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Abstract

Recent breakthroughs in singing voice syn-001
thesis (SVS) have heightened the demand for002
high-quality annotated datasets, yet manual an-003
notation remains prohibitively labor-intensive004
and resource-intensive. Existing automatic005
singing annotation (ASA) methods, however,006
primarily tackle isolated aspects of the anno-007
tation pipeline. To address this fundamental008
challenge, we present STARS, which is, to009
our knowledge, the first unified framework010
that simultaneously addresses singing transcrip-011
tion, alignment, and refined style annotation.012
Our framework delivers comprehensive multi-013
level annotations encompassing: (1) precise014
phoneme-audio alignment, (2) robust note tran-015
scription and temporal localization, (3) ex-016
pressive vocal technique identification, and (4)017
global stylistic characterization including emo-018
tion and pace. The proposed architecture em-019
ploys hierarchical acoustic feature processing020
across frame, word, phoneme, note, and sen-021
tence levels. The novel non-autoregressive022
local acoustic encoders enable structured hi-023
erarchical representation learning. Experi-024
mental validation confirms the framework’s025
superior performance across multiple evalu-026
ation dimensions compared to existing anno-027
tation approaches. Furthermore, applications028
in SVS training demonstrate that models uti-029
lizing STARS-annotated data achieve signif-030
icantly enhanced perceptual naturalness and031
precise style control. This work not only over-032
comes critical scalability challenges in the cre-033
ation of singing datasets but also pioneers new034
methodologies for controllable singing voice035
synthesis. Audio samples are available at036
https://demo-stars.github.io.037

1 Introduction038

Automatic Singing Annotation (ASA) constitutes039

the computational process of extracting key vo-040

cal features from singing recordings, encompass-041

ing phonetic transcriptions (phoneme alignment),042

MIDI note parameters (pitch/duration), and stylis- 043

tic attributes (emotion/technique). As the corner- 044

stone of modern singing voice synthesis (SVS) 045

systems, ASA provides fine-grained, multi-level 046

annotated data for training expressive and con- 047

trollable singing synthesis models. While recent 048

breakthroughs in generative models and control- 049

lable SVS frameworks (Resna and Rajan, 2023; 050

Kim et al., 2023) have dramatically improved the 051

quality of generated singing voices, they have also 052

paradoxically exposed a critical bottleneck: the 053

scarcity of high-quality annotated singing corpora. 054

Traditional annotation workflows require labor- 055

intensive manual processing by audio engineers 056

and musicians, making large-scale dataset creation 057

both costly and time-consuming. While some 058

open-source singing datasets such as OpenCpop 059

(Wang et al., 2022b) and VocalSet (Wilkins et al., 060

2018) have attempted to alleviate this burden, their 061

annotations are limited to basic phonetic or vo- 062

cal technique information. Recent datasets like 063

GTSinger (Zhang et al., 2024b) have made signif- 064

icant progress by incorporating a wider range of 065

annotations—from basic phoneme and note anno- 066

tations to various singing techniques and global 067

styles. However, the volume of data remains insuf- 068

ficient compared to the scale of speech corpora. 069

Modern SVS systems require multi-level an- 070

notation precision across four key dimensions: 071

(1) microsecond-aligned phoneme boundaries for 072

prosody modeling; (2) accurate MIDI note tim- 073

ing/pitch for melody preservation; (3) phone-level 074

vocal technique recognition (e.g., vibrato, falsetto); 075

and (4) global stylistic attributes (emotion, pace). 076

As shown in Figure 1, traditional solutions em- 077

ploy fragmented toolchains—combining ASR sys- 078

tems like WhisperX (Bain et al., 2023) and Qwen- 079

Audio (Chu et al., 2024) for lyric transcription, 080

MFA (McAuliffe et al., 2017) for forced alignment, 081

and pitch trackers like VOCANO (Hsu et al., 2021) 082

and MusicYOLO (Wang et al., 2022a). This patch- 083
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work approach introduces cascading errors from084

