
Published as a conference paper at ICLR 2024

SUBTRACTIVE MIXTURE MODELS VIA SQUARING:
REPRESENTATION AND LEARNING

Lorenzo Loconte1∗ Aleksanteri M. Sladek2 Stefan Mengel3

Martin Trapp2 Arno Solin2 Nicolas Gillis4 Antonio Vergari1

1 School of Informatics, University of Edinburgh, UK
2 Department of Computer Science, Aalto University, Finland
3 University of Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), France
4 Department of Mathematics and Operational Research, Université de Mons, Belgium

ABSTRACT

Mixture models are traditionally represented and learned by adding several distri-1

butions as components. Allowing mixtures to subtract probability mass or density2

can drastically reduce the number of components needed to model complex dis-3

tributions. However, learning such subtractive mixtures while ensuring they still4

encode a non-negative function is challenging. We investigate how to learn and5

perform inference on deep subtractive mixtures by squaring them. We do this in6

the framework of probabilistic circuits, which enable us to represent tensorized7

mixtures and generalize several other subtractive models. We theoretically prove8

that the class of squared circuits allowing subtractions can be exponentially more9

expressive than traditional additive mixtures; and, we empirically show this in-10

creased expressiveness on a series of real-world distribution estimation tasks.11

1 INTRODUCTION12

Finite mixture models (MMs) are a staple in probabilistic machine learning, as they offer a simple13

and elegant solution to model complex distributions by blending simpler ones in a linear combination14

(McLachlan et al., 2019). The classical recipe to design MMs is to compute a convex combination15

over input components. That is, a MM representing a probability distribution p over a set of random16

variables X = {X1, X2, . . . , XD} is usually defined as17

p(X) =
∑K

i=1 wipi(X), with wi ≥ 0,
∑K

i=1 wi = 1, (1)

where wi are the mixture parameters and each component pi is a mass or density function. This18

is the case for widely-used MMs such as Gaussian mixture models (GMMs) and hidden Markov19

models (HMMs) but also mixtures of generative models such as normalizing flows (Papamakarios20

et al., 2021) and deep mixture models such as probabilistic circuits (PCs, Vergari et al., 2019b).21

The convexity constraint in Eq. (1) is the simplest sufficient con-22

dition to ensure that p is a non-negative function and integrates to23

1,1 i.e., is a valid probability distribution, and is often assumed in24

practice. However, this implies that the components pi can only25

be combined in an additive manner and as such it can greatly26

impact their ability to estimate a distribution efficiently. For in-27

stance, consider approximating distributions having “holes” in28

their domain, such as the simple 2-dimensional ring distribution29

on the left (ground truth). A classical additive MM such a GMM30

would ultimately recover it, as it is a universal approximator of31

density functions (Nguyen et al., 2019), but only by employing an32

unnecessarily high number of components. A MM allowing negative mixture weights, i.e., wi < 0,33
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would instead require only two components, as it can subtract one outer Gaussian density from an34

inner one (NGMM). We call these MMs subtractive or non-monotonic MMs (NMMs), as opposed35

to their classical additive counterpart, called monotonic MMs (Shpilka & Yehudayoff, 2010).36

The challenge with NMMs is ensuring that the modeled p(X) is a valid distribution, as the convex-37

ity constraint does not hold anymore. This problem has been investigated in the past in a number38

of ways, in its simplest form by imposing ad-hoc constraints over the mixture parameters wi, de-39

rived for simple components such as Gaussian and Weibull distributions (Zhang & Zhang, 2005;40

Rabusseau & Denis, 2014; Jiang et al., 1999). However, different families of components would41

require formulating different constraints, whose closed-form existence is not guaranteed.42

In this paper, we study a more general principle to design NMMs that circumvents the aforemen-43

tioned limitation while ensuring non-negativity of the modeled function: squaring the encoded lin-44

ear combination. For example, the NGMM above is a squared combination of Gaussian densities45

with negative mixture parameters. We theoretically investigate the expressive efficiency of squared46

NMMs, i.e., their expressiveness w.r.t. their model size, and show how to effectively represent and47

learn them in practice. Specifically, we do so in the framework of PCs, tractable models general-48

izing classical shallow MMs into deep MMs represented as structured neural networks. Deep PCs49

are already more expressive efficient than shallow MMs as they compactly encode a mixture with50

an exponential number of components (Jaini et al., 2018; Vergari et al., 2019b). However, they are51

classically represented with non-negative parameters, hence being restricted to encode deep but ad-52

ditive MMs. Instead, as a main theoretical contribution we prove that our squared non-monotonic53

PCs (NPC2s) can be exponentially more parameter-efficient than their monotonic counterparts.54

Contributions. i) We introduce a general framework to represent NMMs via squaring (Sec. 2),55

within the language of tensorized PCs (Mari et al., 2023), and show how NPC2s can be effectively56

learned and used for tractable inference (Sec. 3). ii) We show how NPC2s generalize not only mono-57

tonic PCs but other apparently different models allowing negative parameters that have emerged in58

different literatures, such as square root of density models in signal processing (Pinheiro & Vi-59

dakovic, 1997), positive semi-definite (PSD) models in kernel methods (Rudi & Ciliberto, 2021),60

and Born machines from quantum mechanics (Orús, 2013) (Sec. 4). This allows us to understand61

why they lead to tractable inference via the property-oriented framework of PCs. iii) We derive an62

exponential lower bound over the size of monotonic PCs to represent functions that can be com-63

pactly encoded by one NPC2 (Sec. 4.1), hence showing that NPC2s (and thus the aforementioned64

models) can be more expressive for a given size. Finally, iv) we provide empirical evidence (Sec. 5)65

that NPC2s can approximate distributions better than monotonic PCs for a variety of experimen-66

tal settings involving learning from real-world data and distilling intractable models such as large67

language models to unlock tractable inference (Zhang et al., 2023).68

2 SUBTRACTIVE MIXTURES VIA SQUARING69

We start by formalizing how to represent shallow NMMs by squaring non-convex combinations of70

K simple functions. Like exponentiation in energy-based models (LeCun et al., 2006), squaring71

ensures the non-negativity of our models, but differently from it, allows to tractably renormalize72

them. A squared NMM encodes a (possibly unnormalized) distribution c2(X) over variables X as73

c2(X) =
(∑K

i=1 wici(X)
)2

=
∑K

i=1

∑K
j=1 wiwjci(X)cj(X), (2)

where ci are the learnable components and the mixture parameters wi ∈ R are unconstrained, as74

opposed to Eq. (1). Squared NMMs can therefore represent
(
K+1
2

)
components within the same pa-75

rameter budget of K components of an additive MM. Each component of a squared NMM computes76

a product of experts ci(X)cj(X) (Hinton, 2002) allowing negative parameters 2wiwj if i ̸= j, and77

c2i (X) with w2
i otherwise. Fig. 1 shows a concrete example of this construction, which constitutes78

the simplest NPC2 we can build (see Sec. 3), i.e., comprising a single layer and having depth one.79

Tractable marginalization. Analogously to traditional MMs, squared NMMs support tractable80

marginalization and conditioning, if their component distributions do as well. The distribution en-81

coded by c2(X) can be normalized to compute a valid probability distribution p(X) = c2(X)/Z,82

by computing its partition function Z as83

Z =
∫
c2(x) dx =

∑K
i=1

∑K
j=1 wiwj

∫
ci(x)cj(x) dx. (3)

2



Published as a conference paper at ICLR 2024

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)
Figure 1: Shallow MMs and squared NMMs
represented as PCs, mapped to a computa-
tional graph having input components and a
weighted sum unit as output. Squaring a mix-
ture with K = 3 components (left) can yield
more components that share parameters (right).

Computing Z translates to evaluating
(
K+1
2

)
integrals over products of components ci(X)cj(X).84

More generally, marginalizing any subset of variables in X can be done in O(K2). This how-85

ever implies that the components ci are chosen from a family of functions such that their product86

ci(X)cj(X) can be tractably integrated, and Z is non-zero and finite. This is true for many para-87

metric families, including exponential families (Seeger, 2005). For instance, the product of two88

Gaussian or two categorical distributions is another Gaussian (Rasmussen & Williams, 2005) or89

categorical up to a multiplicative factor, which can be computed in polynomial time.90

A wider choice of components. Note that we do not require each ci to model a probability distri-91

bution, e.g., we might have ci(x) < 0. This allows us to employ more expressive tractable functions92

as base components in squared NMMs such as splines (see App. E for details) or potentially small93

neural networks (see discussion in App. G). However, if the components are already flexible enough94

there might not be an increase in expressiveness when mixing them in a linear combination or squar-95

ing them. E.g., a simple categorical distribution can already capture any discrete distribution with96

finite support and a (subtractive) mixture thereof might not yield additional benefits besides being97

easier to learn. An additive mixture of Binomials is instead more expressive than a single Binomial,98

but expected to be less expressive than its subtractive version (as illustrated in Sec. 5).99

Learning squared NMMs. The canonical way to learn traditional MMs (Eq. (1)) is by maximum-100

likelihood estimation (MLE), i.e., by maximizing
∑

x∈D log p(x) where D is a set of independent101

and identically distributed (i.i.d.) samples. For squared NMMs, the MLE objective is102

∑
x∈D log

(
c2(x)/Z

)
= −|D| logZ + 2

∑
x∈D log |c(x)|, (4)

where c(x) =
∑K

i=1 wici(x). Unlike other NMMs mentioned in Sec. 1, we do not need to derive103

additional closed-form constraints for the parameters to preserve non-negativity. Although mate-104

rializing the squared mixture having
(
K+1
2

)
components is required to compute Z as in Eq. (3),105

evaluating log |c(x)| is linear in K. Hence, we can efficiently perform batched stochastic gradient-106

based optimization and compute Z just once per batch.107

3 SQUARING DEEP MIXTURE MODELS108

So far, we dealt with mixtures that are shallow, i.e., that can be represented as simple computational109

graphs with a single weighted sum unit (e.g., Fig. 1). We now generalize them in the framework110

of PCs (Vergari et al., 2019b; Choi et al., 2020; Darwiche, 2001) as they offer a property-driven111

language to model structured neural networks which allow tractable inference. PCs enable us to112

encode an exponential number of mixture components in a compact but deep computational graph.113

PCs are usually defined in terms of scalar computational units: sum, product and input (see App. A).114

Following Vergari et al. (2019a); Mari et al. (2023), we instead formalize them as tensorized compu-115

tational graphs. That is, we group several computational units together in layers, whose advantage is116

twofold. First, we are able to derive a simplified tractable algorithm for squaring that requires only117

linear algebra operations and benefits from GPU acceleration (Alg. 1). Second, we can more easily118

generalize many recent PC architectures (Peharz et al., 2020b;a; Liu & Van den Broeck, 2021), as119

well as other tractable tensor representations (Sec. 4). Fig. A.1 illustrates how scalar computational120

units are mapped to tensorized layers. We start by defining deep computational graphs that can121

model possibly negative functions, simply named circuits (Vergari et al., 2021).122

Definition 1 (Tensorized circuit). A tensorized circuit c is a parameterized computational graph123

encoding a function c(X) and comprising of three kinds of layers: input, product and sum. Each124

layer comprises computational units defined over the same set of variables, also called its scope, and125

every non-input layer receives input from one or more layers. The scope of each non-input layer is126

3



Published as a conference paper at ICLR 2024

X3 X2

X2,X3 X1

X1,X2,X3

(a)

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙

⊙

(b)

fi(X3)fj(X3)

gi(X2)gj(X2) hi(X1)hj(X1)

W
2 ⊗

W
2

W1⊗W1

⊙

⊙

(c)

Figure 2: Squaring tensorized structured-decomposable circuits reduces to squaring layers,
depicted as colored boxes of (input), (product), and a classic, real deep, Voltaire (sum). Connections to a sum layer
are labeled by the matrix parameterizing the layer, while connections to product layers are labeled
by the Hadamard product sign (see also Fig. A.1). A tensorized structured-decomposable circuit (b)
over three variables defined from the RG in (a) is squared in (c) by recursively squaring each layer
via Alg. 1. Squared layers contain a quadratic number of units, but still output vectors.

the union of the scope of its inputs, and the scope of the output layer computing c(X) is X. Each127

input layer ℓ has scope Y ⊆ X and computes a collection of K functions fi(Y) ∈ R, i.e., ℓ outputs128

a K-dimensional vector. Each product layer ℓ computes an Hadamard (or element-wise) product129

over the N layers it receives as input, i.e., ℓ = ⊙N
i=1ℓi. A sum layer with S sum units and receiving130

input from a previous layer ℓ ∈ RK , is parameterized by W ∈ RS×K and computes Wℓ.131

Fig. 2b shows a deep circuit in tensorized form. To model a distribution via circuits we first require132

that the output of the computational graph is non-negative. We call such a circuit a PC. Similarly133

to shallow additive MM (Eq. (1)), a sufficient condition to ensure non-negativity of the output is134

make the PC monotonic, i.e., to parameterize all sum layers with non-negative matrices and to135

restrict input layers to encode non-negative functions (e.g., probability mass or density functions).136

So far, monotonic PCs have been the canonical way to represent and learn PCs (App. G). In Def. 1137

we presented product layers computing Hadamard products only, to simplify notation and as this138

implementation choice is commonly used in many existing PC architectures (Darwiche, 2009; Liu139

& Van den Broeck, 2021; Mari et al., 2023). We generalize our treatment of PCs in Def. A.6 to deal140

with another popular product layer implementation: Kronecker products (Peharz et al., 2020b;a;141

