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Abstract

In drug discovery, the accurate prediction of a compound’s potency is crucial for1

efficient design and optimization of small molecules as drugs. While machine2

learning and deep learning approaches can be useful, they generally require sig-3

nificant amounts of data that is not typically available in drug discovery programs4

in practice. We address this limitation by developing a multi-modal deep learning5

framework that enhances a graph neural network, Chemprop, by integrating explicit6

protein-ligand interaction features. We generated protein-ligand poses using both7

a physics-based docking method and two deep learning-based co-folding meth-8

ods, Boltz-1 and Boltz-2. Our model demonstrates improved predictive accuracy9

for IC50 values for two diverse targets, CYP2D6 Inhibition and EGFR kinase.10

Additionally, our methods leveraging co-folding consistently outperforms the tra-11

ditional docking-based approach. Feature selection analysis further revealed that12

pi-stacking interactions were the most informative, appearing in the top-performing13

feature sets across all methods. In low-data regimes, the PLIP-informed models14

consistently outperformed established baselines. This work provides a scalable15

method to fuse complementary data modalities, offering both enhanced predictive16

performance and valuable mechanistic insights into drug-target interactions.17

1 Introduction18

The prediction of a compound’s potency is crucial for the efficient design and optimization of19

small molecules as therapeutics. Given the cost and resource intensity of experimental potency20

measurements, more accurate computational affinity models offer a promising alternative with the21

potential to accelerate drug discovery[5]. Chemprop, a widely used graph neural network (GNN),22

demonstrates strong performance in prediction of molecular properties but operates primarily on 2D23

ligand characteristics [15]. This ignores the physical interactions at the atom and graph levels that24

govern binding affinity within the protein pocket [12, 16, 37].25

However, machine learning approaches are data hungry, while prediction of compound potency is26

most useful early on in a drug discovery campaign when there are fewer compounds with potency27

measurements available, on the order of 500 or less. In this limit, GNNs such as Chemprop perform28

the same or worse than traditional machine learning approaches based on fingerprints, such as random29

forest or XGBoost [7]. This is because deep learning models require a large amount of data to learn a30

robust and generalizable representation of chemical space [41]. This presents a critical limitation and31

highlights the need for models that can achieve better predictive accuracy even with very little data.32

Approaches for building improved models in lower data situations include pre-trained models such33

as MoLFormer or ChemBERTa [34, 35, 38], which has been found to generally perform similar to34
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Chemprop for lower data situations [33]. Free-energy methods based on structure-based models show35

promising prediction accuracy but are compute intensive, typically taking on the order of hours or36

days for predictions, which is prohibitive for prioritizing large sets of idea molecules.37

This suggests a fundamental challenge for deep learning models: without extensive pre-training, they38

essentially "re-learn" chemical intuition for each new task, necessitating large datasets to generalize39

effectively. This challenge highlights an opportunity to enhance the performance of fast ML model40

performance by integrating explicit 3D protein-ligand interaction information, in order to provide a41

richer, more task-specific context.42

Furthermore, the increasing complexity of deep learning techniques often leads to "black-box" models.43

By incorporating explicit Protein-Ligand Interaction Profiler (PLIP) features, our approach links44

predictions to specific, tangible molecular interactions, thereby enhancing model interpretability.45

This provides not only improved performance but also mechanistic insights.46

1.1 Main contributions47

To address these limitations, our work enhances the predictive capabilities of Chemprop by integrating48

explicit protein-ligand interaction features(Figure A1). We first generate physically plausible binding49

poses for small molecules with EGFR and CYP2D6 Inhibition using both molecular docking (GOLD)50

and a deep learning-based co-folding method (Boltz). We leverage PLIP to extract detailed atom-level51

features from these complexes, capturing specific physical interactions such as hydrogen bonds and52

hydrophobic interactions. The core of our approach lies in evaluating whether these PLIP-derived53

