
DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Xuanlei Zhao 1 Shenggan Cheng 1 Chang Chen 1 Zangwei Zheng 1 Ziming Liu 1 Zheming Yang 1 Yang You 1

Abstract
Scaling multi-dimensional transformers to long
sequences is important across various domains.
The challenges of large memory requirements
and slow speed of such sequences require se-
quence parallelism. All existing approaches fall
under the category of embedded sequence paral-
lelism, which are limited to shard along a single
sequence dimension, thereby introducing signif-
icant communication overhead. However, multi-
dimensional transformers involve independent cal-
culation across multiple sequence dimensions. To
this end, we propose Dynamic Sequence Paral-
lelism (DSP) as a novel abstraction of sequence
parallelism. DSP dynamically switches the paral-
lel dimension according to the computation stage
with efficient resharding strategy. DSP offers
significant reductions in communication costs,
adaptability across modules, and ease of use with
minimal constraints. Experiments demonstrate
DSP’s superiority over state-of-the-art sequence
parallelism methods by remarkable throughput
improvements ranging from 32.2% to 10×, with
at least 50% communication volume reduction.

1. Introduction
Efficiently scaling multi-dimensional transformers to accom-
modate long sequences is necessary across diverse domains,
including video generation (Singer et al., 2022; Blattmann
et al., 2023; Ma et al., 2024), image generation (Ramesh
et al., 2021; Rombach et al., 2022; Liu et al., 2024), protein
structure prediction (Jumper et al., 2021), spatial-temporal
information processing (Cong et al., 2021), and beyond. The
long length of sequences introduces substantial activation
memory costs and notable slowdown for speed, underscor-
ing the need for employing parallelism.

Apart from data parallel and pipeline parallel (Huang et al.,
2019) which cannot reduce memory cost and inference time,

1National University of Singapore. Correspondence to: Yang
You <youy@comp.nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

sequence parallel is the only option. Current sequence par-
allelism, such as Megatron-LM (Shoeybi et al., 2019), Ring-
Attention (Li et al., 2021; Liu et al., 2023a), Megatron-SP
(Korthikanti et al., 2022), and DeepSpeed-Ulysses (Jacobs
et al., 2023) are all embedded sequence parallelism meth-
ods. As shown in Figure 1, these embedded methods shard
along a single sequence dimension, which are tailored to
the specific pattern and introduce extra communication and
complex code modification.

However, multi-dimensional transformers calculate indepen-
dently across multiple sequence dimensions. For instance,
for video generation models like OpenSora (Zangwei Zheng,
2024) and Latte (Ma et al., 2024), Spatial-Temporal Atten-
tion (Yan et al., 2021) is adopted which separates attention
computations to independent temporal and spatial compu-
tation. Therefore, there exists a potential space for a new
sequence parallelism paradigm.

To adapt to the flexible patterns of multi-dimensional trans-
formers, we introduce Dynamic Sequence Parallelism (DSP)
as a novel abstraction of sequence parallelism, featured by
its elegant design, high effectiveness, and excellent com-
patibility. Unlike embedded sequence parallelism, DSP
dynamically switches the parallel dimension of sequences
during the computation stage with an efficient resharding
strategy, completely decoupled from the modules’ logic.

DSP offers several advantages over embedded sequence
parallelism: 1) Efficient communication: DSP incurs signifi-
cantly lower communication costs due to its simplified com-
munication patterns and reduced frequency of exchanges. 2)
Adaptability: DSP seamlessly adapts to most modules with-
out necessitating specific modifications and imposes few
limitations on its usage. 3) Ease of use: DSP is remarkably
easy to implement, and also provides a simple API for users
to enable it effortlessly.

Our experiments yield promising results, showcasing DSP’s
superiority over state-of-the-art embedded sequence par-
allelism methods. It achieves an end-to-end throughput
improvement ranging from 32.2% to 10× and reduces com-
munication volume by at least 75%.

We summarize our contributions as follows:

• We introduce DSP as a novel abstraction of se-
quence parallelism aimed at effectively scaling multi-

1

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Embedded Sequence Parallelism Dynamic Sequence Parallelism

ModuleGPU1

GPU2 Module

Module

Module

ModuleGPU1

GPU2 Module

Module

Module

Comm ReshardComm ReshardReshardReshard ReshardReshardReshard Reshard

Figure 1. Comparison of Embedded and Dynamic Sequence Parallelism. Reshard means the communication to change sequence
parallel layout. The blue arrow represents communication. The number and width of the arrows indicate the volume and frequency of
communication, respectively.

dimensional transformers. DSP dynamically switches
the parallel dimension of sequences during the com-
putation stage, offering high effectiveness, elegant for-
malism, and excellent compatibility.

• By significantly reducing communication volume and
frequency, DSP improves end-to-end throughput by
32.2% to 10× and reduces communication volume by
at least 50% compared to state-of-the-art methods.

• DSP seamlessly integrates with various modifications
without requiring specific modifications and imposes
few limitations. Its ease of use is highlighted by the
minimal code changes needed to incorporate it into
existing frameworks with our high-level API.

2. Related Work

Table 1. Meanings of the symbols that are used in this paper.

B The number of batch sizes.
C The size of hidden states.
M The volume of a sequence tensor.
N The number of GPUs.
n The n-th GPU.
X The a multi-dimensional sequence.
Xp,n The partition of X assigned to GPU n.
Si The i-th sequence dimension.
si The status that sequence is sharded from

dimension Si.
ŝ The status that sequence is not sharded.

