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Abstract

Word-level Quality Estimation (QE) of Ma-001
chine Translation (MT) helps to find out poten-002
tial translation errors in translated sentences003
without reference. The current collection of004
QE datasets is typically based on the exact005
matching between the words from MT sen-006
tences and post-edited sentences through a007
Translation Error Rate (TER) toolkit. How-008
ever, we find that the data generated by009
TER cannot faithfully reflect human judgment,010
which may make the research deviate from011
the correct direction. To overcome the limita-012
tion, we for the first time collect the direct as-013
sessment (DA) dataset for the word-level QE014
task, namely DAQE, which is a golden cor-015
pus annotated by expert translators on two lan-016
guage pairs. Furthermore, we propose two tag017
correcting strategies, namely tag refinement018
strategy and tree-based annotation strategy, to019
make the TER-based artificial QE tags closer020
to human judgement, so that the automatically021
corrected and large-scale TER-based data can022
be used to improve the QE performance by023
pre-training. We conduct detailed experiments024
on our collected DAQE dataset, as well as025
comparison with the TER-based QE dataset026
MLQE-PE. The results not only show our pro-027
posed dataset DAQE is more consistent with028
human judgment but also confirm the effective-029
ness of the tag correcting strategies.1030

1 Introduction031

Quality Estimation (QE) of Machine Translation032

(MT) aims to automatically estimate the quality033

of the translation generated by MT systems, with034

no reference available. It typically acts as a post-035

processing module in commercial MT systems,036

determining whether the translation needs to be037

post-edited or alerting the user with potential trans-038

lation errors. Recently, with the success of neural039

1The codes and data samples are attached as supplemen-
tary materials. Our codes with the full data will be publicly
available once accepted.

Alignment generated by TER toolkit

           Matched                      S: Substitution  I: Insertion  D: Deletion

最后   的   征服者   **   *  骑着 他   的  剑 继续前进 .

最后 一个 征服者 骑上 了 马   ， 拔出 了    剑     。PE:

MT:

S I I S S S S S S

QE Tags: OK OKBAD BAD BAD BAD BAD BAD BAD

Sentence-level QE

Overall Human Translation Error Rate (HTER score): 0.82

Source: the last conquistador then rides on with his sword drawn .

Machine Translation (MT): 最后 的 征服者 骑着 他 的 剑 继续前进 .

MT Back: the last conquistador rides on his sword and move on.

Post-edited (PE): 最后 一个 征服者 骑上 了 马 ， 拔出 了 剑 。
PE Back: last one conquistador rides on the horse and draws out the sword.

Word-level QE

Figure 1: The illustration of the sentence-level and
word-level QE tasks. The word-level QE tags are gen-
erated by the TER toolkit.

networks, neural-based QE models have achieved 040

remarkable performance (Kepler et al., 2019; Kim 041

et al., 2017; Lee, 2020; Specia et al., 2020; Ranas- 042

inghe et al., 2020; Wang et al., 2020b). 043

Figure 1 shows an example of QE. The sentence- 044

level task predicts a score indicating the overall 045

translation quality, while the word-level QE needs 046

to annotate each word as OK or BAD2. Currently, 047

the collection of QE datasets mainly relies on the 048

Translation Error Rate (TER) toolkit (Snover et al., 049

2006). Specifically, given the machine translations 050

and their corresponding post-edits (PE, generated 051

by human translators) or target sentences of paral- 052

lel corpus as the pseudo-PE (Tuan et al., 2021; Lee, 053

2020), the rule-based TER toolkit is used to gener- 054

ate the word-level alignment between the MT and 055

the PE based on the principle of minimal editing. 056

All MT words not aligned to PE are annotated as 057

BAD (shown in Figure 1). Such annotation is also 058

referred as post-editing effort (Fomicheva et al., 059

2020; Specia et al., 2020). 060

2In this paper, we mainly focus on the word-level QE on
the target side, while we also show in our experiment that
sentence-level QE can be implemented through the word-level
QE.
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Source: It is happy for me to be asked to speak here.

MT: 我 很 高兴 被 要求 在 这里 发言 。  MT Back: I am so happy to be asked to speak here.

PE: 被 邀请 在 这里 讲话 我 很 高兴 。  PE Back: Being invited to talk here makes me so happy.

TER-based Annotations: 我 很 高兴 被 要求 在 这里 发言 。

Human’s Direct Assessment (DA): 我 很 高兴 被 要求 在 这里 发言 。

Source: The Zaporizhian Hetman was then dispatched to Istanbul, and impaled on hooks.

MT: 扎 波罗 齐安海 特曼 号 随后 被 派 往 伊斯坦布尔 ，并 被 撞 在 钩 上 。
MT Back: The Zaporizhian Hetman was then dispatched to Istanbul, and was bumped on the hook.