Mari et al., 2023). Our results still hold for both kinds of product layers, if not specified otherwise.142

3.1 BUILDING TRACTABLE CIRCUITS FOR MARGINALIZATION143

Deep PCs can be renormalized and marginalize out any subset of X in a single feed-forward pass144

if they are smooth and decomposable, i.e., each sum layer receives inputs from layers whose units145

are defined over the same scopes, and each product layer receives inputs from layers whose scopes146

are pairwise disjoint, respectively. See Prop. A.1 for more background. Sum layers in our Def. 1147

guarantee smoothness by design as they have exactly one input. A simple way to ensure decompos-148

ability is to create a circuit that follows a hierarchical scope partitioning of variables X, also called149

a region graph, which is formalized next.150

Definition 2 (Region graph (Dennis & Ventura, 2012)). Given a set of variables X, a region graph151

(RG) is a bipartite and rooted graph whose nodes are either regions, denoting subsets R of X, or152

partitions specifying how a region is partitioned into other regions.153

Fig. 2a shows an example of a RG. Given a RG, we can build a smooth and decomposable tensorized154

circuit as follows. First, we parameterize regions R ⊆ X that are not further partitioned with an155

input layer encoding some functions over variables in R. Then, we parameterize each partitioning156

{Ri}Ni=1 with a product layer having as inputs one layer for each Ri. Each product layer is then157

followed by a sum layer. Figs. 2a and 2b illustrate such a construction by color-coding regions and158

corresponding layers. As we will show in Sec. 3.2, this also provides us a clean recipe to efficiently159

square a deep circuit. The literature on PCs provides several ways to build RGs (Peharz et al.,160

2020b;a; Mari et al., 2023). In our experiments (Sec. 5), we recursively partition sets of variables161

randomly until no further partitioning is possible (Peharz et al., 2020b). Moreover, we experiment162

with RGs that partitions variables one by one (e.g., the one in Fig. 2a), as they are related to other163

classes of models (see Sec. 4). App. F details how to construct RGs.164
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3.2 SQUARING DEEP TENSORIZED CIRCUITS165

(Squared negative) MMs as circuits. It is easy to see that traditional shallow MMs (Eq. (1)) can166

be readily represented as tensorized smooth and decomposable PCs consisting of an input layer167

encoding K components pi followed by a sum layer, which is parameterized by a non-negative row-168

vector W ∈ R1×K
+ whose entries sum up to one. Squared NMMs (Eq. (2)) can be represented in a169

similar way, as they can be viewed as mixtures over an increased number of components (see Fig. 1170

and Fig. A.1), where the sum layer is parameterized by real entries, instead. Next, we discuss how171

to square deep tensorized circuits as to retrieve our NPC2s model class.172

Squaring (and renormalizing) tensorized circuits. The challenge of squaring a tensorized non-173

monotonic circuit c (potentially encoding a negative function) is guaranteeing c2 to be representable174

as a smooth and decomposable PC with polynomial size, as these two properties are necessary175

conditions to being able to renormalize c2 efficiently and in a single feed-forward pass (Choi et al.,176

2020). In general, even squaring a decomposable circuit while preserving decomposability of the177

squared circuit is a #P-hard problem (Shen et al., 2016; Vergari et al., 2021). Fortunately, it is178

possible to obtain a decomposable representation of c2 efficiently for circuits c that are structured-179

decomposable (Pipatsrisawat & Darwiche, 2008; Vergari et al., 2021). Intuitively, in a tensorized180

structured-decomposable circuit all product layers having the same scope Y ⊆ X decompose Y181

over their input layers in the exact same way. We formalize this property in the Appendix in Def. A.3.182

Tensorized circuits satisfying this property by design can be easily constructed by stacking layers183

conforming to a RG, as discussed before, and requiring that such a RG is a tree, i.e., in which there is184

a single way to partition each region, and whose input regions do not have overlapping scopes. E.g.,185

the RG in Fig. 2a is a tree RG. From here on, w.l.o.g. we assume our tree RGs to be binary trees, i.e.,186

they partition each region into two other regions only. Given a tensorized structured-decomposable187

circuit c defined on such a tree RG, Alg. 1 efficiently constructs a smooth and decomposable ten-188

sorized circuit c2. Moreover, let L be the number of layers and M the maximum time required to189

evaluate one layer in c, then the following proposition holds.190

Proposition 1 (Tractable marginalization of squared circuits). Let c be a tensorized structured-191

decomposable circuit where the products of functions computed by each input layer can be tractably192

integrated. Any marginalization of c2 obtained via Alg. 1 requires time and space O(L ·M2).193

See App. B.2 for a proof. In a nutshell, this is possible because Alg. 1 recursively squares each194

layer ℓ in c such as ℓ2 = ℓ⊗ ℓ in c2, where ⊗ denotes the Kronecker product of two vectors.2 Our195

tensorized treatment of circuits allows for a much more compact version of the more general algo-196

rithm proposed in Vergari et al. (2021) which was defined in terms of squaring scalar computational197

units. At the same time, it lets us derive a tighter worst-case upper-bound than the one usually re-198

ported for squaring structured-decomposable circuits (Pipatsrisawat & Darwiche, 2008; Choi et al.,199

2015; Vergari et al., 2021), which is the squared number of computations in the whole computational200

graph, or O(L2 · M2). Note that materializing c2 is needed when we want to efficiently compute201

the normalization constant Z of c2 or marginalizing any subset of variables. As such, when learning202

by MLE (Eq. (4)) and by batched gradient descent, we need to evaluate c2 only once per batch, thus203

greatly amortizing its cost. In App. C, we investigate the time and memory costs of learning NPC2s204

having different size and on different data set dimensionalities. Finally, tractable marginalization205

enables tractable sampling from the distribution modeled by NPC2s, as we discuss in App. A.2.206

3.3 NUMERICALLY STABLE INFERENCE AND LEARNING207

Renormalizing deep PCs can easily lead to underflows and/or overflows. In monotonic PCs, this208

is usually addressed by performing computations in log-space and utilizing the log-sum-exp trick209

(Blanchard et al., 2021). However, this is not applicable to non-monotonic PCs as intermediate210

layers can compute negative values. Therefore, we instead evaluate circuits by propagating the log-211

arithm of absolute values and the sign values of the outputs of each layer. Then, sum layers are212

evaluated with a sign-aware version of the log-sum-exp trick. A similar idea has been already ap-213

plied to evaluate expectations of negative functions with monotonic PCs (Mauá et al., 2018; Correia214

& de Campos, 2019). App. D extends it to tensorized non-monotonic circuits.215

2In Alg. B.1 we provide a generalization of Alg. 1 to square Kronecker product layers.
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Algorithm 1 squareTensorizedCircuit(ℓ,R)

Input: A tensorized circuit having output layer ℓ and defined on a tree RG rooted byR.
Output: The tensorized squared circuit defined on the same tree RG having ℓ2 as output layer computing ℓ⊗ℓ.
1: if ℓ is an input layer then
2: ℓ computes K functions fi(R)
3: return An input layer ℓ2 computing all K2

4: product combinations fi(R)fj(R)
5: else if ℓ is a product layer then
6: {(ℓi,Ri), (ℓii,Rii)} ← getInputs(ℓ,R)
7: ℓ2i ← squareTensorizedCircuit(ℓi,Ri)
8: ℓ2ii ← squareTensorizedCircuit(ℓii,Rii)

9: return ℓ2i ⊙ ℓ2ii
10: else ▷ ℓ is a sum layer
11: {(ℓi,R)} ← getInputs(ℓ,R)
12: ℓ2i ← squareTensorizedCircuit(ℓi,R)
13: W ∈ RS×K ← getParameters(ℓ)
14: W′ ∈ RS2×K2

←W ⊗W
15: return W′ℓ2i

4 EXPRESSIVENESS OF NPC2S AND RELATIONSHIP TO OTHER MODELS216

Circuits have been used as the “lingua franca” to represent apparently different tractable model217

representations (Darwiche & Marquis, 2002; Shpilka & Yehudayoff, 2010), and to investigate their218

ability to exactly represent certain function families with only a polynomial increase in model size219

– also called the expressive efficiency (Martens & Medabalimi, 2014), or succinctness (de Colnet220

& Mengel, 2021) of a model class. This is because the size of circuits directly translates to the221

computational complexity of performing inference. As we extend the language of monotonic PCs222

to include negative parameters, here we provide polytime reductions from tractable probabilistic223

model classes emerging from different application fields that can encode subtractions, to (deep)224

non-monotonic PCs. By doing so, we not only shed light on why they are tractable, by explicitly225

stating their structural properties as circuits, but also on why they can be more expressive than226

classical additive MMs, as we prove that NPC2s can be exponentially more compact in Sec. 4.1.227

Simple shallow NMMs have been investigated for a limited set of component families, as discussed228

in Sec. 1. Notably, this can also be done by directly learning to approximate the square root of a229

density function, as done in signal processing with wavelet functions as components (Daubechies,230

1992; Pinheiro & Vidakovic, 1997) or RBF kernels, i.e., unnormalized Gaussians centered over data231

points (Schölkopf & Smola, 2001), as in Hong & Gao (2021). As discussed in Sec. 3, we can readily232

represent these NMMs as simple NPC2s where kernel functions are computed by input layers.233

Positive semi-definite (PSD) models (Rudi & Ciliberto, 2021; Marteau-Ferey et al., 2020) are234

a recent class of models from the kernel and optimization literature. Given a kernel function κ235

(e.g., an RBF kernel as in Rudi & Ciliberto (2021)) and a set of d data points x(1), . . . ,x(d) with236

κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))]⊤ ∈ Rd, and a real d × d PSD matrix A, they define an unnor-237

malized distribution as the non-negative function f(x;A,κ) = κ(x)⊤Aκ(x). Although apparently238

different, they can be translated to NPC2s in polynomial time.239

Proposition 2 (Reduction from PSD models). A PSD model with kernel function κ, defined over240

d data points, and parameterized by a PSD matrix A, can be represented as a mixture of squared241

NMMs (hence NPC2s) in time O(d3).242

We prove this in App. B.3. Note that while PSD models are shallow non-monotonic PCs, we can243

stack them into deeper NPC2s that support tractable marginalization via structured-decomposability.244

Tensor networks and the Born rule. Squaring a possibly negative function to retrieve an un-245

normalized distribution is related to the Born rule in quantum mechanics (Dirac, 1930), used to246

characterize the distribution of particles by squaring their wave function (Schollwoeck, 2010; Orús,247

2013). These functions can be represented as a large D-dimensional tensor T over discrete vari-248

ables X = {X1, . . . , XD} taking value {1, . . . ,m}, compactly factorized in a tensor network (TN)249

such as a matrix-product state (MPS) (Pérez-Garcı́a et al., 2007), also called tensor-train. Given an250

assignment x = ⟨x1, . . . , xD⟩ to X, a rank r MPS compactly represents T as251

T [x1, . . . , xD] =
∑r

i1=1

∑r

i2=1
· · ·
∑r

iD−1=1
A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1], (5)

where A1,AD ∈ Rm×r, Aj ∈ Rm×r×r with 1 < j < D, for indices {i1, . . . , iD−1}, and de-252

noting indexing with square brackets. To encode a distribution p(X), one can reparameterize ten-253

sors Aj to be non-negative (Novikov et al., 2021) or apply the Born rule and square T to model254
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p(x) ∝ (T [x1, . . . , xD])2. Such a TN is called a Born machine (BM) (Glasser et al., 2019). Be-255

sides modeling complex quantum states, TNs such as BMs have also been explored as classical256

ML models to learn discrete distributions (Stoudenmire & Schwab, 2016; Han et al., 2018; Glasser257

et al., 2019; Cheng et al., 2019), in quantum ML (Liu & Wang, 2018; Huggins et al., 2018), and258

more recently extended to continuous domains by introducing sets of basis functions, called TTDE259

(Novikov et al., 2021). Next, we show they are a special case of NPC2s.260

Proposition 3 (Reduction from BMs). A BM encoding D-dimensional tensor with m states by261

squaring a rank r MPS can be exactly represented as a structured-decomposable NPC2 in O(D ·k4)262

time and space, with k ≤ min{r2,mr}.263

We prove this in App. B.4 by showing an equivalent NPC2 defined on linear tree RG (e.g., the one264

in Fig. 2a). This connection highlights how tractable marginalization in BMs is possible thanks to265

structured-decomposability (Proposition 1), a condition that to the best of our knowledge was not266

previously studied for TNs. Futhermore, as NPC2s we can now design more flexible tree RGs, e.g.,267

randomized tree structures (Peharz et al., 2020b; Di Mauro et al., 2017; Di Mauro et al., 2021),268

densely tensorized structures heavily exploiting GPU parallelization (Peharz et al., 2020a; Mari269

et al., 2023) or heuristically learn them from data (Liu & Van den Broeck, 2021).270

4.1 EXPONENTIAL SEPARATION OF NPC2S AND STRUCTURED MONOTONIC PCS271

Squaring via Alg. 1 can already make a tensorized (monotonic) PC more expressive, but only by a272

polynomial factor, as we quadratically increase the size of each layer, while keeping the same num-273

ber of learnable parameters (similarly to the increased number of components of squared NMMs274