tool mismatches while failing to capture expressive085

vocal styles. Such disjointed processes hinder the086

creation of large, high-quality annotated singing087

datasets necessary for cutting-edge SVS models.088

To overcome these challenges, we propose089

STARS, a unified framework for multi-level090

singing voice annotation that streamlines the entire091

process. STARS offers three key innovations: (1)092

A multi-level architecture for extracting singing in-093

formation at various granularities, covering frame,094

word, phoneme, note, and sentence levels; (2) A095

local acoustic encoder, in conjunction with a CU-096

MEncoder and vector quantization, that extracts097

acoustic features at multiple levels; and (3) A multi-098

task automated annotation pipeline that sequen-099

tially predicts phoneme boundaries, note bound-100

aries, pitch, phone-level techniques, and global101

stylistic attributes. We demonstrate the effective-102

ness of STARS through comprehensive evalua-103

tions across multiple ASA tasks. Our framework104

achieves superior performance in phoneme align-105

ment accuracy and note prediction precision. When106

applied to SVS model training, STARS-annotated107

data yields significant improvements in synthesized108

voice naturalness and style control accuracy.109

• We propose STARS, the first unified frame-110

work for Singing Transcription, Alignment,111

and Refined Style Annotation.112

• We design a five-level unified architecture113

with specialized acoustic encoders for hier-114

archical feature filtering and extraction.115

• We implement parallel prediction strategies116

for phoneme/note boundaries and pitch esti-117

mation, enhanced through phone-level tech-118

nique and global style detection.119

• Through training SVS models with our anno-120

tations, we demonstrate the practical utility of121

STARS in achieving superior singing vocal122

naturalness and precise style control.123

2 Related Works124

2.1 Singing Voice Synthesis125

Singing Voice Synthesis (SVS) aims to generate ex-126

pressive singing voices from musical scores. Early127

models such as XiaoiceSing (Lu et al., 2020) adopt128

non-autoregressive acoustic architectures inspired129

by FastSpeech (Ren et al., 2019). Subsequent work,130

ViSinger (Zhang et al., 2022), employs VITS (Kim 131

et al., 2021) to establish an end-to-end SVS frame- 132

work. Generative adversarial networks (Wu and 133

Luan, 2020; Huang et al., 2022b) and diffusion 134

models (Liu et al., 2022) have also been applied 135

to enhance audio fidelity. Controllable SVS fo- 136

cuses on manipulating vocal attributes including 137

timbre, emotion, and style to achieve more expres- 138

sive performances. Resna and Rajan (2023) de- 139

velops a multi-singer framework for cross-voice 140

synthesis. Muse-SVS (Kim et al., 2023) enables 141

precise control over pitch, energy, and phoneme 142

duration to express different emotional intensities. 143

Prompt-Singer (Wang et al., 2024) introduces natu- 144

ral language prompts to achieve fine-grained con- 145

trol over singing voices. To mitigate data scarcity, 146

DeepSinger (Ren et al., 2020) constructs a large- 147

scale corpus by mining singing data from online 148

sources. Additionally, OpenCpop (Wang et al., 149

2022b) and GTSinger (Zhang et al., 2024b) pro- 150

vide publicly available corpora with manually anno- 151

tated singing recordings. Nevertheless, the limited 152

availability of high-quality singing data remains a 153

critical bottleneck compared to speech resources. 154

2.2 Automatic Singing Annotation 155

Automatic Singing Annotation (ASA) includes 156

tasks such as lyric alignment, note estimation and 157

segmentation, and vocal technique and style anno- 158

tation. The MFA (McAuliffe et al., 2017) is a con- 159

ventional approach for lyric alignment. However, 160

singing voice alignment remains challenging due to 161

the large variations in phoneme durations and rhyth- 162

mic structures. Several studies (Wang et al., 2023; 163

Huang et al., 2022a) adopt Viterbi forced alignment 164

(Forney, 1973) to improve the accuracy of aligning 165

posteriograms with lyrics. For note estimation, VO- 166

CANO (Hsu et al., 2021) and MusicYOLO (Wang 167

et al., 2022a) directly predict the pitch and dura- 168

tion of musical notes. ROSVOT (Li et al., 2024) 169

incorporates phoneme boundary priors to achieve 170

MIDI note prediction. SongTrans (Wu et al., 2024) 171

builds upon the Whisper model and adopts a hy- 172

brid autoregressive and non-autoregressive frame- 173

work for phoneme and note annotation. MusCaps 174

(Manco et al., 2021) leverages a language model 175

to generate music captions, but its effectiveness is 176

limited for singing voice recordings without back- 177

ground music. Despite these advancements, exist- 178

ing ASA methods remain fragmented, requiring 179

separate models and manual integration. 180
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STARS vs. Traditional Stepwise Pipeline

Figure 1: STARS vs. Traditional Stepwise Pipeline. Conventional stepwise processing requires sequential execution
of text alignment, note transcription, and manual technique and style annotation, with error propagation across
cascaded modules. STARS establishes unified acoustic-linguistic modeling for simultaneous phoneme, MIDI,
technique, and style prediction, eliminating error accumulation via end-to-end joint optimization.

