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Abstract

Self-supervised learning (SSL) is a rich framework for obtaining meaningful data
representations across large datasets. While SSL shows impressive results in
computer vision and natural language processing, the single-cell field’s diverse
applications still need to be explored. We study SSL for the application of cell classi-
fication in cellular neighborhoods of spatially-resolved single-cell RNA-sequencing
data. To address this, we developed an SSL framework on spatial molecular pro-
filing data, integrating a cell’s molecular expression and spatial location within a
tissue slice. We demonstrate our methods on a large-scale whole mouse brain atlas,
recording the gene expression measurements of 550 genes in 4,334,174 individual
cells across 59 discrete tissue slices from the entire mouse brain. Our empirical
study suggests that SSL improves downstream performance, especially in the pres-
ence of class imbalances. Notably, we observe a more substantial performance
improvement on the sub-graph level than the full-graph level.

1 Introduction

Single-cell genomics and spatial transcriptomics have enriched our understanding of biological
systems, providing detailed insights into cellular diversity and function Fischer et al. [2023], Palla
et al. [2022], Larsson et al. [2021], Zhuang [2021]. While techniques like single-cell RNA sequencing
(scRNA-seq) and single cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-
seq) excel in molecular profiling, spatial methods like MERFISH Chen et al. [2015] and Stereo-
seq Chen et al. [2022] add an insightful spatial dimension. These technologies offer a multi-
dimensional view of biological systems, capturing molecular states and spatial coordinates. This
enables insights into tissue states and local cellular micro-environments, that relate to biological
functions Fischer et al. [2023]. However, as datasets grow in size and complexity, there is a
pressing need for new machine learning techniques that can effectively use unlabeled data for various
downstream applications.
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Figure 1: The multiple facets of the whole adult mouse brain brain atlas Zhang et al. [2023], focusing
on the spatial distribution, clustering of the molecular features, and cell type composition across
slices. (a) Proximity graphs in spatial transcriptomics data. Shown is the spatial allocation of slice 59
with all cell types superimposed. (b) Depicts a UMAP representation of the molecular embedding of
all cells in slide 59 (n = 114,396 cells) with cell-type superimposed. (c) Illustrates the distribution of
cell types across the entire 59 full coronal sections spanning the entire mouse brain. The whole adult
mouse brain atlas reveals unique cell type organization patterns across the different brain sections.
The slices range from 14,878 to 130,112 cells, with an average cell count of 62,342 per slice.

Self-supervised learning (SSL) has shown promise in fields like computer vision Bardes et al. [2022],
Chen et al. [2020] and natural language processing Radford et al. [2018], Devlin et al. [2018], often
setting new performance benchmarks. However, its potential in single-cell genomics is still largely
unexplored. Unlike traditional methods focusing on specific tasks or limited datasets, SSL aims to
build a more general model applicable across different tasks Weng and Kim [2021], Balestriero and
LeCun [2022]. This paper addresses this gap by developing SSL methods designed explicitly for
spatially resolved single-cell data, offering a solution to its unique computational challenges.

This paper introduces SpatialSSL1, a novel framework tailored for SSL on spatially resolved single-
cell datasets. Our primary contribution lies in developing and validating SSL algorithms optimized
for the unique challenges presented by high-dimensional, sparse and spatially distributed data. We
empirically demonstrate the efficacy of SpatialSSL through testing on the cell type annotation task,
utilizing the novel whole-brain atlas dataset BICCN 2.0 Zhang et al. [2023]2 as our evaluation
platform. Exploring SSL in the context of spatial data serves as a step toward large, foundational
models capable of integrating graph-based and non-graph-based data of the single-cell field.

2 Data

2.1 Spatial whole adult mouse brain atlas (BICCN 2.0)

Our empirical evaluation of self-supervision in spatial trancriptomics is based on a high-resolution
spatially resolved atlas of whole adult mouse brain Zhang et al. [2023]. The atlas is part of the

1Code is available at: github.com/theislab/spatial_atlas_ssl
2Data publicly available at Zeng et al. [2023]
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Figure 2: Comparison of data representation approaches. Figure (a) illustrates exemplary spatial
data in which a cell’s (a node’s) neighborhood is defined by a radius of euclidean distance. Figure
(b) portrays the data representation as a full graph, containing all cells of the sample. Figure (c)
shows the representation as sub graphs, containing a subset of nodes that are relevant to the node of
interest. We hypothesize that SSL struggles with non-informative neighbors and large feature spaces
in full-graphs, while sub-graphs offer a more favorable setting for meaningful data representation.

