
such as cluster assignments, cluster centers, and node embeddings. Effective utilization of cluster
information helps guide the encoder to produce more suitable embeddings for clustering.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Linear ProjectionLinear Projection

Projection HeadProjection Head

a CTGC Pipeline

Momentum Cluster
Aware Attention

Momentum Cluster
Aware Attention

N×b

Cluster-Aware Contrastive
Loss with Regularization

Cluster-Aware Contrastive
Loss with Regularizationc

𝛿1 𝛿2

min overlap

max cluster

𝐿𝑐𝑎𝑟 =
1

𝐾

𝑘=1

𝐾

𝑖=1

|ℂ|

𝑗=1,𝑗≠𝑖

|ℂ| 𝐶𝐴𝐶𝑖
𝑘,𝐿 ∩ 𝐶𝐴𝐶𝑗

𝑘,𝐿

𝐶𝐴𝐶𝑖
𝑘,𝐿 ∪ 𝐶𝐴𝐶𝑗

𝑘,𝐿

c Cluster-Aware Regularization

b Momentum Cluster-Aware Attention

𝑑𝑖𝑚:𝑁 × 𝑑

Cluster Index

Cluster Related Query

𝑑𝑖𝑚: |ℂ| × 𝑑

MatMul

MatMul

Q K V

𝜆

𝒞𝑖 = ቊ
𝐾𝑀𝑒𝑎𝑛𝑠 𝑋 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒
𝐾𝑀𝑒𝑎𝑛𝑠 𝑍𝑖−1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1 − 𝜆

Figure 2: Overview of our proposed CTGC framework. The entire figure can be divided into three
parts: (a), (b), and (c). Part (a) illustrates the overall pipeline, while parts (b) and (c) detail the
improved modules we introduce. Briefly, we first apply dropout before linear projection to generate
different initial features (δi denotes different dropping rates), then employ the transformer encoder
based on momentum cluster-aware attention to produce diverse contrastive views, and finally con-
duct contrastive learning using both the base loss and the cluster-aware regularization.

4.2 MODELING LONG-RANGE DEPENDENCIES

In this work, we employ transformer as the graph encoder based on its superior ability of modeling
long-range dependencies. Most transformers are based on a multi-head self-attention module fol-
lowed by a residual connection with a normalization layer. Let d and K denote the dimension of the
feature space and the number of attention heads respectively. Formally, the standard self-attention
uses three different matrices WQ ∈ Rd×dK , WK ∈ Rd×dK and WV ∈ Rd×dK to project input node
features X into corresponding representations of the query (Q), the key (K) and the value (V). The
node embedding learning in transformer is described as follows:

z(l+1)
u =

N∑
v=1

ã(l)uv · (W
(l)
V z(l)v), ã(l)uv =

exp((W
(l)
Q z

(l)
u)⊤(W

(l)
K z

(l)
v))∑N

w=1 exp((W
(l)
Q z

(l)
u)⊤(W

(l)
K z

(l)
w))

(2)

where W
(l)
Q , W (l)

K and W
(l)
V are different learnable parameters in the l-th layer. We omit the scaling

factor
√
dK and the nonlinear activation after aggregation for brevity. Unlike GNNs, which prop-

agate information through local neighborhood aggregation, the transformer’s attention mechanism
enables each node to interact directly with all other nodes, not just its neighbors. This allows the
transformer to expand its receptive field to the entire graph with only a single layer, thereby capturing
long-range dependencies more effectively.

4.3 TASK-RELATED INFORMATION

We mainly present two mechanisms to enhance the missing task-related information in the rep-
resentation learning stage of the graph clustering, namely momentum cluster-aware attention and
cluster-aware regularization, which are introduced as below.

Momentum Cluster-Aware Attention. Current graph clustering methods typically follow a two-
stage scheme, where the separation of clustering and representation learning restricts the model to
acquire sufficient task-related information, thereby limiting to produce more effective embeddings.
An intuitive idea is to incorporate the clustering results into the encoder forward computation. In-
spired by the momentum update, we integrate the previous clustering results into the attention mech-
anism and propose momentum cluster-aware attention. In the initial phase, when there are no em-
bedding outputs, the original node features are used to generate clustering assignments. The overall

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

definition is as follows:

Ci =
{
KMeans(X), initialize

KMeans(Zi−1), otherwise
(3)

where Zi−1 is the node embeddings by the encoder at the (i-1)-th epoch. In order to generate cluster
embeddings in a simple yet effective way, we design a cluster-related query QC , where W

(l)
QC

is a

learnable query in R|C|×d and is initialized by sampling from N (0, 1). W (l)
K and W

(l)
V are learnable

parameters in the l-th layer, shared by momentum cluster-aware attention and standard attention.
Then we can use QC to get the cluster-aware attention map as follows:

CA(l) =
exp((W

(l)
QC

Z(l))⊤(W
(l)
K Z(l)))

exp((W
(l)
QC

Z(l))⊤(W
(l)
K Z(l)))