3 STARS181

3.1 Problem Formulation182

Typically, a Mel-spectrogram M ∈ RT×F is de-183

rived from the audio signal using the short-time184

Fourier transform (STFT), where T denotes the185

number of frames and F the number of frequency186

bins. Let the phoneme sequence be represented as187

p = [p1, p2, . . . , pLp ], where Lp is the number of188

phonemes. In addition to predicting the phoneme189

sequence, the model is required to predict the cor-190

responding boundaries for each phoneme, repre-191

sented as ph_bd = [pbd1, pbd2, . . . , pbdT ], where192

pbdi = 1 indicates that frame i is a phoneme193

boundary and 0 otherwise. Furthermore, for each194

phoneme, the model predicts a set of singing tech-195

niques. For each technique i ∈ {1, . . . , 9}, a196

binary sequence techi = [ti1, t
i
2, . . . , t

i
Lp
] is pre-197

dicted, where tij = 1 indicates the presence of198

technique i at the j-th phoneme and tij = 0199

indicates its absence. Based on the predicted200

phoneme and word boundaries, note boundaries are201

predicted as note_bd = [nbd1, nbd2, . . . , nbdT ].202

The model also predicts the note pitch sequence203

c = [c1, c2, . . . , cLn ], where Ln denotes the num-204

ber of notes. In addition to the phoneme, note,205

and technique predictions, the model is required to206

predict global sentence-level attributes g.207

3.2 Overview208

Figure 2 illustrates the overall architecture of209

STARS. The input to our system consists of Mel-210

spectrograms and F0 extracted from the audio sig-211

nal, and the corresponding lyrics can be obtained212

using ASR models such as Whisper (Radford et al.,213

2023). To improve the robustness of our model, 214

we follow the approach of ROSVOT (Li et al., 215

2024) by adding realistic noise from the MUSAN 216

dataset (Snyder et al., 2015) to the input audio 217

and injecting Gaussian noise into the extracted 218

F0 contour. In this section, we first describe the 219

unified multi-level framework. To capture multi- 220

level acoustic and stylistic information, we design 221

a hierarchical architecture that spans five levels: 222

Frame, Word, Phone, Note, and Sentence. Each 223

level shares the same backbone while employing 224

slightly different methods to efficiently extract fea- 225

tures at varying granularities. Next, we explain how 226

all sub-tasks are completed in a single forward pass. 227

To obtain the Phone and Word boundaries, we first 228

predict the frame-level phoneme logits from the 229

features extracted by the Frame-level encoder. We 230

then apply Viterbi forced alignment to determine 231

the phoneme and word boundaries. For note bound- 232

aries, we utilize features from the previous three 233

levels to predict the note boundaries. Having ex- 234

tracted features at the Note level, we can predict the 235

corresponding note pitch. Finally, leveraging the 236

information from all five levels, we predict various 237

singing techniques and global attributes. 238

3.3 Unified Multi-Level Framework 239

To achieve unified annotation predictions at multi- 240

ple levels within a single model, we design a Uni- 241

fied Multi-Level Framework consisting of five hi- 242

erarchical levels: Frame, Word, Phone, Note, and 243

Sentence. Each level extracts acoustic features at 244

different granularities. The framework employs 245

a shared acoustic encoder across all levels to en- 246

able efficient feature extraction. We first design a 247
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Figure 2: The overall architecture of STARS. (a) The unified multi-level framework, which integrates singing lyric
alignment, note transcription, technique prediction, and global style prediction. (b) The Global Style Predictor,
where [CLS] tokens are used as queries, and S represents the keys and values. (c) The multi-level acoustic encoder
extracts features at each level, with optional pooling based on boundary segmentation. (d) The CMU Encoder,
employing a U-Net architecture with Conformer blocks and FreqMOE for efficient audio feature extraction.

highly efficient CMU Encoder to extract features,248

followed by multi-granularity pooling operations.249

Vector quantization serves as a bottleneck (Van250

Den Oord et al., 2017) to eliminate irrelevant infor-251

mation. We then use the boundary to expand the252

extracted features to the frame length T .253

The CMU Encoder module utilizes a U-Net-254

based architecture for Mel-spectrogram downsam-255

pling while preserving spectral details through skip256

connections during upsampling. To capture both257

long-term and short-term dependencies in the time258

dimension, we integrate the Conformer architec-259

ture (Gulati et al., 2020), which demonstrates supe-260

rior performance in the ASR tasks. For enhanced261

frequency analysis, we design the FreqMOE mod-262

ule that partitions the frequency dimension into K263

equal frequency bands and applies the specialized264

experts to distinct frequency bands. We then con-265

catenate the output embedding chunks. Specific266

details are provided in the Appendix A.2.267

For the pooling module, no pooling is applied268

to the frame-level features, as this level represents269

the finest granularity. For each intermediate level,270

we utilize the corresponding boundary informa-271

tion to perform segmentation, followed by average272

pooling within these boundaries to obtain dynamic273

feature sequences. At the sentence level, we ap- 274

ply global average pooling to the CMU Encoder 275

outputs to obtain the holistic representation. 276

For hierarchical representation learning, we ap- 277

ply vector quantization to the intermediate features 278

from all levels except at the Frame and Sentence 279

levels. Let Sl ∈ RL×D denote the input latent 280

embeddings for level l, where L is the sequence 281

length and D is the feature dimension. Each level 282

maintains a codebook ql ∈ RK×D containing K 283

latent embeddings. Following (Van Den Oord et al., 284

2017), we also apply a commitment loss to ensure 285

that the representation sequence commits to an em- 286

bedding and to prevent the output from growing: 287

Lcommit = ∥zl(Sl)− sg[ql]∥22, (1) 288

where zl(.) is the vector quantization module for 289

level l, and sg denotes the stop gradient operator. 290

In the Length Regulator module, at each level 291

l ∈ {word, phone, note}, we use the boundary in- 292

formation to determine the frame length of each 293

segment. To align hierarchical representations, we 294

repeat each embedding according to the length of 295

the segment. At the Sentence level, we extend the 296

single embedding to match the frame length T . 297
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3.4 Lyric Alignment298

Phonemes are the smallest phonetic units and the299

most commonly used tokens in singing voice syn-300

thesis. To align phonemes with the audio, we in-301

put the frame-level extracted features, denoted as302

Sf , into the phone predictor. This predictor gen-303

erates predictions for the phoneme being sung at304

each frame, along with indications of whether a305

frame corresponds to a phoneme boundary. During306

training, we optimize the phone predictions using307

cross-entropy loss, and we also apply Connectionist308

Temporal Classification (CTC) loss (Graves et al.,309

2006) to further improve phoneme alignment.310

LCE = −
P∑

k=1

yk log(pk), (2)311

312

LCTC = − log
∑

π∈B−1(y)