features can improve the accuracy of IC50 predictions for EGFR and CYP2D6 Inhibition within54

the Chemprop framework. In this work, we present a novel integration of protein-ligand interaction55

features within Chemprop. Our main contributions are summarized as follows:56

Improved predictive accuracy: We demonstrate that incorporating features from protein-ligand57

interactions (pi-stacking) improves the predictive accuracy for IC50 values. This highlights the role58

of protein binding context in molecular property prediction.59

Identification of key features: Our model reveals that certain types of protein-ligand interactions are60

more informative than others for specific assays. For the targets we studied, we found that pi-stacking61

interactions were particularly predictive and consistently appeared in the top-performing feature sets62

across all pose-generation methods.63

Enhanced performance in low-data regimes: By incorporating explicit structural context, our pi-64

stacking informed models consistently outperformed both the Chemprop and Random Forest baselines65

when trained on small subsets of the CYP2D6 Inhibition dataset, with statistical significance at the66

lowest training sizes.67

1.2 Related Work68

Molecular docking and co-folding methods Molecular docking (GOLD) is a physics-based method69

that predicts the optimal binding pose of a ligand by exploring a predefined search space [17].70

Docking is limited by its reliance on a static protein structure, potentially missing key conformational71

changes [3]. Therefore, co-folding methods, a class of deep learning models that predict the final72

protein-ligand complex structure by modeling the folding process in the presence of the ligand,73

present an opportunity for accurate 3D structure predictions [27]. This paper focuses on the Boltz74

models, a generative family of models that use a diffusion-based approach to predict protein-ligand75

poses [30, 43].76

Protein-ligand interaction feature selection. Physics-based descriptors has been widely used due to77

their rule-based nature, providing interpretable and physically meaningful explanations for predictions78

[21]. These methods characterize binding pockets and engineer features from protein sequences,79

contacts or more detail interactions that can be extracted using tools like PLIP, OpenBabel and others80

[2, 12, 29, 44]. Advances in machine learning have introduced empirical scoring functions derived81

from, but not limited to, learned embeddings, embedding-based potential energy estimations, and82

interaction-aware network such as mixture density network [8, 14, 19, 22, 36]. These developments83

enable the use of diverse descriptors, showing promising improvement in the accuracy of binding84

affinity predictions. However, machine learning-derived features often require additional model85

training, which can increase computational time and resource demands.86

2



Protein-ligand binding affinity prediction. Protein-ligand binding prediction methods can be87

broadly categorized into two types: foundation models and target-specific models [21, 30]. Foundation88

models aim to provide generalizable predictions across diverse targets by leveraging large datasets89

and broad applicability [32]. In contrast, target-specific models tailor their predictions to unique90

characteristics of a particular target, often achieving higher accuracy with less data and computational91

resources. Zero-shot and few-shot learning approaches have recently gained attention for their92

potential to improve generalization in low-data regimes, though there remains room for improvement93

[20]. A variety of architectures have been developed for protein-ligand binding affinity predictions94

[1, 9, 24]. Among these, GNNs have become popular in related tasks due to their ability to represent95

molecular structures as graphs, effectively capturing both chemical properties and spatial relationships96

[25, 40]. Typically, ligands are represented as graphs, while proteins are encoded either as sequences97

or graphs [28, 23]. Several studies have extended GNNs by integrating recurrent neural networks,98

graph isomorphism network, and transformer architectures [39, 45].99

2 Methods100

Our methodology encompasses four main stages: input preparation, molecular docking/co-folding,101

protein-ligand interaction profiling and integration of D-MPNN architecture. Dataset and input102

preparation method information can be found in Appendix A.1.103

2.1 Protein-ligand structure prediction104

Molecular docking. Molecular docking simulations were performed using GOLD to predict the105

binding poses of the prepared ligands within the active sites of EGFR and CYP2D6 Inhibition [17].106