(Sec. 2)). On the other hand, allowing negative parameters can provide an exponential advantage,275

as proven for certain circuits (Valiant, 1979), but understanding if this advantage carries over to276

our squared circuits is not immediate. In fact, we observe there cannot be any expressiveness ad-277

vantage in squaring certain classes of non-monotonic structured-decomposable circuits. These are278

the circuits that support tractable maximum-a-posteriori inference (Choi et al., 2020) and satisfy an279

additional property known as determinism (see Darwiche (2001), Def. A.5). Squaring these circuits280

outputs a PC of the same size and that is monotonic, as formalized next and proven in App. B.6.281

Proposition 4 (Squaring deterministic circuits). Let c be a smooth, decomposable and deterministic282

circuit, possibly computing a negative function. Then, the squared circuit c2 is monotonic and has283

the same structure (and hence size) of c.284

The NPC2s we considered so far, as constructed in Sec. 3, are not deterministic. Here we prove that285

some non-negative functions (hence probability distributions up to renormalization) can be com-286

puted by NPC2s that are exponentially smaller than any structured-decomposable monotonic PC.287

Theorem 1 (Expressive efficiency of NPC2s). There is a class of non-negative functions F over288

variables X that can be compactly represented as a shallow squared NMM (hence NPC2s), but for289

which the smallest structured-decomposable monotonic PC computing any F ∈ F has size 2Ω(|X|).290

We prove this in App. B.5 by showing a non-trivial lower bound on the size of structured-291

decomposable monotonic PCs for a variant of the unique disjointness problem (Fiorini et al., 2015).292

Intuitively, this tells us that, given a fixed number of parameters, NPC2s can potentially be much293

more expressive than structured-decomposable monotonic PCs (and hence shallow additive MMs).294

We conjecture that an analogous lower bound can be devised for decomposable monotonic PCs.295

Furthermore, as this result directly extends to PSD and BM models (Sec. 4), it opens up interesting296

theoretical connections in the research fields of kernel-based and TN models.297

5 EXPERIMENTS298

We aim to answer the following questions: (A) are NPC2s better distribution estimators than mono-299

tonic PCs? (B) how the increased model size given by squaring and the presence of negative pa-300

rameters independently influence the expressiveness of NPC2s? (C) how does the choice of input301

layers and the RG affect the performance of NPC2s? We perform several distribution estimation302

experiments on both synthetic and real-world data, and label the following paragraphs with letters303

denoting relevance to the above questions. Moreover, note that our comparisons between NPC2s304

and monotonic PCs are based on models having the same number of learnable parameters.305
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Figure 3: NPC2s are better estimators, especially with parameter-efficient input layers. Dis-
tribution estimated by monotonic PCs (MPC), squared monotonic PCs (MPC2) and NPC2s on 2D
continuous (above) and discrete (below) data. On continuous data input layers compute splines
(Eq. (11)), while on discrete data they compute either categoricals (for MPC and MPC2), embed-
dings (for NPC2s) or Binomials. Apps. H.1 and H.2 shows log-likelihoods on also additional data.
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RealNVP 0.17 8.33 -18.71 -13.84 153.28
MAF 0.24 10.08 -17.73 -12.24 154.93
NSF 0.66 13.09 -14.01 -9.22 157.31

Gaussian -7.74 -3.58 -27.93 -37.24 96.67
EiNet-LRS 0.36 4.79 -22.46 -34.21 —
TTDE 0.46 8.93 -21.34 -28.77 143.30
MPC (LT) 0.51 6.73 -22.06 -32.47 116.90
NPC2 (LT) 0.53 9.00 -20.66 -26.68 118.58
MPC (BT) 0.57 5.56 -22.45 -32.11 123.30
NPC2 (BT) 0.62 10.98 -20.41 -26.92 128.38

Figure 4: NPC2s can be more expressive than monotonic PCs (MPCs). Best average log-
likelihoods achieved by monotonic PCs (+) and NPC2s (±2), built either from randomized lin-
ear tree (LT) or binary tree (BT) RGs (see App. H.3). The scatter plots (left) pairs log-likelihoods
based on the number of units per layer K (the higher the darker), differentiating PCs with Gaussian
(G:blue) and splines (S:red) input layers. Both axes of each scatter plot are on the same scale, thus
the results above the diagonal are of NPC2s achieving higher log-likelihoods than MPCs at parity
of model size. The table (right) shows our models’ best average test log-likelihoods and puts them
in context with intractable (above) and tractable (below) models.

(A, B) Synthetic continuous data. Following Wenliang et al. (2019), we evaluate monotonic PCs306

and NPC2s on 2D density estimation tasks, as this allows us to gain an insight on the learned307

density functions. To disentangle the effect of squaring versus that of negative parameters, we also308

experiment with squared monotonic PCs. We build circuit structures from a trivial tree RG (see309

App. H.1 for details). We experiment with splines as input layers for NPC2s, and enforce their non-310

negativity for monotonic PCs (see App. E). Fig. 3 shows that, while squaring benefits monotonic311

PCs, negative parameters in NPC2s are needed to better capture complex target densities.312

(C) Synthetic discrete data. We estimate the probability mass of the previous 2D data sets, now313

finitely-discretized (see App. H.2), to better understand when negative parameters might bring little314

to no advantage if input layers are already expressive enough. First, we experiment with (squared)315

monotonic PCs (resp. NPC2s) having input layers computing categoricals (resp. real-valued em-316

beddings). Second, we employ the less flexible but more parameter-efficient Binomials instead.317

App. H.2 reports the hyperparameters. Fig. 3 shows that, while there is no clear advantage for318

NPC2s equipped with embeddings instead of MPC2 with categoricals, in case of Binomials they319

can better capture the target distribution. This is because categoricals (and embeddings) already320

have enough parameters to capture “holes” in the probability mass function. However, Binomials321

introduce a strong inductive bias that might hinder learning. We believe this is the reason why, ac-322

cording to some preliminary results, we did not observe an improvement of NPC2s with respect to323

monotonic PCs on estimating image distributions.324
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most values of K (see p-values in Table H.7).

(A, B, C) Multi-variate continuous data. Following Papamakarios et al. (2017), we evaluate325

deeper PCs for density estimation on five multivariate data sets (see Table H.1). We evaluate mono-326

tonic PCs and NPC2s in tensorized form built out of randomized linear tree RGs. That is, for some327

variable permutation, we construct a tree RG where each partition splits a region into a set of only328

one variable and recursively factorizes the rest. By doing so, we recover architectures similar to a329

BMs or TTDEs (see Sec. 4). Following Peharz et al. (2020b), we also experiment with binary tree330

RGs whose regions are randomly split in half. App. H.3 details these RGs, as well as the hyperpa-331

rameters used. We compare against: a full covariance Gaussian, normalizing flows RealNVP (Dinh332

et al., 2017), MADE (Germain et al., 2015), MAF (Papamakarios et al., 2017) and NSF (Durkan333

et al., 2019), a monotonic PC with input layers encoding flows (EiNet-LRS) (Sidheekh et al., 2023),334

and TTDE (Novikov et al., 2021). Fig. 4 shows that NPC2s with Gaussian input layers generally335

achieve higher log-likelihoods than monotonic PCs on four data sets. Fig. H.3 shows similar results336

when comparing to squared monotonic PCs, thus providing evidence that negative parameters other337

than squaring contribute to the expressiveness of NPC2s. Binary tree RGs generally deliver better338

likelihoods than linear tree ones, especially on Gas, where NPC2s using them outperform TTDE.339

(A) Distilling intractable models. Monotonic PCs have been used to approximate intractable mod-340

els such as LLMs and perform exact inference in presence of logical constraints, such as for con-341

strained text generation (Zhang et al., 2023). As generation performance is correlated with how well342

the LLM is approximated by a tractable model, we are interested in how NPC2s can better be the dis-343

tillation target of a LLM such as GPT2, rather than monotonic PCs. Following Zhang et al. (2023),344

we minimize the KL divergence between GPT2 and our PCs on a data set of sampled sentences (de-345

tails in App. H.4). Since sentences are sequences of token variables, the architecture of tensorized346

circuits is built from a linear tree RG, thus corresponding to an inhomogeneous HMM in case of347

monotonic PCs (see App. B.4.1) while resembling a BM for NPC2s. Fig. 5 shows that NPC2s can348

distill GPT2 and scale better than monotonic PCs, as they achieve log-likelihoods closer to the ones349

computed by GPT2. However, we observe that NPC2s fit the training data much better than the test350

data, even though results on test data are generally significant (see Table H.7). While this is further351

evidence of their increased expressiveness, regularizing NPC2s deserves future investigation.352

6 DISCUSSION & CONCLUSION353

With this work, we hope to popularize subtractive MMs via squaring as a simple and effective model354

class in the toolkit of tractable probabilistic modeling and reasoning that can rival traditional additive355

MMs. By casting them in the framework of circuits, we presented how to effectively represent356

and learn deep subtractive MMs such as NPC2s (Sec. 3) while showing how they can generalize357

other model classes such as PSD and tensor network models (Sec. 4). Our main theoretical result358

(Sec. 4.1) applies also to these models and justifies the increased performance we found in practice359

(Sec. 5). This work is the first to rigorously address representing and learning non-monotonic PCs360

in a general way, and opens up a number of future research directions. The first one is to retrieve a361

latent variable interpretation for NPC2s, as negative parameters in a non-monotonic PC invalidate362

the probabilistic interpretation of its sub-circuits (Peharz et al., 2017), making it not possible to learn363

its structure and parameters in classical ways (see App. G). Better ways to learn NPC2s, in turn, can364

benefit all applications in which PCs are widely used – from causal discovery (Wang et al., 2022)365

to variational inference (Shih & Ermon, 2020) and neuro-symbolic AI (Ahmed et al., 2022) – by366

making more compact and expressive distributions accessible. Finally, by connecting circuits with367

tensor networks for the first time, we hope to inspire works that carry over the advancements of one368

community to the other, such as better learning schemes (Stoudenmire & Schwab, 2016; Novikov369

et al., 2021), and more flexible ways to factorize high-dimensional tensors (Mari et al., 2023).370
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Román Orús. A practical introduction to tensor networks: Matrix product states and projected513

entangled pair states. Annals of Physics, 349:117–158, 2013.514

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density515

estimation. In Advances in Neural Information Processing Systems 30 (NeurIPS), pp. 2338–2347.516

Curran Associates, Inc., 2017.517

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-518

shminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of519

Machine Learning Research (JMLR), 22(1):2617–2680, 2021.520

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro M. Domingos. On the latent variable521

interpretation in sum-product networks. IEEE Transactions on Pattern Analalysis and Machine522

Intelligence, 39(10):2030–2044, 2017.523

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy524

Van Den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable525

learning of tractable probabilistic circuits. In 37th International Conference on Machine Learning526

(ICML), volume 119 of Proceedings of Machine Learning Research, pp. 7563–7574. PMLR,527

2020a.528

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,529

Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and ef-530

fective approach to probabilistic deep learning. In 35th Conference on Uncertainty in Artificial531

Intelligence (UAI), volume 115 of Proceedings of Machine Learning Research, pp. 334–344.532

PMLR, 2020b.533

David Pérez-Garcı́a, F. Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Matrix product state534

representations. Quantum Information and Computing, 7(5):401–430, 2007. ISSN 1533-7146.535

Les A. Piegl and Wayne Tiller. The NURBS book. In Monographs in Visual Communication, 1995.536

Aluisio Pinheiro and Brani Vidakovic. Estimating the square root of a density via compactly sup-537

ported wavelets. Computational Statistics and Data Analysis, 25(4):399–415, 1997.538

Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured decom-539

posability. In 23rd Conference on Artificial Intelligence (AAAI), volume 8, pp. 517–522, 2008.540

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In IEEE541

International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE,542

2011.543

Guillaume Rabusseau and François Denis. Learning negative mixture models by tensor decomposi-544

tions. arXiv preprint arXiv:1403.4224, 2014.545

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.546

Adaptive Computation and Machine Learning. MIT Press, 2005.547

Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted decision548

trees as an alternative to artificial neural networks for particle identification. Nuclear Instruments549

& Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated550

Equipment, 543:577–584, 2004.551

Tim Roughgarden. Communication complexity (for algorithm designers). Foundations and Trends®552

in Theoretical Computer Science, 11(3–4):217–404, 2016.553

13



Published as a conference paper at ICLR 2024

Alessandro Rudi and Carlo Ciliberto. PSD representations for effective probability models. In554

Advances in Neural Information Processing Systems 34 (NeurIPS), pp. 19411–19422. Curran555

Associates, Inc., 2021.556

Bernhard Schölkopf and Alex Smola. Learning with kernels: support vector machines, regulariza-557

tion, optimization, and beyond. In Adaptive Computation and Machine Learning Series. MIT558

Press, 2001.559

Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states.560

Annals of Physics, 326:96–192, 2010.561

Matthias Seeger. Expectation propagation for exponential families. Technical report, Department of562

EECS, University of California at Berkeley, 2005.563

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of prob-564

abilistic models. In Advances in Neural Information Processing Systems 29 (NeurIPS). Curran565

Associates, Inc., 2016.566

Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete graphical567

models. In Advances in Neural Information Processing Systems 33 (NeurIPS). Curran Associates,568

Inc., 2020.569

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open ques-570

tions. Founddations and Trends in Theoretical Computer Science, 5:207–388, 2010.571

Sahil Sidheekh, Kristian Kersting, and Sriraam Natarajan. Probabilistic flow circuits: Towards572

unified deep models for tractable probabilistic inference. In 39th Conference on Uncertainty573

in Artificial Intelligence (UAI), volume 216 of Proceedings of Machine Learning Research, pp.574

1964–1973. PMLR, 2023.575

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In Advances in576

Neural Information Processing Systems 29 (NeurIPS), pp. 4799–4807. Curran Associates, Inc.,577