P (π|X), (3)313

where P is the total number of phonemes, and314

π = [π1, . . . , πT ] represents an alignment path315

with πt ∈ V ∪ {blank} (where V is the total316

phoneme vocabulary). Additionally, we use BCE317

loss to predict the phone boundaries.318

During inference, we employ the Viterbi forced319

alignment (Forney, 1973) method to align the lyric320

phoneme sequence with the phone probability dis-321

tribution at each frame. This process provides the322

phoneme boundaries, and through the phone-to-323

word relationship, we further determine the word324

boundaries. Specific details of the inference algo-325

rithms are provided in the Appendix B.326

3.5 Note Transcription and Alignment327

To obtain note boundaries, we first fuse features328

from the frame, word, and phone levels and feed329

them into a note boundary predictor. The train-330

ing loss for note boundary prediction is defined as331

the BCE loss, similar to phone boundary predic-332

tion. During inference, since the word boundaries333

overlap with the note boundaries, we employ these334

boundaries as constraints when generating the final335

note boundaries. For pitch prediction at the note336

level, we integrate the aggregated features from337

the frame, word, and phone levels with note-level338

features. Specifically, for each note j, we denote339

its feature sequence as Sj
n ∈ RLj×D, where Lj340

is the number of frames in the note segment and341

D is the feature dimension. We then use the note342

decoder to predict the pitch of each note. Inspired343

by CIF (Dong and Xu, 2020), we also compute344

the weight vector for each note as Wn = Sj
nWa, 345

where Wa is a learnable projection matrix and 346

Wn ∈ RLj×1. We then obtain the aggregated note 347

representation cj via a weighted average: 348

cj =

Lj∑
t=1

wn(t)S
j
n(t), (4) 349

where wn(t) denotes the weight at frame t. 350

We then use the pitch predictor to compute the 351

logits for the P pitch categories p̂j = cj WO, 352

where WO ∈ RD×P . The pitch predictor is also 353

optimized using cross-entropy loss. 354

3.6 Technique and Global Style Predictor 355

To predict the possible techniques for each 356

phoneme, we treat this task as a multi-task, multi- 357

label binary classification problem. The technique 358

prediction head outputs predictions across nine cat- 359

egories: mixed, falsetto, strong, weak, glissando, 360

breathy, bubble, vibrato, and pharyngeal. For each 361

phoneme j, we predict the i-th technique techij , 362

where 1 indicates the presence of the technique and 363

0 indicates its absence. Features from the Frame, 364

Word, Phone, Note, and Sentence levels are input 365

into the model, with the previously obtained phone 366

boundaries used as references. We apply the same 367

attention-based weighted average strategy used for 368

pitch prediction to predict each technique sequence. 369

Binary cross-entropy (BCE) loss is used to opti- 370

mize each technique prediction module. 371

For the global attributes of the sentence, includ- 372

ing language, gender, emotion, pace, and range, we 373

treat these as multi-class classification tasks. To 374

predict these global attributes, we introduce five 375

[CLS] tokens, each corresponding to one of the 376

tasks. These tokens are used as queries Hc, while 377

the sum of the frame-level features from all levels, 378

i.e., Sf , Sw, Sp, Sn, and Sg, serves as the key and 379

value in the cross-attention mechanism (Vaswani, 380

2017). Positional encoding embeddings are added 381

to the features to determine the position of each 382

token. The formulation is as follows: 383

S = Sf + Sw + Sp + Sn + Sg,

Attention(Hc,S,S) = Softmax
(
HcST

√
D

)
S,

(5) 384

where D is the dimension of the query, key and 385

value. Then, we predict each task’s category gi ∈ 386

RCi , where Ci is the number of categories for the 387

5



i-th attribute. Cross-entropy (CE) loss is used to388

train and optimize the global style predictors.389

3.7 Training and Inference Procedures390

During training, we leverage ground truth phone,391

word, and note boundaries to guide the model. The392

final loss function consists of the following compo-393

nents: 1) Lph: A combination of phone-level CTC394

loss and CE loss; 2) Lpbd and Lnbd: Boundary pre-395

diction losses for the phone and note, respectively,396

optimized using BCE loss; 3) Lpi: Pitch prediction397

loss, calculated as the CE loss between the ground398

truth pitch and the predicted pitch; 4) Ltech: Tech-399

nique prediction loss, calculated as the CE loss; 5)400

Lg: The global attribute prediction loss, optimized401

using CE loss; and 6) Lc: The commitment loss,402

which constrains the vector quantization layer.403

During inference, we first obtain the phonemes404

and words from the input lyrics (or ASR model-405

generated lyrics) and use the frame-level predicted406

phoneme logits with Viterbi forced alignment to407

determine the phoneme boundaries. Note bound-408