PE: Zaporizhian Hetman 随后 被 派 往 伊斯坦布尔 ， 并 被 钉 在 钩子 上 。
PE Back: Zaporizhian Hetman was then dispatched to Istanbul, and was nailed on hooks.

TER-based Annotations:   扎 波罗 齐安海 特曼 号 随后 被 派 往 伊斯坦布尔 ，并 被 撞 在 钩 上 。         

Human’s Direct Assessment (DA):  扎 波罗 齐安海 特曼 号 随后 被 派 往 伊斯坦布尔 ，并 被 撞 在 钩 上 。

a) Some words in MT are mistakenly annotated to BAD though the overall semantic is not changed.

b) Human’s DA annotates the clause “被撞在钩上” as a whole, while TER-based annotations are fragmented.

Figure 2: Two examples show the gap between the TER-based annotation and human’s direct assessment on word-
level QE task. The red color indicates BAD tags, while the green color indicates OK tags.

Although the TER-based annotation can auto-061

matically generate large-scale artificial QE data,062

we find two issues that make it inconsistent with063

human judgment. First, the PE sentences often064

substitute some words with better synonyms and065

reorder some sentence constituents for polish pur-066

poses. These operations do not destroy the transla-067

tion semantics, but make some words mistakenly068

annotated under the exact matching criterion of069

TER. (shown in Figure 2a). Second, when fatal070

errors occur in MTs, a human’s DA typically an-071

notates the whole sentence or clause as BAD. How-072

ever, TER-based annotations still try to find trivial073

words that align with PE, resulting in fragmented074

annotations (shown in Figure 2b). The WMT20075

QE shared task includes the DA on the sentence-076

level QE as a subtask (Fomicheva et al., 2020), but077

it neglects the DA on the word-level QE. Mean-078

while, most previous works still use the TER-based079

dataset as the evaluation benchmark of the word-080

level QE task. Their experimental results may not081

truly reflect the model’s ability on finding transla-082

tion errors, making the research deviate from the083

correct direction. Thus, there is an urgent need084

for a DA dataset that can precisely reflect human085

judgment on the word-level QE.086

To overcome the limitations stated above, for087

the first time, we concentrate on the direct assess-088

ment of the word-level QE task. We first collect a089

new QE dataset called DAQE that reflects human’s090

direct assessments at the word level. Our analy-091

sis shows that DAQE is more consistent with hu-092

man judgment than TER-based QE datasets. Then,093

considering collecting such a golden dataset is ex-094

pensive and labor-consuming, we further propose095

two automatic tag correcting strategies, namely tag 096

refinement strategy and tree-based annotation strat- 097

egy, which make the TER-based annotations more 098

consistent with human judgment. We directly use 099

the large-scale corrected TER-based dataset in the 100

pre-training phase and achieve significant improve- 101

ment on DAQE. 102

Our contributions can be summarized as follows: 103

1) We collect a new word-level QE dataset called 104

DAQE that reflects human’s direct assessments 105

rather than the post-editing effort. We conduct de- 106

tailed analyses and demonstrate two differences be- 107

tween DAQE and the previous TER-based dataset. 108

2) Considering data collection is labor-consuming, 109

we also propose two automatic tag correcting strate- 110

gies to make the TER-based artificial dataset more 111

consistent with human judgment and then boost the 112

performance by large-scale pre-training. 3) We con- 113

duct experiments on our collected DAQE dataset 114

as well as the TER-based dataset MLQE-PE. The 115

results of the automatic and human evaluation show 116

that our approach not only achieves better perfor- 117

mance but also demonstrates higher consistency 118

with human judgment. 119

2 Data Collection and Analysis 120

2.1 Data Collection 121

To make our word-level DA annotations compara- 122

ble to TER-generated ones, we directly take the 123

source and MT texts from MLQE-PE (Fomicheva 124

et al., 2020), the official dataset for the WMT20 QE 125

shared task. It includes two language pairs that con- 126

tain TER-generated annotations: English-German 127

(En-De) and English-Chinese (En-Zh). The source 128

texts are sampled from Wikipedia documents and 129
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Dataset Split English-German English-Chinese

samples tokens MT BAD tags MT Gap BAD tags samples tokens MT BAD tags MT Gap BAD tags

MLQE-PE train 7000 112342 31621 (28.15%) 5483 (4.59%) 7000 120015 65204 (54.33%) 10206 (8.04%)
valid 1000 16160 4445 (27.51%) 716 (4.17%) 1000 17063 9022 (52.87%) 1157 (6.41%)

DAQE (ours)
train 7000 112342 10804 (9.62%) 640 (0.54%) 7000 120015 19952 (16.62%) 348 (0.27%)
valid 1000 16160 1375 (8.51%) 30 (0.17%) 1000 17063 2459 (14.41%) 8 (0.04%)
test 1000 16154 993 (6.15%) 28 (0.16%) 1000 17230 2784 (16.16%) 11 (0.06%)