, c̃a(l)uv =
exp(W

(l)
QC

z
(l)
u)⊤(W

(l)
K z

(l)
v))∑N

w=1 exp((W
(l)
QC

z
(l)
u)⊤(W

(l)
K z

(l)
w))

(4)

where c̃a(l)uv is the attention weight of node u to node v in the momentum cluster-aware attention map
of layer l. Then we first assign the corresponding clustering embedding to each node according to
the clustering result obtained by Equation 3, and finally fuse the cluster-aware attention embedding
and normal attention embedding, which is defined as follows:

z(l+1)
u = (1− λ)

N∑
v=1

ã(l)uv · (W
(l)
V z(l)v) + λI(

N∑
v=1

c̃a(l)uv · (W
(l)
V z(l)v)) (5)

where λ is the weight of cluster-aware attention embedding, and I(·) is the function that assigns
the corresponding clustering embedding to each node according its clustering index. By tuning the
value of λ, we can adjust the model’s utilization of clustering information. Clustering information is
similar to global information, so this fusion is like a trade-off between local and global information.

Cluster-Aware Regularization. As shown in Figure 2, there exists nodes may be difficult to distin-
guish between multiple clusters. Without additional constraints on these nodes, they may contribute
to the generation of embeddings for multiple clusters, negatively impacting the model’s final perfor-
mance. A straightforward solution is to minimize the overlap between the cluster-aware attention
maps of different clusters, as defined in Equation 4. In CTGC, we utilize the output from the final
layer of the model. Assuming the model has a depth of L, the cluster overlap is defined as follows:

OverlapCi,Cj
= CAL

Ci
∩ CAL

Cj
(6)

The utilization of minimizing overlap can effectively reduce fuzzy boundary nodes, but simply using
it may come with a side effect of reducing the area of each cluster. Considering the coverage area,
the following properties typically hold true:

CAL
Ci

+ CAL
Cj

= CAL
Ci

∪ CAL
Cj

− CAL
Ci

∩ CAL
Cj

(7)

We can simultaneously maximize CAL
Ci
∪CAL

Cj
while minimizing the overlap, and the final cluster-

aware regularization is defined as Equation 8.

Lcar =
1

K

K∑
k=1

|C|∑
i=1

|C|∑
j=1,j ̸=i

CAk,L
Ci

∩ CAk,L
Cj

CAk,L
Ci

∪ CAk,L
Cj

(8)

where K is the number of heads for momentum clustering-aware attention and standard attention.

4.4 LEARNING OBJECTIVE

To keep the architecture simple, we just use the transformer encoder to replace the GNN, and the
overall framework is similar to SimCLR (Chen et al., 2020b). To align with common experimen-
tal practices, we employ cosine similarity to assess the similarity between different embeddings,
denoted as sim(u, v) = uT v/ ∥u∥ ∥v∥, and subsequently utilize the InfoNCE loss, as defined in
Equation 1, as the base loss function. The final optimization goal is a weighted sum of base loss and
cluster-aware regularization, which is defined as follows:

L = (1− α)Lbase + αLcar (9)

where α is the weight of cluster-aware attention regularization. By adjusting the value of α, we can
control the model’s emphasis on the overlap between cluster nodes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Table 1: Dataset statistics.
Dataset Nodes Edges Features Clusters

Cora 2,708 5,278 1,433 7
CiteSeer 3,327 4,552 3,703 6
PubMed 19,717 44,324 500 3

Amazon-Photo 7,650 119,081 745 8
Amazon-Computers 13,752 245,861 767 10

Coauthor-CS 18,333 81,894 6,805 15
Coauthor-Physics 34,493 247,962 8,415 5

Environment and Datasets. We
use a single NVIDIA A100 GPU
(40GB) and the PyTorch platform.
Detailed model settings and hyper-
parameter values can be found in Ap-
pendix A.2. We assess our method
on seven real world datasets (Kipf &
Welling, 2017; Shchur et al., 2018),
the details are presented in Table 1.

Baseline. We compare our method with eleven baselines, which can be categorized into two groups:
(1) Structure/features only methods: Node2vec (Grover & Leskovec, 2016) and KMeans (Mac-
Queen et al., 1967). (2) Contrastive learning methods: GRACE (Zhu et al., 2020), MV-
GRL (Hassani & Khasahmadi, 2020), BRGL (Thakoor et al., 2021), Dink-Net (Liu et al., 2023b),
S3GC (Devvrit et al., 2022), CCGC (Yang et al., 2023), SCGDN (Ma & Zhan, 2023), DGCLUS-
TER (Bhowmick et al., 2024) and MAGI (Liu et al., 2024).

Metrics. We follow the evaluation setup of MAGI (Liu et al., 2024) and measure four metrics related
to evaluating the quality of cluster assignments: Accuracy (ACC), Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI) and Macro-F1 Score (F1). For all the metrics, higher values
indicate better performance. In our experiments, we first generate representations for each method
and then perform KMeans clustering on the dataset to produce cluster assignments for evaluation.