For each ligand, GOLD generated 5 distinct docked poses. The pose with the most negative binding107

affinity score (representing the strongest predicted binding) was selected as the representative binding108

conformation for further analysis.109

Protein-ligand conformation generation with Boltz. We employed a co-folding method (Boltz-1110

and 2) to generate protein-ligand conformations for our study [30, 43]. The Boltz-generated structures111

were further refined using the Molecular Operating Environment (MOE, version 2024.06) [6]. The112

post-processing involved running the QuickPrep function with default settings. This procedure113

ensured the structural integrity of the generated poses by protonating the structure, adding missing114

hydrogens, correcting distant atoms, and performing energy minimization. Additional details on the115

Boltz structure predictions can be found in Appendix A.1.3.116

2.2 Protein-ligand interaction profiling.117

The protein-ligand complexes obtained by docking and co-folding were analyzed using Protein-118

Ligand Interaction Profiler (PLIP) to identify atom-level interactions [2]. PLIP generated various119

interaction types, including hydrogen bonds, hydrophobic interactions and pi-stacking. Two types of120

interaction features were extracted for each ligand.121

Binary atom-level interaction vector (B). For each ligand, a binary vector is generated with a length122

corresponding to the number of atoms, where a value of 1 indicates the presence of an interaction and123

0 indicates its absence.124

Weighted atom-level interaction vector (C). Similar to the binary vector, this vector is generated125

with a length corresponding to the number of atoms, but each index is a continuous value weighted126

by the distance to the corresponding protein atom.127

2.3 Integrate into D-MPNN architecture128

The atom interaction features will be concatenated with the existing atomic features of each ligand129

atom. This concatenation will occur at the graph construction layer of Chemprop, prior to the message130

passing steps (Figure 1). We aim to enrich the atomic representations with critical protein-ligand131

contextual information at the foundational level, thereby enabling the model to learn more nuanced132

and context-aware relationships between molecular structure, protein-ligand interactions, and the133

resulting IC50 values. Additional details on methods are found in Appendix A.1.134
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Figure 1: Integration of protein-ligand interaction features into the D-MPNN (Chemprop) architecture.
The model takes two inputs: molecule SMILES string and a vector of specified protein-ligand
interaction features. These features are concatenated with the atom-level features of the molecular
graph prior to the message passing steps.

3 Results135

3.1 Feature selection136

To identify the most informative protein-ligand interaction features, we performed a systematic137

feature selection process. For both the public CYP2D6 Inhibition and EGFR datasets, the training138

set was partitioned into training/validation subsets. We then trained a separate model for each139

feature extraction method (Docking, Boltz-1, Boltz-1 & MOE, Boltz-2, and Boltz-2 & MOE) on140

the partitioned training set. The models were evaluated on the validation set across all possible141

feature combinations. From these validation results, shown in Table 1, we selected the top five feature142

combinations for each method based on predictive performance. The selected top features showed143

that pi-stacking (binary) was present in the top five combinations for all five methods. Hydrogen144

bonding (binary and continuous) and pi-stacking (continuous) was present in the majority of the145

methods.

Table 1: Feature selection results for the public CYP2D6 inhibition dataset. Summary of the most
informative protein-ligand interaction features identified through a systematic evaluation of five
different pose-generation methods. A checkmark (✓) indicates that a given feature or combination of
features was present in at least one of the top five performing models for that method on the validation
set. Bold features appear in the majority (at least 3 out of 5) of methods.