2016.578

Russell Tsuchida, Cheng Soon Ong, and Dino Sejdinovic. Squared neural families: A new class of579

tractable density models. arXiv preprint arXiv:2305.13552, 2023.580

Leslie G. Valiant. Negation can be exponentially powerful. In 11th Annual ACM Symposium on581

Theory of Computing, pp. 189–196, 1979.582

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-583

product networks. Machine Learning, 108(4):551–573, 2019a.584

Antonio Vergari, Nicola Di Mauro, and Guy Van den Broeck. Tractable probabilistic models: Repre-585

sentations, algorithms, learning, and applications. Tutorial at the 35th Conference on Uncertainty586

in Artificial Intelligence (UAI), 2019b.587

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional588

atlas of tractable circuit operations for probabilistic inference. In Advances in Neural Information589

Processing Systems 34 (NeurIPS), pp. 13189–13201. Curran Associates, Inc., 2021.590

Allan H. Vermeulen, Richard H. Bartels, and Glenn R. Heppler. Integrating products of B-splines.591

SIAM Journal on Scientific and Statistical Computing, 13:1025–1038, 1992.592

Benjie Wang, Matthew R. Wicker, and Marta Kwiatkowska. Tractable uncertainty for structure593

learning. In 39th International Conference on Machine Learning (ICML), pp. 23131–23150.594

PMLR, 2022.595

Li Wenliang, Danica J. Sutherland, Heiko Strathmann, and Arthur Gretton. Learning deep kernels596

for exponential family densities. In 36th International Conference on Machine Learning (ICML),597

volume 97 of Proceedings of Machine Learning Research, pp. 6737–6746. PMLR, 2019.598

Baibo Zhang and Changshui Zhang. Finite mixture models with negative components. In 4th In-599

ternational Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM),600

pp. 31–41. Springer, 2005.601

14



Published as a conference paper at ICLR 2024

Honghua Zhang, Brendan Juba, and Guy Van den Broeck. Probabilistic generating circuits. In602

International Conference on Machine Learning, pp. 12447–12457. PMLR, 2021.603

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for au-604

toregressive language generation. In 40th International Conference on Machine Learning (ICML),605

volume 202 of Proceedings of Machine Learning Research, pp. 40932–40945. PMLR, 2023.606

15



Published as a conference paper at ICLR 2024

W ∈ R3×3

⊙

W

Figure A.1: Computational units can be grouped into layers as to build a tensorized circuit.
Sum units each parameterized by the rows of W ∈ R3×3 (left, in purple) form a sum layer param-
eterized by W (right). Product units (left, in red) form an Hadamard product layer (right). Input
units (left, in yellow) form an input layer computing the same functions (right)

A CIRCUITS607

In Sec. 3 we introduced circuits in a tensorized form. Here we instead present the definitions and608

properties of circuits as they are usually defined in the literature, which will be used in App. B.609

Definition A.1 (Circuit (Choi et al., 2020; Vergari et al., 2021)). A circuit c is a parameterized610

computational graph over variables X encoding a function c(X) and comprising three kinds of611

computational units: input, product, and sum. Each product or sum unit n receives as inputs the612

outputs of other units, denoted with the set in(n). Each unit n encodes a function cn defined as: (i)613

fn(sc(n)) if n is an input unit, where fn is a function over variables sc(n) ⊆ X, called its scope,614

(ii)
∏

i∈in(n) ci(sc(ni)) if n is a product unit, and (iii)
∑

i∈in(n) wici(sc(ni)) if n is a sum unit, with615

wi ∈ R denoting the weighted sum parameters. The scope of a product or sum unit n is the union616

of the scopes of its inputs, i.e., sc(n) =
⋃

i∈in(n) sc(i).617

Note that tensorized circuits (Def. 1) are circuits where each input (resp. product and sum) layer618

consists of scalar input (resp. product and sum) units. For example, Fig. A.1 shows how compu-619

tational units are grouped into layers. A probabilistic circuit (PC) is defined as a circuit encoding620

a non-negative function. PCs that are smooth and decomposable (Def. A.2) enable computing the621

partition function and, more in general, performing variable marginalization efficiently (Prop. A.1).622

Definition A.2 (Smoothness and decomposability (Darwiche & Marquis, 2002)). A circuit is smooth623

if for every sum unit n, its input units depend all on the same variables, i.e, ∀i, j ∈ in(n) : sc(i) =624

sc(j). A circuit is decomposable if the inputs of every product unit n depend on disjoint sets of625

variables, i.e, ∀i, j ∈ in(n) i ̸= j : sc(i) ∩ sc(j) = ∅.626

Proposition A.1 (Tractability (Choi et al., 2020)). Let c be a smooth and decomposable circuit over627

variables X whose input units can be integrated efficiently. Then for any Z ⊆ X and y an assignment628

to variables in X \ Z, the quantity
∫
c(y, z) dz can be computed exactly in time and space Θ(|c|),629

where |c| denotes the size of the circuit, i.e., the number of connections in the computational graph.630

The size of circuits in tensorized form is obtained by counting the number of connections between631

the scalar computational units (as detailed in App. A.1.1). Squaring circuits or their tensorized rep-632

resentation efficiently such that the resulting PC is smooth and decomposable (Def. A.2) requires the633

satisfaction of structured-decomposability, as showed in (Pipatsrisawat & Darwiche, 2008; Vergari634

et al., 2021).635

Definition A.3 (Structured-decomposability (Pipatsrisawat & Darwiche, 2008; Darwiche, 2009)). A636

circuit is structured-decomposable if (1) it is smooth and decomposable, and (2) any pair of product637

units n,m having the same scope decompose their scope at their input units in the same way.638

Note that shallow MMs are both decomposable and structured-decomposable. As anticipated in639

Sec. 3, the expressiveness of squared non-monotonic PCs that are also deterministic is the same640

as monotonic deterministic PCs, which are used for tractable maximum-a-posteriori (MAP) infer-641

ence. We prove it formally in App. B.6 by leveraging the definition of determinism that we show in642

Def. A.5. Before that, we introduce the definition of support of a computational unit.643

Definition A.4 (Support (Choi et al., 2020)). The support of a computational unit n over variables644

X is defined as the set of value assignments to variables in X such that the output of n is non-zero,645

i.e., supp(n) = {x ∈ val(X) | cn(x) ̸= 0}, where val(X) denotes the domain of variables X.646
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Definition A.5 (Determinism (Darwiche, 2001)). A circuit c is deterministic if for any sum unit647

n ∈ c its inputs have disjoint support (Def. A.4), i.e., ∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅.648

A.1 TENSORIZED CIRCUITS649

Def. 1 can be further generalized by introducing Kronecker product layers, which are the building650

blocks of other tensorized circuit architectures, such as randomized and tensorized sum-product651

networks (RAT-SPNs) (Peharz et al., 2020b), einsum networks (EiNets) (Peharz et al., 2020a).652

Definition A.6 (Tensorized circuit). A tensorized circuit c is a parameterized computational graph653

encoding a function c(X) and comprising of three kinds of layers: input, product and sum. Each654

layer comprises computational units defined over the same set of variables, also called its scope, and655

every non-input layer receives input from one or more layers. The scope of each non-input layer is656

the union of the scope of its inputs, and the scope of the output layer computing c(X) is X. Each657

input layer ℓ has scope Y ⊆ X and computes a collection of K functions fi(Y) ∈ R, i.e., ℓ outputs658

a K-dimensional vector. Each product layer ℓ computes either an Hadamard (or element-wise) or659

Kronecker product over the N layers it receives as input, i.e., ℓ = ⊙N
i=1ℓi or ⊗N

i=1ℓi, respectively.660

A sum layer with S sum units and receiving input form a previous layer ℓ ∈ RK , is parameterized661

by W ∈ RS×K and computes Wℓ.662

A.1.1 SIZE OF TENSORIZED CIRCUITS663

The time and space complexity of evaluating a circuit is linear in its size. The size |c| of a circuit c664

(Def. A.1) is obtained by counting the number of input connections of each scalar product or sum665

unit. In other words, it is the number of edges in its computational graph.666

If c is a tensorized circuit, then its size is obtained by counting the number of connections in its non-667

tensorized form. Fig. A.1 shows part of a tensorized circuit and its non-tensorized form. For sum668

layers, the number of scalar input connections is the size of its parameterization matrix, i.e., S ·K669

if it is parameterized by W ∈ RS×K . If ℓ is an Hadamard product layer computing ℓ = ⊙N
i=1ℓi,670

where each ℓi outputs a K-dimensional vector, then the number of its scalar input connections is671

N ·K. In case of Kronecker product layers as in the more general Def. A.6, i.e., ℓ = ⊗N
i=1ℓi where672

each ℓi outputs a K-dimensional vector, then the number of its scalar input connections is KN+1.673

A.2 TRACTABLE EXACT SAMPLING674

Each sum unit in a monotonic PC can be interpreted as a finitely discrete latent variable that can as-675

sume as many values as the number of input connections (Peharz et al., 2017). As such, a monotonic676

PC can be seen as a hierarchical MM. This allows us to sample exactly from the modeled distribution677

by (1) recursively sampling latent variables until input units are reached, and (2) sampling observed678

variables from the distributions modeled by input units (Vergari et al., 2019a).679

Such probabilistic interpretation of inner sum units for NPC2s is not possible, as they can output680

negative values. However, since NPC2s are smooth and decomposable (Def. A.2), they support681

efficient marginalization and hence conditioning (Proposition 1). This allows us to still sample682

exactly from the modeled distribution via inverse transform sampling. That is, we choose a variable683

ordering X1, X2, . . . , XD and sample them in an autoregressive fashion, i.e., x1 ∼ p(X1), x2 ∼684

p(X2 | x1), . . ., xD ∼ p(XD | x1, . . . , xD−1), which is still linear in the number of variables.685

B PROOFS686

B.1 SQUARING TENSORIZED CIRCUITS687

Proposition B.1 (Correctness of Alg. 1). Let c be a tensorized structured-decomposable circuit688

(Def. 1 and Def. A.3), then Alg. 1 recursively constructs the layers of the squared tensorized PC c2689

such that c2 is also structured-decomposable.690

Proof. The proof is by induction on the structure of c. Let ℓ be a sum layer having as input ℓi and
computing Wℓi, with W ∈ RS×K and ℓi computing an output in RS . If ℓ is the last layer of c (i.e.,

17



Published as a conference paper at ICLR 2024

the output layer), then S = 1 since c outputs a scalar, and the squared layer ℓ2 must compute

ℓ2 = (Wℓi) · (Wℓi) = (W ⊗W)(ℓi ⊗ ℓi) = (W ⊗W)ℓ2i ,

which requires squaring the input layer ℓi. By inductive hypothesis the squared circuit having ℓ2i
as output layer is structured-decomposable, hence also the squared circuit having ℓ2 as output layer
must be. If ℓ is a non-output sum layer, we still require computing the Kronecker product of its input
layer. The squared layer ℓ2 is again a sum layer that outputs a S2-dimensional vector, i.e.,

ℓ2 = ℓ⊗ ℓ = (Wℓi)⊗ (Wℓi) = (W ⊗W)(ℓi ⊗ ℓi) = (W ⊗W)ℓ2i

via mixed-product property (L11-15 in Alg. 1). Let ℓ be a binary3 Hadamard product layer comput-
ing ℓi ⊙ ℓii for input layers ℓi, ℓii each computing a K-dimensional vector. Then, the squared layer
ℓ2 computes the Hadamard product between K2-dimensional vectors, i.e.,

ℓ2 = (ℓi ⊙ ℓii)⊗ (ℓi ⊙ ℓii) = (ℓi ⊗ ℓi)⊙ (ℓii ⊗ ℓii) = ℓ2i ⊙ ℓ2ii

via mixed-product property with respect to the Hadamard product. By inductive hypothesis ℓ2i and691

ℓ2ii are the output layers of structured-decomposable circuits depending on a disjoint sets of variables.692

As such, the circuit having ℓ2 as output layer maintains structured-decomposability (L6-9 in Alg. 1).693

For the base case we consider the squaring of an input layer ℓ that computes K functions fi over694

some variables Y ⊆ X. We replace ℓ with its squaring ℓ2 which encodes the products fi(Y)fj(Y),695

1 ≤ i, j ≤ K, by introducing K2 functions gij such that gij(Y) = fi(Y)fj(Y) (L2-4 in Alg. 1).696

Squaring Kronecker product layers. In the case of ℓ being a binary Kronecker product layer697

instead as in the more general Def. A.6, then the squared layer ℓ2 computes the Kronecker product698

between K2-dimensional vectors up to a permutation of the entries, i.e.,699

ℓ2 = (ℓi ⊗ ℓii)⊗ (ℓi ⊗ ℓii) = R ((ℓi ⊗ ℓi)⊗ (ℓii ⊗ ℓii)) = R
(
ℓ2i ⊗ ℓ2ii

)
, (6)

by introducing a K4 × K4 permutation matrix R whose rows are all zeros except for one entry700

set to 1, which reorders the entries of ℓ2i ⊗ ℓ2ii as to recover the equality in Eq. (6). Note that such701

permutation maintains decomposability (Def. A.2), and its application can be computed by a sum702

layer having R as fixed parameters. Moreover, by inductive hypothesis, the squaring circuit having703

ℓ2 as output layer is still structured-decomposable. Finally, Alg. B.1 generalizes Alg. 1 as to support704

the squaring of Kronecker product layers as showed above (L10-11 in Alg. B.1).705