5.2 EXPERIMENTAL RESULTS

Graph Clustering Results. Table 2 compares the clustering performance of CTGC with eleven
strong baseline methods on seven real-world graph datasets. The results of baselines are mainly
derived from (Liu et al., 2023b; 2024), except for three datasets (PubMed, Coauthor-CS, and
Coauthor-Physics), whose results are reproduced based on the official implementation. For small-
scale datasets, i.e., Cora, CiteSeer, we observe that MVGRL and Dink-Net are the two most compet-
itive baseline methods. Nevertheless, CTGC outperforms them in all cases. For remaining datasets,
CTGC significantly outperforms recent state-of-the-art baseline methods such as CCGC, DGCLUS-
TER, and MAGI. Compared to the runner-up, CTGC is ∼2.48% better on Cora, ∼1.63% better on
CiteSeer, ∼1.10% better on Amazon-Photo, ∼6.99% better on Amazon-Computers, ∼3.88% better
on Coauthor-CS and ∼4.93% better on Coauthor-physics in terms of clustering ACC. It is worth
noting that CTGC has a huge improvement over the runner-up in the Coauthor-Physics dataset, with
ACC increased by about 4.93%, NMI increased by about 4.69%, ARI increased by about 5.03%,
and F1 score increased by about 6.20%. One possible explanation for the performance improve-
ment is the high graph density of the Coauthor-Physics dataset tends to cause cluster overlap, while
our proposed cluster-aware regularization can effectively alleviate this problem, and thus generate
embeddings that are more suitable for clustering.

Raw Attribute Dink-Net S3GC CCGC

SCGDN DGCLUSTER MAGI Ours

Figure 3: t-SNE visualization of CTGC along with six strong
baselines and raw features on the Cora dataset.

t-SNE Visualization. We use t-
SNE to measure the quality of the
generated embeddings. The em-
beddings generated by each method
are projected into two-dimensional
vectors for visualization. We se-
lect six strong baseline methods and
raw features for visualization anal-
ysis. The visualization in Figure 3
intuitively shows that CTGC not
only generates better cluster em-
beddings than the baseline meth-
ods, but also effectively discovers
potential substructures in clusters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Clustering performance of CTGC and eleven baselines. The bold and underlined scores
indicate the best and second best results respectively. “OOM” denotes out of memory.
Dataset Metric Baselines Ours

KMeans Node2vec GRACE MVGRL BGRL Dink-Net S3GC CCGC SCGDN DGCLUSTER MAGI CTGC

Cora

ACC 35.00 61.20 73.90 76.30 74.20 78.10 74.20 73.73 74.80 75.30 76.00 80.58
NMI 17.30 44.40 57.00 60.80 58.40 62.28 58.80 55.93 56.90 60.00 59.70 62.37
ARI 12.70 32.90 52.70 56.60 53.40 61.61 54.40 51.52 52.60 54.80 57.30 63.78
F1 36.00 62.10 72.50 71.60 69.10 72.66 72.10 70.83 70.40 70.60 73.90 78.37

CiteSeer

ACC 39.32 42.10 63.10 70.30 67.50 70.36 68.80 69.61 69.60 70.93 70.60 72.56
NMI 19.90 24.00 39.90 45.90 42.20 45.87 44.10 44.12 44.30 45.36 45.20 46.63
ARI 14.20 11.60 37.70 47.10 42.80 46.96 44.80 44.03 45.40 46.36 46.80 48.78
F1 39.40 40.10 60.30 65.40 63.10 65.96 64.30 62.70 65.50 65.13 64.80 66.63

PubMed

ACC 60.10 64.10 63.70 67.50 65.40 69.31 71.30 67.43 68.25 78.27 68.81 78.36
NMI 31.40 28.80 30.80 34.50 31.50 28.14 34.56 30.98 28.56 38.31 32.92 42.55
ARI 28.10 25.80 27.60 31.00 28.50 29.77 36.27 29.56 29.33 45.73 31.60 45.91
F1 59.20 63.40 62.80 67.20 64.90 67.84 70.42 67.27 66.90 77.21 68.46 78.24

Photo

ACC 27.22 27.58 67.66 50.91 66.54 81.71 75.20 77.53 78.00 82.00 79.00 83.10
NMI 13.23 11.53 53.46 43.22 60.11 74.36 59.80 66.68 69.40 73.50 71.60 74.61
ARI 5.50 4.92 42.74 28.62 44.14 68.40 56.10 58.96 60.70 67.10 61.50 70.76
F1 23.96 21.52 60.30 43.71 63.08 73.92 72.90 71.59 71.60 75.20 72.90 78.84

