
Optimistic Verifiable Training by Controlling
Hardware Nondeterminism

Megha Srivastava∗
Department of Computer Science

Stanford University
megha@cs.stanford.edu

Simran Arora
Department of Computer Science

Stanford University
simarora@stanford.edu

Dan Boneh
Department of Computer Science

Stanford University
dabo@cs.stanford.edu

Abstract

The increasing compute demands of AI systems have led to the emergence of
services that train models on behalf of clients lacking necessary resources. How-
ever, ensuring correctness of training and guarding against potential training-time
attacks, such as data poisoning and backdoors, poses challenges. Existing works on
verifiable training largely fall into two classes: proof-based systems, which are dif-
ficult to scale, and “optimistic” methods that consider a third-party auditor who can
replicate the training process and contest the trainer. A key challenge with the latter
is that nondeterminism between GPU types during training prevents exact replica-
tion of the training process, resulting in schemes that are non-robust. We propose a
method that combines training in a higher precision than the target, rounding after
intermediate computations, and sharing rounding decisions based on an adaptive
thresholding procedure, to successfully control for nondeterminism. Across three
different NVIDIA GPUs (A40, Titan XP, RTX 2080 Ti), we achieve exact training
replication at FP32 precision for both full-training and fine-tuning of ResNet-50
(23M) and GPT-2 (117M) models. Our verifiable training scheme significantly de-
creases the storage and time costs compared to proof-based systems, and is publicly
released at https://github.com/meghabyte/verifiable-training.

1 Introduction

We are currently in the “large-scale era” of machine learning (ML), where the exciting capabilities of
modern AI systems have required a dramatic increase in training compute needs [Sevilla et al., 2022].
In turn, several model training services, such as Replicate, OpenAI’s Finetuning API, Together AI,
Amazon Sagemaker, MosaicML Training, and Gensyn, have been created to support clients who
lack the resources to train a model themselves. However, these services require clients to place a
significant degree of trust in them to train the model correctly, without introducing a training-time
attack such as data poisoning or undetectable backdoors [Wan et al., 2023, Goldwasser et al., 2022].
How can we help a client, such as an individual or a small company, hold the service provider
accountable in case of misbehavior during training?

Consider an education start-up that wishes to finetune the Llama-70b language model (70B parame-
ters) on their own curated dataset to support student learning. This task requires significant resources,

∗Correspondence to megha@cs.stanford.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/meghabyte/verifiable-training
megha@cs.stanford.edu

and the company might even lack the necessary expertise. Instead, they might choose to pay a trainer
with vast computing resources to perform the training task (Figure 1). However, what if the trainer
adds data points that spread misinformation, introduces a backdoor that advances a political agenda
for specific prompts, or tries to save work by under-training the model? If the client starts to notice
suspicious model behavior, is there any action they can take? We study this problem of verifiable
training, or ensuring that the training of an ML model was performed correctly.

Malicious Trainer Auditor

a1s2
Epoch 1

sd23
Epoch 2

cbp2
Epoch 3

fd2u
Epoch 4

a1s2
Epoch 1

sd23
Epoch 2

d23f
Epoch 3

df4g
Epoch 4

(4) share randomness,
architecture,

and rounding logs

abc3 s9f4 3ab8

bcy8 ds5t

m7c3

abc3 9abf kl3r

8b7a t2e3

p4l3

Client (3) share data(1) share data

(5) verification
game

(6) auditor disputes
trainer

(2) training-time attack
(e.g. data poisoning)

Figure 1: Overview of our scheme. After an
auditor challenges a trainer, they train the model,
storing weights in a Merkle tree, and enter a binary
search procedure to identify the exact steps of the
dispute. We show how to control GPU nondeter-
minism between auditor and trainer, expanding
the set of potential auditors.

One possibility is for the trainer to provide the
client with a cryptographic proof that the model
was trained according to the specification. How-
ever, proof-based systems require cryptographic
techniques that can be difficult to scale to the
complexity of real-world ML systems. For in-
stance, recent work based on zero-knowledge
proof systems for verifiable inference, a much
simpler task than training, requires more than 8
minutes to generate proofs for only 20 images
[Liu et al., 2021]. Thus, practical proof-based
methods for verifiable training have only been
implemented for simple tasks such as logistic
and linear regression [Garg et al., 2023, Ames
et al., 2022].

An alternative “optimistic” approach is to con-
sider a third-pary auditor (Figure 1). This could
be a trusted 3rd party, such as a non-profit orga-
nization that may not have sufficient computing
resources to provide training as a service be-
yond auditing, or a different provider that the
client approaches and wishes to compare with
the original model trainer. When a client sus-
pects foul play, they can ask the auditor to chal-
lenge the trainer by training the model using
the auditor’s own compute, and demonstrate
that the trainer did not train correctly. Based on the provided evidence required from the auditor
(i.e. the precise timesteps model training diverged, as shown in Figure 1), the client can then choose
to refuse the trainer’s model, pursue legal action against the trainer, or even dispute a potentially
corrupt auditor if the client deems such evidence as incorrect, or another auditor disagrees. This
protocol can be efficiently carried out using techniques from the literature on verifiable computing,
such as the “verification game” method of Teutsch and Reitwießner [2019], which uses an interactive
binary-search procedure to identify the exact intermediate computation step (e.g. training epoch)
where the two parties diverged. Applying verifiable computation techniques to model training is
particularly important given the increase in decentralized machine learning services like Gensyn,
which seek to make ML compute more accessible by creating a network of many untrusted GPUs.

Unfortunately, the issue with such “optimistic” approaches is nondeterminism during model training:
two models trained on different GPU types, even with same data order and random seed, can learn
different weights (Figure 2). The auditor cannot simply compare their model weights with the
trainer’s, and recent work has shown that protocols based on comparing model weights, such as Jia
et al. [2021]’s “proof of learning,” are not robust and can be forged due to errors from nondeterminism
[Thudi et al., 2022, Fang et al., 2023].

Our work addresses this limitation by asking: can the trainer provide additional information to the
auditor that removes the effects of hardware nondeterminism? Our starting point is the observation
that hardware nondeterminism occurs due to the accumulation of errors from floating point operations.
For example, a matrix-vector multiply often results in different floating point values on different
GPUs, since GPUs often accumulate in different orders. To address this issue, a natural approach
is to perform training using a higher precision (e.g. FP32) than the target precision of the model
weights (e.g. FP16), and periodically round back to the target precision. The hope is that all floating
point errors will be confined to the higher precision bits, so that the rounded values are deterministic.
However, this fails because computed values can occasionally straddle the “rounding boundary”: i.e.,

2

the trainer can round up while the auditor rounds down, quickly causing them to diverge. Instead,
we propose a solution where the trainer records the rounding direction for certain intermediate
computation so that auditor can stay in sync with the trainer. As this requires the trainer to record
a large number of bits, we also show how to reduce the amount of data needed to eliminate errors.