Algorithm B.1 squareTensorizedCircuit(ℓ,R)

Input: A tensorized circuit (Def. A.6) having output layer ℓ and defined on a tree RG rooted byR.
Output: The tensorized squared circuit defined on the same tree RG having ℓ2 as output layer computing ℓ⊗ℓ.
1: if ℓ is an input layer then
2: ℓ computes K functions fi(R)
3: return An input layer ℓ2 computing all K2

4: product combinations fi(R)fj(R)
5: else if ℓ is a product layer then
6: {(ℓi,Ri), (ℓii,Rii)} ← getInputs(ℓ,R)
7: ℓ2i ← squareTensorizedCircuit(ℓi,Ri)
8: ℓ2ii ← squareTensorizedCircuit(ℓii,Rii)
9: if ℓ = ℓi ⊙ ℓii then return ℓ2i ⊙ ℓ2ii

10: else return R
(
ℓ2i ⊗ ℓ2ii

)
, where R is

11: a permutation matrix (see proof of Prop. B.1)
12: else ▷ ℓ is a sum layer
13: {(ℓi,R)} ← getInputs(ℓ,R)
14: ℓ2i ← squareTensorizedCircuit(ℓi,R)
15: W ∈ RS×K ← getParameters(ℓ)
16: W′ ∈ RS2×K2

←W ⊗W
17: return W′ℓ2i

B.2 TRACTABLE MARGINALIZATION OF NPC2S706

Proposition 1. Let c be a tensorized structured-decomposable circuit where the products of func-707

tions computed by each input layer can be tractably integrated. Any marginalization of c2 obtained708

via Alg. 1 requires time and space O(L ·M2).709

Proof. Given c by hypothesis, Prop. B.1 ensures that the PC built via Alg. 1 computes c2 and is710

defined on the same tree RG (Def. 2) of c. As such, c2 is structured-decomposable and hence also711

3Without loss of generality, we assume product layers have exactly two layers as inputs.
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smooth and decomposable (see Def. A.3). Now, we make an argument about c and c2 in their712

non-tensorized form (Def. A.1) as to leverage Prop. A.1 for tractable marginalization later. The713

size of c is |c| ∈ O(L · M), where L is the number of layers and M the maximum number of714

scalar input connections of each layer in c (see App. A.1.1 for details). The size of c2 is therefore715

|c2| ∈ O(L ·M2), since Alg. 1 squares the output dimension of each layer as well as the size of the716

parameterization matrix of each sum layer. Since c2 is smooth and decomposable and the functions717

computed by its input layers can be tractably integrated, then Prop. A.1 ensures we can marginalize718

any subset of variables in time and space |c2| ∈ O(L ·M2).719

B.3 REPRESENTING PSD MODELS WITHIN THE LANGUAGE OF NPC2S720

Proposition 2. A PSD model with kernel function κ, defined over d data points, and parameterized721

by a PSD matrix A, can be represented as a mixture of squared NMMs (hence NPC2s) in time722

O(d3).723

Proof. The PSD model computes a non-negative function f(x;A,κ) = κ(x)⊤Aκ(x), where
κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))] ∈ Rd, with data points x(1), . . . ,x(d), and A ∈ Rd×d is
PSD. Let A =

∑r
i=1 λiuiu

⊤
i be the eigendecomposition of A with rank r. Then we can rewrite

f(x;A,κ) as

f(x;A,κ) = κ(x)⊤
(∑r

i=1
λiuiu

⊤
i

)
κ(x) =

∑r

i=1
λi

(
u⊤
i κ(x)

)2
,

where λi > 0 are the singular values. Therefore, such PSD model can be represented as a monotonic724

mixture of r ≤ d squared NMMs (Eq. (2)), whose d components computing κ(x) are shared. The725

eigendecomposition of A can be done in time O(d3), and materializing each squared NMMs (e.g.,726

as in Fig. 1) requires space O(d2). Furthermore, note that if A = uu⊤ is a rank-1 matrix, then727

f(x;A,κ) =
(
u⊤κ(x)

)
2 is exactly a squared NMM whose d components compute κ(x).728

B.4 RELATIONSHIP WITH TENSOR NETWORKS729

In this section, we detail the construction of a tensorized structured-decomposable circuit (Def. 1)730

that is equivalent to a matrix product state (MPS) tensor network (Pérez-Garcı́a et al., 2007), as we731

mention in Sec. 4. As such, the application of the Born rule as to retrieve a probabilistic model called732

Born machine (BM) (Glasser et al., 2019) is equivalent to squaring the equivalent circuit (Sec. 3).733

Proposition 3. A BM encoding D-dimensional tensor with m states by squaring a rank r MPS734

can be exactly represented as a structured-decomposable NPC2 in O(D · k4) time and space, with735

k ≤ min{r2,mr}.736

Proof. We prove it constructively, by using a similar transformation used by Glasser et al. (2019)737

to represent a non-negative MPS factorization as an hidden Markov model (HMM). Let X =738

{X1, . . . , XD} be a set of discrete variables each taking values in {1, . . . ,m}. Let T be a ten-739

sor with D m-dimensional indices. Given an assignment x = ⟨x1, . . . , xD⟩ to X, we factorize T740

via a rank r MPS factorization, i.e.,741

T [x1, . . . , xD] =

r∑

i1=1

r∑

i2=1

· · ·
r∑

iD−1=1

A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1] (7)

where A1,AD ∈ Rm×r and Aj ∈ Rm×r×r with 1 < j < D, for indices {i1, . . . , iD−1} and
denoting indexing with square brackets. To reduce T to being computed by a tensorized structured-
decomposable circuit c, i.e., such that c(x) = T [x1, . . . , xD] for any x, we perform the following
construction. First, we perform a CANDECOMP/PARAFAC (CP) decomposition (Kolda & Bader,
2009) of each Aj with 1 < j < D, i.e.,

Aj [xj , ij−1, ij ] =

k∑

sj=1

Bj [ij−1, sj ]Vj [xj , sj ]Cj [ij , sj ]
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where k ≤ min{r2,mr} is the maximum rank of the CP decomposition (Kolda & Bader, 2009),
and Vj ∈ Rm×k, Bj ∈ Rr×k, Cj ∈ Rr×k. Then, we “contract” each Cj with Bj+1 by computing

Wj−1[sj , sj+1] =

r∑

ij=1

Cj [ij , sj ]Bj+1[ij , sj+1]

with Wj−1 ∈ Rk×k for 1 < j < D − 1. In addition, we “contract” CD−1 with AD by computing

VD[xD, sD−1] =

r∑

iD−1=1

CD−1[iD−1, sD−1]AD[xD, iD−1].

In addition, for notation clarity we rename B2 with W1 and A1 with V1. By doing so, we can
rewrite Eq. (7) as a sum with indices {i1, s2, . . . , sD−1} over products, i.e.,

T [x1, . . . , xD] =

r∑

i1=1

V1[x1, i1]

k∑

s2=1

W1[i1, s2]V[x2, s2] · · ·

· · ·
k∑

sD−2=1

WD−3[sD−3, sD−2]VD−2[xD−2, sD−2]·

·
k∑

sD−1=1

WD−2[sD−2, sD−1]VD−1[xD−1, sD−1]VD[xD, sD−1]

Fig. B.1 shows an example of such MPS factorization via CP decompositions. We see that we can742

encode the products over the same indices using a Hadamard product layers, and summations over743

indices {s2, . . . , xD−1} with sum layers parameterized by the Wj−1. More precisely, the sum layers744

that sum over s2 and sD−1 are parameterized by matrices of ones. Each Vj with 1 ≤ j ≤ D is745

instead encoded by an input layer depending on the variable Xj and computing k functions fl(Xj)746

such that fl(xj) = Vj [xj , l] with 1 ≤ j ≤ k. The tensorized circuit constructed in this way is747

structured-decomposable, as it is defined on a linear tree RG (e.g., Fig. 2a) induced by the variable748

ordering implicitly stated by the MPS factorization (Eq. (7), see App. B.4 for details). Fig. B.2749

shows the circuit representation corresponding to the MPS reported in Fig. B.1b.750

Finally, note that the number of parameters of such tensorized circuit correspond to the size of all751

Wj−1 and Vj introduced above, i.e., O(D · k2) where k ≤ min{r2,mr}. Moreover, the CP752

decompositions at the beginning can be computed using iterative methods whose iterations require753

polynomial time (Kolda & Bader, 2009). To retrieve an equivalent BM, we can square the circuit754

constructed in this way using Alg. 1, which results in a circuit having size O(D ·k4) (see Prop. B.1).755

756

A1 A2 A3 A4

X1 X2 X3 X4

(a)

A1

B2

V2

C2

V3

B3

V3

C3

A4

X1 X2 X3 X4

(b)

V1

W1

V2

W2

V3V3

V4

X1 X2 X3 X4

(c)

Figure B.1: Further decomposing a matrix product state (MPS) via CP decompositions. Tensor
networks are represented here using the Penrose graphical notation, where circles denote tensors and
their connections denote summations over shared indices, and variables X1, X2, X3, X4 are input
indices. Given a MPS (a), we perform a CP decomposition of A2 and A3 (b). Red edges denote
additional indices given by the CP decompositions. Then, we rename A1 with V1, B2 with W1.
Finally, we contract C2 with B3, and C3 with A4 resulting in tensors W2 and V4, respectively (c).
Fig. B.2 shows the tensorized circuit corresponding to such tensor network, where V1,V2,V3,V4

and W1,W2 parameterize input layers and sum layers, respectively.
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V1[x1]

V2[x2]

V3[x3]

V4[x4]

W1

1

W2

⊙

⊙

⊙

(a)

X3,X4

X4 X3

X2

X2,X3,X4 X1

X1,X2,X3,X4

(b)

Figure B.2: Matrix product states (MPS) as structured-decomposable circuits. The decom-
posed MPS over three variables showed in Fig. B.1c can be immediately represented as a tensorized
structured-decomposable circuit (a) defined on a linear tree RG (b, matching the colors of layers)
having Hadamard product layers and sum layers parameterized by W1,W2 and a row vector of
ones 1. Each input layer maps x1, x2, x3, x4 to rows in V1,V2,V3,V4, respectively.

B.4.1 RELATIONSHIP WITH HIDDEN MARKOV MODELS757

MPS tensor networks where each tensor Ai is non-negative can be seen as inhomogeneous hidden758

Markov models (HMMs) as showed by Glasser et al. (2019), i.e., where latent state and emitting759

transitions do not necessarily share parameters. As such, the tensorized structured-decomposable760

circuit c that is equivalent to a MPS (see App. B.4) is also an inhomogenous HMM if c is monotonic.761

In Sec. 5 we experiment with a tensorized monotonic PC that is an inhomogenous HMM to distill762

a large language model, as to leverage the sequential structure of the sentences. We compare it763

against a NPC2 that is the squaring of a MPS (also called Born machine (Glasser et al., 2019)) or,764

equivalently, the squaring of an inhomogenous HMM-like whose parameters can be negative.765

B.5 EXPONENTIAL SEPARATION766

Theorem 1. There is a class of non-negative functions F over variables X that can be compactly767

represented as shallow squared NMMs (and hence squared non-monotonic PCs) but for which the768

smallest structured-decomposable monotonic PC computing any F ∈ F has size 2Ω(|X|).769

Proof. For the proof of Theorem 1, we start by constructing F by introducing a variant of the unique770

disjointness (UDISJ) problem, which seems to have first been introduced by De Wolf (2003). The771

variant we consider here is defined over graphs, as detailed in the following definition.772

Definition B.1 (Unique disjointness function). Consider an undirected graph G = (V,E), where V773

denotes its vertices and E its edges. To every vertex v ∈ V we associate a Boolean variable Xv and774

let XV = {Xv | v ∈ V } be the set of all these variables. The unique disjointness function of G is775

defined as776

UDISJG(Xv) :=

(
1−

∑

uv∈E

XuXv

)2

. (8)

The UDISJ function as a non-monotonic circuit. We will construct F as the class of functions777

UDISJG for graphs G ∈ G, where G is a family of graphs that we will choose later. Regardless778

of the way the class G is picked, we can compactly represent UDISJG as a squared structured-779

decomposable (Def. A.3) and non-monotonic circuit as follows. First, we represent the function780

c(XV ) = 1−∑uv∈E XuXv as sum unit computing 1 · a(XV ) + (−1) · b(XV ) where781

• a is a circuit gadget that realizes an unnormalized uniform distribution over the domain782

of variables in XV , i.e., a(XV ) =
∏

v∈V (1{Xv = 0} + 1{Xv = 1}) where 1{Xv = 0}783

(resp. 1{Xv = 1}) is an indicator function that outputs 1 when Xv is set to 0 (resp. 1);784
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• b is another sum unit whose inputs are product units over the input units785

1{Xu = 1} ,1{Xv = 1} if there is an edge uv in G, i.e., b(XV ) =
∑

uv∈E 1{Xu = 1} ·786

1{Xv = 1}.787

Note that b may not be smooth, but we can easily smooth it by adding to every product an additional788

input that is a circuit similar to a that outputs 1 for any input Xuv , where Xuv = XV \ {Xu, Xv}.789

Since c is structured-decomposable (Def. A.3), we can easily multiply it with itself to realize c2790

that would be still a structured-decomposable circuit whose size is polynomially bounded as |c2| ∈791

O(|c|2) (Vergari et al., 2021). In particular, in this case we have that |c| is a polynomial in the792

number of variables (or vertices) |XV | by the construction above. Furthermore, note that c2 is non-793

monotonic as one of its sum unit has negative parameters (i.e., −1) to encode the subtraction in794