BRAIN Initiative Cell Census Network (BICCN) aiming to generate cell type atlases for mouse and
human brain. The spatially resolved transcriptomic dataset was generated with MERFISH Chen et al.
[2015], a spatially resolved transcriptomic method, and captures the gene expression profile of 550
genes across 4,334,174 individual cells from one entire whole adult mouse brain, distributed over 59
serial full coronal sections.

All cells available in the atlas are segmented and mapped to a common coordinate framework to
obtain precise spatial coordinates for each individual cell across the different brain sections. The
spatial locations of each cell are provided as X and Y coordinates within the atlas.

Additionally, the atlas provides a unique hierarchical cell type annotation with different levels of
granularity, spanning from seven divisions up to 5,200 identified clusters. One can visualize the
spatial organization of the different annotation levels per section within the atlas to observe the spatial
organization of different sub-states in the brain (Figure 1a).

Datasets obtained with single-cell sequencing technologies are typically high-dimensional objects
with many measured cells and genes. To assess the similarity of cells with respect to their molecular
features, one can embed the data into a lower-dimensional representation to identify the underlying
data topology. We applied the Uniform manifold approximation and projection (UMAP) algorithm
on one section of the whole adult mouse brain atlas to visualize the different cell types present in
the brain region (Figure 1b). As we can observe, cell sub-types cluster together and express distinct
molecular states.

We additionally inspect the cell type composition across the entire atlas and the 59 distinct sections.
The different brain sections spanning from dorsal to ventral parts of the brain show a diverse cell type
organization (Figure 1c).

2.2 Spatial graphs of cells

Spatial transcriptomics data resolves cellular measurements at distinct spatial locations. This data can
be encoded as spatial graphs of cells which are computed from the spatial molecular profiling data
and the cell-wise spatial coordinates (Figure 2a). The graph is assembled based on spatial proximity
with respect to euclidean distance in the two-dimensional space. We calculate an adjacency matrix
indicating the spatial connectivities of individual cells. One can compute the spatial proximity graph
on the entire capture area or on each section separately. We furthermore refer to the entire tissue
graph as full graph (Figure 2b). Additionally, biological insights can stem from the connectivities of
individual target cells. The target cell and all it’s neighbours form a niche or cellular microenvironment
that can be anaylzed in various ways. We further refer to the niche as sub-graph (Figure 2c).

(For experimental details, see A.1).
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Figure 3: Visualization of our self-supervised learning experiment. A graph, in which nodes are
cells and edges are constructed via their euclidean distance on the image, serves as input data.
During pretraining, the graph attention network reconstructs masked inputs. After transferring the
model weights, the fine-tuning step comprises of another graph attention network and subsequent
classification used for cell type annotation.

We adopt two divergent strategies for sample creation:

Full-Graph: This variant comprises each image (section) to one graph, resulting in 59 individual
graphs. The individual graphs per section are not connected to other graphs in the dataset. Full graphs
can capture globale dependencies across the sections and can serve as a comprehensive basis for
pretraining graph models.

Sub-Graph: This variant creates multiple smaller graphs - sub-graphs - per image (section). Thereby,
the focus lies localized interactions by creating EgoNet sub-graphs for each cell, where EgoNet is
a type of sub-graph centered on a particular node and its neighborhood. Defined by a center node
and its k-hop neighbors, these sub-graphs offer a more granular view, potentially reducing noise and
improving model performance.

By structuring the data as graphs, we enable graph-based neural networks to exploit the spatial
relationships between nodes for more accurate feature or class prediction. The distinction into full-
and sub-graph aims to evaluate the hypothesis of diminishing effects of self-supervised learning with
increasing feature spaces. The rationale behind this idea is that larger feature spaces include more
uninformative features for pairwise relationships, and that the applied data augmentation has less
relative weight.