We use this strategy to adapt the verification game described by Teutsch and Reitwießner [2019] for
verifiable training. The game’s efficiency lies in our ability to store hashes of model checkpoints in a
Merkle tree [Merkle, 1988]. To determine if training was performed according to the specification,
the auditor needs to reconstruct the Merkle tree and compare the resulting Merkle root hash with
the Merkle root hash provided by the trainer’s – if they do not match, the two parties can enter an
interactive binary search procedure to identify the exact training step of the dispute. The purpose
of the binary search game is to hold both parties accountable: an auditor should not be able to
simply claim that a model was improperly trained, but convince a third-party (e.g., the public, or a
judge) by showing at what point during training the trainer misbehaved. We show our verifiable
training scheme can scale to tasks such as full training of ResNet-50 (23M parameters) and finetuning
of GPT-2 (117M parameters), significantly outperforming existing methods with respect to both
time and storage cost, while eliminating statistical error due to non-determinism. For example, the
proposal in prior work Jia et al. [2021] would require > 140× more storage cost than our method by
comparing model weights at every step in order to achieve low (yet still non-zero) statistical error.

Concretely, our contributions include: (1) A method for two parties, training the same model on
different GPU types, to achieve identical training results by logging and sharing rounding decisions;
(2) A verifiable training scheme based on the verification game from Teutsch and Reitwießner [2019],
which stores model weights in a Merkle tree for efficient comparison between a trainer and auditor;
(3) Experiments showing the ability of our approach to scale to large models such as ResNet-50
and GPT-2 between three different NVIDIA GPU architectures (A40, Titan XP, RTX 2080 Ti);
(4) Methods to reduce the storage cost of our approach via efficient encoding of rounding logs
and an adaptive threshold mechanism to reduce the amount of rounding decisions logged; and (5)
Comparisons with existing methods, including proof-based systems, that highlight the improved
storage and time efficiency of our method. 2

2 Related Works

Without any verifiable training scheme in place, significant trust is placed in the trainer, leaving
a client vulnerable to many different attacks, such as the “poisoning” of data samples to cause
undesirable behavior (e.g., generating unsafe text [Carlini et al., 2023, Koh et al., 2021, Wan et al.,
2023]) and planting backdoors triggered by certain inputs [Goldwasser et al., 2022]. Therefore,
training ML models in trusted environments has been an exciting direction explored by many
researchers. One line of work consists of proof-based systems, where a proof of correctness (for a
desired specification) is provided using cryptographic techniques such as succinct non-interactive
arguments (SNARKs) [Micali, 1994, Bitansky et al., 2012, Lee et al., 2020, Liu et al., 2021, Garg
et al., 2023, Kang et al., 2022]. However, even the most recent proof-based systems for verifiable
training suffer extreme latencies, such as 22 minutes for training VGG-11 on one batch of 16 data
inputs [Abbaszadeh et al., 2024], and have therefore primarily been developed for simpler models
(e.g., logistic regression) that are less likely to be delegated to others in the first place [Garg et al.,
2023, Ames et al., 2022]. Meanwhile, an alternative solution of training models in a trusted execution
environment (TEE), such as NVIDIA’s H100, incurs a performance penalty due to the cost of running
inside a TEE [Dhanuskodi et al., 2023]. Furthermore, clients lose all security guarantees if an attacker
can extract the attestation key from even one GPU [Nilsson et al., 2020, Bulck et al., 2018].

Our approach is most similar to proof-of-learning protocols, which consider a trusted 3rd party that
compares checkpointing during the course of training with the original training sequence [Jia et al.,
2021]. However, such methods not only incur high storage cost by requiring model weights to be
stored frequently, but are non-robust due to errors from training nondeterminism. Several works
have shown that proof-of-learning protocols can be spoofed and fail to verify correctness in several
important contexts [Fang et al., 2023, Kong et al., 2023, Thudi et al., 2022]. Although Choi et al.
[2023] recently proposed a verification procedure that is immune to several known proof-of-learning

2Our method is implemented entirely within the pytorch framework (compatible with version 2.3.1), and is
available at https://github.com/meghabyte/verifiable-training.

3

https://github.com/meghabyte/verifiable-training

(a) CIFAR-10 Classification (Res-Net 50) (b) Shakespeare Text Finetuning (GPT-2)

Test Input

This above all: to
thine own self bedog

cat

deer

0.09

0.69
0.08

0.75

0.20

0.01

0.26

0.29
0.28

true

my

thou

0.0101

0.0098

0.0097

0.0096

0.0083

0.0106

0.0091

0.0100

0.0095

4.18 ppl 4.18 ppl 4.22 ppl89.9 %90.2 % 90.7 %

A40 TitanXP RTX Ti A40 TitanXP RTX TiScores

Accuracy

Scores

PerplexityTest Input

Figure 2: Even after ensuring the same software version, random seed, and use of deterministic
algorithms via library flags, training nondeterminism persists between three GPU types.

attacks, their method is not only limited to supervised learning algorithms, but also based on an
assumption that models temporarily overfit data during training, which may not always hold true.

GPU Nondeterminism: Prior work has investigated software patches for deterministic training,
for instance by enforcing FP accumulation ordering, at a significant cost to efficiency Jooybar et al.
[2013], Defour and Collange [2015], Chou et al. [2020], TensorFlow [2021], Zhuang et al. [2021].
While these options address deterministic computation on a single GPU architecture, achieving
deterministic results across multiple GPU architectures remains challenging Crane [2018a], NVIDIA
[2022]. We control hardware nondeterminism across GPUs in order to design an efficient and reliable
verifiable training scheme. However, our method’s impact extends beyond verifiable training, as
training nondeterminism can have several negative consequences including bias, reproducibility, and
downstream effects on ML pipelines [Zhuang et al., 2021, Crane, 2018b, Srivastava et al., 2020].

3 Set-Up: The Verification Game

Our method for verifiable training is based on the interactive verification game proposed by Teutsch
and Reitwießner [2019] in the context of blockchains. The core idea is to resolve a dispute between a
challenger, in our case the auditor, and a solver, in our case the trainer, for an expensive computation
(e.g., model training). In order for the auditor to take any meaningful action (e.g., pursue legal
action), they need to prove the exact source of the dispute (e.g., training time-step where an attack
occurred). If we can save model weights at different time steps into a compact data structure such as
a Merkle tree, then identifying the source of disagreement can be done efficiently using binary search
[Merkle, 1988]. More precisely, the verification game consists of the following parties:

1. trainer, who has putatively trained a model according to a client’s specifications. In our example,
this is a service provider with sufficient compute power to train a model.

2. client, who receives a model from the trainer and approaches an auditor.
3. auditor, who officially challenges the trainer on behalf of a client. This is a trusted 3rd-party

that has sufficient resources but does not necessarily provide training as a service. The client can
choose several auditors to audit the trainer’s model.

4. judge: Sometimes a judge may need to arbitrate a legal claim. The judge can only perform
minimal computations (e.g., one training epoch), but can examine the auditor’s claims and
enforce a penalty against either the trainer, for incorrect training, or the auditor, for a false alarm.

When the trainer is approached by an auditor, they would need to share training parameters, model
architecture, and randomness, as shown in Figure 1. The auditor would then replicate the training
process, storing model weights in a Merkle tree at the same checkpointing interval as the trainer
(every leaf node in a Merkle tree is a hash of the data and every non-leaf node is a hash of its children).
The main loop of the verification game starts when both parties have the root of their respective
Merkle trees. If training was performed correctly, then the trainer’s root should match the auditor’s.
Otherwise, a binary search procedure is performed, where the auditor iteratively descends the Merkle
tree until it identifies two consecutive leaf nodes, i and i+ 1, where the hash at i matches that of the
trainer, but the hash at leaf i+ 1 does not. This identifies the point in the computation of the dispute.