Computer

ACC 22.50 35.60 51.90 41.64 46.90 53.02 58.80 59.73 58.20 58.26 62.00 68.99
NMI 11.00 27.80 53.80 35.06 44.10 32.95 56.00 54.64 54.50 52.03 59.20 59.32
ARI 5.60 24.80 34.30 27.77 30.60 34.43 43.80 41.15 43.00 42.69 46.20 52.05
F1 15.20 22.40 39.00 33.00 41.50 39.45 47.50 50.45 48.00 48.42 57.40 59.01

CS

ACC 56.54 60.71 75.45 66.11 71.67 70.59 72.63 73.77 71.71 84.21 81.99 88.09
NMI 57.88 62.08 74.34 65.32 72.03 61.51 73.60 75.78 74.13 78.22 78.68 83.06
ARI 38.00 48.41 72.12 68.14 70.05 59.99 71.63 64.41 73.09 82.18 78.43 83.56
F1 41.20 58.13 69.66 62.29 65.55 63.32 64.02 68.83 60.22 68.85 74.35 81.48

Physics

ACC 44.07 58.48 87.75 78.56 82.95 84.15 77.06 88.23

OOM

81.94 87.25 93.16
NMI 37.63 54.85 73.23 61.01 69.18 58.40 64.10 74.40 72.55 70.45 79.09
ARI 14.00 41.42 79.60 71.00 75.19 67.52 54.59 81.18 80.46 78.14 86.21
F1 44.43 56.98 83.11 62.68 78.51 77.41 78.16 84.96 80.43 82.25 91.16

5.3 ABLATION STUDY

Table 3: Ablation studies of proposed modules, where
MCAA denotes momentum cluster-aware attention
and CAR denotes cluster-aware regularization. The
bold and underlined scores indicate the best and sec-
ond best results respectively. Vi denotes different ver-
sions of the model. Cluster-aware regularization de-
pends on momentum cluster-aware attention, so in V3,
removing momentum cluster-aware attention also im-
plicitly removes cluster-aware regularization.

Datasets Choices ACC NMI ARI F1

Cora
V1: CTGC 80.58 62.37 63.78 78.37
V2: w/o CAR 79.17 61.29 60.31 76.76
V3: w/o MCAA (& CAR) 78.41 60.08 57.39 76.01

CiteSeer
V1: CTGC 72.56 46.63 48.78 66.63
V2: w/o CAR 71.81 44.80 47.26 65.39
V3: w/o MCAA (& CAR) 71.23 43.80 47.06 64.94

PubMed
V1: CTGC 78.36 42.55 45.91 78.24
V2: w/o CAR 76.37 40.07 43.61 76.52
V3: w/o MCAA (& CAR) 74.12 38.50 42.37 75.89

Photo
V1: CTGC 83.10 74.61 70.76 78.84
V2: w/o CAR 82.20 72.96 69.49 77.52
V3: w/o MCAA (& CAR) 80.29 71.76 67.41 75.26

Computer
V1: CTGC 68.99 59.32 52.05 59.01
V2: w/o CAR 65.58 56.19 48.82 57.05
V3: w/o MCAA (& CAR) 64.69 54.16 45.23 53.90

CS
V1: CTGC 88.09 83.06 83.56 81.48
V2: w/o CAR 84.95 81.29 81.51 79.08
V3: w/o MCAA (& CAR) 82.40 80.18 80.64 74.84

Physics
V1: CTGC 93.16 79.09 86.21 91.16
V2: w/o CAR 92.14 77.14 83.24 90.22
V3: w/o MCAA (& CAR) 88.53 74.42 80.86 87.98

Ablation Experiment of Proposed Mod-
ules. We conduct ablation studies to ex-
plore the efficacy of different components
proposed by CTGC. We set two vari-
ants of the model for comparison and re-
sults are shown in Table 3. In Table 3,
we observe that each improvement of the
model has an impact on the final perfor-
mance. When momentum cluster-aware
attention is removed, the ACC of CTGC
decreases by ∼1.41% on Cora, ∼1.99%
on the PubMed, ∼3.41% on the Amazon-
Computers, ∼3.14% on the Coauthor-CS
and ∼1.02% on the Coauthor-Physics. The
model performance drops drastically after
removing momentum cluster-aware atten-
tion and cluster-aware regularization, for
example, the F1 on Amazon-Computers
and Coauthor-Physics dropped by ∼6.82%
and ∼5.35%, respectively. This phe-
nomenon also strongly verifies our motiva-
tion. As shown in Table 3, after removing
all proposed improvements, that is, in the
V3 version, the performance of the trans-
former still remains superior to most GNN
methods listed in Table 2, which further
emphasizes the effectiveness of the long-
range dependency modeling in graph clus-
tering tasks. The introduction of additional
task-related information during the representation learning stage results in a significant enhancement
in Transformer performance, surpassing the previous state-of-the-art GNN methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Clustering performance of different
cluster embeddings. The bold and underlined
scores indicate the best and second best results.