aries are then predicted by feeding fused features409

from the frame, word, and phone levels into the410

note boundary predictor. The note-level features,411

together with the fused features, are provided as in-412

put to the note-level acoustic encoder and the note413

decoder to predict the note pitch. Next, features414

from all levels, along with the phoneme boundaries,415

are used to predict the techniques for each phoneme.416

Finally, the global attributes are predicted using the417

aggregated features from all levels.418

4 Experiments419

4.1 Experimental Setup420

4.1.1 Dataset and Process421

The dataset used in our experiments includes the422

Chinese and English subsets of GTSinger (Zhang423

et al., 2024b). This dataset provides alignments and424

annotations in TextGrid files, which include word425

boundaries, phoneme boundaries, phoneme-level426

annotations for six techniques (mixed, falsetto, pha-427

ryngeal, glissando, vibrato, breathy), and global428

style labels such as emotion, pace, and pitch range.429

Additionally, we have collected and annotated a430

30-hour Chinese dataset featuring two singers and431

four technique annotations (mixed, falsetto, strong,432

weak, breathy, bubble) at both the phoneme and433

sentence levels. To train our automated annota-434

tion model, we reserve 30 songs containing various435

techniques and global styles as the validation and436

test sets. To ensure the robustness of the model, 437

we augment the dataset by adding noise from the 438

MUSAN noise corpus (Snyder et al., 2015). For 439

Chinese lyrics, we use the pypinyin tool1 to phone- 440

mize the text, while for English lyrics, we follow 441

the ARPA2 standard for phoneme transcription. 442

4.1.2 Implementation Details 443

The singing audio recordings are sampled at 24 444

kHz, with a window size of 512 samples, a hop 445

size of 128, and 80 mel bins for Mel-spectrogram 446

extraction. We use a pre-trained RMVPE (Wei 447

et al., 2023) model to extract the F0 contours. The 448

U-Net backbone consists of four downsampling 449

and upsampling layers, with a total downsampling 450

factor of 16×. The Conformer module includes two 451

layers, and the FreqMOE consists of four experts. 452

In this experiment, the model is trained for 150k 453

steps using an NVIDIA 4090 GPU. Further imple- 454

mentation details are provided in Appendix A.1. 455

4.1.3 Evaluation Details 456

For lyric alignment, we evaluate performance using 457

two metrics: Boundary Error Rate (BER) and In- 458

tersection Over Union (IOU) score. BER measures 459

the proportion of misplaced boundaries within 460

20ms tolerance. The IOU score is defined as the 461

ratio of the duration of the overlapping segment 462

between two notes to the duration of the combined 463

time span covered by both notes. For note transcrip- 464

tion, we use the mir_eval library (Raffel et al., 465

2014) and apply the metrics COnPOff (correct on- 466

set, pitch, and offset) proposed in (Molina et al., 467

2014) and Raw Pitch Accuracy (RPA) for overall 468

note pitch prediction performance. For phone-level 469

technique and global style recognition, we use ob- 470

jective metrics including F1 score and accuracy to 471

evaluate the phone-level technique predictor, and 472

accuracy for the global style detector. The results 473

are multiplied by 100 for better readability. Further 474

details are provided in Appendix C.2. 475

4.1.4 Baseline Models 476

To evaluate our approach, we compare it with sev- 477

eral baseline systems across different sub-tasks. We 478

conduct the comparison using only Chinese data, 479

and additionally, we test the model’s performance 480

on multilingual data by combining both Chinese 481

and English datasets. For the phoneme and singing 482

audio alignment, we consider: 1) Montreal Forced 483

1https://github.com/mozillazg/python-pinyin
2https://en.wikipedia.org/wiki/ARPABET
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Method BER ↓ IOU ↑
MFA 40.3 56.8
SOFA 20.9 80.0

STARS (ours) 18.6 80.9

Table 1: Results for lyric alignment.

Method COnPOff(F) ↑ RPA ↑
VOCANO 50.2 76.6
ROSVOT 70.2 83.8

STARS (ours) 71.0 86.7

Table 2: Results for note transcription and alignment.

Setting Metric Phone-level Technique and Global Style Prediction
BUB BRE PHA VIB GLI MIX FAL WEA STR TEC STY

GTSinger F1 46.9 68.7 88.7 95.7 78.5 61.5 33.2 37.2 82.5 67.3 -
ACC 31.5 73.2 75.7 99.3 78.9 93.9 40.8 17.4 95.3 65.9 -

STARS F1 71.7 66.9 85.0 65.5 72.3 74.7 93.5 90.3 99.4 79.9 -
ACC 97.8 88.8 95.4 96.7 84.1 81.9 94.7 90.4 93.9 91.5 68.0

Table 3: The objective results of phone-level technique prediction. The singing techniques include BUB (bubble),
BRE (breathy), PHA (pharyngeal), VIB (vibrato), GLI (glissando), MIX (mixed), FAL (falsetto), WEA (weak), and
STR (strong). The "TEC" column represents the average metrics calculated across all the singing techniques, while
the "STY" column represents the average metrics calculated across all the global style attributes.