2.1. Background

Transformer Architecture. Transformer (Vaswani et al.,
2017) is a type of neural network architecture that has be-
come highly influential in natural language processing (De-
vlin et al., 2018; Brown et al., 2020; Reid et al., 2024) and
other domains (Dosovitskiy et al., 2020; Jumper et al., 2021;

Peebles & Xie, 2022). The Transformer is composed of a
stack of layers, each consisting of a multi-head attention
(MHA) and a position-wise feed-forward network (FFN).
Specifically, the MHA comprises H independently parame-
terized attention heads, formulated as:

MHA(x) = Concat(head1, . . . ,headH)WO, (1)

headi = Att(Qi,Ki,Vi). (2)

Att(Q,K,V) = softmax

(
QK⊤
√
dk

)
V, (3)

xMHA = LayerNorm(x+MHA(x)). (4)

where Att(·) denotes the scaled dot-product attention,
Q,K,V are query, key, value projections, and LayerNorm
is the layer normalization. The output xMHA is fed into the
FFN, which consists of two linear transformations with a
ReLU activation in between, computed as:

FFN(x) = max(0, xW1 + b1)W2 + b2, (5)

xout = LayerNorm(xMHA + FFN(xMHA)), (6)

where W1,W2,b1,b2 are the parameters of the FFN.

Multi-Dimensional Transformer. Multi-dimensional
transformers (Ho et al., 2019; Yang et al., 2022) extend
the self-attention mechanism of standard transformers to
operate over multiple dimensions beyond just one se-
quence. An example of 2D-Transformer is shown in Fig-
ure 2. Let the input multi-dimensional sequence be de-
noted as X ∈ R[B,S1,S2,...,SK ,C], where B is the batch size,
S1, S2, . . . , SK are the sequence lengths along K differ-
ent sequence dimensions, and C is the hidden size. Multi-
dimensional transformer can be formatted as:

Xreshape = Reshape(X, [B ×
∏
j ̸=i

Sj , Si, C]). (7)

The transformer block operation is then applied along the
i-th sequence dimension of Xreshape.

Xout = transformer block(Xreshape). (8)

2

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

S1

S2 B

[B, S1, S2, C]

Reshape

[BxS1, S2, C]

Transformer along S2
Reshape

[BxS2, S1, C]

Transformer along S1 ...S2

BxS1

S1

BxS2

Figure 2. Illustration of multi-dimensional (2D for this example) transformer. It calculates each dimension of sequence independently at
the corresponding stage. After the calculation is done in one dimension, it will switch to another dimension in next stage.

After applying the transformer block operation along all N
dimensions, the final output tensor Xout has the same shape
as the input tensor X. Multi-dimensional Transformer is
widely used for applications with multi-dimensional inputs
including video data (Xu et al., 2020; He et al., 2021; Geng
et al., 2022; Ma et al., 2024), 3D data (Zheng et al., 2021;
Chen et al., 2023), protein structure prediction (Jumper et al.,
2021; Mirdita et al., 2022), time-series data (Pan et al., 2022;
Huang et al., 2022; Deihim et al., 2023) and beyond.

2.2. Related Work

In this section, we discuss the four main parallelism tech-
niques employed in deep learning: data parallelism, tensor
parallelism, pipeline parallelism, and sequence parallelism.

Data parallelism (Hillis & Steele Jr, 1986; Li et al., 2020) is
one of the most widely adopted parallelism techniques. The
input data is partitioned across devices, each processing a
subset. Model parameters are replicated, and gradients are
summed. ZeRO (Rajbhandari et al., 2019; 2021) optimizes
memory by partitioning parameters, states, and gradients
across devices, enabling the training of larger models. Ten-
sor parallelism (Shazeer et al., 2018; Shoeybi et al., 2019),
or model parallelism, partitions model parameters across
devices. Different model parts are assigned to different de-
vices. Pipeline parallelism (Huang et al., 2019; Narayanan
et al., 2019; Li & Hoefler, 2021; Liu et al., 2023b) partitions
the model into stages executed in parallel across devices.
Activations are passed between devices in a pipeline style.

Unlike parameter parallelism discussed earlier, sequence
parallelism is a technique specifically designed for distribut-
ing long sequences and activation across multiple devices.
Here are three main methods of sequence parallelism:

Ring Attention. Li et al. (2021) employs an innovative ap-
proach to partitioning the sequence dimension using a ring-
style peer-to-peer (P2P) communication pattern to transfer
keys and values across GPUs. (Liu et al., 2023a) enhance it
with an online softmax mechanism, allowing for the compu-
tation of attention scores without retaining the full sequence
length. However, Ring Attention’s reliance on P2P commu-
nication can be less efficient in high-latency environments.

Megatron-LM. Shoeybi et al. (2019) introduces tensor
tensor parallelism by partitioning model across devices.
The method splits both feed-forward networks and self-

attention layers along their hidden dimension, with neces-
sary all-reduce operations. This approach enables efficient
distributed training while reducing memory and communica-
tion overhead compared to data parallelism. It also reduces
the tensor size on each devices.

Megatron-SP. Korthikanti et al. (2022) further optimizes
activation usage in the attention based on tensor parallelism.
To transit between tensor parallelism and sequence paral-
lelism in the transformer block, additional all-gather and
reduce-scatter operations are introduced. But it’s limited by
the number of attention heads, as self-attention relies on the
parallelism of the head dimension of the sequence.

DeepSpeed-Ulysses. Jacobs et al. (2023) introduces an in-
novative approach for training long sequences by utilizing
all-to-all collective communication. This method partitions
the query, key, and value matrices across attention heads
while preserving the original attention computation struc-
ture. The process is facilitated by two sets of all-to-all
communications that alternate between sequence splitting
and attention head splitting. Nevertheless, it is constrained
by the number of attention heads as well.

Moreover, these sequence parallelism methods are designed
for parallelism within a single sequence dimension. For
multi-dimensional transformers, this strategy becomes in-
efficient due to unnecessary communication. While spe-
cialized parallelism for multi-dimensional sequences has
been explored in specific domains (Cheng et al., 2024), their
applicability remains limited.

3. Dynamic Sequence Parallel
3.1. Problem Definition

In sequence parallelism, the objective is to distribute ac-
tivation computations across multiple GPUs to reduce the
memory overhead caused by long sequences. This approach,
however, incurs additional communication costs between
GPUs. Our goal is to optimize this trade-off in the context
of multi-dimensional transformers.