CYP2D6 Inhibition Docking Boltz-1 Boltz-1 (MOE) Boltz-2 Boltz-2 (MOE)

Hbond (B) ✓ ✓ ✓
Hbond (C) ✓ ✓ ✓ ✓
Hydrophobic (B) ✓ ✓
Hydrophobic (C) ✓ ✓
Pi-Stacking (B) ✓ ✓ ✓ ✓ ✓
Pi-Stacking (C) ✓ ✓ ✓ ✓
Pi-Stacking (C), Hydrophobic (B) ✓ ✓
Pi-Stacking (B), Hydrophobic (B) ✓
Pi-Stacking (B), Hydrophobic (C) ✓
Pi-Stacking (B), Hbond (B) ✓

146

3.2 Performance of PLIP informed model147

The baseline D-MPNN (Chemprop) and Boltz models were two-fold, two-ensemble, where the148

final prediction was the average of four individual model predictions [11]. The standard error for149

the baseline was calculated from the individual metrics of these four models. Our PLIP-informed150

models, incorporating the selected features, were evaluated against this baseline. The Docking model151

predictions were obtained by training a model each of the selected RCSB structures (two structures152
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Figure 2: Performance of PLIP-Informed Models for Public CYP2D6 Inhibition. The bar chart
compares the average R2 with standard error for the baseline D-MPNN (Chemprop) model against
selected PLIP-informed models.

for CYP2D6 inhibition and one structure for EGFR) and obtaining the average prediction. The153

standard error was obtained by the individual metrics for these two models.154

Public CYP2D6 Inhibition. Evaluating our models on the public CYP2D6 inhibition dataset (test n155

= 189), we found that the Boltz methods consistently outperformed the traditional docking-based156

approach, as shown in Figure 2. The Boltz-2 model that incorporates continuous pi-stacking features157

outperformed all other models, including the baseline D-MPNN. Additionally, for models involving158

hydrophobic and hydrogen bonding interactions, those that were post-processed with MOE overall159

demonstrated performance improvements compared to their Boltz-alone counterparts. While the160

Boltz-2 method identified the least number of molecules with pi-stacking interactions compared to161

other methods (n = 155 versus ∼n = 500), the KDE plots (Figure A5, Figure A6) showed that all162

methods followed a similar distribution for these interactions. This distribution roughly follows the163

shape of the overall CYP2D6 Inhibition histogram (Figure A10), indicating that pi-stacking is an164

informative feature present across all potency levels.165

Public EGFR. Similar results were found when evaluating our methods on the public EGFR dataset166

(test n=804). As shown in Figure A4, the Boltz-1 model with continuous pi-stacking features167

outperformed the D-MPNN baseline model. Overall, the Boltz-1 method consistently outperformed168

the traditional docking-based approach and the Boltz-2 method on most interaction models.169

3.3 Analysis of pi-stacking interactions170

Public CYP2D6 Inhibition. We are interested in the specific role of pi-stacking that is able to171

improve the CYP2D6 Inhibition predictive ability. We generated parity plots (Figure 3) for both the172

baseline D-MPNN model and the Boltz-2 (continuous pi-stacking) model. Our analysis plots show173

the molecules where the D-MPNN baseline model performed poorly, specifically those with a true174

value greater than 4 (on the log-transformed scale) and an error greater than 0, indicating an under175

prediction of the true activity. When these same molecules were plotted on the parity plot for the176

Boltz-2 model, the predictions were generally closer to the parity line, demonstrating a decrease in177

prediction error for this subset of less potent compounds. The second group of molecules that were178

highlighted were molecules in the test set that were identified to have pi-stacking interactions. The179

predictions for these molecules in the Boltz-2 model were consistently closer to the parity line when180

compared to their prediction value on the baseline model plot.181

In Figure 4 we examined two compounds (Compound 1791 and 1834) where their true value is182

greater than 4 and identified to have pi-stacking. From the generated PLIP interaction they are both183
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(a) DMPNN Parity Plot (b) Boltz-2 (Continuous Pi-Stacking) Parity Plot

Figure 3: Comparison of predicted versus true potency for CYP2D6 Inhibition. The figure provides
a side-by-side comparison of parity plots for the baseline D-MPNN model (a) and the Boltz-2
(continuous pi-stacking informed) model (b) on the public CYP2D6 Inhibition dataset. A molecule’s
position on the parity line (True = Predicted) indicates perfect predictive accuracy. The figure
highlights that the D-MPNN baseline model consistently underpredicted the potency of less potent
compounds (those with a log(IC50) > 4). In contrast, the Boltz-2 model corrects some of these
underpredictions.