This interactive verification game requires the cooperation of the trainer. If the trainer refuses to
share the value at a certain node of their Merkle tree within a given time frame, they can be considered
to have failed the audit. Additionally, the trainer and auditor use a Merkle tree to store model
weights, requiring far less storage than prior work, if correct training produces identical weights (and

4

Example Sum Order FP32 Rounded to FP16

a, b, c = 0.1,−0.1, 0.2
a + b + c 00111110010011001100110011001101 0011001001100110
a + c + b 00111110010011001100110011001110 0011001001100110

a, b, c = 10.02, 13.162813186645508, 0.2
a + b + c 01000001101110110001000000000001 0100110111011001
a + c + b 01000001101110110001000000000000 0100110111011000

Table 1: Two examples of floating point accumulation error when rounding arithmetic performed
higher precision (e.g. FP32) down to lower precision (e.g. FP16). In the second example, the error in
the FP32 result transfers to the rounded FP16 result.

identical hash values).The problem is that training nondeterminism leads to weight divergence, and
causes this verification game to always fail. This why we seek to prevent divergence in training.

4 The Nondeterminism Challenge

Although there are user-side controls for forcing deterministic operations within a single GPU
architecture , these controls do not prevent nondeterminism between GPU architectures (e.g., NVIDIA
H100 and V100), where trained models can have similar aggregate performance (e.g., accuracy) yet
yield very different predictions, as shown in Figure 2 Crane [2018a], NVIDIA [2022]. There are
three main sources of nondeterminism between GPU types:

1. Floating-Point Arithmetic: Computers represent real values using integer and FP representa-
tions, typically the IEEE 754 standard (Figure 5). There is a tradeoff between the approximation
fidelity and the # of bits used to represent the real values. The chosen precision controls the repre-
sentable numerical range (e.g., 32-bit FP values can represent values between 1.17549435e − 38
and 3.40282347e+ 38). Because computers round to representable FP values, changing the order
in which FP values are accumulated can change the resulting sum Kahan [1965], Whitehead and
Fit-Florea [2011]. Over the course of the many operations during training, this can lead to a large
difference in the end result between the trainer and auditor.

2. Parallel Computation: In a GPU, a single operation (called a kernel) is executed by thousands of
threads in parallel. GPUs contain a set of streaming multiprocessors (SMs), which run the thread
blocks required for the kernel. At the hardware level, these blocks are divided into warps that are
assigned to the available cores. Because different GPUs have a different number and size of compute
units, applications partition arithmetic workloads (e.g., batch matrix multiplies) differently to achieve
high performance NVIDIA [2022], thus changing the order of FP operations.

3. Memory Hierarchy and Variable Delays: The time taken for memory access by each thread
depends on the physical location of the data, which can create variable delays Jooybar et al. [2013],
Defour and Collange [2015], Chou et al. [2020]. The GPU memory hierarchy consists of large
amounts of high bandwidth memory (HBM) and small amounts of fast SRAM memory, and maintains
an L1 and L2 cache to improve access times. The caches sizes and access times differ across GPU
architectures (e.g. an NVIDIA A100 has 192KB / 40 MB of L1/L2 cache memory, while the H100
has 256KB / 50MB). This affects warp scheduling, leading to changes in operation ordering resulting
in nondeterminism. Finally, to compute primitives such as GEMMs (D = A ·B +C), the workhorse
of machine learning, GPUs split the work of computing the tiles of D across a thread block NVIDIA
[2023], resulting in nondeterminism that a robust verification method needs to control.

5 Method Overview

5.1 Accumulation Errors Start at Higher Precision Bits

Our key idea is that if nondeterminism of training between GPU types occurs due to FP operations,
then any error will initially be introduced in the lower bits. Suppose that both trainer and auditor
train at a higher FP (e.g., btr = 64) precision than the client’s target model precision (e.g., bm = 32)
and then periodically round (e.g., br = 32) after intermediate computation steps (e.g., a convolution
layer). One might hope that this will “erase" the errors due to nondeterminism, and prevent them
from accumulating. Unfortunately, simply rounding to the nearest FP32 after each computation
during training is insufficient for determinism. The problem is due to rounding errors that straddle

5

float32 float32 float32

GPU 1 output
(float64)

float32 float32 GPU 2 output
(float64)

float32

Logging Region
(determined via binary search)

float32float32 float32

Rounding

Case A

log:0 log:2

log:0

log:1

log:1 log:1

Case B

Case C

! !
Figure 3: Divergence between outputs on two different GPUs (in FP64) for a given function and
input can result in different rounding choices when rounding to the nearest FP32. We only wish to
log rounding decisions for Case A, where the auditor should copy the trainer’s rounding choice in
order to reach the same value. This requires defining a logging region, determined by a threshold τ ,

the rounding boundary. Consider Case A in Figure 3, which shows a divergence in the output of a
computation using FP64 on two different GPUs. Because the outputs of GPU 1 and 2 are on different
sides of the boundary, rounding to the nearest FP32 results in different values, introducing error.

What if the trainer records their rounding choice (e.g., up, down, none) for every intermediate
computation? The auditor could then copy the trainer’s choice, and therefore round to the exact
same value and successfully control for nondeterminism. However, the auditor should not copy the
trainer’s behavior for every output (see Cases B & C, Figure 3). If a computation output on GPU 1
is too close to the rounded value, then it is possible that GPU 2 is also close in distance but from the
opposite direction. In this case, the auditor should ignore the trainer’s choice. We therefore need to
introduce a threshold τ under which the trainer does not record their rounding choice.

Our method requires upper bounding the divergence ddiv between any two different GPUs for any
intermediate computation f (i.e. difference in outputs for the same input). Let ϵb represent the
distance between two FP32 values, after rounding to br bits of the mantissa (Figure 5) and controlling
for the exponent. We need to select br and τ such that ddiv < ϵbr and ddiv < 2τ (Figure 3). Because
the set of possible FP numbers is finite, there exist optimal bounds for br and τ . In practice, we
find that br ≤ 32 and τ > 0.25 · ϵ32 are sufficient for standard intermediate computations in neural
network training (e.g., convolution, layer norm) in FP64. We study different values for br in Section 6.

5.2 Primitives

We assume both trainer and auditor train models using the IEEE-754 standard FP numbers (Figure 5).
Besides requiring read and write disk I/O operations, we define the following functions:

1. rndbr (x): rounds input x to the nearest FP up to br bits of the mantissa, as shown in Figure 5.
2. log(x, br, τ, f): logs to file f a logging direction c, which is either 0 (down), 1 (ignore), or 2 (up)

depending on threshold τ and rounding amount br, as shown in Algorithm 4.
3. rev(x, br, c): reverses rounding of input x based on logging direction c. If x < rndbr (x) & c = 0,

then return x rounded to the nearest float below x with br precision. If x > rndbr (x) & c = 2,
then return x rounded to the nearest float above x with br precision. Otherwise, do not correct.

4. threshold(l, br, btr): identifies the optimal threshold to log rounding directions (0 or 2) instead of
1, which the rev function ignores, based on the binary search procedure in Section 5.4.