Datasets Choices ACC NMI ARI F1

Cora

Ours 80.58 62.37 63.78 78.37
Avg 75.89 58.18 55.92 73.65
Max 75.81 57.36 56.82 73.34
Sum 67.50 45.14 42.58 65.26

CiteSeer

Ours 72.29 46.28 48.78 66.38
Avg 71.54 45.20 46.95 65.43
Max 66.85 39.02 39.39 62.62
Sum 66.76 38.75 38.81 60.89

PubMed

Ours 78.36 42.55 45.91 78.24
Avg 69.38 36.44 32.32 69.23
Max 62.96 28.02 25.51 64.10
Sum 65.36 29.46 26.70 66.31

Photo

Ours 83.10 74.61 70.76 78.84
Avg 75.56 66.45 56.64 71.92
Max 76.84 64.81 56.72 74.56
Sum 73.29 59.22 55.72 65.21

Computer

Ours 68.99 59.32 52.05 59.01
Avg 50.77 43.05 37.90 39.15
Max 44.61 38.73 33.13 33.05
Sum 46.85 35.21 34.24 34.36

CS

Ours 88.09 83.06 83.56 81.48
Avg 80.49 79.05 78.68 71.03
Max 82.40 78.66 77.84 73.37
Sum 73.78 73.58 73.61 61.81

Physics

Ours 93.13 79.09 86.21 91.16
Avg 92.82 78.30 85.01 90.84
Max 89.02 71.79 81.10 84.45
Sum 81.37 61.18 68.13 77.49

Comparison of Cluster Embedding Genera-
tion Methods. We also compare our approach
of generating cluster embeddings using momen-
tum cluster-aware attention with three common
and intuitive methods, and the results are shown
in Table 4. Compared to the runner-up, our ap-
proach is ∼4.69% better on Cora, ∼8.98% better
on PubMed, ∼6.26% better on Amazon-Photo,
and ∼5.29% better on Coauthor-CS in terms of
ACC. It is worth noting that on the CiteSeer and
Coauthor-Physics datasets, the improvement of
our method compared with Avg is not as sig-
nificant as on other datasets. This is because
in these two data sets, there are relatively few
dependencies between different clusters, which
is also reflected in the subsequent visualization
of attention weights in Figure 4. As can be
seen from Table 4, Sum performs poorly in most
cases, which is consistent with our intuition that
different clusters are likely to show similar re-
sults when summing the nodes within the clus-
ter. Avg performs better than Max in most cases,
probably because most of the nodes within the
cluster are similar, so in this case Max’s dis-
tinguishing ability is inferior than Avg. Com-
pared with Avg, Max and Sum, our momentum
cluster-aware attention only requires some addi-
tional cluster-related queries, which is also sim-
ple and plug-and-play.

CiteSeer-V1 CiteSeer-V2 CiteSeer-V3

PubMed-V1 PubMed-V2 PubMed-V3

Physics-V1 Physics-V2 Physics-V3

Figure 4: Attention visualization on the CiteSeer,
PubMed and Coauthor-Physics datasets. Results
of the remaining graph datasets can be found in
Appendix A.3. The color shade represents the
different attention weight values. The darker the
color, the greater the value. The clearly visible
squares on the diagonal correspond to the clus-
tering assignments generated by ours CTGC.

Attention Weight Visualization. We further se-
lecte three commonly used graph datasets (Cite-
Seer, PubMed and Coauthor-Physics) to visual-
ize the attention weight between nodes for anal-
ysis. The visualization results are shown in Fig-
ure 5.3 and the the visualization results of the
remaining graph datasets can be found in Ap-
pendix A.3. Comparing V1 with V2, we observe
that the removal of cluster-aware regularization
increases the inter-cluster dependencies in the
lower right corner of the diagonal across all three
datasets. This phenomenon also manifests be-
tween the first and second clusters in the upper
left corner of the Coauthor-Physics dataset. This
supports our claim and motivation that cluster-
aware regularization effectively reduces overlap
between different clusters. Further, when mo-
mentum cluster-aware attention is removed, as
seen in the comparison between V1 and V3, the
clusters at both ends of the diagonal become
largely indistinguishable, underscoring the im-
portance of our proposed modules. Compar-
ing V2 with V3, we observe that after removing
the momentum cluster-aware attention, the two
clusters in the lower right corner of the diagonal
of version V3 become more similar, indicating
that in the absence of momentum cluster-aware
attention, the model’s ability to distinguish clus-
ters is significantly weakened.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 CASE STUDY

CiteSeer-Unmasked PubMed-Unmasked Physics-Unmasked

CiteSeer-Masked PubMed-Masked Physics-Masked

Figure 5: Visualization of Masked and Unmasked At-
tention Weights on the CiteSeer, PubMed and Coauthor-
Physics datasets. “Unmasked” and “Masked” represent
whether the attention weights for nodes with a shortest
path length greater than 3 are reset to 0, aimed at evalu-
ating the effectiveness of modeling long-range dependen-
cies. The color shade represents the different attention
weight values. The darker the color, the greater the value.
The clearly visible squares on the diagonal correspond to
the clustering assignments generated by ours CTGC.