Eq. (8).795

The lower bound for monotonic circuits. To prove the exponential lower bound for monotonic796

circuits in Theorem 1, we will use an approach that has been used in several other works (Martens797

& Medabalimi, 2014; de Colnet & Mengel, 2021). This approach is based on representing a decom-798

posable circuit (and hence a structured-decomposable one) as a shallow mixture whose components799

are balanced products, as formalized next.800

Definition B.2. Let X be a set of variables. A balanced decomposable product over X is a function801

from X to R that can be written as f(Y) × h(Z) where (Y,Z) is a partitioning of X, f and h are802

functions to R and |X|/3 ≤ |Y| ≤ 2|X|/3.803

Theorem B.1 (Martens & Medabalimi (2014)). Let F be a non-negative function over Boolean
variables X computed by a smooth and decomposable circuit c. Then, F can be written as a sum of
N balanced decomposable products (Def. B.2) over X, with N ≤ |c| in the form4

F (X) =

N∑

k=1

fk(Yk)× hk(Zk),

where (Yk,Zk) is partitioning of X for 1 ≤ k ≤ N . If c is structured-decomposable, the N804

partitions {(Yk,Zk)}Nk=1 are all identical. Moreover, if c is monotonic, then all fk, hk only compute805

non-negative values.806

Intuitively, Thm. B.1 tells us that to lower bound the size of c we can lower bound N . To this end, we807

first encode the UDISJ function (Eq. (8)) as a sum of N balanced products and show the exponential808

growth of N for a family of graphs. We start with a special case for a representation in the following809

proposition.810

Proposition B.2. Let Gn be a matching of size n, i.e., a graph consisting of n edges none of which
share any vertices. Assume that the UDISJ function (Eq. (8)) for Gn is written as a sum of products
of balanced partitions

UDISJGn(Y,Z) =

N∑

k=1

fk(Y)× hk(Z),

where for every edge uv in Gn we have that Xu ∈ Y and Xv ∈ Z. Then N = 2Ω(n).811

To prove the above results, we will make an argument on the rank of the so-called communication812

matrix, also known as the value matrix, for a function F and a fixed partition (Y,Z).813

Definition B.3. Let F be a function over (Y,Z), its communication matrix MF is a 2|Y| × 2|Z|814

matrix whose rows (resp. columns) are uniquely indexed by assignments to Y (resp. Z) such that815

for a pair of index5 (iY, jZ), the entry at the row iY and column jZ in MF is F (iY, jZ).816

4In Martens & Medabalimi (2014), Theorem 38, this result is stated with N ≤ |c|2. The square materializes
from the fact that they reduce their circuits to have all their inner units to have exactly two inputs, as we already
assume, following de Colnet & Mengel (2021).

5An index iY (resp. jZ) is a complete assignment to Boolean variables in Y (resp. Z). See Example 1.
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Example 1. Let us consider a simple matching on 6 vertices, where Y correspond to the first 3817

vertices, and Z to the last 3, and where there is an edge between the first, second and third vertices818

of Y and Z. The matrix MF is an 8-by-8 matrix, a row and a column for each assignment of the 3819

binary variables associated to each vertex; it is given by820

Y\Z 000 100 010 001 110 101 011 111
000 1 1 1 1 1 1 1 1
100 1 0 1 1 0 0 1 0
010 1 1 0 1 0 1 0 0
001 1 1 1 0 1 0 0 0
110 1 0 0 1 1 0 0 1
101 1 0 1 0 0 1 0 1
011 1 1 0 0 0 0 1 1
111 1 0 0 0 1 1 1 4

821

Note that the name UDISJ comes from the fact that MF (i, j) = 0 if and only if Y and Z share a822

single entry equal to 1.823

In the following, we will rely on the following quantity.824

Definition B.4 (Non-negative rank). The non-negative rank of a non-negative matrix A ∈ Rm×n
+ ,825

denoted rank+(A), is the smallest k such that there exist k nonnegative rank-one matrices {Ai}ki=1826

such that A =
∑k

i=1 Ai. Equivalently, it is the smallest k such that there exists two non-negative827

matrices B ∈ Rm×k
+ and C ∈ Rk×n

+ such that A = BC.828

Given a function F written as a sum over N decomposable products (see Thm. B.1) over a fixed par-829

tition (Y,Z), we now show that the non-negative rank of its communication matrix MF (Def. B.3)830

is a lower bound of N .831

Lemma B.1. Let F (X) =
∑N

k=1 fk(Y)× hk(Z) where fk and hk are non-negative functions and
let MF be the communication matrix (Def. B.3) of F for the partition (Y,Z), then it holds that

rank+(MF ) ≤ N.

Proof. This proof is an easy extension of the proof of Lemma 13 from de Colnet & Mengel (2021).832

Assume w.l.o.g. that fk(Y) × hk(Z) ̸= 0 for any complete assignment to Y and Z.6 Let Mk833

denote the communication matrix of the function fk(Y) × hk(Z). By construction, we have that834

MF =
∑N

k=1 Mk. Furthermore, since all values in MF are non-negative by definition, rank+(Mk)835

is defined for all k and by sub-additivity of the non-negative rank we have that rank+(MF ) ≤836 ∑N
k=1 rank

+(Mk). To conclude the proof, it is sufficient to show that Mk are rank-1 matrices, i.e.,837

rank+(Mk) = 1. To this end, consider an arbitrary k. Since fk(Y) × hk(Z) ̸= 0, there is a row in838

Mk that is not a row of zeros. Say it is indexed by iY, then its entries are of the form fk(iY)×hk(jZ)839

for varying jZ. In any other rows indexed by i′Y we have fk(i
′
Y) × hk(jZ) = (fk(i

′
Y)/fk(iY)) ×840

fk(iY) × hk(jZ) for varying jZ. Consequently, all rows are non-negative multiples of the iY row,841

and therefore rank+(Mk) = 1.842

To complete the proof of Prop. B.2, we leverage a known lower bound of the non-negative rank of843

the communication matrix of the UDISJ problem. The interested reader can find more information844

on this result in the books Roughgarden (2016), Gillis (2020) and the references therein.845

Theorem B.2 (Fiorini et al. (2015)). Let a UDISJ function defined as in Prop. B.2, and MUDISJ be
its communication matrix over a partition (Y,Z), then it holds that

(3/2)n ≤ rank+(MUDISJ).

Using Thm. B.2 and Lem. B.1, we directly get Prop. B.2. So we have shown that, for a fixed846

partition of variables (Y,Z), every monotonic circuit c encoding the UDISJ function (Eq. (8)) of847

a matching of size n has size |c| ≥ 2Ω(n). However, the smallest non-monotonic circuit encoding848

6If this were not the case we could simply drop the term from the summation, which would clearly reduce
the number of summands.
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the same function has polynomial size in n (see the construction of the UDISJ function as a circuit849

above). Now, to complete the proof for the exponential lower bound in Theorem 1, we need to850

find a function class F where this result holds for all possible partitions (Y,Z). Such function851

class consists of UDISJ functions over a particular family of graphs, as detailed in the following852

proposition.853

Proposition B.3. There is a family of graphs G such that for every graph Gn = (Vn, En) ∈ G we854

have |Vn| = |En| = O(n), and any monotonic structured-decomposable circuit representation of855

UDISJGn
has size 2Ω(n).856

Proof. We prove it by constructing a class of so-called expander graphs, which we introduce next.857

We say that a graph G = (V,E) has expansion ε if, for every subset V ′ of V of size at most |V |/2,858

there are at least ε|V ′| edges from V ′ to V \ V ′ in G. It is well-known, see e.g. Hoory et al. (2006),859

that there are constants ε > 0 and d ∈ N and a family (Gn)n∈N of graphs such that Gn has at least n860

vertices, expansion ε and maximal degree d. We fix such a family of graphs in the remainder and861

denote by Vn, resp. En, the vertex set, resp. the edge set, of Gn.862

Let c be a monotonic structured-decomposable circuit of size N computing UDISJGn
. Then, by863

using Thm. B.1, we can write it as864

UDISJGn
(Y,Z) =

N∑

k=1

fk(Y)× hk(Z) (9)

where (Y,Z) is a balanced partition of XV . Let VY = {v ∈ Vn | Xv ∈ Y} and VZ = {v ∈ Vn |
Xv ∈ Z}. Then (VY, VZ) form a balanced partition of Vn. By the expansion of Gn, it follows that
there are Ω(n) edges from vertices in VY to vertices in VZ. By greedily choosing some of those
edges and using the bounded degree of Gn, we can construct an edge set E′

n of size Ω(n) that is a
matching between Y and Z, i.e., all edges in E′

n go from Y to Z and every vertex in Vn is incident
to only one edge in E′

n. Let V ′
n be the set of endpoints in E′

n and XV ′
n
⊆ XV be the variables

associated to them. We construct a new circuit c′ from c by substituting all input units for variables
Xv that are not in XV ′

n
by 0. Clearly, |c′| ≤ |c| and hence all the lower bounds for |c′| are lower

bounds for |c|. Let Y = XV ′
n
∩Y and Z = XV ′

n
∩ Z. By construction c′ computes the function

UDISJG′
n
(Y,Z) =


1−

∑

uv∈E′
n

XuXv




2

which corresponds to solving the UDISJ problem over the graph G′
n = (V ′

n, E
′
n). From Eq. (9) we

get that

UDISJG′
n
(Y,Z) =

N∑

k=1

f ′
k(Y)× h′

k(Z),

where f ′
k (resp. h′

k) are obtained from fk (resp. hk) by setting all the variables not in XV ′
n

to 0. Since865

c′ is monotonic by construction and |E′
n| = Ω(n), from Prop. B.2 it follows that N = 2Ω(n).866

Prop. B.3 concludes the proof of Theorem 1, as we showed the existence of family of graphs for867

which the smallest structured-decomposable monotonic circuit computing the UDISJ function over868

n variables has size 2Ω(n). However, the smallest structured-decomposable non-monotonic circuit869

has size polynomial in n, whose construction has been detailed at the beginning of our proof.870

B.6 SQUARING DETERMINISTIC CIRCUITS871

In Sec. 4.1 we argued that squaring any non-monotonic, smooth, decomposable (Def. A.2), and872

deterministic (Def. A.5) circuit yields a monotonic and deterministic PC. As a consequence, any873

function computed by a NPC2 that is deterministic can be computed by a monotonic and deter-874

ministic PC. Therefore, we are interested in squaring structured-decomposable circuits that are not875

deterministic. Below we formally prove Proposition 4.876

24



Published as a conference paper at ICLR 2024

Proposition 4. Let c be a smooth, decomposable and deterministic circuit over variables X possibly877

computing a negative function. Then, the squared circuit c2 is monotonic and has the same structure878

(hence size) of c.879

Proof. The proof is by induction. Let n ∈ c be a product unit that computes cn(Z) =880 ∏
i∈in(n) cn(Zi), with Z ⊆ X and (Z1, . . . ,Z|in(n)|) forming a partitioning of Z. Then its881

squaring computes c2n(Z) =
∏

i∈in(n) c
2
n(Zi). Now consider a sum unit n ∈ c that computes882

cn(Z) =
∑

i∈in(n) wici(Z) with Z ⊆ X and wi ∈ R. Then its squaring computes c2n(Z) =883 ∑
i∈in(n)

∑
j∈in(n) wiwjci(Z)cj(Z). Since c is deterministic (Def. A.5), for any i, j with i ̸= j884

either ci(Z) or cj(Z) is zero for any assignment to Z. Therefore, we have that885

c2n(Z) =
∑

i∈in(n)

w2c2i (Z). (10)

This implies that in deterministic circuits, squaring does not introduce additional components that886

encode (possibly negative) cross-products. The base case is defined on an input unit n that models887

a function fn, and hence its squaring is an input unit that models f2
n. By induction c2 is constructed888

from c by squaring the parameters of sum units wi and squaring the functions fn modeled by input889

units. Moreover, the number of inputs of each sum unit remains the same, as we observe in Eq. (10),890

and thus c2 and c have the same size.891

C EFFICIENT LEARNING OF NPC2S892
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Figure C.1: Evaluating the squared circuit representation adds little overhead during training.
By learning by MLE (Eq. (4)) and batched gradient descent, the time and space required to compute
the partition function Z of c2 is constant w.r.t. the batch size (BS) (left). By fixing the batch size to
512 and varying the output dimensionality (K) of each layer (right), the resources needed to compute
Z are similar to the ones needed to evaluate c (i.e., c(X)). For the left figure, we fix K = 256 and
vary the BS, while for the right figure we fix BS = 512 and vary K. The plots share the y-axis.