5. hashsha256(θ): creates a SHA-256 hash of provided model weights θ (in bm precision).
6. tree(leaf1, leaf2..., leafn) : create a Merkle tree where each leaf node is the output of hashsha256(θ)

for model weights θ at a given checkpoint, with a checkpointing interval k [Merkle, 1988].

5.3 Training and Auditing

The trainer’s task begins when a client approaches them with dataset D, training specifications
(epochs E, loss function loss, etc.), and a requested model precision bm.The trainer can then choose
a training precision btr > bm, a rounding amount br ≤ bm, and a checkpointing interval k to
periodically store small hashsha256(θ) of model weights θ in a Merkle tree, for efficient comparison
with an eventual auditor. Then, as detailed in Algorithm 1, the trainer can perform training as
normal, but after every intermediate computation (e.g., convolution) perform the rndbr operation on

6

each output. Rounding is applied to computations in both the forward and backward passes. Finally,
either using a fixed threshold τ or a layer-specific optimal τ from the threshold function described
in Section 5.4, the trainer applies log, which logs rounding choices only for the computations an
auditor should copy. The output of the algorithm includes a rounding log file F and the root of the
Merkle tree which, along with the shared randomness R and all training parameters, the trainer can
share with any trusted third-pary auditor who challenges them.

After a client approaches them, the auditor initiates the verification game described in Section 3. To
avoid penalty, the trainer must cooperate by sharing the rounding amount br, randomness R used in
training (e.g., a pseudo-random number generator), the checkpointing interval k, and set of rounding
logs F . The auditor then follows the training procedure and corrects their rounding choice (e.g., up
or down) to match those logged in F using the rev operation, as detailed in Algorithm 2 (Appendix).
By correcting each rounding mismatch during the course of training, the auditor is able to prevent
nondeterminism errors from accumulating. Therefore, the auditor can store the hashsha256(θ) of
model weights θ in a Merkle tree at interval k, knowing that if training was done correctly, the model
weights should be identical to the trainer’s at any timestep. The output of Algorithm 2 is the root of
the auditor’s Merkle tree, which they can use to compare with the trainer’s root.

5.4 Reducing storage cost

Logging rounding decisions for every neural network layer output during training incurs a large
baseline storage cost, and is our main limitation. For dataset D, batch size B, training epochs E, and
model layers Lθ, the upper bound on the total storage cost for verifiable training with our method is:

storage cost (B) = |D| × E ×B × (

L∑
l=1

ol,f +

L∑
l=1

ol,b) (1)

where ol,f and ol,f represent the size of outputs of the forward pass and backward pass of layer
l. Note that the log entries do not need to be kept around in the RAM and can be written straight
to the disk. Moreover, this cost is a one-time cost incurred by the trainer, who in our context is
likely to be a powerful commercial provider with access to such storage capacity. Furthermore, as
we later show in Section 6, for models with many linear layers like Transformer-based language
models (e.g., GPT-2), where parameters significantly outnumber intermediate computations, this
storage cost is significantly smaller than alternative approaches that require saving model weights [Jia
et al., 2021]. Nevertheless, we now describe our method for reducing storage cost by (i) efficiently
encoding rounding logs and (ii) adaptive selection of the threshold τ to reduce the storage costs.

Efficient Encoding: Each log entry is a value from the set 0, 1, 2, as opposed to the FP model weights.
We pack sub-sequences of five log entries into a single byte via a fast GPU-based radix-3 to radix-2
conversion, yielding 1.6 bits/entry storage that is close to the best possible packing of 1.58 bits/entry,
and yields a 77% storage reduction relative to naively storing one log entry per byte.

Adaptive Threshold: Recall that we need to select a threshold τ that controls for whether the trainer
logs a rounding choice, or instead logs 1 which the auditor ignores. The more one can increase
τ , the more 1 values are recorded, which can make rounding logs more compressible (due to long
sequences of 1s). Furthermore, it is possible that the divergence ddiv between outputs on two different
GPUs, given the same input, is function-specific. For example, while convolution requires several
matrix multiplications that might result in a large FP accumulation error, normalization operations
are unlikely to result in large ddiv, and a larger τ can be applied. We develop an efficient algorithm
(Algorithm 3 in the Appendix) to find the optimal value for τ given a particular layer and data of
output values that led to different rounding choices between any two GPUs (e.g., Case A in Figure 3).
For a given rounding amount br and training precision btr, the algorithm performs a binary search
between τ = 0.25 · ϵ32 (our upper bound on the ddiv between two GPUs for any function) and
τ = 0.5 · ϵbr (the rounding boundary). By performing this procedure for the different intermediate
computations in a model, the trainer can hope to better compress the rounding log F .

Merkle Tree Storage: Storing SHA-256 hashes of model weights during training in a Merkle tree
creates an efficient mechanism for the verification game described in Section 3, with negligible
storage requirements. The audit ends when either the trainer withdraws, the auditor confirms that
training was performed correctly, or the auditor can present paths to the two leaves of their Merkle
tree where divergence starts, providing evidence to dispute the trainer.

7

Steps# Steps % Log Entries Ignored % Log Entries Ignored

%
 T

im
e

In
cr

ea
se

%
 Te

st
 L

os
s C

ha
ng

e

Av
g.

 L
2

W
ei

gh
t D

iff
.

Av
g.

 L
2

W
ei

gh
t D

iff
.

a. b. c. d.

Standard Training Simple Rounding Our Method ResNet-50 GPT-2

GPT-2ResNet-50

b=32

b=26

b=32

b=26

b=32

b=26

b=32

b=26

Figure 4: We successfully control for nondeterminism between GPU types for both ResNet-50 (a.)
and GPT-2 (b.) tasks, while standard training and simple rounding without performing rev corrections
result in model divergence over the course of training. Stronger rounding has minimal affect to model
performance (c.), but at the cost of increasing time for trainer (d.).

Table 2: Efficient encoding reduces storage requirements by 77%, and rounding to b = 26 improves
the compression further between 5-20% (values reported for 1 step of training). The original proof-
of–learning protocol from Jia et al. [2021] requires storing 2.78 GB of model weights for GPT-2, or
more than 140x our storage cost, while still incurring statistical error.

ResNet-50 b = 32 ResNet-50 b = 26 GPT-2 b = 32 GPT-2 b = 26
Naive Encoding 456 MB 456 MB 92 MB 92 MB

Efficient Encoding 105 MB 105 MB 22 MB 22 MB
+ Zip Compression 96 MB 91 MB 20 MB 18 MB

6 Empirical Results

We evaluate our verifiable training method on the two large-scale models listed below with all possible
trainer and auditor pairs across NVIDIA GPUs A40, TITAN Xp, and RTX 2080 Ti (see Appendix B
for more details). In Section 6.2, we compare our method with recent proof-based systems.

1. ResNet-50: We train (from random initialization) ResNet-50 (23M) on CIFAR-10 with dataset
size 50K & batch size B=64. Test accuracy = 90.7% after 100 epochs training on Titan RTX Ti.

2. GPT-2: We finetune GPT-2 (117M) on a corpus of Shakespeare text with dataset size 1.1M tokens,
batch size B=8, and sequence length 64. Perplexity = 4.22 after 1 epoch training on Titan RTX Ti.