(a) Compound 1791 (b) Compound 1834

Figure 4: Correction of under predicted potency in pi-stacking (green dashed line) identified com-
pounds. A comparison of the predicted versus true IC50 values for two representative molecules
from the test set. Compound 1791 (True = 4.14) was under predicted by the baseline D-MPNN
model (Predicted = 3.27), but the Boltz-2 (continuous pi-stacking informed) model corrected the
prediction to 3.96. Similary, for Compound 1834 (True = 4.25), the Boltz-2 model (Predicted = 4.34)
demonstrared a more accurate prediction than the baseline (Predicted = 3.38).

interacting with the same residue: PHE120. Cross-checking across the other methods (Boltz-1,184

Boltz-1 MOE, and Boltz-2 MOE), Boltz-1 MOE also identified pi-stacking for Compound 1791 and185

Boltz-2 MOE identified pi-stacking for Compound 1834. However, the Boltz-1 MOE prediction for186

Compound 1791 and Boltz-2 MOE prediction for Compound 1834 were not improved. Boltz-1 MOE187

and 2 MOE both identified the same residue (PHE120) for the pi-stacking interaction.188

3.4 Performance in low-data regimes189

To evaluate the effectiveness of our PLIP-informed model in data-scarce scenarios, a challenge190

in early stage lead design, we trained models on small subsets of the public CYP2D6 Inhibition191

dataset (n = 250, 500, 750) and tested their performance on the full test set. We chose to use the192

features that showed promise from Figure 2: pi-stacking (binary and continuous). As shown in193

Table 2, the PLIP-informed models consistently outperformed both the Chemprop, Random Forest,194
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Table 2: Performance of PLIP-informed models in low-data regimes compared to benchmark models.
Pi-Stacking (B and C) features are obtained from the Boltz-2 model. Average test R2 values and
standard errors are shown for models trained on compound subsets (’cmpd’) of the public CYP2D6
Inhibition dataset. Top performing model is bolded for each training subset.

Model 250 cmpds 500 cmpds 750 cmpds

Chemprop −0.04± 0.011 0.16± 0.033 0.24± 0.009
Random Forest −0.01± 0.008 0.11± 0.007 0.21± 0.005
MoLFormer −0.11± 0.040 0.18± 0.060 0.18± 0.020

Pi-Stacking (B) 0.08± 0.017 0.22± 0.011 0.24± 0.031
Pi-Stacking (C) 0.08± 0.013 0.21± 0.031 0.22± 0.039

and MoLFormer baselines for n = 250, 500 and was equivalent in performance for n = 1000. At195

the lowest training size (n = 250), the pi-stacking models demonstrated a statistically significant196

improvement over the best-performing baseline, Random Forest. The pi-stacking (binary) model197

significantly outperform the Random Forest model (T-statistic: -5.66, p-value = 0.0013), and a similar198

result was observed for the pi-stacking (continuous) model (T-statistic: -6.81, p-value = 0.0005).199

Additionally the Boltz-2 binding affinity predictions performed significantly worse, R2 = −17.45.200

4 Discussion201

Our modeling of the public CYP2D6 Inhibition and EGFR datasets using several benchmark and202

interaction-informed models lead to key findings around interaction feature importance, the low data203

regimes where addition of PLIP features notably improve predictive performance, and the role of204

co-folding methods in predictive performance.205

4.1 Identification of pi-stacking features206

The consistent presence of pi-stacking (binary and continuous) in the top-performing feature sets207

across all pose-generation methods underscores its importance as a key determinant of binding affinity.208