Given a sequence X ∈ R[B,S1,S2,...,SK ,C] and a set of N
GPUs, where S1, . . . , SK are the sequence along K differ-
ent sequence dimensions, we aim to partition the computa-
tion such that the memory usage per GPU is under capacity
while maintaining acceptable communication costs. Let

3

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Table 2. Definition of Dynamic Primitives for DSP. si denotes the sequence sharded from dimension i, while ŝ indicates the sequence is
not sharded. M represents the sequence size, and N signifies the sequence parallel size.

Source Target Primitives Comm Comm FreqShard Shard Operation Volume

si si / / / /
si sj Switch all-to-all M/N High
ŝ si Split / 0 Low
si ŝ Gather all-gather M Low

all-to-all

Dynamic Switch Computation
Dimension

[S1/N, S2, S3]

S1

S2 S3

[S1, S2, S3/N]

Figure 3. Illustration of dynamic switch. Through all-to-all communication, the computation sequence is

Xp,n denote the partition of X assigned to GPU n, where p
represents the partition strategy. It can be formulated as:

min
p

N∑
n=1

CommCost(Xp,n),

s.t. Memory(Xp,n) < Capacity. (9)

where Memory(Xp, n) denotes the memory usage of par-
tition Xp,n on GPU n, CommCost(Xp,n) represents the
communication cost. We aim to achieve a balance that mini-
mizes the overall computational overhead while optimizing
GPU resource utilization.

3.2. Dynamic Primitives

The key dynamic primitives of DSP are outlined in Table
2. These three primitives form the foundation for adapting
DSP to various multi-dimensional transformers.

The first condition is that when there is no need to alter
sequence parallelism between computation stages, we main-
tain the shard status of the sequence. This approach sig-
nificantly reduces unnecessary communication overhead.
However, when it becomes necessary to transit parallelism
between dimensions, we employ dynamic switch to effi-
ciently transform parallelism. Specifically, as depicted in
Figure 3, dynamic switching adjusts the parallelism to a
dimension unrelated to the ongoing computation, utilizing
highly efficient all-to-all operations.

Assume X ∈ R[B,S1,...,Si/N,...,Sj ,...,SK ,C] represents the
input. The current parallel dimension is i so its sequence
length is Si/N on each device, where N is sequence parallel
size. If we want to switch the shard dimension from i to j,

the operation can be formulated as follows:

Y = DynamicSwitch(X, i, j), (10)

where Y has the shape R[B,S1,...,Si,...,Sj/N,...,SK ,C]. Fur-
thermore, Split and Gather operations facilitate smooth tran-
sitions between sharded and non-sharded states. Although
these operations may involve increased communication com-
pared to Switch operations, they are primarily utilized at the
onset and conclusion of most networks, and also for some
global operations in very rare conditions, rendering their
costs negligible.

3.3. Overview

In the realm of multi-dimensional transformers, computa-
tion occurs independently for each sequence dimension.
To harness this inherent feature, we introduce Dynamic
Sequence Parallelism (DSP), an efficient, adaptive and ease-
of-use method for multi-dimensional transformers.

To ensure correct computation logic with sequence paral-
lelism, embedded methods typically require complex and
time-consuming communications within computation mod-
ules to change the parallel dimension. As illustrated in
Figure 4, the key feature of DSP is its dynamic switch of
parallel dimension between computation stages.

By resharding only between computation stages dynami-
cally, rather than within them, this approach allows DSP
to remain independent of the computation logic within the
module. Therefore, DSP eliminates numerous unnecessary
communications within modules, and is able to utilize effi-
cient all-to-all operations to switch parallelism dimensions
for the intermediate sequence. For operations involving all

4

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

S1 Dynamic
Switch

shard S2->S3

S2 S3

[S1, S2/N, S3][S1, S2, S3] [S1, S2, S3/N]
Inputs

Split

Computation Stage2

along S2

sequence-wise along S1&S2

along S1

Gather

outputs
[S1, S2, S3]

Computation Stage1

along S3

sequence-wise along S1&S3

along S1

S1 Dynamic
Switch

shard S2->S3

S2 S3

[S1, S2/N, S3][S1, S2, S3] [S1, S2, S3/N]
Inputs

Split Gather

outputs
[S1, S2, S3]

Computation Stage1

along S3

sequence-wise along S1&S3

along S1

all-gatherall-to-all

along S2

sequence-wise along S1&S2

along S1

Computation Stage2

Comm Volume
S1xS2xS3/[N2/(N-1)]

GPU1

GPU2

Figure 4. System overview of Dynamic Sequence Parallelism. It utilizes Split and Gather at the beginning and the end of model to
separate and collect the complete sequences. In the middle computation, it utilizes Dynamic Switch to change the sharding dimension with
efficient all-to-all communication. So that the following computation will not be affected by sharding.

sequence dimensions, including the beginning and end of
the model, DSP handles them by Split and Gather operation.

Furthermore, we also propose a high-level, user-friendly im-
plementation of DSP compatible with all distributed frame-
works based on PyTorch.

3.4. Adaptability and Flexibility

Given its decoupling from the computation of modules, DSP
exhibits remarkable adaptability, making it compatible with
a wide array of transformer variants such as Cross Attention
(Hertz et al., 2022; Ma et al., 2024); specialized kernels like
FlashAttention (Dao et al., 2022); special attention mecha-
nisms including multi-query attention (Shazeer, 2019) and
grouped-query attention (Ainslie et al., 2023); and even
beyond like Mamba (Gu & Dao, 2023) and RWKV (Peng
et al., 2023). This inherent flexibility enables DSP to seam-
lessly integrate into diverse transformers without specific
modification. Furthermore, while DeepSpeed-Ulysses and
Megatron-SP necessitate attention head splitting, DSP’s scal-
ability is significantly better because it shards on sequence
length, which is more redundant.

Moreover, DSP’s adaptability extends beyond module com-
patibility to encompass various parallelism methodologies.
From conventional data parallelism to more sophisticated
approaches like ZeRO and pipeline parallelism, DSP effort-
lessly integrates with diverse parallel computing paradigms,
thereby enhancing scalability and performance across dis-
tributed computing environments.