Align (MFA): a tool that aligns orthographic and484

phonological forms by leveraging a pronunciation485

dictionary to time-align transcribed audio files; 2)486

SOFA 3: a forced alignment tool designed specif-487

ically for the singing voice. For note alignment488

and transcription, we compare with: 1) VOCANO:489

a note transcription framework developed for the490

singing voice in polyphonic music; 2) ROSVOT: a491

model that employs a multi-scale architecture for492

automatic singing transcription. We compare with493

the variant without word boundary condition. For494

phone technique prediction, we use GTSinger’s495

technique predictor as the baseline.496

4.2 ASA Results497

4.2.1 Lyric Alignment and Note Transcription498

In Table 1, we observe that for the lyric alignment499

task, when comparing our model with the other500

two models, STARS achieves the best performance501

in both the BER and IOU metrics, indicating its502

ability to accurately predict phoneme boundary in-503

formation. In Table 2, we see that for the note504

alignment and transcription task, our model out-505

performs the baseline models in both COnPOff(F)506

and RPA metrics, demonstrating its sensitivity to507

note boundaries and pitch. Notably, while the other508

models are designed to handle only a single task,509

our model efficiently handles both lyric alignment510

and note transcription tasks simultaneously. This511

demonstrates the versatility and effectiveness of512

STARS in performing multiple singing annotation513

3https://github.com/qiuqiao/SOFA

tasks, making it highly suitable for foundational 514

automatic singing annotation applications. 515

4.2.2 Technique and Global Style Prediction 516

As Table 3 shows, for the recognition of the nine 517

vocal techniques, our experimental results outper- 518

form GTSinger. No individual technique shows a 519

significantly low recognition accuracy. The aver- 520

age F1-score and accuracy for all techniques far 521

exceed the GTSinger benchmark, demonstrating 522

our model’s ability to accurately detect and anno- 523

tate multiple techniques at the phoneme level. Also, 524

as the last column of the table indicates, our model 525

achieves high accuracy in recognizing global style 526

attributes, further showcasing its effectiveness in 527

capturing the overall stylistic features of singing 528

audio. For detailed scores of each style attribute, 529

see the Appendix C.3. In summary, our model ef- 530

fectively detects expressive information, and the 531

generated labels can be used in various controllable 532

expressive singing voice synthesis tasks. 533

4.2.3 Ablation Study 534

In this section, we conduct ablation experiments to 535

evaluate the contributions of different components 536

in our model. We test the following variants: 1) 537

w/o CTC: the model without the CTC loss; 2) w/o 538

VQ: the model without vector quantization; 3) w/o 539

MOE: the model without the FreqMOE strategy; 540

4) Conv: the model with the Conformer module re- 541

placed by a convolutional architecture; 5) Bilingual: 542

the model trained on bilingual datasets. 543

As shown in Table 4, several conclusions can be 544
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Method BER ↓ IOU ↑ COnPOff(F) ↑ RPA ↑ T-F1 ↑ T-ACC ↑ S-ACC ↑
STARS 18.6 80.9 71.0 86.7 79.9 91.5 68.0

w/o CTC 19.1 80.0 70.9 86.7 79.7 89.8 66.8
w/o VQ 18.3 80.9 70.7 86.4 76.3 90.4 65.3
w/o MOE 18.9 80.5 70.1 86.5 77.4 90.0 69.8
Conv 20.1 78.3 66.4 82.7 62.9 89.6 66.6
Bilingual 19.4 75.6 68.1 86.2 76.8 91.4 70.4

Table 4: The ablation results for different sub-tasks. T-F1 is the average F1-score for all singing techniques, T-ACC
is the average accuracy for all singing techniques, and S-ACC is the average accuracy for all global style attributes.

Train Infer MOS-Q ↑ MOS-C ↑

GT GT 3.98 ± 0.09 4.05 ± 0.09
GT Pred 3.91 ± 0.07 3.95 ± 0.08
Pred Pred 3.89 ± 0.11 3.95 ± 0.05
1/2 GT GT 3.83 ± 0.04 3.89 ± 0.10
Mix Mix 3.93 ± 0.06 3.98 ± 0.05

Table 5: Results of SVS. GT refers to the ground truth,
Pred indicates the results from our ASA model, and Mix
represents a mix where half of the data is automatically
annotated and the other half is ground truth.

drawn. Comparing the first row with the w/o CTC545

variant, we observe improvements of 0.5 and 0.9546

in the BER and IOU metrics for lyric alignment,547

respectively, along with enhanced performance in548

the technique recognition task, which is sensitive549

to phoneme boundaries, while the note recognition550

metrics remain similar. These results indicate that551

CTC loss notably enhances phoneme alignment.552

When VQ is omitted for the phone, note, and word553

levels, the note, technique, and style recognition554

tasks show improved performance. For phoneme555

alignment, the lighter model with reduced VQ loss556

training further improves phoneme boundary de-557

tection. Comparisons of the w/o MOE and Conv558

variants reveal a drop in performance across all559

metrics, demonstrating the effectiveness of Finally,560

experiments on bilingual datasets confirm that our561

model operates effectively in a multilingual setting.562

Detailed results for single-language and bilingual563

experiments can be found in Appendix C.3.564

4.3 Singing Voice Synthesis565

To further validate STARS’s effectiveness, we use566

STARS to annotate GTSinger’s Chinese part and567

our data, and employ the latest style-controllable568

SVS model TCSinger(Zhang et al., 2024a) for gen-569

eration tasks. We use MOS-Q for quality and natu-570

ralness assessment, and MOS-C for expressiveness571

evaluation of the generated singing’s style control.572

As shown in Table 5, the following conclusions 573

can be drawn: By comparing the first two rows, 574

where training is performed on ground-truth, we 575

observe that using our model’s annotations yields 576

MOS-C and MOS-Q scores nearly identical to 577

those obtained with ground-truth annotations. Sim- 578

ilarly, comparing the second and third rows, which 579

correspond to training with ground-truth versus our 580

model’s annotations, and evaluating with our pre- 581

dicted results, shows only minimal differences in 582

MOS-C and MOS-Q scores. These findings indi- 583

cate that training exclusively with our annotated 584

data achieves performance comparable to using 585

ground-truth annotations, demonstrating the effec- 586

tiveness of our fully automated annotation model. 587

Furthermore, comparing the last two rows—where 588

training is conducted with half ground-truth data 589

versus a mixture of half ground-truth and half pre- 590

dicted annotations—reveals an improvement in 591

performance. This suggests that augmenting the 592

dataset with our model’s predictions can effectively 593

enhance overall SVS model performance. 594

5 Conclusion 595

In this paper, we introduce STARS, the first uni- 596

fied framework for Singing Transcription, Align- 597

ment, and Refined Style Annotation. We construct 598

a multi-level framework that efficiently extracts 599

audio features at five granularities—frame, word, 600

phone, note, and sentence—using a hierarchical 601

acoustic encoder. Our approach enables a complete 602

automatic singing annotation pipeline, sequentially 603

performing singing Lyric alignment, note transcrip- 604

tion and alignment, phone-level technique predic- 605

tion, and global style prediction. Experimental 606

results demonstrate that our model achieves high 607

performance across all sub-tasks, and the annotated 608

outputs are further validated in a singing synthesis 609

task, confirming the effectiveness of our approach. 610
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6 Limitations611