While other features like hydrogen bonding and hydrophobic interactions are also relevant, the209

increased performance of models leveraging pi-stacking suggests a highly specific and geometrically210

constrained role for this interaction. Our parity plot analysis showed that for molecules where211

the baseline model under predicted activity (i.e., less potent compounds), the Boltz-1 model with212

pi-stacking features reduced the prediction error. This suggests that the model is learning to identify213

a specific structural characteristic, the presence of a pi-stacking interaction, that correlates with a214

more favorable binding mode and correspondingly improved potency. KDE plots of pi-stacking215

interaction frequency versus potency (Figures A5, A6) show consistency in distributions of pi-stacking216

interactions across different pose-generation methods, suggesting that the underlying biological217

importance of pi-stacking interactions is consistently captured.218

For molecules with predicted pi-stacking interactions, both Boltz-1 and Boltz-2 identify an increased219

frequency of pi-stacking for more potent molecules in the single digit nM affinity range. Boltz-2 also220

flags fewer instances of pi-stacking overall. These results suggest that for pi-stacking interactions,221

Boltz-2 models, and Boltz-1 to a lesser degree, are better able to model critical pi-stacking interactions222

while being more discriminate in predicting pi-stacking interactions, and these features can lead to223

the observed improvement in predictive performance.224

The addition of the pi-stacking feature acts as an additional descriptor that compels the underlying225

model architecture to learn a more generalized relationship of the protein-ligand binding pocket.226

With an estimated binding energy of ∼ 3 kcal/mol, pi-stacking provides a substantial energetic227

contribution that can lead to a ∼ 100-fold improvement in potency [10, 31]. This is significantly228

greater than the contributions of hydrogen bonds (∼ 1 kcal/mol, ∼ 5x potency) and hydrophobic229

interactions (∼ 0.25 kcal/mol, ∼ 1.5x potency). The model’s ability to predict this high-impact230

interaction appears to enrich its overall understanding of the binding environment. This allows it to231

generate more accurate predictions for molecules that lack a pi-stacking interaction by learning a232

more context-aware representation of the protein’s binding pocket. The greater relative strength of233
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pi-stacking interactions makes it an important interaction to capture for potency prediction, and this234

type of topological interaction is arguably more difficult to capture with a model operating purely in235

2D space compared to models that account for 3D spatial relationships.236

We note that the importance of pi-stacking features may be target-specific. While our study demon-237

strates that pi-stacking is a crucial and highly predictive feature for both CYP2D6 and EGFR238

inhibition, this may not be universally true for all protein targets. The observed significance is likely239

a result of the specific architecture of the binding pockets of these two targets, which contain key240

aromatic residues (Figure 4) that can engage in strong pi-stacking interactions. For other targets,241

where the binding pocket is dominated by other features such as a network of hydrogen bonds or ex-242

tensive hydrophobic interactions may be the primary determinants of binding affinity. This highlights243

the need for further investigation across a diverse range of protein families to fully understand the244

generalizability of our findings.245

4.2 Low-data regimes246

To understand the performance of the benchmark models and our PLIP-informed models in low data247

regimes commonly found in drug discovery settings, we took the CYP2D6 Inhibition dataset and248

created 250, 500, and 750 compound subsets that represent typical data regimes for drug discovery249

programs. A typical small molecule discovery program generates on the order of 1000 to 2000250

compounds in lead optimization, and potency models are generally more useful earlier on when there251

are fewer compounds synthesized and tested for on-target potency.252

Comparing the Chemprop, random forest, and MoLFormer models with the PLIP-informed models253

suggests that the PLIP-informed models are particularly useful in lower data regimes, where they have254

significantly better performance. At 250 and 500 compound training set sizes, the PLIP-informed255

models clearly outperform the baselines. At a 750 compound training set size, the models perform256

about equivalently. Taken together, this suggests that the PLIP-informed models are more useful257

in low-data situations commonly found early on in drug discovery campaigns. We also see an258

improvement in predictive performance for MoLFormer at the 500 compound training set size,259

although the improvement is slight and not as large as with PLIP-informed models.260