By calling just four functions without knowing the detailed
implementation, DSP can be enabled on PyTorch and is

compatible with various distributed frameworks, includ-
ing FSDP (Zhao et al., 2023), Accelerate (Gugger et al.,
2022), DeepSpeed (Rasley et al., 2020), and Megatron-LM
(Shoeybi et al., 2019).

4. Theoretical Analysis
We choose 2D-Transformer as described in Equation 8
as our base model, which is widely employed in real-
world applications. To be specific, we use the Open-
Sora (Zangwei Zheng, 2024) variant of 2D-Transformer,
an open-source video generation model, where there are
two transformer blocks for two sequence dimensions sep-
arately. More details can be found in Appendix A.1. We
choose state-of-the-art sequence parallel methods including
DeepSpeed-Ulysses (Jacobs et al., 2023), Megatron-SP (Ko-
rthikanti et al., 2022), Megatron-LM (Shoeybi et al., 2019)
and RingAttention (Liu et al., 2023a) as baselines.

4.1. Communication Analysis

The primary advantage of DSP lies in its ability to minimize
communication costs and enable scalable communication
operations. DSP exploits the inherent characteristics of
multi-dimensional transformers to eliminate unnecessary
communication, compared with embedded approaches such
as Megatron-LM (Shoeybi et al., 2019), Megatron-SP (Kor-
thikanti et al., 2022), RingAttention (Liu et al., 2023a) and
DeepSpeed-Ulysses (Jacobs et al., 2023). Consider an ac-
tivation size of M and a sequence parallel size of N . In
a 2D-Transformer, there is one transformer block for each
sequence dimension per layer, resulting in two transformer

5

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Table 3. Comparison of DSP with other sequence parallelism methods for 2D-Transformer architectures. M denotes the activation size,
and N represents the number of devices. Communication volume refers to the per-layer (two 1D blocks) volume per device.

Method Communication Activation Parameter Ease
Volume Memory Memory of Use

Ring Attention 2M
Megatron-LM 8M
Megatron-SP 8M
DeepSpeed-Ulysses 4M/N
DSP (ours) 2M/N

blocks per layer (two 1D blocks). More details are demon-
strated in Appendix A.3.

Megatron-LM & Megaton-SP both need to gather and
scatter the whole sequence. Megatron-LM utilizes 2 all-
reduce per block for attention and mlp, while Megatron-
SP employs 2 all-gather and 2 reduce-scatter operations
per block. They lead to a total per-device communication
volume of 8M for both methods.

Ring-Attention needs to communicate the entire key and
value in the temporal block only, resulting in a total per-
device communication volume of 2M .

DeepSpeed-Ulysses incurs 4 all-to-all in temporal block for
the query, key, value, and output of attention, resulting in a
total per-device communication volume of 4M/N .

DSP mitigates communication cost by employing only
two all-to-all operations in total two blocks per layer. As
shown in Table 4.1, it reduces the communication volume
to 2M/N , significantly outperforming other sequence par-
allelism techniques. Notably, with merely two all-to-all
operations, DSP exhibits efficient scalability even in super-
large clusters for training and inference on extremely long
sequences because the communication volume decreases
as the number of nodes increases, rendering DSP an excep-
tional choice for large-scale distributed training and infer-
ence tasks involving extreme long sequences.

4.2. Memory Analysis

Regarding activation memory, since we shard every tensor
in the transformer, we are theoretically able to achieve the
minimum activation cost, similar to DeepSpeed-Ulysses and
Ring Attention. In practice, however, our approach requires
less reshape and communication overhead, allowing us to
further reduce intermediate activation memory compared
to other methods. Megatron-SP and Megatron-LM, on the
other hand, needs to hold some entire sequences, resulting
in higher memory requirements.

As for parameter memory, as discussed in Section 3.4, we
utilize the ZeRO technique (Rajbhandari et al., 2019) to

shard all parameters across different devices to ensure low
parameter memory footprint.

5. Experiments
Experiments are conducted on 128 NVIDIA H100 GPUs,
interconnected via NVLink within nodes and InfiniBand
across nodes. Our methods and implementations are not
dependent on specific hardware architectures and can gen-
eralize to other devices, particularly those with less effi-
cient interconnects. We follow the same baseline and set-
tings as discussed in Section 4, utilizing 720M and 3B size
Transformer-2D models in our experiments. Despite the
existence of various 2D-Transformer variants, their archi-
tectures are fundamentally similar. We select one model
similar to OpenSora (Zangwei Zheng, 2024). The code is
implemented using PyTorch (Paszke et al., 2019).

In the following evaluations, we focus on addressing the fol-
lowing questions: 1) How is DSP’s end-to-end performance
compared with other SOTA sequence parallelism? 2) How
is DSP’s scaling ability when scale to many GPUs? 3) What
is DSP’s memory consumption like in practice?

5.1. End-to-End Performance

In this section, we compare the end-to-end performance
of different sequence parallelism methods on 128 NVIDIA
H100 GPUs. We use a combination of sequence parallelism
and data parallelism, with the sequence parallelism set to
the minimum size for each method. We evaluate across
different sequence lengths ranging from 0.5 million to 4
million tokens, which are common usages for video gener-
ation. Details can be found in Appendix A.2.2. As shown
in Figure 5, DSP is able to outperform DeepSpeed-Ulysses
by 32% to 75%, and other methods by up to 10x due to its
communication efficiency. As the sequence length becomes
longer and the sequence parallel size increases, as DSP’s
communication volume decreases as the device number in-
creases, our performance’s advantage over the baselines
becomes even more pronounced. When scaling from 0.5M
to 4M tokens, our FLOPS drops by at most 23%, while other

6

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

0.5M 1M 2M 4M
Accumulated Sequence Length

0
15
30
45
60
75
90

105
120
135
150
165

Pe
rf

(T
flo

ps
/G

PU
)

××

End-to-End Performance (2D-Transformer 720M)
Megatron-LM Megatron-SP DeepSpeed-Ulysess Ring Attention DSP

0.5M 1M 2M 4M
Accumulated Sequence Length

0
25
50
75

100
125
150
175
200
225
250

Pe
rf

(T
flo

ps
/G

PU
)

× × × ×

End-to-End Performance (2D-Transformer 3B)

Figure 5. End-to-end performance comparison of different sequence parallel methods combined with data parallel on 128 H100 GPUs.
The sequence parallel size is set to minimum for each method.