3 Self-Supervised Learning on Spatial Data

3.1 Self-Supervised Learning

Self-supervised learning follows the idea that data and pairwise relationships are sufficient to learn
meaningful data representations without the need for explicit labels Balestriero and LeCun [2022].
Thereby, the model learns to distill meaningful signals from noise Von Kügelgen et al. [2021].
This paradigm is compelling to mitigate challenges of large, real-world datasets, such as class
imbalances Liu et al. [2021]. The SSL framework consists of a pretraining phase, where the model
learns to extract features from the data, and a finetuning phase, where these learned features are
applied to a specific downstream task (see Figure 3). The applicability of the data representation to
improve multiple downstream tasks makes self-supervision particularly interesting for real-world
data. In this study, we use mask inpainting as pretraining task, inspired by the efficacy of masked
autoencoders He et al. [2022], Cao et al. [2022]. Specifically, we employ a graph attention network to
mask and reconstruct masked gene expressions. Given a binary mask M , the model fθ is trained to
reconstruct the masked components of the input X using the unmasked components as context, i.e.:
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X̂pred = (1m×n −M)⊙ X̂ (1)
= (1m×n −M)⊙ fθ(M ⊙X) (2)

where 1m×n is a matrix of ones with the same dimensions as M . The mask M allows task-specific
design. This work introduces a mask M generated through full-feature masking, targeting random
nodes within the graph. Specifically, all features of a selected node are masked, impacting a random
subset of nodes in each graph with a patch size of 1. Translated to our application, all gene expression
values of a cell are masked on a randomly selected number of cells in the graph.

3.2 Cell-Type Annotation in Spatially Resolved Single-Cell Genomics

Cell-type annotation in spatially resolved single-cell genomics involves classifying each node —
attributed with a vector of n real-valued RNA-sequencing counts — into distinct classes representing
unique cellular identities. The task is challenging due to the noise and heterogeneity inherent in
large-scale datasets.

Traditional Approaches and Their Limitations: For small datasets with well defined cell-types,
simple models can perform well. For instance, linear models like Celltypist Domínguez Conde et al.
[2022], based on logistic regression, have shown promising results. However, their modeling capacity
is limited, making them unfavorable for large and heterogeneous datasets. Furthermore, the objective
is to develop models capable of robust generalization in order to faithfully represent the data. This
aim requires rigorous evaluation through performance metrics sensitive to class imbalances, such as
the macro F1-score.

The Promise of Self-Supervised Learning: A critical aspect of robust generalization lies in the
model’s ability to learn universally informative features across the data manifold while avoiding
the influence of technical noise and spurious correlations. Self-supervised learning methods, such
as in our SpatialSSL framework, offer a promising route for achieving this. These methods aim to
build rich, generalizable data representations, especially when applied to large and complex datasets
like the spatial brain atlas. By doing so, the model learns to focus on invariant concepts rather than
overfitting to spurious correlations in the training data, thereby promising to enhance its performance
in downstream tasks such as cell type classification.

4 Results

Our empirical evaluation focuses on both supervised (noted as No SSL) and self-supervised learning
models (noted as SSL) applied to full-graph and sub-graph representations of the data. The perfor-
mance metrics employed are the micro and macro F1 scores, as illustrated in Figure 4. Notably,
the macro F1 score provides a balanced measure by accounting for class imbalances, making it
particularly relevant for our study.

Self-Supervised Learning Enhances Performance: A key observation, highlighted in the upper-
left quadrant of Figure 4, is that SSL improves the performance in cell type annotation. This
improvement is especially evident in the macro F1 score, a metric sensitive to class imbalances. This
observation empirically supports our hypothesis that SSL enhances downstream tasks’ performance
and robustness.

Sub-Graphs Outperform Full-Graphs: The upper-right plot of Figure 4 reveals that representing
the data as sub-graphs leads to better performance than full-graphs. This difference aligns with our
hypothesis that sub-graphs provide a helpful environment for meaningful data representation. In a
sub-graph representation, the neighbors of a node are more informative, facilitating effective learning.

Importance of Sensitive Metrics: The lower-left plot of Figure 4 illustrates the class imbalances
inherent in the dataset. A noticeable decline in performance on sensitive metrics like the macro F1
score suggests that models are exposed to these imbalances. This performance decrease emphasizes
the critical role of sensitive metrics in providing a reliable evaluation of model performance on
real-world datasets.

SSL’s Differential Impact on Sub-Graphs and Full-Graphs: Finally, the lower-right plot of
Figure 4 shows that while SSL improves performance on sub-graphs, its impact is smaller on full-
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Metric Full-Graph Sub-Graph

No SSL SSL No SSL SSL

F1 Micro 0.57 0.57 0.60 0.61
F1 Macro 0.54 0.55 0.55 0.59
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Figure 4: Cell type annotation performance on a hold-out test image. Upper panel: Comparative
table of F1 micro, and F1 macro across full-graph and sub-graph data representation for supervised
(No SSL) and self-supervised models (SSL). Lower panel: Corresponding barplot visualization of
performance comparisons.

graphs. This observation further confirms our hypothesis that sub-graphs offer a more favorable
learning environment, also for self-supervised learning. SSL has limited utility in the context of
full-graphs, failing to impact performance strongly.