4.3 Co-folding versus docking261

We initially used docking with the GOLD software package to generate binding pose models, and262

generally did not see predictive performance improvements. With the use of recent Boltz-1 and Boltz-263

2 co-folding models, we are starting to see improvements in PLIP-informed models (see Figure 2).264

We also find that minimization of Boltz-1 or Boltz-2 models using a force-field (as implemented in265

MOE; see Methods) leads to greater variability in predictive performance.266

We analyzed predicted protein-ligand complexes by comparing those from molecules similar to known267

PDB structures. Generally we found Boltz-2 showed best alignment to the PDB core substructure268

(Figure A2, A3).269

5 Limitations & future directions270

While our initial findings show promise, we need to test our approach on additional drug discovery271

targets. The improvements observed might be tied to the dominant role of pi-stacking in these272

particular protein-ligand systems. We are actively looking at more targets to validate our methodol-273

ogy’s broader applicability and reproducibility. Additionally, the overall performance in the most274

extreme low-data regime (n = 250) remains a challenge, with absolute R2 values that are not yet275

ideal, though representing a statistically significant improvement over baselines. We believe that276

a major bottleneck lies in the quality of the generated protein-ligand poses. The methodology is277

dependent on the accuracy of the upstream co-folding and docking methods. If these methods fail278

to produce a correct binding pose, the PLIP-derived features will be based on inaccurate structural279

data, effectively introducing noise that can limit the model’s predictive power. Future work will focus280

on integrating more advanced pose-generation techniques to provide a more reliable foundation for281

feature extraction and model performance.282
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A Appendix441

A.1 Additional methods442

A.1.1 Datasets443

The EGFR dataset was sourced from BindingDB (curated from literature, PubChem, patents/WIPO,444

and ChEMBL), containing ∼ 9, 500 molecules [26]. The Cytochrome P450 2D6 (CYP2D6 Inhibi-445

tion) dataset was sourced from BindingDB (curated from literature, PubChem, patents/WIPO, and446

ChEMBL), containing ∼ 5, 000 molecules [18].447

Figure A1: Overview of Molecular Docking and Interaction Profiling Workflow.

A.1.2 Input preparation448

For each ligand, its SMILES representation and corresponding IC50 value were obtained. Con-449

currently, the 3D atomic coordinates of the target proteins, EGFR and CYP2D6 Inhibition, were450

retrieved from the Protein Data Bank (PDB) [4, 13, 42]. Following retrieval, the protein structures451

were isolated, removing any co-crystallized ligands, water molecules, and unwanted residues. Both452

the isolated ligands and proteins were processed to add missing hydrogen atoms and further steps for453

subsequent docking simulations (Figure A1).454
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A.1.3 Additional details on Boltz structure prediction455

The tool was installed from the original Git repository (version 2.2.0, commit c9b6af1). For each456

protein-ligand pair, a single diffusion sample was generated using a fixed seed of 42 and a step scale457

of 1.5, with all other parameters set to their default values. Specifically, the Boltz-1 model was run at458

precision 32, while the Boltz-2 model utilized mixed precision to optimize performance. A Multiple459

Sequence Alignment (MSA) was prepared using HHblits, and the ligand was provided to the models460

as a SMILES string. For the MOE post-processing steps, we used the Amber:EHT force field. To461

maintain the relative position of the ligand within the binding pocket, a ligand tether was applied.462