1 2 4 8
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

) Weak Scaling Intra-Node (Transformer-2D 720M)
Megatron-LM
Megatron-SP
DeepSpeed-Ulysess
Ring Attention
DSP

8 16 32
0.00
0.15
0.30
0.45
0.60
0.75
0.90

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

×××

Weak Scaling Inter-Node (Transformer-2D 720M)

1 2 4 8
GPU Number

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

) Weak Scaling Intra-Node (Transformer-2D 3B)

8 16 32 64
GPU Number

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

×××××

Weak Scaling Inter-Node (Transformer-2D 3B)

Figure 6. Weak scaling ability evaluation of different methods with sequence parallelism only. “×” denotes out of memory or head. Black
boxes represent linear scaling.

methods experience at least a 40% drop.

5.2. Scaling Ability

This section evaluates the scaling ability of DSP from two
perspectives: weak scaling and strong scaling. Weak scaling
refers to scenarios where the computational workload per
device remains constant while incrementally increasing the
number of devices. This setup is analogous to the train-
ing stage, where the goal is to scale longer sequences over
more GPUs. Strong scaling, on the other hand, is more
challenging as it requires keeping the total computational
workload constant while incrementally increasing the num-
ber of devices. In this case, the computation becomes more
sparse on each device. Strong scaling is often employed
when the objective is to infer an input sequence rapidly
across many GPUs for low-latency applications. The experi-
ments are divided into intra-node and inter-node evaluations
due to the different interconnection conditions. Intra-node
experiments leverage NVLink interconnect for communica-
tion, while inter-node experiments utilize a combination of
NVLink and InfiniBand interconnect. More details can be
found in Appendix A.2.3.

Weak Scaling. In the weak scaling experiments, to main-
tain a consistent computational workload for each GPU, the
batch size is linearly increased proportional to the number
of GPUs, while the sequence length is fixed. As shown in
Figures 6, DSP significantly outperforms other methods by
more than 80.7%. Moreover, DSP can scale up to 64 GPUs
without being limited by the number of attention heads, un-
like DeepSpeed-Ulysses and Megatron-SP. Despite scaling
to 64 GPUs, DSP maintains an almost linear throughput
increase, with only a 15% performance loss from 8 GPUs
to 64 GPUs. Additionally, DSP can achieve super-linear
scaling for intra-node due to efficient communication.

Strong Scaling. In the strong scaling experiments, both
batch size and sequence length are fixed. As shown in Figure
7, DSP can maintain linear scalability when scaling up to
8 GPUs for 720M model and 4 GPUs for 3B model, which
covers most practical scenarios. To evaluate the extreme
performance capabilities of DSP, we further scale up to
64 GPUs with very little workload per device. Although
there is an inevitable performance drop, DSP’s throughput
remains significantly better than the baselines. As shown
in Figure 8, our work can significantly reduce inference

7

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

1 2 4 8
0.00
0.15
0.30
0.45
0.60
0.75
0.90

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

) Strong Scaling Intra-Node (Transformer-2D 720M)
Megatron-LM
Megatron-SP
DeepSpeed-Ulysess
Ring Attention
DSP

8 16 32
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

×××

Strong Scaling Inter-Node (Transformer-2D 720M)

1 2 4 8
GPU Number

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

) Strong Scaling Intra-Node (Transformer-2D 3B)

8 16 32 64
GPU Number

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

×××

Strong Scaling Inter-Node (Transformer-2D 3B)

Figure 7. Strong scaling ability evaluation of different methods with sequence parallelism only. “×” denotes out of memory or head. Black
boxes represent linear scaling.

1 2 4 8
GPU Number

0
1
2
3
4
5
6
7
8
9

10

La
te

nc
y

(s
)

1.0x

2.7x

1.4x
2.5x2.2x

Latency Comparison (2D-Transformer 3B)
Megatron-LM
Megatron-SP

DeepSpeed-Ulysess
Ring Attention

DSP

Figure 8. Inference latency comparison of different sequence paral-
lelism methods.

8 16 32 64
GPU Number

0
10
20
30
40
50
60
70
80
90

M
em

or
y

Co
ns

um
pt

io
n

(G
B)

×××××

Memory Comparison (2D-Transformer 3B)
Megatron-LM Megatron-SP DeepSpeed-Ulysess Ring Attention DSP

Figure 9. Memory comparison of different sequence parallelism
methods.

latency compared with baselines with the same workload.

5.3. Memory Consumption

Figure 9 demonstrates the memory consumption com-
parison of different baselines in the weak scaling setting.
The semi-transparent bar represents the cached memory,
while the solid bar represents the allocated memory. The
total memory usage is the sum of them. Our approach
exhibits the lowest memory usage, scaling efficiently for
longer sequences. Furthermore, DSP’s memory usage is
compact without excessive cache memory bloat, unlike
Ring-Attention, Megatron-LM and Megatron-SP.

6. Conclusion
In this work, we introduce Dynamic Sequence Parallelism
(DSP), a novel sequence parallel abstraction for effectively
scaling multi-dimensional transformers to long sequences.
Unlike current embedded sequence parallel methods that
only shard on single sequence dimension and are tailored to
specific patterns, DSP offers a general and elegant solution
by dynamically switching the parallel dimension during
computation, decoupled from the computation module.

The key advantages of DSP are: 1) substantially reduced

communication costs, 2) adaptability across modules with-
out specialized modifications, and 3) remarkable ease of
implementation enabled by a simple high-level API. Our ex-
periments demonstrated DSP’s superiority, achieving from
32.2% to 10× higher end-to-end throughput and at least
75% lower communication volume compared to state-of-
the-art methods. Its elegance and ease of use make it a
promising solution for efficient sequence parallelism across
a wide range of applications.