In summary, our results provide evidence for the efficacy of self-supervised learning in enhancing
cell type annotation, particularly when applied to sub-graph representations of the data. These
findings validate our initial hypotheses and underscore the importance of choosing the appropriate
data representation and performance metrics. The differential impact of SSL on sub-graphs versus
full-graphs raises questions about the optimal granularity for effective learning. These observations
serve as a starting point for a broader discussion on the role and limitations of self-supervised learning
in the context of spatially resolved single-cell genomics.

5 Discussion

Our empirical findings suggest that self-supervised learning improves cell type annotation perfor-
mance in the context of spatially resolved scRNA-seq data. Larger performance gains are observed
in the sub-graph representation, than the full-graph representation. We attribute this disparity to the
inherent differences in the granularity of the feature spaces modeled by the two approaches, with the
full-graph capturing much more nodes, including uninformative ones. By focusing on localized cellu-
lar interactions (niches), the sub-graph enables the self-supervised algorithms to capture biologically
meaningful pairwise relationships. In contrast, the full-graph, which attempts to represent the entire
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spatial data sample, may introduce complexity that hinders the effective learning of such relationships.
This observation raises relevant questions about the optimal scale at which self-supervised learning
should be applied in spatial transcriptomics and beyond, deserving further investigation and validation
across SSL methods and datasets.

6 Conclusion

Self-supervised learning offers a promising avenue for extracting meaningful data representations,
particularly in high-dimensional and complex datasets such as scRNA-seq and spatially resolved
single-cell data. This study employed masking as the SSL paradigm to explore its efficacy on cellular
graphs derived from the BICCN 2.0 dataset. Our empirical findings suggest that SSL improves the
model’s downstream performance in cell type annotation and robustness against class imbalances.
Notably, we observe a bigger improvement at the granularity of local neighborhoods (sub-graphs)
rather than the global structure (full-graphs). This divergence leads us to suspect that the efficacy of
self-supervised learning in spatial transcriptomics is intrinsically tied to the scale of the neighborhood,
emphasizing the need for targeted, scale-specific approaches in future research.
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A Appendix

A.1 Experimental Details

Squidpy Palla et al. [2022] was used to construct graphs from the spatial data. Each cell is represented
as a node in the graph, nodes are connected with an edge if the euclidean distance between them
measured in µm is less than the preset radius parameter. radius was set to 40 µm in this study. We
inferred k-hop subgraphs (hops = 2) for the Sub-Graph representation using the k_hop_subgraph
method provided by pytorch-geometric Fey and Lenssen [2019]. After benchmarking experimental
parameters, we used a masking rate of 20% (i.e., mask all features in 20% of the cells).

We used 58 slices with an 80/20 training and validation split, for both pre-training and fine-tuning
processes. A single slice, not previously seen by the model, is allocated exclusively for testing to
enable a robust comparative evaluation.

Hyperparamters of training and pre-training steps:

• radius: 40
• k-hop: 2
• bottleneck: 64
• Model: Graph Attention Networks

– hidden layers: 4
– learning rate: 0.002
– optimizer: Adam

The workflow was implemented in a snakemake pipeline in SpatialSSL. It enables the user to test
different configurations of the experiment. The user can train SpatialSSL using custom data. They
can select the parameters of the dataset creation such as the radius which is used to infer connections
between individual cells in the graph. Furthermore, the user can configure the model architecture and
training setup by setting the bottleneck dimensions, the type and the number of hidden layers, the
learning rate, and batch size. More information can be found in the project repository.

A.2 Dataset Memory Usage

We adopted memory-saving methods (i.e. lower batch size, checkpoint, and sparse-tensor) to reduce
memory usage on the GPU for the full-graph representation. The full-graph representation requires
22-147 GB RAM on the machine during fine-tuning with the graph attention model with 4 hidden
layers. The sub-graph representation requires 7 MB for fine-tuning on each sub graph, which provides
flexible model architecture design and able to accelerate the training process on the GPU with less
GPU RAM.

A.3 Test Slice Selection

The test slice was chosen based on its minimal cell-type imbalance. This was determined by
calculating the average number of each cell type across all slices and selecting the slice wherein
the difference in the quantity of each cell type was smallest, ensuring a representative and balanced
dataset for testing purposes.
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