Additionally, atoms beyond 7Å from the ligand were fixed during the energy minimization to prevent463

unnecessary conformational changes in the peripheral regions of the protein.464

A.1.4 Ensembled predictions465

For the docking-based models, predictions were obtained by averaging the outputs from models466

trained on multiple representative protein structures. For the CYP2D6 Inhibition dataset, we ensem-467

bled predictions from two separate models, each trained on a different RCSB protein structure. Due468

to computational constraints, a single RCSB structure was used for the EGFR dataset. For the Boltz469

and baseline Chemprop (D-MPNN) models, a two-fold, two-ensemble approach was used, resulting470

in four total model predictions per molecule. These four predictions were then averaged to produce471

a single final output. Additionally, the Random Forest (RF) models ensembled over four different472

random seeds (1, 10, 100, 1000) with 100 trees each, and these four predictions were similarly473

averaged. Standard error and standard deviation were calculated from the individual metrics of the474

four models.475

A.1.5 MoLFormer benchmarking methods for low-data regime476

To benchmark against MoLFormer, we first extracted the pre-trained weights from the model. Using477

these weights, we performed hyperparameter optimization on our various training sets to find the478

best hyperparameters. Next, we fine-tuned the model on these same training molecules. Then we479

evaluated the fine-tuned model’s predictive performance on the test set. The hyperparmeters used for480

each training size are reported in Figure 3

Table 3: Hyperparameters for MoLFormer finetuned on CYP2D6 Inhibition n = 250, 500, 750.
Hyperparameter n = 250 n = 500 n = 750

Learning Rate 0.0005 0.0002 0.0001
Dropout 0.37 0.43 0.37
Number of Layers 4 4 2
FFN Dim 128 256 256
Batch Size 8 8 8
Epochs 20 20 20

481

A.2 Additional figures and results482

Table 4: Hyperparameter Information for D-MPNN models.
Hyperparameter Value

MPN depth 4
MPN hidden size 600
FFN number of layers 4
FFN hidden size 1300
Dropout 0
Aggregation Norm
Number of folds (training/validation split seed) 2
Ensemble size (parameter initialization seed) 2
Epochs 60
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Figure A2: Structural validation of predicted poses. Structural Validation of Predicted Poses. We
compared predicted binding poses for compounds similar to the known RCSB PDB structures. The
captured images highlight that among the methods evaluated, the Boltz-2 model consistently produced
the most accurate alignment to the PDB structures, particularly for the core substructure of each
compound. This suggests that the improved predictive performance of the Boltz-2 model may be
attributed, at least in part, to its ability to generate more physically realistic and well-aligned binding
conformations.

a. b. c.

Figure A3: Structural validation of predicted poses for Compound 1790. Overlay predicted binding
poses for compounds in training dataset similar to the known RCSB PDB structures (4XRZ) exhibiting
pi-stacking interactions, based on Tanimoto similarity. a. PLIF for 4XRZ b. Overlay of the Boltz-2
predicted structure (cyan) with 4XRZ (orange), identified pi-stacking interactions c. Overlay of the
Boltz-1 predicted structure (cyan) with 4XRZ (orange)

Figure A4: Performance of PLIP-Informed Models for Public EGFR. The bar chart compares the
average R2 with standard error for the baseline D-MPNN (Chemprop) model against selected PLIP-
informed models.
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Figure A5: Distribution of Pi-Stacking Interactions in CYP2D6 Inhibition Train Set. Kernel Density
Estimation (KDE) plot illustrating the distribution of log(IC50), where IC50 values are in nM
affinity units, that have an identified pi-stacking interaction. The KDE plots for each pose-generation
method (Boltz, Docking, etc) show that while the total number of identified pi-stacking interaction
varies significantly across methods, the overall distribution of these interactions mirror the left-tailed
distribution of the full CYP2D6 dataset.

Figure A6: Distribution of Pi-Stacking Interactions in CYP2D6 Inhibition Test Set.
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(a) DMPNN Parity Plot (b) Boltz-1 (Continuous Pi-Stacking) Parity Plot

Figure A7: Comparison of Predicted versus True Potency for EGFR.

Figure A8: Distribution of Pi-Stacking Interactions in EGFR Train Set.
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Figure A9: Distribution of Pi-Stacking Interactions in EGFR Test Set.

Figure A10: Distribution of CYP2D6 Inhibition test data.
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Figure A11: Distribution of EGFR test data.
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