Our model has two main limitations. First, it cur-612

rently only classifies global style attributes of the613

singing voice and generates simple captions us-614

ing predefined templates. In the future, we aim to615

enhance this capability by connecting the model616

to large language models, enabling more dynamic617

and context-aware caption generation. Second, the618

model has been validated solely on Chinese and619

English datasets. Further validation on datasets620

from other languages is necessary to assess its gen-621

eralizability. In future work, we plan to extend the622

model to singing data in additional languages.623

7 Ethics Statement624

The automatic singing annotation model may be625

subject to misuse in the following ways. The model626

could be used to generate synthetic singing voices627

that closely resemble real individuals or artists with-628

out their consent, potentially leading to concerns629

around authenticity and intellectual property. As630

the model is trained primarily on English and Chi-631

nese datasets, its performance on other languages632

or diverse cultural contexts may be limited, po-633

tentially resulting in biased or inaccurate annota-634

tions for non-target languages or dialects. To miti-635

gate these issues, we encourage transparent usage,636

proper attribution, and the continued development637

of ethical guidelines for synthetic media generation.638

Additionally, we also plan to explore the ways to639

make the model more inclusive and adaptable to a640

broader range of languages and contexts.641
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A Details of Model805

A.1 Architecture806

The model input for STARS consists of Mel spec-807

trograms and the extracted f0, which are encoded808

separately using two encoders, denoted as EM for809

the Mel spectrogram and EP for f0. The Mel en-810

coder is constructed from linear layers and residual811

convolution blocks, while the f0 encoder consists812

of an embedding layer. The fused features are then813

fed into five levels of an acoustic encoder to ex-814

tract audio features at different hierarchical levels:815

frame, word, phone, note, and sentence.816

Each acoustic encoder begins with residual con-817

volution blocks followed by a CMU Encoder for818

feature extraction. The encoder and decoder of the819

U-Net backbone include four downsampling and820

upsampling layers, with a downsampling rate of821

16×. The U-Net module is further enhanced by822

two layers of Conformer blocks, where the Feed-823

Forward layers in each Conformer are replaced824

with FreqMOE layers. Each FreqMOE contains825

four experts, and the input features are equally split826

into four parts, each processed by an expert. The827

outputs of the four experts are then concatenated.828

After feature extraction from the CMU Encoder,829

the sentence-level features are obtained by averag-830

ing across all frames and then they are expanded.831

For frame-level features, no further processing is832

performed. For the phone, word, and note levels,833

average pooling is applied based on boundary infor-834

mation. These pooled features then pass through835

convolutional layers followed by a Vector Quanti-836

zation layer with a codebook size of 128 for feature837

filtering. Finally, the Length Regulator is applied to838

expand the features according to the corresponding839

boundary.840

The Global Style Predictor is composed of two841

layers of cross-attention, which predict the type of842

each class. The overall architecture parameters are843

shown in Table 6.844

A.2 FreqMOE845

The FreqMOE (Frequency Mixture of Experts)846

module is designed to enhance the representation of847

input features by leveraging multiple experts, each848

processing a distinct subset of the input. The mod-849

ule operates by splitting the input feature map into850

multiple chunks and passing each chunk through851

a separate expert network. The outputs from all852

experts are then concatenated to form the final rep-853

resentation. Specifically, the FreqMOE can be ex-854

Hyperparameter Model

Mel
Encoder

Conv Kernel 3
Conv Layers 2
Hidden Size 256

Condition
Encoder

Pitch Embedding 300
UV Embedding 3

Hidden Size 256

Vector
Quantization

Code Num 128
Hidden Size 256

U-Net

Kernel Size 3
Enc & Dec Layers 4

Downsampling Rate 16
Hidden Size 256

FreqMOE
Conformer

Kernel Size 9
Head Num 4

Layers 2
Attention Hidden 256

MOE Hidden 256
Expert Num 4

Table 6: Hyperparameters of STARS.

pressed as: 855

FreqMOE(X) = ConcatKk=1Ek(X
(k)), (6) 856

where Xk ∈ RT×D/K represents the k-th chunk 857

of the input feature map, X, split along its feature 858

dimension. Ek denotes the k-th expert network, 859

which processes Xk. 860

B Audio-Phoneme Alignment 861

In this appendix, we briefly describe our align- 862

ment algorithm that synchronizes a sequence of 863

phoneme labels with the corresponding audio (or 864

video) frames. The algorithm is based on dynamic 865

programming and is inspired by Viterbi decod- 866

ing, which efficiently finds the most likely align- 867

ment path through a state-space representing both 868

phoneme and silence (or blank) predictions. 869

B.1 Overview 870

Given an audio signal, a neural network produces 871

frame-level log-probabilities for phoneme classes 872

as well as for silence. In addition, a boundary de- 873

tection mechanism provides probabilities indicat- 874

ing the likelihood of transitions between phoneme 875

segments. The alignment problem is then formu- 876

lated as finding the optimal path that maximizes 877
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Setting Metric Technique Prediction
BUB BRE PHA VIB GLI MIX FAL WEA STR TEC

Bilingual F1 74.0 50.5 78.6 50.0 69.7 87.5 86.6 94.9 99.6 76.8
ACC 98.5 89.0 94.6 96.3 84.2 81.1 91.1 90.7 97.3 91.4

Table 7: The objective results of phone-level technique prediction on the bilingual dataset.

setting EMO PAC RNG LAN GEN

Single 52.5 71.3 59.0 - 100.0
Bilingual 48.6 71.8 76.9 100.0 100.0

Table 8: The results of the global style detection. EMO
refers to emotion, PAC to pace, RNG to pitch range,
LAN to language, and GEN to gender.