Figure 2 shows that nondeterminism due to GPU architecture exists for both tasks. While we can
repeatedly obtain identical results across training runs on the same GPU architecture, training on
different GPU architectures results in fundamentally different models.

6.1 Implementation and Findings

We implement our verifiable training method entirely on top of the pytorch framework, with torch
version 1.13.1 and CUDA version 11.7. The intermediate computations we apply rndb to are layers
(e.g., torch.nn.Conv2D) in the model’s computation graph. Rounding-related operations (rnd
and rev) either using casting or FP functions (e.g., torch.nextafter) that can run on the GPU,
thus having little impact on computational speed. Because we observed that the torch.randn
operation used for dropout in GPT-2 is non-deterministic for long inputs (even for the same seed, see
Appendix I), we implement our own dropout as our method requires shared randomness R.

Successful control for non-determinism: Our method completely eliminates non-determinism
between full training runs of both for both the ResNet-50 training and GPT-2 fine-tuning tasks across
all possible trainer and auditor pairs between the A40, Titan XP, and RTX 2080 Ti GPUs. As
Figure 4 shows, standard FP32 training results in an increasing divergence (l2-distance of weights)
between models on different GPUs over the course of training. Furthermore, we show the simple
approach of training in FP64 and rounding to FP32 after every intermediate computation, but without
the auditor correcting rounding decisions with rev, fails to mitigate this issue. Only our method,
in which the auditor follows the rounding decisions (br = 32) made by the trainer for every
intermediate computation, eliminates non-determinism and persists over time. Our implementation,
which requires disk I/O during training to store the rounding decisions, results in a small increase
in training time for the trainer (1.2-1.4x) and auditor (1.3-1.7x) using a non-optimized, protoype
implementation (Table 5). We report the storage requirements of our method in Table 2, showing

8

Table 3: Average # of rev corrections performed by auditor per training step. Even at b = 32,
auditing only requires 20-25 corrections (2e-6 to 9e-6% of samples) per training step.

ResNet-50 b = 32 b = 31 b = 30 b = 29 b = 28 b = 27 b = 26
Forward 15± 3 6± 2 3± 1 3± 1 0 0 0

Backward 10± 0.6 6± 0.6 2± 1 0.7± 0.7 0± 0 0± 0 0± 0

GPT-2 b = 32 b = 31 b = 30 b = 29 b = 28 b = 27 b = 26
Forward 2± 0.7 2.3± 0.8 2.2± 0.4 0.2± 0.2 0.4± 0.2 0± 0 0± 0

Backward 19± 13 0.75± 0.3 1.2± 0.4 0.2± 0.2 0.± 0.0 0± 0 0± 0
Table 4: Adaptive thresholds identified for different operations using Algorithm 3 with b = 32.

2D Convolution Batch Norm Linear Layer Norm
Dimension 256 (1,1) (128, 128, 16, 16) (768,768) (768,1)

τ 0.305 ∗ 2−23 0.499 ∗ 2−23 0.465 ∗ 2−23 0.499 ∗ 2−23

that our efficient encoding scheme reduces the size of the trainer’s rounding logs by 77%, relative to
naive logging. Because the Merkle tree stores 32-byte SHA-256 hashes, its overall size (KBs) and
creation time are negligible and not reported. Finally, we show that decreasing the rounding amount b
to values even as low as 26 has little effect on model performance (we observe no change in accuracy,
so report test loss), but increase training time (Figure 4). We observe that smaller values of b do allow
more log entries to be ignored, improving compression of the file, which we discuss next.

Compression with adaptive threshold: Our approach outperforms (Table 2) the storage costs of
proof-of-learning protocols that save model weights for GPT-2 (2.78GB), which has many linear
layers – we observe more than 140x reduction relative to the approach in Jia et al. [2021]. We
further reduce the storage cost of our method by decreasing the rounding amount b and implementing
the adaptive thresholding strategy (Section 5.4). Table 4 reports adaptive thresholds τ for four
different pytorch layers at rounding amount br = 32. Convolutions require the lowest τ , indicating
larger divergence in outputs between GPU types, which is expected due to the large # of matrix
multiplications. Meanwhile, τ is higher for normalization layers, likely due to smaller divergences
between GPU types. Because adaptive thresholding seeks to reduce the # of times rounding decisions
(0 and 2) are logged and improve log file compression, we report storage cost after zip compression
in Table 2. As expected, more aggressive rounding (which results in a higher τ) improves the
compression rate. Although the compression gains are mild in comparison to our encoding step, they
build-up over the course of training. Finally, we report the average # of rev corrections an auditor
needs to perform for one training step in our two tasks (Table 3). These values are surprisingly
small in comparison to the # of operations logged – only a maximum of 2e-6% (ResNet-50) and
9e-6% (GPT-2) of logged values, are actually needed by the auditor! We also observe that severe
rounding (e.g., b = 27) completely eliminated the hardware non-determinism for our tasks, requiring
no corrections from the auditor. This shows a huge gap between the # of values currently saved by
the trainer and those needed by the auditor, motivating an exciting future possibility of significantly
reducing the storage cost of our method if we could reliably predict when a divergence will not occur.

6.2 Comparison with alternative approaches

Logistic Regression: Garg et al. [2023] recently proposed a zero-knowledge proof-based system
for verifiable training of a logistic regression, which importantly does not leak information about
the client’s data or require a trusted third-party auditor, unlike our work. However, since verifiable
training itself is motivated by a client not having sufficient resources to train the model, it is crucial to
consider the implications of scale. The authors report the prover time and proof size requirements
for one training pass of logistic regression on a dataset of 218 items, with 1024 dimensions and a
batch size of 2014, as 72 seconds (training and proof generation time) and 350 MB respectively. We
replicate this training task, and find that our method significantly improves upon both storage and
time requirements, requiring only 106 KB and 7 seconds (both training and auditing). Furthermore,
because Garg et al. [2023] do not report the duration of “offline phase” of their method, their reported
value is a lower bound on the actual time required. Finally, we note that the original proof-of-learning
protocol from Jia et al. [2021], which also considers a trusted third-party, would require 9.2 MB per
training step to store all model weights. Therefore, our method is at least 85x more space efficient.

VGG-11: Concurrent to this work, Abbaszadeh et al. [2024] introduce a zero-knowledge proof-
of-training protocol for deep neural networks, presenting results for one batch step of training for

9

a simplified version of the VGG-11 model with 10M parameters, which is less than the original
VGG-11 network and ResNet-50 [Simonyan and Zisserman, 2015]. While the authors do not provide
architectural details, we can assume that increasing the # of parameters to the original VGG-11 would
only increase their reported proof time and size. We, therefore, compare their reported values with an
implementation of our method for the same task of verifying the training of VGG-11 on CIFAR-10
with a batch size of 16. While their use of incrementally verifiable computation leads to tractable
proof size (1.36MB vs. the 1.2MB per iteration cost of our method), Abbaszadeh et al. [2024]’s
method requires 22 min. per training iteration. In comparison, our method requires training and
auditing times of only 6 sec. per iteration and is significantly more efficient (factor of 220x), an
important consideration for model training as a commercial service.