Visualization of Masked and Un-
masked Attention Weights. To
highlight the impact of long-distance
dependencies captured by the trans-
former, we performed case studies on
the CiteSeer, PubMed, and Coauthor-
Physics datasets. Specifically, we re-
set the attention weights between nodes
within the same cluster with a short-
est path length greater than 3 to 0
(Masked) and compared these with the
original attention weights (Unmasked).
The results are presented in Figure 5.3.
Comparing the Masked and Unmasked
versions, it is evident that the cluster
separation becomes less distinct after
resetting the attention weights to 0, re-
sulting in more blurred cluster bound-
aries. Additionally, in the Masked ver-
sion, the influence between different
clusters is amplified compared to the
Unmasked version. This occurs be-
cause, in the Unmasked version, intra-
cluster attention is reinforced, enhanc-
ing the cohesion within each cluster.
When this reinforcement is removed,
the corresponding attention weights are
reduced, diminishing the differences
between clusters and making them harder to distinguish. This fully demonstrates the benefits and
importance of capturing long-range dependencies in clustering tasks.

5.5 SENSITIVITY ANALYSIS

We conduct extensive experiments to examine the sensitivity of hyperparameters of different com-
ponents in CTGC. There are two main hyperparameters, the cluster-aware attention weight λ and
the cluster-aware regularization weight α.

Sensitivity Analysis of The Momentum Cluster-Aware Attention Weight λ. We measure differ-
ent results for λ ranging from 0 and 0.9. Figure 6 shows our results. As can be seen, best results
are obtained when λ is about 0.1 or 0.2. We believe that the momentum cluster-aware attention is a
kind of task-related global information, so the λ cannot be too large, otherwise the embedding will
become a representation of the cluster rather than the node, which is not suitable for clustering.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

60

65

70

75

80

85

90

ACC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
30

40

50

60

70

80
NMI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

40

50

60

70

80

ARI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90 F1

Cora CiteSeer PubMed Photo Computer CS Physics

Figure 6: Sensitivity analysis of the momentum cluster-aware attention weight λ.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Sensitivity Analysis of The Cluster-Aware Regularization Weight α. We measure different re-
sults for α ranging from 0 and 0.9. Figure 7 shows our results. As can be seen, best results are
obtained when α is about 0.1 or 0.2. We think that the cases where nodes are indistinguishable
between multiple clusters are only a small fraction of the total, so adding some constraints will have
positive benefits, but when α is too large, it will make the model ignore learning node embeddings.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

55

60

65

70

75

80

85

90

95
ACC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
30

40

50

60

70

80
NMI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
30

40

50

60

70

80

ARI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90 F1

Cora CiteSeer PubMed Photo Computer CS Physics

Figure 7: Sensitivity analysis of the cluster-aware regularization weight α.

6 CONCLUSION

In this paper, we fully explore transformer for graph clustering. Mainstream clustering methods
are built with GNNs, thus inevitably suffer from the difficulty in effectively long-range dependen-
cies capturing. To address this, we introduce transformer to graph clustering in light of its ability
of modeling long-range dependencies. Moreover, the prevailing two-stage clustering scheme, con-
sisting of representation learning and nodes clustering, limits the graph encoder’s capacity to fully
utilize task-specific information, leading to suboptimal embeddings. Thus we propose momentum
cluster-aware attention and cluster-aware regularization. Momentum cluster-aware attention utilizes
previous clustering results to generate cluster indices for each node, produce embeddings based on
cluster-related queries, and assign cluster-aware embeddings accordingly. Cluster-aware regulariza-
tion minimizes the overlap between clusters while maximizing cluster completeness, ensuring that
cluster information is correctly propagated to neighboring nodes. Extensive experiments on seven
real-world graph datasets demonstrate the effectiveness of our method, which achieves state-of-the-
art results compared to eleven strong baselines.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In ICLR, 2021.

Aritra Bhowmick, Mert Kosan, Zexi Huang, Ambuj Singh, and Sourav Medya. Dgcluster: A neural
framework for attributed graph clustering via modularity maximization. In AAAI, 2024.

D Blondel Vincent, Guillaume Jean-Loup, Lambiotte Renaud, and Lefebvre Etienne. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In WWW, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI, 2020a.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer
for node classification in large graphs. In ICLR, 2023.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. HittER:
Hierarchical transformers for knowledge graph embeddings. In EMNLP, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. Learning steady-states of itera-
tive algorithms over graphs. In ICML, 2018.

Fnu Devvrit, Aditya Sinha, Inderjit Dhillon, and Prateek Jain. S3gc: Scalable self-supervised graph
clustering. In NeurIPS, 2022.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In ICML, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer:
Graph transformer with graph pooling for node classification. In IJCAI, 2023a.

Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, and Stan Z. Li. Dink-net:
neural clustering on large graphs. In ICML, 2023b.

Yunfei Liu, Jintang Li, Yuehe Chen, Ruofan Wu, Baokun Wang, Jing Zhou, Sheng Tian, Shuheng
Shen, Xing Fu, Changhua Meng, Weiqiang Wang, and Liang Chen. Revisiting modularity maxi-
mization for graph clustering: A contrastive learning perspective. In KDD, 2024.

Yixuan Ma and Kun Zhan. Self-contrastive graph diffusion network. In ACM MM, 2023.

James MacQueen et al. Some methods for classification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-attention
networks. In WWW, 2022.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In KDD, 2014.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. In NeurIPS, 2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In NeurIPS, 2020.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2000.

Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang. Lpformer: An adaptive
graph transformer for link prediction. In KDD, 2024.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Remi Munos, Petar Veličković,
and Michal Valko. Bootstrapped representation learning on graphs. In ICLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In CIKM, 2017.

Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Attributed graph
clustering: a deep attentional embedding approach. In IJCAI, 2019.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1997.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In NeurIPS, 2022.

Dongkuan Xu, Junjie Liang, Wei Cheng, Hua Wei, Haifeng Chen, and Xiang Zhang. Transformer-
style relational reasoning with dynamic memory updating for temporal network modeling. In
AAAI, 2021.

Xihong Yang, Yue Liu, Sihang Zhou, Siwei Wang, Wenxuan Tu, Qun Zheng, Xinwang Liu, Liming
Fang, and En Zhu. Cluster-guided contrastive graph clustering network. In AAAI, 2023.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS, 2021.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and
Yanfang Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint
arXiv:2110.13094, 2021.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. In ICML, 2020.

A APPENDIX

A.1 MORE RELATED WORK

Graph Clustering. Traditional clustering methods usually involve solving optimization prob-
lems or using some heuristic, non-parametric methods, such as KMeans (MacQueen et al., 1967),
spectral clustering (Shi & Malik, 2000) and Louvain (Blondel Vincent et al., 2008). With the
rise of deep learning, random walk-based methods such as DeepWalk (Perozzi et al., 2014) and
Node2vec (Grover & Leskovec, 2016) have also been introduced for addressing clustering tasks.
However, these methods usually only utilize features or structure, which limits their performance.

Thanks to the powerful expressiveness of GNNs, there have been many attempts to use GNNs for
graph clustering. MGAE (Wang et al., 2017) applies autoencoders to graph learning and then pro-
poses a marginalized GNN. DAEGC (Wang et al., 2019) proposes a unified goal-oriented frame-
work to jointly optimize autoencoder embedding and clustering learning. SDCN (Bo et al., 2020)
first constructs K-Nearest Neighbor graphs, which are then combined with the raw data and fed into
the model. With the designed delivery operator, SDCN can effectively integrate structure-aware and
autoencoder-specific representation.

In the past few years, contrastive learning has become a hotspot in graph clustering such as
GRACE (Zhu et al., 2020), MVGRL (Hassani & Khasahmadi, 2020), BRGL (Thakoor et al., 2021),
Dink-Net (Liu et al., 2023b), S3GC (Devvrit et al., 2022), CCGC (Yang et al., 2023), SCGDN (Ma
& Zhan, 2023), DGCLUSTER (Bhowmick et al., 2024) and MAGI (Liu et al., 2024). GRACE max-
imizes the agreement of node representations between two corrupted views of a graph. S3GC uses a
single GNN layer with the normalized adjacency and diffusion matrices, which can consider high-
order neighborhood information. BGRL eliminates the need for negative sampling by minimizing
an invariance-based loss for augmented graphs within a batch. MVGRL, Dink-Net and MAGI have
already been stated clearly in the main text, so there is no repeation.

Transformer in Graph. Transformer (Vaswani et al., 2017) has achieved remarkable success in
many fields such as computer vision and speech recognition. Recently, transformers emerge as an
alternative technique for graph learning. So far, a great variety of transformers have been proposed
to adapt to different levels of graph structured data.

For node-level tasks, Graphormer (Ying et al., 2021) proposes three structural encodings to em-
bed graph structure information. Gophormer (Zhao et al., 2021) samples ego-graphs and converts
them into sequences as input to alleviate scalability issues. NodeFormer (Wu et al., 2022) designs a
kernelized Gumbel-Softmax operator to reduce the algorithm complexity w.r.t node numbers. NAG-
phormer (Chen et al., 2023) proposes a novel neighborhood aggregation module to adaptively learn
neighborhoods with different hops. Gapformer (Liu et al., 2023a) proposes to combine the attention
mechanism with graph coarsening and only use pooled nodes to calculate attention.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

For edge-level tasks, TRRN (Xu et al., 2021) proposes a relational reasoning network with dynamic
memory based on the policy network enhanced by differentiable binary routers. HittER (Chen
et al., 2021) proposes a hierarchical transformer model to jointly learn entity-relation combination
and relation contextualization. LPFormer (Shomer et al., 2024) uses the attention mechanism to
model all possible link factors and adaptively learns pairwise encodings between nodes by modeling
multiple factors of the link prediction integral.