In this section, we investigate the computational cost of learning NPC2s with a series of benchmarks,893

showing that NPC2s add little computational overhead over traditional monotonic PCs (MPCs).894

Efficient renormalization in practice. As suggested by the MLE objective (Eq. (4)), squaring the895

tensorized circuit c with Alg. 1 is only required to compute the partition function Z =
∫
c2(x)dx.896

In addition, we need to compute Z only once per parameter update via gradient ascent, as Z does897

not depend on the training data. For these reasons, the increased computational burden of evaluating898

a squared circuit (see Proposition 1) as to compute Z is negligible, and it is independent w.r.t. the899

batch size. Fig. C.1 illustrates this aspect by comparing the time needed to evaluate c on a batch of900

data and to compute the partition function Z. The results showed in Fig. C.1 are obtained by running901

benchmarks on NPC2s that are similar in size to the ones we experiment with in Sec. 5. That is,902

we benchmark a mixture of 32 NPC2s, each having an architecture built from a randomly-generated903

tree RG (see App. F for details) approximating the density function of BSDS300 (the data set with904

highest number of variables, see Table H.1). The input layers compute Gaussian distributions.905

Training efficiency on UCI data sets. We benchmark the computational cost of learning NPC2s906

on UCI data sets (Table H.1). Fig. C.2 compares time and memory required to learn the best NPC2s907

and MPCs showed in Fig. 4, while Fig. C.3 compares time and memory required to learn NPC2s908

and MPCs in a worse scenario for NPC2s where the batch size is small and the layer dimension-909

ality is large, as NPC2s benefit from using large batch sizes as discussed above. NPC2s add very910
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little overhead during training in most configurations when compared to MPCs, as computing the911

partition function Z is comparable to evaluating MPCs on a batch of samples. In particular, on Gas912

(|X| = 8), NPC2 takes more time and memory to compute Z (times are 6ms and 121ms, while913

memory allocations are 0.6GiB and 5.8GiB), but it is only slightly more than the cost of computing914

c for MPCs (time 144ms and memory 4.4GiB). Moreover, note that NPC2s achieve about a ×2915

improvement on the log-likelihood on Gas. On the much higher dimensional data set BSDS300916

(|X| = 63) instead, we found that training NPC2 is even cheaper as it requires fewer parameters917

while still achieving an higher log-likelihood (128.38 rather than 123.3).918

Hardware and significance of benchmarks. The benchmarks mentioned above and illustrated in919

Figs. C.1 to C.3 have been run on a single NVIDIA RTX A6000 with 48GiB of memory. The920

measured times are averaged over 50 independent circuit evaluations.921
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Figure C.2: NPC2s add little overhead during training on real-world data sets, while improving
log-likelihoods. We evaluate time and memory required by monotonic PCs (MPCs) and NPC2s
to perform one optimization step on UCI data sets (Gas, Hepmass, MiniBooNE, BSDS300) with
number of variables |X| and using the best hyperparameters found (see App. H.3). We benchmark
the computation of c(x) by MPCs and c2(x) by NPC2s on a batch x of data (left), as well as the
partition functions Z for both models (right), and label the data points with the final log-likelihoods
achieved by the corresponding models (as also reported in Fig. 4). The plots share the y-axis. For
NPC2s, computing the partition function Z is more expensive both in time and memory (right), but
it is still very similar to the cost of evaluating c(x) or c2(x) (left).
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Figure C.3: NPC2s add little overhead during training even with relatively small batch sizes.
We evaluate time and memory required by monotonic PCs (MPCs) and NPC2s to perform one opti-
mization step on UCI data sets (Gas, Hepmass, MiniBooNE, BSDS300) with respect to the number
of variables |X| and using the same hyperparameters (512 as batch size, 512 as layer dimensionality,
and Gaussian input layers). The plots share the y-axis. The cost of computing c2(x) on a batch x
of data by NPC2s is only slightly higher than the cost of computing c(x) by MPCs (left), while the
cost of computing Z for NPC2s is comparable to evaluating c2(x) or c(x) (right).

D THE SIGNED LOG-SUM-EXP TRICK922

Scaling squared non-monotonic PCs to more than a few tens (resp. hundreds) of variables without923

performing computations in log-space is infeasible in 32-bit (resp. 64-bit) floating point arithmetic,924

as we illustrate in Fig. D.1. For this reason, we must perform computations in the log-space even925

in presence of negative values. The idea is to represent non-zero outputs y ∈ RS of each layer926

in terms of the element-wise logarithm of their absolute value log |y| and their element-wise sign927

sign(y) ∈ {−1, 1}S , i.e., such that y = sign(y)⊙ exp(log |y|).928
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Figure D.1: Squared non-monotonic PCs cannot scale
without performing computations in log-space. Parti-
tion functions (and their natural logarithm) of squared non-
monotonic PCs having Gaussian input units, with increasing
number of variables V and having depth ⌈log2 V ⌉ computed
using 32-bit and 64-bit floating point arithmetic.

In practice, we evaluate product and sum layers according to the following evaluation rules. Given
an Hadamard product layer ℓ, then it computes and propagates both log |ℓ| = ∑N

i=1 log |ℓi| and
sign(ℓ) =

⊙N
i=1 sign(ℓi) for some inputs {ℓi}Ni=1. Given a sum layer ℓ parameterized by W ∈

RS×K and having ℓ′ as input layer, then it computes and propagates both log |ℓ| = α+ log |s| and
sign(ℓ) = sign(s) where α and s are defined as

α = 1 · max
1≤j≤S

{log |ℓ′[j]|} s = W
(
sign(ℓ′)⊙ exp(log |ℓ′| −α)

)

by assuming s ̸= 0, 1 denoting a S-dimensional vector of ones, ℓ′[j] denoting the j-th entry of the929

output of ℓ′, and exp being applied element-wise. We call signed log-sum-exp trick the evaluation930

rule above for sum layers, which generalizes the log-sum-exp trick (Blanchard et al., 2021) that is931

used to evaluate tensorized monotonic PC architectures (Peharz et al., 2020a).932

For the more general definition of tensorized circuits instead (Def. A.6), given a Kronecker product933

layer ℓ, then it computes both log |ℓ| = ⊕N
i=1 log |ℓi| and sign(ℓ) =

⊗N
i=1 sign(ℓi), where

⊕
934

denotes an operator similar to the Kronecker product but computing sums instead.935

E SPLINES AS EXPRESSIVE INPUT COMPONENTS936
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Figure E.1: Splines represent a class of flexible
non-linear functions. A quadratic (k = 2) spline
(in black) over n = 4 knots chosen uniformly in
(0, 1) (i.e, 0.2, 0.4, 0.6 and 0.8) is computed by a
linear combination of n+k+1 = 7 distinct basis
functions (each colored differently).

Polynomials defined on fixed intervals are candidate functions to be modeled by components (resp.937

input layers) of squared NMMs (Sec. 2) (resp. NPC2s Sec. 3). This is because they can be negative938

function and their product can be tractably integrated. In particular, we experiment with piecewise939

polynomials, also called splines. An univariate spline function of order k is a piecewise polynomial940

defined on a variable X , and the n values of X where polynomials meet are called knots. B-splines941

of order k are basis functions for continuous spline functions of the same degree. In practice, we can942

represent any spline function f of order k defined over n knots inside an interval (a, b) as a linear943

combination of n+ k + 1 basis functions, i.e.,944

f(X) =
∑n+k+1

i=1
αiBi,k(X) (11)

where αi ∈ R are the parameters of the spline and Bi,k(X) are polynomials of order k (i.e., the basis945

of f ), which are unequivocally determined by the choice of the n knots. In particular, each Bi,k(X)946

is a non-negative polynomial that is recursively defined with the Cox-de-Boor formula (de Boor,947

1971; Piegl & Tiller, 1995). Given two splines f, g of order k defined over n knots and represented948

in terms of n+ k + 1 basis functions as in Eq. (11), we can write their product integral as949

∫ b

a

f(X)g(X) dX =
∑n+k+1

i=1

∑n+k+1

j=1
αiβj

∫ b

a

Bi,k(X)Bj,k(X) dX (12)

27



Published as a conference paper at ICLR 2024

where αi ∈ R (resp. βj ∈ R) denote the parameters of f (resp. g). Therefore, integrating a950

product of splines requires integrating products of their basis functions. Among the various way of951

computing Eq. (12) exactly (Vermeulen et al., 1992), we can do it in time O(n2 ·k2) by representing952

the product Bi,k(X)Bj,k(X) as the basis polynomial of another B-spline of order 2k+1, and finally953

integrating it in the interval of definition. Fig. E.1 shows an example of a spline.954

Since each Bi,k is non-negative, we can use B-splines as components (resp. modeled by input layers)955

of traditional MMs (resp. monotonic PCs) by assuming each spline parameter αi to be non-negative.956

This is the case of monotonic PCs we experimented with in Sec. 5.957

F TREE REGION GRAPHS958

X3,X4

X4 X3

X2

X2,X3,X4 X1

X1,X2,X3,X4

X2 X3

X2,X3 X1,X4,X5

X1,X2,X3,X4,X5

X1 X4,X5

X4 X5

Figure F.1: Different ways to construct region graphs. The left figure illustrates a linear tree (LT)
region graph (Def. 2) over four variables, which decomposes variables one by one. The right figure
shows a possible binary tree (RT) region graph over five variables, which recursively splits them.

Since we require structured-decomposability to square circuits (see Sec. 3.2), we construct their959

architecture based on tree RGs (Def. 2). We choose to experiment with two kinds of tree RGs:960

binary tree (BT) and linear tree (LT). Following Peharz et al. (2020b), the BT is built by recursively961

partitioning variables evenly and randomly until regions with only one variable are obtained. The962

LT is built by (1) shuffling the variables randomly and then (2) recursively partitioning variables963

one by one, i.e., a set of variables {Xi, . . . , XD} is partitioned in {Xi} and {Xi+1, . . . , XD} for964

1 ≤ i ≤ D − 1. Fig. F.1 shows examples of LT and BT RGs. Note that the LT is the same965

on which the circuit representation of matrix-product states (MPS) (Pérez-Garcı́a et al., 2007) and966

TTDE (Novikov et al., 2021) depend on (see also Sec. 4 and App. B.4).967

G ADDITIONAL RELATED WORKS968

Squared neural family (SNEFY) (Tsuchida et al., 2023) have been concurrently proposed as a969

class of models squaring the 2-norm of the output of a single-hidden-layer neural network. Under970

certain parametric conditions, SNEFYs can be re-normalized as to model a density function, but971

they do not guarantee tractable marginalization of any subset of variables as our NPC2s do, unless972

they encode a fully-factorized distribution, which would limit their expressiveness. Hence, SNEFYs973

can be employed in our NPC2s to model multivariate units in input layers with bounded scopes.974

The rich literature of PCs provides several algorithms to learn both the structure and the param-975

eters of circuits (Poon & Domingos, 2011; Peharz et al., 2017; Di Mauro et al., 2021; Dang et al.,976

2021; Liu & Van den Broeck, 2021; Liu et al., 2023). However, in these works circuits are always977

assumed to be monotonic. A first work considering subtractions is Dennis (2016) which generalizes978

the ad-hoc constraints over Gaussian NMMs (Zhang & Zhang, 2005) to deep PCs over Gaussian979

inputs by constraining their structure and reparameterizing their sum weights. Shallow NMM rep-980

resented as squared circuits have been investigated for low-dimensional categorical distributions981

in (Loconte et al., 2023). Circuit representations encoding probability generating functions allow982

negative coefficients, but in symbolic computational graphs (Zhang et al., 2021).983
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Figure H.1: Negative parameters increases the expressiveness of NPC2s. From left to right
(above) and for each bivariate density, we show the ground truth (GT) and its estimation by a mono-
tonic PC (MPC), a squared monotonic PC (MPC2), and a NPC2 having input layers computing
quadratic splines (App. E) and with the same number of parameters. Moreover, (below) we show
the average log-likelihoods (and one standard deviation with 10 independent runs) on unseen data
achieved by a monotonic MPC, a squared monotonic MPC2, and a NPC2 by increasing the dimen-
sionality of input layers K.

H EXPERIMENTAL SETTINGS AND COMPLEMENTARY RESULTS984

H.1 CONTINUOUS SYNTHETIC DATA985

Following (Wenliang et al., 2019) we experiment with monotonic PCs, their squaring and NPC2s986

on synthetic continuous 2D data sets, named rings, cosine, funnel and banana. We generate each987

synthetic data set by sampling 10 000/1 000/2 000 training/validation/test samples. In these ex-988

periments, we are interested in studying whether NPC2s can be more expressive in practice, with-989

out making assumptions on the data distribution and therefore choosing parametric distributions as990

components. For this reason, we choose components computing the product of univariate spline991

functions (App. E) over 32 knots that are uniformly chosen in the data domain. In particular, for992

monotonic mixtures we restrict the spline coefficients to be non-negative.993

Learning and hyperparameters. Since the data is bivariate, the tree on which PCs are defined994

on consists of just one region that is split in half. All models are learned by batched stochastic995

gradient descent using the Adam optimizer with default learning rate (Kingma & Ba, 2015) and a996

batch size of 256. The parameters of all mixtures are initialized by sampling uniformly between 0997

and 1. Furthermore, monotonicity in (squared) PCs is ensured by exponentiating the parameters.998

Fig. 3 shows the density functions estimated from data sets rings and cosine, when using 8 and 12999

components, respectively. Moreover, Fig. H.1 report the log-likelihoods and other density functions1000

learned from data sets funnel and banana, when using 4 components.1001

H.2 DISCRETE SYNTHETIC DATA1002

For our experiments investigating the flexibility of input layers of NPC2s (Sec. 2) in case of discrete1003

data (Sec. 5), we quantize the bivariate continuous synthetic data sets reported in App. H.1. That is,1004

we discretize both continuous variables using 32 uniform bins each. The resulting target distribution1005

is therefore a probability mass function over two finitely discrete variables.1006

We experiment with monotonic PCs, their squaring and NPC2s with two families of input layers.1007

First, we investigate very flexible input layers for finitely discrete data: categoricals for monotonic1008

PCs and embeddings for NPC2s. Second, we experiment with the less flexible but more parameter-1009

efficient Binomials. The learning and hyperparameters setting are the same used for the continuous1010

data (see App. H.1). Fig. H.2 shows that there is little advantage in subtracting probability mass1011

with respect to monotonic PCs having categorical components. However, in case of the less flex-1012

ible Binomial components, NPC2s capture the target distribution significantly better. This is also1013

confirmed by the log-likelihoods on unseen data, which we show in Fig. H.2.1014
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(a) Mixtures with categorical or embedding components.
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(b) Mixtures with Binomial components.