Limitations. One limitation of this work is that DSP is
specifically designed for multi-dimensional transformers
and may not adapt well to single-dimensional ones like
language models. Additionally, while there are global oper-
ations that involve all sequence dimensions, which are rare
in transformer, DSP may not be of optimal efficiency.

Future works. In the future, DSP could expand its scope
beyond transformer architectures to architectures including
convolution, recurrent, and graph neural networks to utilize
its potential across various tasks. Furthermore, automated
optimization techniques could enable DSP to dynamically
and autonomously determine the most effective switching
strategy based on network analysis, thereby optimizing over-
all system efficiency and efficacy.

8

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebr’on, F., and Sanghai, S. K. Gqa: Training gener-
alized multi-query transformer models from multi-head
checkpoints. ArXiv, abs/2305.13245, 2023.

Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D.,
Kilian, M., and Lorenz, D. Stable video diffusion: Scaling
latent video diffusion models to large datasets. ArXiv,
abs/2311.15127, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:
1877–1901, 2020.

Chen, S., Shu, T., Zhao, H., Zhong, G., and Chen, X. Tem-
pee: Temporal-spatial parallel transformer for radar echo
extrapolation beyond auto-regression. IEEE Transactions
on Geoscience and Remote Sensing, 2023.

Cheng, S., Zhao, X., Lu, G., Fang, J., Zheng, T., Wu, R.,
Zhang, X., Peng, J., and You, Y. Fastfold: Optimizing
alphafold training and inference on gpu clusters. In Pro-
ceedings of the 29th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, pp.
417–430, 2024.

Cong, Y., Liao, W., Ackermann, H., Yang, M. Y., and Rosen-
hahn, B. Spatial-temporal transformer for dynamic scene
graph generation. 2021 IEEE/CVF International Confer-
ence on Computer Vision, pp. 16352–16362, 2021.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and R’e, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. ArXiv, abs/2205.14135, 2022.

Deihim, A., Alonso, E., and Apostolopoulou, D. Sttre: A
spatio-temporal transformer with relative embeddings for
multivariate time series forecasting. Neural Networks,
168:549–559, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,

Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Geng, Z., Liang, L., Ding, T., and Zharkov, I. Rstt: Real-
time spatial temporal transformer for space-time video
super-resolution. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
17441–17451, 2022.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. ArXiv, abs/2312.00752, 2023.

Gugger, S., Debut, L., Wolf, T., Schmid, P., Mueller, Z.,
Mangrulkar, S., Sun, M., and Bossan, B. Accelerate:
Training and inference at scale made simple, efficient and
adaptable., 2022.

He, L., Zhou, Q., Li, X., Niu, L., Cheng, G., Li, X., Liu,
W., Tong, Y., Ma, L., and Zhang, L. End-to-end video
object detection with spatial-temporal transformers. In
Proceedings of the 29th ACM International Conference
on Multimedia, pp. 1507–1516, 2021.

Hertz, A., Mokady, R., Tenenbaum, J. M., Aberman,
K., Pritch, Y., and Cohen-Or, D. Prompt-to-prompt
image editing with cross attention control. ArXiv,
abs/2208.01626, 2022.

Hillis, W. D. and Steele Jr, G. L. Data parallel algorithms.
Communications of the ACM, 29(12):1170–1183, 1986.

Ho, J., Kalchbrenner, N., Weissenborn, D., and Salimans, T.
Axial attention in multidimensional transformers. ArXiv,
abs/1912.12180, 2019.

Huang, L., Mao, F., Zhang, K., and Li, Z. Spatial-temporal
convolutional transformer network for multivariate time
series forecasting. Sensors, 22(3):841, 2022.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in Neural Information Processing
Systems, 32, 2019.

Jacobs, S. A., Tanaka, M., Zhang, C., Zhang, M., Song,
L., Rajbhandari, S., and He, Y. Deepspeed ulysses: Sys-
tem optimizations for enabling training of extreme long
sequence transformer models. ArXiv, abs/2309.14509,
2023.

Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Zı́dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D. A., Clancy, E., Zielinski, M., Steinegger, M.,

9

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Pacholska, M., Berghammer, T., Bodenstein, S., Silver,
D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with alphafold. Nature, 596:583 – 589, 2021.

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L. C.,
Andersch, M., Shoeybi, M., and Catanzaro, B. Reduc-
ing activation recomputation in large transformer models.
ArXiv, abs/2205.05198, 2022.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, S. and Hoefler, T. Chimera: Efficiently training large-
scale neural networks with bidirectional pipelines. SC21:
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1–14, 2021.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704,
2020.

Li, S., Xue, F., Li, Y., and You, Y. Sequence parallelism:
Long sequence training from system perspective. In An-
nual Meeting of the Association for Computational Lin-
guistics, 2021.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context. arXiv
preprint arXiv:2310.01889, 2023a.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in Neural Information Processing Systems,
36, 2024.

Liu, Z., Cheng, S., Zhou, H., and You, Y. Hanayo: Har-
nessing wave-like pipeline parallelism for enhanced large
model training efficiency. The International Conference
for High Performance Computing, Networking, Storage,
and Analysis, pp. 1–13, 2023b.

Ma, X., Wang, Y., Jia, G., Chen, X., Liu, Z., Li, Y.-F., Chen,
C., and Qiao, Y. Latte: Latent diffusion transformer for
video generation. ArXiv, abs/2401.03048, 2024.

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchin-
nikov, S., and Steinegger, M. Colabfold: making protein
folding accessible to all. Nature Methods, 19(6):679–682,
2022.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pp. 1–15, 2019.

Pan, X., Wang, L., Wang, Z., and Huang, C. Short-term
wind speed forecasting based on spatial-temporal graph
transformer networks. Energy, 253:124095, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. ArXiv,
abs/1912.01703, 2019.

Peebles, W. S. and Xie, S. Scalable diffusion models
with transformers. 2023 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 4172–4182,
2022. URL https://api.semanticscholar.
org/CorpusID:254854389.