For graph-level tasks, GROVER (Rong et al., 2020) adopts a dynamic message passing strategy and
randomly selects propagation hops at each layer. GraphGPS (Rampášek et al., 2022) proposes a
linear modular framework by decoupling the local real edge aggregation and the transformer. UG-
former (Nguyen et al., 2022) samples different neighbors in each batch and minimizes the sampled
softmax loss, allowing the model to identify and distinguish structural differences. To our best
knowledge, there are still none for graph clustering and we decide to make some attempts.

A.2 NOTATION AND DETAILED EXPERIMENTAL SETTINGS

Notations. As an expansion of Section 5.1, we summarize the frequently used notations in Table 5.
Table 5: The most frequently used notations in this paper.

Notation Meaning
G Attribute Graph
K Attention Heads Number
L Model Depth
d Latent Feature Dimension Number
N Nodes Number

{C1, ..., } Cluster Assignment Matrices
|C| Cluster Number

A ∈ Rn×n Adjacency Matrix
X ∈ Rn×d Attribute Matrix

QC Cluster-Related Query
WQ,WK ,WV ∈ Rd×dK Attention Matrix (Query/Key/Value)

CA Cluster-Aware Attention Map
I(·) A Cluster Embedding Assignment Function
fC(·) Traditional Clustering Methods (i.e., KMeans)
δ The Dropping Rate
λ The Momentum Cluster-Aware Attention Weight
α The Cluster-Aware Regularization Weight
z A Node Embedding

Detailed Experimental Settings. The software framework includes Python 3.8.12, Pytorch 2.1.0,
CUDA 12.1 and Pytorch-Geometric 2.5.3. The hardware includes Intel(R) Xeon(R) Silver 4214R
CPU, 128GB RAM and NVIDIA A100 GPU. Table 6 summarizes the hyper-parameter settings of
our proposed method. Here, L is the number of attention blocks, K is the number of attention heads,
d is dimension of latent features, δ is dropping rate used in Dropout, λ is the momentum cluster-
aware attention weight, α is the cluster-aware regularization weight, lr, wd and T are the learning
rate, the weight decay and total epochs during training, respectively.

Table 6: Hyper-parameter values.
L K d δ λ α lr wd T

Cora 2 4 128 0.2 0.2 0.1 5e-4 6e-6 1500
CiteSeer 2 6 256 0.2 0.1 0.2 5e-4 6e-6 1000
PubMed 2 4 128 0.2 0.2 0.2 5e-4 6e-6 1000

Amazon-Photo 2 4 128 0.2 0.1 0.1 5e-4 6e-6 1000
Amazon-Computers 2 4 128 0.2 0.2 0.2 5e-4 5e-4 1500

Coauthor-CS 2 4 128 0.3 0.2 0.1 9e-4 5e-4 1500
Coauthor-Physics 2 4 64 0.2 0.2 0.1 6e-4 5e-4 1500

A.3 MORE VISUALIZATION ANALYSES

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Cora-V1 Cora-V2 Cora-V3

Photo-V1 Photo-V2 Photo-V3

Computer-V1 Computer-V2 Computer-V3

CS-V1 CS-V2 CS-V3

Figure 8: Attention visualization on the Cora,
Amazon-Photo, Amazon-Computers and Coauthor-
CS datasets. The color shade represents the different
attention weight values. The darker the color, the
greater the value.

Figure 8 presents the visualization results
of momentum attention weights between
nodes for the remaining graph datasets
(Cora, Amazon-Photo, Amazon-Computers,
and Coauthor-CS). Compared with version
V1 and version V2, the color of the lines out-
side the diagonal squares has become lighter,
which means that the dependence between
different clusters has been reduced. When
comparing version V1 with version V3, sig-
nificant overlaps are observed among clusters
in version V3, with clusters at both ends of
the diagonal becoming similar and indistin-
guishable. This strongly demonstrates the ef-
fectiveness of our proposed modules. Com-
pared with version V2, version V3 further re-
moves momentum cluster-aware attention, so
a lot of clustering information is lost and only
a few easily distinguishable clusters can be
solved. The visualization for the Coauthor-
Physics dataset presents a more complex case
due to the relatively large number of clusters.
When comparing versions V1, V2, and V3 on
the diagonal, we find that the corresponding
color shade satisfies V1 > V2 > V3. This
indicates that by enhancing task information,
the model can enhance its focus on individual
clusters. When examining the color inten-
sity between clusters across versions V1, V2,
and V3, we find that the corresponding color
shade satisfies V1 < V2 < V3. This shows
that introducing task-related constraints ef-
fectively reduces the dependence between different clusters.

14