Figure H.2: Negative parameters increases the expressiveness of NPC2s. From left to right
(above) and for each bivariate distribution, we show the ground truth (GT) and its estimation by a
monotonic PC (MPC), a squared monotonic PC (MPC2), and a NPC2 having input layers comput-
ing categoricals (embeddings for NPC2s) and with the same number of parameters. Moreover, we
show the average log-likelihoods (and one standard deviation with 10 independent runs) on unseen
data achieved by a monotonic MPC, a squared monotonic MPC2, and a NPC2 with either categori-
cal (a) or Binomial (b) components and by increasing the dimensionality of input layers K.

H.3 UCI CONTINUOUS DATA1015

Data sets. In Sec. 5 we evaluate NPC2s for density estimation on five multivariate UCI data sets1016

(Dua & Graff, 2017): Power (Hebrail & Berard, 2012), Gas (Fonollosa et al., 2015), Hepmass (Baldi1017

et al., 2016), MiniBooNE (Roe et al., 2004) and BSDS300 patches (Martin et al., 2001) by following1018

the pre-processing by Papamakarios et al. (2017). Table H.1 reports their statistics.1019

Number of samples

D train validation test

Power 6 1,659,917 184,435 204,928
Gas 8 852,174 94,685 105,206

Hepmass 21 315,123 35,013 174,987
MiniBooNE 43 29,556 3,284 3,648

BSDS300 63 1,000,000 50,000 250,000

Table H.1: UCI data set statistics. Di-
mensionality D and number of samples
of each data set split after the prepro-
cessing by Papamakarios et al. (2017).

Models. We compare monotonic PCs and NPC2s in tensorized form (Def. 1) for density estimation.1020

The tensorized architecture for both is constructed based on either the binary tree (BT) or linear1021
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tree (LT) RGs (see App. F). In addition, since both RGs are randomly-constructed, we instantiate1022

eight of them by changing the random seed. By doing so, our monotonic PCs consist of a mixture1023

of tensorized monotonic PCs each defined on a different RG. Conversely, our NPC2s consist of a1024

mixture (with non-negative parameters) of tensorized NPC2s, each constructed by squaring a circuit1025

defined on a different RG. To ensure a fair comparison, monotonic PCs and NPC2s have the exact1026

same structure, but NPC2s allow for negative parameters via the squaring mechanism (see Sec. 3).1027

Hyperparameters. We search for hyperparameters by running a grid search with both monotonic1028

PCs and NPC2s. For each UCI data set, Tables H.2 and H.3 report the possible value of each1029

hyperparameter, depending on the chosen RG. In case of input layers modeling spline functions (see1030

App. E), we use quadratic splines and select 512 uniformly in the domain space.1031

Parameters initialization. We found NPC2s to be more sensible to the choice of the initialization1032

method for parameters than monotonic PCs. The effect of initialization in monotonic PCs is not well1033

explored in the literature, and it is even more unclear for NPC2s as parameters are allowed to be1034

negative. In these experiments, we investigated initializing NPC2s by independently sampling the1035

parameters from a normal distribution. However, we found NPC2s to achieve higher log-likelihoods1036

if they are initialized with non-negative parameters only, i.e., by sampling uniformly between 0 and1037

1. Note that our work is a first attempt to learn non-monotonic PCs at scale, thus it opens interesting1038

future directions on how to initialize and learn NPC2s.1039

Table H.2: Hyperparameter grid search space for each UCI data set (for BT experiments).
Each data set is associated to lists of hyperparameters: learning rate, the dimensionality of layers
in tensorized PCs (K), batch size, and whether input layers compute Gaussian likelihoods or spline
functions (see App. E).

Data set Learning rate K Batch size Input layer

Power

[0.01, 0.005]

[32, . . . , 512] [512, 1024, 2048]

[Gaussian, splines]
Gas [32, . . . , 1024] [512, 1024, 2048, 4096]

Hepmass [32, . . . , 512] [512, 1024, 2048]
MiniBooNE [32, . . . , 512] [512, 1024, 2048]

BSDS300 [32, . . . , 256] [512, 1024, 2048]

Table H.3: Hyperparameter grid search space for each UCI data set (for LT experiments).
Each data set is associated to lists of hyperparameters: learning rate, the dimensionality of layers
in tensorized PCs (K), batch size, and whether input layers compute Gaussian likelihoods or spline
functions (see App. E).

Data set Learning rate K Batch size Input layer

Power

[0.005, 0.001] [32, . . . , 512] [512, 1024, 2048] [Gaussian, splines]
Gas

Hepmass
MiniBooNE

BSDS300
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Figure H.3: Negative parameters make squared non-monotonic PCs more expressive than
squared monotonic PCs. NPC2s (±2, vertical) generally achieve higher log-likelihoods than
squared monotonic PCs (+2, horizontal) when paired with the same number of units per layer K. as
shown by the presence of more points in the upper triangle than in the lower triangle for most data
sets. Blue circles and red diamonds refer to runs with Gaussian (G) and spline (S) input layers
respectively, and darker hues indicate larger K. The dashed grey line represents the points of equal
log-likelihood for both the NPC2 and the squared monotonic PC.
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Table H.4: Squared non-monotonic PCs can be more expressive than monotonic PCs. Best
average test log-likelihoods and two standard errors achieved by monotonic PCs (MPC) and NPC2s
built either from randomized linear tree RGs (LT) or from randomized binary tree RGs (BT) (see
App. H.3), when compared to baselines. MPC, MPC2 and NPC2 were experimented with both
Gaussian (G) and spline (S) node input layers. † means no values were originally provided.

Power Gas Hepmass MiniBooNE BSDS300

MADE -3.08 ±0.03 3.56 ±0.04 -20.98 ±0.02 -15.59 ±0.50 148.85 ±0.28
RealNVP 0.17 ±0.01 8.33 ±0.14 -18.71 ±0.02 -13.84 ±0.52 153.28 ±1.78
MAF 0.24 ±0.01 10.08 ±0.02 -17.73 ±0.02 -12.24 ±0.45 154.93 ±0.28
NSF 0.66 ±0.01 13.09 ±0.02 -14.01 ±0.03 -9.22 ±0.48 157.31 ±0.28

Gaussian -7.74 ±0.02 -3.58 ±0.75 -27.93 ±0.02 -37.24 ±1.07 96.67 ±0.25
EiNet-LRS 0.36 ±† 4.79 ±† -22.46 ±† -34.21 ±† †
TTDE 0.46 ±† 8.93 ±† -21.34 ±† -28.77 ±† 143.30 ±†

G S G S G S G S G S

MPC (LT) 0.51 ±.01 0.24 ±.01 6.73 ±.03 -2.05 ±.02 -22.07 ±.02 -23.09 ±.02 -32.48 ±.44 -37.53 ±.46 123.15 ±.28 116.90 ±.28
MPC2 (LT) 0.49 ±.01 0.39 ±.01 7.06 ±.03 0.95 ±.01 -21.42 ±.02 -22.24 ±.02 -29.46 ±.44 -32.81 ±.47 — —
NPC2 (LT) 0.53 ±.01 0.43 ±.01 9.00 ±.02 3.03 ±.02 -20.66 ±.02 -21.53 ±.02 -26.68 ±.42 -29.36 ±.42 112.99 ±.29 120.11 ±.29
MPC (BT) 0.57 ±.01 0.32 ±.01 5.56 ±.03 -2.55 ±.02 -22.45 ±.02 -24.09 ±.02 -32.11 ±.43 -37.56 ±.46 121.92 ±.29 123.30 ±.29
MPC2 (BT) 0.57 ±.01 0.36 ±.01 8.24 ±.03 0.32 ±.02 -21.47 ±.02 -23.38 ±.02 -29.46 ±.43 -33.43 ±.47 125.56 ±.29 126.85 ±.29
NPC2 (BT) 0.63 ±.01 0.45 ±.01 10.98 ±.02 3.12 ±.01 -20.41 ±.02 -22.25 ±.02 -26.92 ±.44 -30.81 ±.54 114.47 ±.28 128.38 ±.29

Table H.5: Table showing average test set log-likelihoods and one standard deviation achieved from
running experiments 5 times with random parameters initialization, using the same hyperparameters
that were used for achieving results showed in Table H.4.

Power Gas Hepmass MiniBooNE BSDS300

MPC (LT) 0.46 ±0.03 7.03 ±0.18 -22.07 ±0.02 -31.79 ±0.39 126.66 ±5.46
MPC (BT) 0.53 ±0.03 6.16 ±0.56 -22.42 ±0.45 -33.30 ±0.98 122.77 ±0.71
NPC2 (LT) 0.42 ±0.11 8.97 ±0.08 -20.67 ±0.05 -29.58 ±0.29 127.58 ±4.66
NPC2 (BT) 0.62 ±0.01 10.55 ±0.39 -20.48 ±0.11 -27.64 ±0.44 128.45 ±0.52

Table H.6: Table listing the hyperparameters combinations found via a grid search, which were used
for achieving results showed in Table H.4. For input layers, G and S respectively denote Gaussian
and spline.

Model Data set K Batch size Learning rate Input layer

MPC (BT)

Power 512 512 0.01 G
Gas 1024 4096 0.01 G

Hepmass 128 512 0.01 G
MiniBooNE 32 512 0.01 G

BSDS300 512 512 0.01 S

MPC (LT)

Power 512 512 0.001 G
Gas 512 1024 0.001 G

Hepmass 512 512 0.005 G
MiniBooNE 512 1024 0.005 G

BSDS300 64 512 0.005 S

NPC2 (BT)

Power 512 512 0.01 G
Gas 1024 512 0.01 G

Hepmass 256 512 0.01 G
MiniBooNE 32 512 0.01 G

BSDS300 128 512 0.01 S

NPC2 (LT)

Power 512 512 0.001 G
Gas 512 512 0.001 G

Hepmass 256 512 0.001 G
MiniBooNE 128 2048 0.005 G

BSDS300 32 1024 0.001 S
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H.4 LARGE LANGUAGE MODEL DISTILLATION1040

Data set. Given p∗(x) the distribution modeled by GPT2 over sentences x = [x1, . . . , xD] having1041

maximum length D, we aim to minimize the Kullback-Leibler divergence KL[p∗ | p], where p is1042

modeled by a PC. Minimizing such divergence is equivalent to learn the PC by maximum-likelihood1043

on data sampled by GPT2. Therefore, following the experimental setting by Zhang et al. (2023)1044

we sample a data set of 8M sentences using GPT2 having bounded length D = 32, i.e., with a1045

maximum of D = 32 tokens. Then, we split such sentences into training, validation and test set1046

having proportions 0.85/0.05/0.10, respectively.1047

Models. Then, we learn a monotonic PC and a NPC2 as tensorized circuits whose architecture is1048

determined by a linear tree RG (Def. 2), i.e., a region graph that recursively partitions each set of1049

finitely-discrete variables {Xi, . . . , XD} into {Xi} and {Xi+1, . . . , XD} for 1 ≤ i ≤ D − 1 (e.g.,1050

see Fig. 2a). This is because we are interested in exploiting the sequential dependencies between1051

words in a sentence. By enforcing monotonicity, we recover that the monotonic PC is equivalent to1052

an inhomogenous hidden Markov model (HMM), and that that NPC2 corresponds to a Born machine1053

(see App. B.4.1 for details).1054

Hyperparameters. All PCs are learned by batched stochastic gradient descent using Adam1055

(Kingma & Ba, 2015) as optimizer with batch size 4096, and we continue optimizing until ei-1056

ther the validation loss does not improve after three consecutive epochs or the maximum budget1057

of 200 epochs has been reached. We perform multiple runs by exploring combinations of learn-1058

ing rates and initialization. For monotonic PCs, we run experiments by choosing learning rates in1059

{5 · 10−3, 10−2, 5 · 10−2} and initializing parameters by sampling uniformly in (0, 1), by sampling1060

from a standard log-normal distribution, and from a Dirichlet distribution with concentration values1061

set to 1. Similarly for NPC2s, we run experiments by choosing the same learning rates for monotonic1062

PCs, but using different initialization. In addition to sampling uniformly in (0, 1), we also initial-1063

ize the parameters by sampling from a standard normal distribution. By doing so, we initialize an1064

approximately even number of positive and negative parameters. Moreover, we also experiment by1065

initializing parameters by sampling from a normal distribution with mean 1 and standard deviation1066

1, which initializes more parameters to be positive.1067

Results. For increasing layer dimensionality, we group runs having different learning rate and1068

initialization method together and show the achieved log-likelihoods in Fig. 5. Furthermore, we1069

perform statistical tests to assess the significance of NPC2s achieving higher log-likelihoods than1070

monotonic PCs on the test data, and show the p-values in Table H.7.1071

K = 32 64 128 256 512 1024

p-value = 0.9999 0.2117 0.0296 0.0372 < 0.0001 < 0.0001

Table H.7: Statistical significance of NPC2s achieving higher likelihoods on LLM distillation.
We perform a one-sided Mann-Whitney U test between the log-likelihoods achieved by NPC2s and
monotonic PCs on the test data (see also Fig. 5), using a total of 18 runs for each layer dimensionality
K. We highlight the p-values that are consistent with a 95% confidence interval in bold.
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