the overall likelihood, taking into account both the878

phoneme content and the temporal boundaries be-879

tween phonemes.880

B.2 Dynamic Programming Formulation881

Let T be the number of time frames and L be the882

number of phonemes in the target sequence. We883

define a score matrix D ∈ RT×(2L+1), where each884

column corresponds to a state representing either885

a phoneme or an interleaved blank state. The al-886

gorithm initializes D with scores computed from887

the first frame’s predictions and then iteratively888

updates the matrix as follows:889

D(t, k) = max


D(t− 1, k) + s

(t)
k ,

D(t− 1, k − 1) + s
(t)
k ,

D(t− 1, k − 2) + s
(t)
k ,

890

Here, s(t)k denotes the log-probability score at time891

t for state k, which is computed based on the892

phoneme, silence, and boundary predictions. A cor-893

responding backtracking matrix B is maintained to894

record the optimal transition at each step.895

B.3 Backtracking and Temporal Mapping896

After processing all frames, the optimal alignment897

path is recovered by backtracking through B start-898

ing from the final frame. This path indicates,899

for each time frame, the most likely state (i.e.,900

phoneme or blank) that generated the observation.901

Finally, by mapping the indices of phoneme states902

to time instants—using the known hop size of the903

audio frames—the algorithm produces onset and904

offset times for each phoneme. This procedure al-905

lows us to effectively synchronize phonetic labels906

with the audio signal.907

B.4 Summary of the Algorithm 908

The overall alignment procedure can be summa- 909

rized as follows: 910

1. Initialization: Set up the dynamic program- 911

ming matrices D (for scores) and B (for back- 912

tracking) using the initial predictions. 913

2. DP Matrix Update: For each time frame 914

t = 1, . . . , T − 1, update the scores for all 915

states by considering self-transitions, transi- 916

tions from the previous state, or skips (model- 917

ing boundaries). 918

3. Backtracking: Recover the optimal align- 919

ment path by backtracking through B. 920

4. Temporal Mapping: Convert the alignment 921

indices to temporal onset and offset times for 922

each phoneme using the audio frame hop size. 923

C Details of Experiments 924

C.1 Dataset 925

The open-source singing dataset used in our exper- 926

iments includes the Chinese and English subsets 927

of GTSinger (Zhang et al., 2024b). We use the 928

dataset under the CC BY-NC-SA 4.0 license. For 929

the recordings, we select one male and one female 930

professional singer, each paid $350 per hour, and 931

they agree to make their contributions available 932

for research purposes. During the recording ses- 933

sions, the singers are instructed to apply and label 934

the technique annotations at both the sentence and 935

phoneme levels. Phoneme segmentation is refined 936

using the Montreal Forced Aligner (MFA), with 937

additional manual adjustments to ensure accuracy. 938

The annotators are compensated at a rate of $15 939

per hour for their work. 940

C.2 Evaluation Metrics 941

For lyric alignment, we use two objective met- 942

rics: Boundary Error Rate (BER) and Intersec- 943

tion Over Union (IOU) score. The Boundary Error 944

Rate (BER) measures the proportion of misplaced 945

boundaries within 20 ms tolerance distance. The 946
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IOU score is defined as the ratio of the duration947

of the overlapping segment between two notes to948

the duration of the combined time span covered by949

both notes.950

For note transcription, we use the objective met-951

ric COnPOff (Correct Onset, Pitch, and Offset).952

COnPOff assesses whether both the boundaries953

and pitch of the note are correctly predicted. Ad-954

ditionally, we compute the Raw Pitch Accuracy955

(RPA) to evaluate the overall pitch prediction per-956

formance. RPA is calculated by transforming957

both the ground truth (GT) and predicted note958

events into frame-level sequences and computing959

the matching scores.960

In our evaluation process, we employ STARS to961

exclude silent notes and designate the boundaries962

enclosing each note as its onset and offset. For963

onset and offset evaluation, the tolerance is set to964

50 ms, with the offset tolerance being the larger965

of 50 ms or 20% of the note duration. The pitch966

tolerance is set to 50 cents.967

For the singing voice synthesis experiment, we968

randomly select 30 generated singing clips for sub-969

jective evaluation. Each generated sample is rated970

and evaluated by at least five professional listen-971

ers. In the MOS-Q evaluation, listeners focus on972

rating the quality and naturalness of the generated973

singing voice. In the MOS-C evaluation, they as-974

sess whether the generated singing matches the975

style of the given prompt. All scores are rated on976

a five-point scale. Each participant is paid $10 per977

hour.978

C.3 Experiment979

As shown in Table 7, we observe that when evalu-980

ating on a bilingual dataset, the overall prediction981

accuracy for the nine singing techniques is rela-982

tively high, comparable to the results obtained from983

a single-language dataset. This demonstrates the984

feasibility of our model for multilingual datasets.985

According to the results presented in Table 8, we986

find that attributes such as language, gender, and987

vocal range, which are relatively fixed across the988

entire singing performance, yield better prediction989

results. n contrast, the model performs less effec-990

tively on attributes like emotion and vocal range,991

which may vary across different segments of the992

song. Further analysis of the dataset reveals that an-993

notations for these attributes are typically provided994

at the sentence level, whereas emotion and vocal995

range fluctuate within different sections of a song.996

This variability leads to a decrease in prediction997

accuracy for individual segments of the singing 998

voice. 999
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