Peng, B., Alcaide, E., Anthony, Q. G., Albalak, A., Arcad-
inho, S., Biderman, S., Cao, H., Cheng, X., Chung, M.,
Grella, M., Kranthikiran, G., He, X., Hou, H., Kazienko,
P., Kocoń, J., Kong, J., Koptyra, B., Lau, H., Mantri, K.
S. I., Mom, F., Saito, A., Tang, X., Wang, B., Wind, J. S.,
Wozniak, S., Zhang, R., Zhang, Z., Zhao, Q., Zhou, P.,
Zhu, J., and Zhu, R. Rwkv: Reinventing rnns for the
transformer era. In Conference on Empirical Methods in
Natural Language Processing, 2023.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimization towards training a trillion parame-
ter models. ArXiv, abs/1910.02054, 2019.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and
He, Y. Zero-infinity: Breaking the gpu memory wall for
extreme scale deep learning. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–14, 2021.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821–8831, 2021.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lil-
licrap, T., baptiste Alayrac, J., Soricut, R., Lazaridou,
A., Firat, O., Schrittwieser, J., Antonoglou, I., Anil, R.,
Borgeaud, S., Dai, A., Millican, K., Dyer, E., Glaese, M.,
Sottiaux, T., Lee, B., Viola, F., Reynolds, M., Xu, Y., Mol-
loy, J., Chen, J., Isard, M., Barham, P., Hennigan, T., and
et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context, 2024.

10

https://api.semanticscholar.org/CorpusID:254854389
https://api.semanticscholar.org/CorpusID:254854389

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., et al. Mesh-tensorflow: Deep learning for super-
computers. Advances in Neural Information Processing
Systems, 31, 2018.

Shazeer, N. M. Fast transformer decoding: One write-head
is all you need. ArXiv, abs/1911.02150, 2019.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. ArXiv, abs/1909.08053, 2019.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang,
S., Hu, Q., Yang, H., Ashual, O., Gafni, O., Parikh,
D., Gupta, S., and Taigman, Y. Make-a-video: Text-
to-video generation without text-video data. ArXiv,
abs/2209.14792, 2022.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017.

Xu, M., Dai, W., Liu, C., Gao, X., Lin, W., Qi, G.-J., and
Xiong, H. Spatial-temporal transformer networks for
traffic flow forecasting. arXiv preprint arXiv:2001.02908,
2020.

Yan, B., Peng, H., Fu, J., Wang, D., and Lu, H. Learning
spatio-temporal transformer for visual tracking. 2021
IEEE/CVF International Conference on Computer Vision,
pp. 10428–10437, 2021.

Yang, A., Miech, A., Sivic, J., Laptev, I., and Schmid, C.
Tubedetr: Spatio-temporal video grounding with trans-
formers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16442–
16453, 2022.

Zangwei Zheng, X. P. Open-sora: Democratizing efficient
video production for all, April 2024.

Zhao, Y., Gu, A., Varma, R., Luo, L., chin Huang, C., Xu,
M., Wright, L., Shojanazeri, H., Ott, M., Shleifer, S.,
Desmaison, A., Balioglu, C., Nguyen, B., Chauhan, G.,
Hao, Y., and Li, S. Pytorch fsdp: Experiences on scaling
fully sharded data parallel. Proc. VLDB Endow., 16:3848–
3860, 2023.

Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., and
Ding, Z. 3d human pose estimation with spatial and
temporal transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 11656–
11665, 2021.

11

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

Appendix

We organize our appendix as follows:

• Section A.1: Model details.

• Section A.2: Experiment Settings.

– Section A.2.1: Model size.
– Section A.2.2: End-to-end performance.
– Section A.2.3: Scaling ability.

• Section A.3: Parallelism implementation.

A. Appendix
A.1. Model Details

In the theoretical analyses and evaluation section, we use a Transformer-2D model as our base model, similar to OpenSora
(Zangwei Zheng, 2024). However, it is not exactly OpenSora; we have removed its specific cross-attention module to ensure
that the performance can be generalized to other models. Therefore, in each layer, there are only two transformer blocks that
process two sequence dimensions separately, as shown in Figure 10. Specifically, the two dimensions are temporal t and
spatial s for a sequence. Each dimension is processed by a corresponding transformer block, which is a common strategy in
many applications.

A.2. Experiment Settings

A.2.1. MODEL SIZE

Table 4. End-to-end performance parallel settings. Tuple for methods denotes (sequence parallel size, data parallel size).

Model Sequence Temporal Spatial DeepSpeed Megatron Ring DSPSize Length Sequence Sequence Ulysses SP Attention

720M

0.5M 128 4096 (2, 64) (2,64) (2, 46) (2, 64)
1M 256 4096 (4, 32) (4,32) (4, 32) (4, 32)
2M 512 4096 (8, 16) (16,8) (8, 16) (8, 16)
4M 1024 4096 (16, 8) / (16, 8) (16, 8)

3B

0.5M 128 4096 (4, 32) (4, 32) (4, 32) (4, 32)
1M 256 4096 (8, 16) (16,8) (8, 16) (8, 16)
2M 512 4096 (16, 8) / (16, 8) (16, 8)
4M 1024 4096 (32, 4) / (32, 4) (32, 4)

Table 5. Model settings of 720M and 3B 2D-Transformer.

Model Name Layers Hidden States Attention Heads Patch Size

720M 28 1152 16 (1, 2, 2)
3B 36 2038 32 (1, 2, 2)

In the experiments, we use 720M and 3B size for 2D-Transformer. There specific model settings are shown in Table 5.

12

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

A.2.2. END-TO-END PERFORMANCE

Here is the polished text in a more formal format without using bullet points: In end-to-end performance experiments, 128
GPUs were utilized for all methods. For each method, the minimum sequence parallel size that would not result in
out-of-memory errors was employed to reduce communication overhead, with data parallelism employed for the remaining
size. ZeRO-2 was used for all methods except Megatron-SP. The specific parallel size is detailed in Table 4.

The accumulated sequence length ranged from 0.5M to 4M, which appears significantly larger than typical text lengths.
However, such lengths are common for multi-dimensional tasks. In this case, we followed the workload of video generation.
The spatial sequence, representing video resolution, was fixed at 1024x1024. After applying the Variational Autoencoder
(VAE) and Patch Embedding, the final length for the spatial sequence was 4096. The temporal sequence, representing video
length, scales linearly in the test.