Finally, in Appendix Section J, we compare our results with an adaption of Gupta et al. [2023]’s
protocol for secure inference of GPT-2. Compared with our method’s storage cost (18MB) and
training time (11s for training, 13.5s for auditing), scaling Gupta et al. [2023]’s protocol for training
would introduce around a 10,000x data and 40x time overhead. While proof-based systems provide
strong security guarantees without a third party, they do so at the cost of relying on hard-to-scale
cryptographic techniques, as well as approximating non-linear functions that can harm performance.

7 Security Analysis

Our work makes a 1-of-n honesty assumption, i.e., as long as one of n auditors is honest, any attack
from a malicious trainer that results in diverging model weights will be detected. One consideration is
the potential manipulation of the rounding logs by an adversarial trainer who could select rounding
decisions that achieve a desired outcome, and which the auditor would follow. Concretely, let us
define our threat model so that the trainer knows an auditor’s GPU a priori. Recall that an auditor
only copies the trainer’s rounding decision in Case A in Figure 3, when both GPUs compute values
close to the rounding boundary. Under this threat model, the trainer can identify the n steps where
the auditor is close to the boundary (as in Case A), enumerate the set of 2n different models that
result from different rounding decisions, and selectively pick a model that exhibits a desired property.

However, the trainer cannot use this strategy to embed an arbitrary property (e.g., a specific backdoor).
It can only select from the set of models that differ in certain rounding decisions, which all require
the trainer to use the correct training specifications accepted by the client (such as exact training
data & hyperparameters). Furthermore, since the expected # of divergences between the trainer and
the auditor is extremely small (see Table 3), the set of possible models where an auditor would not
detect an attack (e.g., many rev ops) is limited. Finally, we show in Table 6 in the appendix that
the divergence (measured both as ℓ2-norm between model weights and output distributions) due to
GPU non-determinism is significantly less than the divergence due to data ordering during training.
Therefore, if a client will accept a model trained with any random ordering of the data during training,
then it is unlikely that an adversarial trainer — that can only alter rounding decisions — could
produce a model that the client would not accept. Nevertheless, fully understanding the model
properties obtained by manipulating rounding logs adversarially is an important future direction.

8 Limitations and Future Work

Our verifiable training scheme successfully controls for hardware nondeterminism. It expands the
pool of potential auditors of a model training service, allowing us to envision a world where a client
can even use two competing service providers it trusts to audit each other. Relative to proof-based
systems, a limitation is the need for all parties to trust the third-party auditor. If the trainer provides
finetuning services on top of closed-source models (e.g., OpenAI), then our scheme will only work
for the third-party auditors that the trainer is willing to share model weights with. Other limitations
included the added latency of training in higher precision and the storage cost. While we have
shown that our method requires significantly less storage than alternatives, the vast majority of stored
rounding decisions are not used by the auditor and are therefore unnecessary (Section 6). Therefore,
an exciting direction for future work is to mitigate this gap by better predicting when GPU divergence
between computations occurs. Recent work has similarly argued for a stronger profile of noise during
training in the context of verification [Fang et al., 2023]. Finally, another direction for future work
includes adapting our method for distributed training [Li et al., 2020].

10

9 Acknowledgements

We thank Bill Dally, Duncan Riach, Gabriel Poesia, and Chris Ré for helpful discussion and feedback.
Megha Srivastava was supported by an IBM PhD Fellowship and the NSF Graduate Research
Fellowship Program under Grant No. DGE-1656518. In addition, this work was funded by NSF,
DARPA, the Simons Foundation, UBRI, and NTT Research. Opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of DARPA.

References
Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo Villalobos. Compute

trends across three eras of machine learning. In 2022 International Joint Conference on Neural Networks
(IJCNN). IEEE, July 2022. doi: 10.1109/ijcnn55064.2022.9891914. URL http://dx.doi.org/10.1109/
IJCNN55064.2022.9891914.

Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during instruction tuning,
2023.

Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable backdoors in
machine learning models, 2022.

Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convolutional neural network
predictions and accuracy. Cryptology ePrint Archive, Paper 2021/673, 2021. URL https://eprint.iacr.
org/2021/673. https://eprint.iacr.org/2021/673.

Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-Vamsi Policharla,
and Mingyuan Wang. Experimenting with zero-knowledge proofs of training. Cryptology ePrint Archive,
Paper 2023/1345, 2023. URL https://eprint.iacr.org/2023/1345. https://eprint.iacr.org/
2023/1345.

Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. Cryptology ePrint Archive, Paper 2022/1608, 2022. URL
https://eprint.iacr.org/2022/1608. https://eprint.iacr.org/2022/1608.

Jason Teutsch and Christian Reitwießner. A scalable verification solution for blockchains. CoRR, abs/1908.04756,
2019. URL http://arxiv.org/abs/1908.04756.

Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie Dullerud, Anvith Thudi, Varun
Chandrasekaran, and Nicolas Papernot. Proof-of-learning: Definitions and practice. CoRR, abs/2103.05633,
2021. URL https://arxiv.org/abs/2103.05633.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable algorithmic
definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX Security 22), pages
4007–4022, Boston, MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1. URL https:
//www.usenix.org/conference/usenixsecurity22/presentation/thudi.

Congyu Fang, Hengrui Jia, Anvith Thudi, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie
Dullerud, Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning is currently more broken than you
think, 2023.

Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance,
editor, Advances in Cryptology — CRYPTO ’87, pages 369–378, Berlin, Heidelberg, 1988. Springer Berlin
Heidelberg. ISBN 978-3-540-48184-3.

Nicholas Carlini, Matthew Jagielski, Christopher A. Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum
Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning web-scale training datasets is
practical, 2023.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data sanitization
defenses, 2021.

Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20-22 November 1994, pages 436–453. IEEE Computer Society, 1994. doi:
10.1109/SFCS.1994.365746. URL https://doi.org/10.1109/SFCS.1994.365746.

11

http://dx.doi.org/10.1109/IJCNN55064.2022.9891914
http://dx.doi.org/10.1109/IJCNN55064.2022.9891914
https://eprint.iacr.org/2021/673
https://eprint.iacr.org/2021/673
https://eprint.iacr.org/2021/673
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2022/1608
https://eprint.iacr.org/2022/1608
http://arxiv.org/abs/1908.04756
https://arxiv.org/abs/2103.05633
https://www.usenix.org/conference/usenixsecurity22/presentation/thudi
https://www.usenix.org/conference/usenixsecurity22/presentation/thudi
https://doi.org/10.1109/SFCS.1994.365746

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In Innovations in Theoretical Computer Science
(ITCS), pages 326–349. ACM, 2012.

Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional neural network based
on zk-snarks. Cryptology ePrint Archive, Paper 2020/584, 2020. URL https://eprint.iacr.org/2020/
584. https://eprint.iacr.org/2020/584.

Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling up trustless dnn inference with zero-
knowledge proofs, 2022.

Kasra Abbaszadeh, Christodoulos Pappas, Dimitrios Papadopoulos, and Jonathan Katz. Zero-knowledge
proofs of training for deep neural networks. Cryptology ePrint Archive, Paper 2024/162, 2024. URL
https://eprint.iacr.org/2024/162. https://eprint.iacr.org/2024/162.

Gobikrishna Dhanuskodi, Sudeshna Guha, Vidhya Krishnan, Aruna Manjunatha, Rob Nertney, Michael
O’Connor, and Phil Rogers. Creating the first confidential gpus. Commun. ACM, 67(1):60–67, dec 2023.
ISSN 0001-0782. doi: 10.1145/3626827. URL https://doi.org/10.1145/3626827.

Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published attacks on intel sgx,
2020.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX
kingdom with transient Out-of-Order execution. In 27th USENIX Security Symposium (USENIX Security
18), page 991–1008, Baltimore, MD, August 2018. USENIX Association. ISBN 978-1-939133-04-5. URL
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck.

Zhifeng Kong, Amrita Roy Chowdhury, and Kamalika Chaudhuri. Can membership inferencing be refuted?,
2023.

Dami Choi, Yonadav Shavit, and David Duvenaud. Tools for verifying neural models’ training data. In Neural
Information Processing Systems, 2023.

Hadi Jooybar, Wilson W. L. Fung, Mike O’Connor, Joseph Devietti, and Tor M. Aamodt. Gpudet: a deterministic
gpu architecture. In ASPLOS ’13: Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems, 2013.

David Defour and Caroline Collange. Reproducible floating-point atomic addition in data-parallel environment.
In Proc. of the Federated Conference on Computer Science and Information Systems, 2015.

Yuan Hsi Chou, Christopher Ng, Shaylin Cattell, Jeremy Intan, Matthew D. Sinclair, Joseph Devietti, Timothy G.
Rogers, and Tor M. Aamodt. Deterministic atomic buffering. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020.

TensorFlow. Tensorflow 2.8.0-rc0, 2021. URL https://github.com/tensorflow/tensorflow/
releases/tag/v2.8.0-rc0.

Donglin Zhuang, Xingyao Zhang, Shuaiwen Leon Song, and Sara Hooker. Randomness in neural network
training: Characterizing the impact of tooling. In arXiv:2106.11872v1, 2021.

Matt Crane. Questionable answers in question answering research: Reproducibility and variability of published
results. Transactions of the Association for Computational Linguistics, 6:241–252, 2018a. doi: 10.1162/tacl_
a_00018. URL https://aclanthology.org/Q18-1018.

NVIDIA. Determinism across gpu architectures, 2022. URL https://github.com/NVIDIA/
framework-reproducibility/issues/28.

Matt Crane. Questionable answers in question answering research: Reproducibility and variability of published
results. Transactions of the Association for Computational Linguistics, 6:241–252, 2018b. doi: 10.1162/tacl_
a_00018. URL https://aclanthology.org/Q18-1018.

Megha Srivastava, Besmira Nushi, Ece Kamar, Shital Shah, and Eric Horvitz. An empirical analysis of backward
compatibility in machine learning systems, 2020.

William Kahan. Further remarks on reducing truncation errors, 1965. URL https://dl.acm.org/doi/pdf/
10.1145/363707.363723.

12

https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162
https://doi.org/10.1145/3626827
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://github.com/tensorflow/tensorflow/releases/tag/v2.8.0-rc0
https://github.com/tensorflow/tensorflow/releases/tag/v2.8.0-rc0
https://aclanthology.org/Q18-1018
https://github.com/NVIDIA/framework-reproducibility/issues/28
https://github.com/NVIDIA/framework-reproducibility/issues/28
https://aclanthology.org/Q18-1018
https://dl.acm.org/doi/pdf/10.1145/363707.363723
https://dl.acm.org/doi/pdf/10.1145/363707.363723

1 1 0 1 1 0 0 1 1 0 0 1 1…

1 1 0 1 1 0 0 1 1 0 0 1 0

1 1 0 1 1 0 0 1 1 0 0 0 0

Exponent
8 bits

Sign
1 bits

Mantissa
23 bits

round (b=31)

round (b=30)

round (b=32)

IEEE 754 Floating Point Standard

…

…

Figure 5: We define rounding to b bits as rounding to the nearest 32-bit FP number that has 0s in the
last 32− b bits of the mantissa, after accounting for the exponent.

Nathan Whitehead and Alex Fit-Florea. Precision & performance: Floating point and ieee 754 compliance
for nvidia gpus, 2011. URL https://developer.nvidia.com/sites/default/files/akamai/cuda/
files/NVIDIA-CUDA-Floating-Point.pdf.

NVIDIA. Cuda: Hopper tuning guide, 2023. URL https://docs.nvidia.com/cuda/pdf/Hopper_
Tuning_Guide.pdf.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition,
2015.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar, and Rahul
Sharma. Sigma: Secure gpt inference with function secret sharing. Cryptology ePrint Archive, Paper
2023/1269, 2023. URL https://eprint.iacr.org/2023/1269. https://eprint.iacr.org/2023/
1269.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: experiences on accelerating
data parallel training. Proc. VLDB Endow., 13(12):3005–3018, August 2020. ISSN 2150-8097. doi:
10.14778/3415478.3415530. URL https://doi.org/10.14778/3415478.3415530.

A IEEE Floating Point Image

See Figure 5.

B GPU Details

All experiments reported in our paper are run with the following three GPUs:

• NVIDIA Titan XP: 3840 Cores, 12 GB
• NVIDIA RTX 2080 Ti: 4352 Cores, 11 GB
• NVIDIA A40: 10752 Cores, 48 GB

We are able to successfully replicate training runs between all pairs of these 3 GPUs.

C Logging Algorithm

See Algorithm 4

D Train Algorithm

See Algorithm 1.

E Audit Algorithm

See Algorithm 2.

13

https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://docs.nvidia.com/cuda/pdf/Hopper_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Hopper_Tuning_Guide.pdf
https://eprint.iacr.org/2023/1269
https://eprint.iacr.org/2023/1269
https://eprint.iacr.org/2023/1269
https://doi.org/10.14778/3415478.3415530

F Adaptive Thresholding Algorithm

See Algorithm 3.

G Time Requirements

See Table 5.

H Model Divergence Comparison

See Table 6.

I Random Number Generation

Our verifiable training scheme requires shared randomness between the trainer and auditor, which is
used for deciding input data batching, weight initialization, and operations such as dropout (randomly
setting outputs to zero). More formally, our scheme requires sharing the same random seed and
pseudo-random generator. However, in our implementation based on pytorch (assuming the same
software version between trainer and auditor), we chose to rely on the the torch random seed
functionality. While this successfully controls for batch input ordering and weight initialization, it is
unfortunately not sufficient for random number generation, as operations such as torch.nn.randn()
leverage parallelism when the requested # of values is higher than a certain amount. Specifically, we
found that across T40, RTX 2080 Ti, V100, A40, and A100, given the same seed, torch.randint()
produces identical tensors onlt up to size 40960. At size 40961, T40 (which is an older GPU)
deviated from the rest. Likewise, at size 69633, 2080 Ti deviated from the rest, and so on. Based on
these observations, we arranged for calls to torch.randint() in the dropout layer (which is the only
operation using large random tensors in our tasks) to be replaced by generating and concatenating
multiple random tensors of size 40960 or less. Specifically, a random tensor of size n > 40960 is
generated by concatenating (n//40960) random tensors of size 40960 and one random tensor of
size (n%40960). However, we emphasize that it is therefore important in our scheme either for both
parties to implement this change a priori, or simply use an external source for pseudorandomness.