A.2.3. SCALING ABILITY

Table 6. Strong scaling experiment settings.

Model Size Type Batch Size Temporal Spatial

720M Intra-Node 1 64 4096
Inter-Node 1 256 4096

3B Intra-Node 1 16 4096
Inter-Node 1 128 4096

Table 7. Weak scaling experiment settings.

Model Size Type GPU Number Batch Size Temporal Spatial

720M

Intra-Node

1 1 64 4096
2 2 64 4096
4 4 64 4096
8 8 64 4096

Inter-Node
8 1 256 4096

16 2 256 4096
32 4 256 4096

3B

Intra-Node

1 1 16 4096
2 2 16 4096
4 4 16 4096
8 8 16 4096

Inter-Node

8 1 128 4096
16 2 128 4096
32 4 128 4096
64 8 128 4096

In weak scaling experiments, as shown in Figure 7 we fix the sequence length and linearly increase the batch size, ensuring
that the workload on each device remains constant as the number of devices scales. In strong scaling experiments, as shown
in Figure 6, we fix both the sequence length and batch size, keeping the total computation constant. For each experiment, we
set the sequence length to the maximum for the least GPU case to fully utilize the computational resources. Specifically, we
use the same spatial sequence length and adjust the temporal sequence length to its maximum for each test and sequence
parallel size is set to GPU number.

A.3. Parallelism Implementation

In Figure 10, we demonstrate the detailed implementation of different sequence parallel methods on 2D-Transformer. The
implementation of DeepSpeed-Ulysses (Rasley et al., 2020), Megatron-SP (Korthikanti et al., 2022) and Megatron-LM

13

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

(Shoeybi et al., 2019) are adopted based on their official implementation. For Ring-Attention (Liu et al., 2023a), we adopt
an unofficial implementation and adapt it to the 2D-Transformer.

Communication Type Communication Volume

all-reduce 2M
all-gather M
reduce-scatter M
all-to-all M/N

Table 8. Per-device communication volume for each operation.

Method Communication Type Communication Times Per Layer (Two 1D Blocks) Time (ms)

DSP all-to-all 2 914
DS-Ulysses all-to-all 4 5828
Megatron-LM all-reduce 4 8412
Megatron-SP all-gather + reduce-scatter 4 51908

Table 9. Comparison of communication methods and performance with a 8M length of sequence.

Megatron-SP employs four resource-intensive collective communication operations per transformer block. Specifically, it
initiates an all-gather operation to aggregate the entire input x, succeeded by reduce-scatter operations at the output for both
attention and MLP modules, culminating in a total communication volume of 8M for one layer (two 1D blocks). Note that
the communication volume is calculated per device.

Similarly, Megatron-LM employs 2 all-reduce per transformer block, culminating 4 all-reduces, in a total communication
volume of 8M .

DeepSpeed-Ulysses adopts the more efficient all-to-all approach. It leverages all-to-all for query, key, value to transform
their shard dimension before attention, and a all-to-all for output after attention. And it only need to communicate in
temporal transformer block. Consequently, the communication volume transmitted per device for an AlltoAll
communication of size M across N GPUs is 4M/N .

Ring-Attention is not shown in the figure because it does not require resharding. We implement sequence communication in
the temporal transformer as the time axis is split. In the attention module, it needs to pass the key and value to all other
devices, resulting in a total communication volume of 2M .

DSP applies dynamic switching between stages to switch the parallel dimension, which involves two AlltoAll operations,
totaling 2M/N communication.

As shown in Table 8 and 9, we demonstrate the communication volume for each communication method, and their latency
for a sequence of 8M length.

14

https://github.com/zhuzilin/ring-flash-attention

DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers

[b, t/n, s, hn, hd]

QKV Attn MLP

[b, t/n, s, hn, hd] [b, t/n, s, hn, hd]
t

hn

s

Spatial Transformer

Al
l G

at
he

r

[b, t/n, s, hn, hd]

Attn

[b, t, s, hn/n, hd]

MLP

[b, t, s, hn, hd] [b, t, s/n, hn, hd]

R
ed

uc
e

Sc
at

te
r

Spatial Transformer

[b, t/n, s, hn, hd]

QKV Attn MLP

t

hn

s

Spatial Transformer

t

hn

s

QKV

QKV Attn MLP
All
to
All

Temporal Transformer

[b, t/n, s, hn, hd]

Megatron-SP

DS-Ulysses

DSP

R
ed

uc
e

Sc
at

te
r

Al
l G

at
he

r

b: batch size t: temporal dimension s: spatial dimension hn: attention head num hd: attention head dim

[b, t, s/n, hn, hd]

Al
l G

at
he

r

Attn

[b, t, s, hn/n, hd]

MLP

[b, t, s, hn, hd] [b, t/n, s, hn, hd]

R
ed

uc
e

Sc
at

te
r

Temporal Transformer

QKV

R
ed

uc
e

Sc
at

te
r

Al
l G

at
he

r

All
to
All

QKV Attn

[b, t, s, hn/n, hd]

MLP

[b, t, s/n, hn, hd] [b, t/n, s, hn, hd]

All
to
All

Temporal Transformer
×3

[b, t/n, s, hn, hd]

All
to
All

[b, t, s/n, hn, hd]

Dynamic Switch Dynamic Switch

Attn

[b, t, s, hn/n, hd]

MLP

Al
l R

ed
uc

e

Spatial Transformer

t

hn

s

[b, t, s, hn, hd]

QKV

Megatron-LM

Al
l R

ed
uc

e

[b, t, s, hn, hd]

[b, t, s, hn, hd]

Attn

[b, t, s, hn/n, hd]

MLP

Al
l R

ed
uc

e

Temporal Transformer

QKV

Al
l R

ed
uc

e

[b, t, s, hn, hd]

Figure 10. Overview of different sequence parallelism methods for 2D-Transformer.

15