J Comparison with GPT-2 Inference

The previously discussed proof-based systems for verifiable training by-pass the need for a third-
party auditor, but very few efficient systems exist in the literature. Many more works study secure
inference of deep neural networks, which could be used to construct verifiable training protocols
with stronger security guarantees than ours (e.g., allowing a trainer to keep a proprietary model’s
weights private), but come at a significant cost to performance and resources. To demonstrate this, we
consider adapting Gupta et al. [2023]’s protocol for secure inference of GPT-2 based on multi-party
computation, to our context of verifiable training. Gupta et al. [2023] show how two parties, the client
with private data and the trainer, can jointly compute the forward pass of a known model architecture
without revealing additional information beyond the model output to each other. Because they report
the the communication overhead P = 0.37GB and time T = 0.96 seconds for one forward pass
on a single data input, we can calculate 2 × P ×D × E = 189 GB and 2 × T ×D × E = 983
seconds as estimated communication cost and time, respectively, for 1 step of training in out GPT-2
task, where 2 considers both the forward and backward pass. Compared with our method’s required
storage cost (18MB) and training time (11s for training, 13.5 seconds for auditing), scaling Gupta
et al. [2023]’s protocol for training would introduce around a 10,000x data and 40x time overhead.

14

Algorithm 1 train

INPUT: dataset D, epochs E, batch size B, shared randomness R, model Wθ, loss function loss,
rounding amount br, training precision btr, target model precision bm, checkpointing interval k
OUTPUT: Merkle tree root Mroot, rounding log file F

1: F,Mleaves ← create empty file and leaf list
2: Wθ ← init(R, btr) //initialize weights
3: T ← D∗E

B
4: for t = 1...T do
5: input← batch(R,D,B) // get data batch

// forward pass
6: for layer lθ ∈Wθ.layers do
7: output← lθ(input)
8: τ ← threshold(lθ, br, btr) //set threshold
9: log(output, br, τ, F)

10: output← rndbr (output)
11: input← output
12: end for
13: loss← loss(output)
14: // backward pass, reversed layers
15: grad_output← ∇loss

16: for layer lθ ∈Wθ.layers do
17: grad_input← ∇lθ (grad_output)
18: τ ← threshold(∇lθ , br, btr)
19: log(grad_input, br, τ, F)
20: grad_input← rndbr (grad_input)
21: grad_output← grad_input
22: end for
23: θ ← update update weights
24: if t mod k = 0 then
25: Mleaves.append(hashsha256(θ in precision bm))
26: end if
27: end for
28: Mroot ← tree(Mleaves) // create Merkle tree
29: return F,Mroot, and model Wθ in target precision bm

Table 5: Training time requirements, including Merkle tree operations (at k = 5), for 1 step of training
broken down by stage of our verifiable training process. Note that reported times are specific to the
particular dataset, batch size, and task, and using a non-optimized prototype codebase – therefore the
relative increase is time is more important.

ResNet-50 GPT-2
Original (No Rounding or Disk I/O) 24s 8s

Trainer 28s 11s
Auditor 31s 13.5

Table 6: Comparison of model divergence due to data ordering versus GPU non-determinism.
Reported numbers are averaged between 10 pairs of models, error bars are standard deviation.

Metric Data Ordering GPU Non-determinism
l2 weight difference 133.2± 9 1.1± 0.07
l2 output distance 5.3± 0.03 0.26± 0.02

15

Algorithm 2 audit

INPUT: dataset D, epochs E, batch size B, shared randomness R, model Wθ, loss function loss,
rounding amount br, training precision btr, target model precision bm, checkpointing interval k, log
file F from trainer
OUTPUT: Merkle tree root Mroot

1: Mleaves ← create empty leaf list
2: Wθ ← init(R, btr) //initialize weights
3: T ← D∗E

B
4: for t = 1...T do
5: input← batch(R,D,B) // get data batch

// forward pass
6: for layer lθ ∈Wθ.layers do
7: output← lθ(input)
8: for outputi ∈ output do
9: // Match trainer rounding

10: c← read(outputi, F)
11: outputi ← rev(outputi, br, c)
12: end for
13: input← output
14: end for
15: loss← loss(output)
16: // backward pass
17: grad_output← ∇loss

18: for layer lθ ∈Wθ.layers do
19: grad_input← ∇lθ (grad_output)
20: for grad_inputi ∈ grad_input do
21: // Match trainer rounding
22: c← read(grad_inputi, F)
23: grad_inputi ← rev(grad_inputi, br, c)
24: end for
25: grad_output← grad_input
26: end for
27: θ ← update update weights
28: if t mod k = 0 then
29: Mleaves.append(hashsha256(θ in precision bm))
30: end if
31: end for
32: Mroot ← tree(Mleaves) // create Merkle tree
33: return Mroot

16

Algorithm 3 threshold

INPUT: layer l, rounding amount br, training precision btr
OUTPUT: threshold τ

1: P ← initialize empty list
2: N,T ← initialize large # of data points and iterations
3: for i=1...N do
4: GPU1, GPU2← select two different GPU architectures
5: x← select random input for layer l in btr floating-point precision
6: y1 ← lGPU1(x), y2 ← lGPU2(x), apply layer l on input x on each GPU
7: if rndbr (y1) ̸= rndbr (y2) then
8: if y1 > rndbr (y1) and y2 < rndbr (y2) then
9: P.append(|y1 − rndbr (y1)|)

10: P.append(|y2 − rndbr (y2)|)
11: end if
12: if y1 < rndbr (y1) and y2 > rndbr (y2) then
13: P.append(|y1 − rndbr (y1)|)
14: P.append(|y2 − rndbr (y2)|)
15: end if
16: end if
17: end for
18: //binary search to select threshold
19: lower, upper, τ ← 0.25 ∗ (2−23), 0.5 ∗ (29−br), 0
20: for t=1...T do
21: τ ← (lower + upper)/2
22: success← True
23: for pi ∈ P do
24: exp←get exponent of pi
25: if pi < exp ∗τ then
26: success← False
27: end if
28: end for
29: if success then
30: lower ← τ
31: else
32: upper ← τ
33: end if
34: end for
35: return τ

Algorithm 4 log

INPUT: value x, rounding amount br, threshold τ , file F

1: exp← get exponent of x
2: if |x− rndbr (x)| > exp ∗τ and x < rndbr (x) then
3: write(2, F) // log rounding up
4: else if |x− rndbr (x)| > exp ∗τ and x > rndbr (x) then
5: write(0, F) // log rounding down
6: else
7: write(1, F) // log rounding ignore
8: end if

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:[Yes]

Justification: See Limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

18

Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: See Experiments and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]
Justification: Code will be released in public version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Experiments and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiment results have variation necessitating statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix for GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Security Analysis.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

21

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

22

paperswithcode.com/datasets

Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related Works
	Set-Up: The Verification Game
	The Nondeterminism Challenge
	Method Overview
	Accumulation Errors Start at Higher Precision Bits
	Primitives
	Training and Auditing
	Reducing storage cost

	Empirical Results
	Implementation and Findings
	Comparison with alternative approaches

	Security Analysis
	Limitations and Future Work
	Acknowledgements
	IEEE Floating Point Image
	GPU Details
	Logging Algorithm
	Train Algorithm
	Audit Algorithm
	Adaptive Thresholding Algorithm
	Time Requirements
	Model Divergence Comparison
	Random Number Generation
	Comparison with GPT-2 Inference