Table 1: Statistics of TER-based MLQE-PE dataset and our proposed DAQE dataset.
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Figure 3: The length distribution of BAD spans.

use the Transformer-based neural machine transla-130

tion (NMT) system (Vaswani et al., 2017) to obtain131

the translations.132

To obtain the word-level DA annotations, we133

show human translators the source sentences with134

the corresponding MTs. Then we ask them to find135

words, phrases, clauses, or even the whole sen-136

tences that contain translation errors and annotate137

them as BAD, according to their professional knowl-138

edge. Note that although the PE sentences exist in139

MLQE-PE, the human annotators have no access to140

them, making the annotation process as fair and un-141

biased as possible. All of the annotated samples are142

cross-validated to ensure the accuracy rate above143

95%.144

2.2 Statistics and Analysis145

Overall Statistics. In Table 1, we show detailed146

statistics of MLQE-PE and DAQE. First, we see147

that the total number of BAD tags decreases heavily148

when human’s DA replaces the TER-based annota-149

tions (from 28.15% to 9.62% for En-De, and from150

54.33% to 16.62% for En-Zh). It indicates that the151

human’s DA tends to annotate OK as long as the152

translation correctly expresses the meaning of the153

source sentence, but ignores the secondary issues154

like synonym substitutions and constituent reorder-155

ing. Second, we find the number of BAD tags in the156
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Figure 4: The distribution that reveals how many BAD
spans in every single sample.

gap (indicating a few words are missing between 157

two MT tokens) also greatly decreases. It’s be- 158

cause that human’s DA tends to regard the missing 159

translations (i.e., the BAD gaps) and the translation 160

errors as a whole but only annotate BAD tags on 161

MT tokens3. 162

The Length of BAD Spans. We show the num- 163

ber of BAD spans4 of different lengths in Figure 164

3. We can see that most BAD spans only contain 165

a few tokens, showing the well-known long-tail 166

distribution. For En-De, the long-tail distribution is 167

sharper, where 70.5% of BAD spans are one-token 168

spans. When comparing the TER-based annota- 169

tions with the DA ones, we find that DA includes 170

fewer BAD spans of each length, but the overall 171

distribution is similar. 172

Unity of BAD Spans. To reveal the unity of the 173

DA annotations, we group the samples according 174

to the number of BAD spans in each single sample, 175

and show the overall distribution. From Figure 4, 176

we can find that the TER-based annotations follow 177

the Gaussian distribution, where a large propor- 178

tion of samples contain 2, 3, or even more BAD 179

3As a result, we do not include the subtask of predicting
gap tags in our experiments.

4Here, the BAD spans indicate the longest continuous
tokens with BAD tags.
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XLM-R

<s> </s> <s> </s>

source tokens MT tokens

Binary 

Classification Head
representations

on MT tokens

BAD OK

Parallel Corpus

<source, target>

Training Set

<source, target>

Test Set

<source, target>

NMT 

Model

1. Train NMT Model

2. Predict

tens of millions of

Triplets

<source, MT, target (pseudo-PE)>

Artificial QE Dataset

<source, MT, QE tags>

3. TER-based

annotations

a) The overall architecture of our model. b) The construction steps of artificial QE dataset for pre-training.

Split with 10-fold 

cross validation

Figure 5: The model architecture and the construction of artificial QE dataset.

spans, indicating the TER-based annotations are180

fragmented. However, our collected DA annota-181

tions are more unified, with only a small propor-182

tion of samples including more than 2 BAD spans.183

Besides, we find a large number of samples that184

are fully annotated as OK in the DA annotations.185

However, the number is extremely small for TER-186

based annotations (78 in English-German and 5 for187

English-Chinese). This shows a large proportion of188

BAD spans in TER-based annotations do not really189

destroy the semantic of translations and are thus190

regarded as OK by human’s DA.191

3 Approach192

The annotation of DA on the word-level QE is ex-193

pensive and time-consuming, while the large-scale194

TER-based artificial dataset (Tuan et al., 2021; Lee,195

2020) is inconsistent with the downstream DA task,196

resulting in limited improvement. In this section,197

we will first introduce the backbone of the model198

and the construction of the TER-based artificial199

dataset for pre-training. Then, we propose two cor-200

recting strategies to make the TER-based artificial201

tags closer to the human judgment.202

3.1 Model Architecture203

Following (Ranasinghe et al., 2020; Lee, 2020;204

Moura et al., 2020; Ranasinghe et al., 2021),205

we select the XLM-RoBERTa (XLM-R) (Con-206

neau et al., 2020) as the backbone of our207

model. XLM-R is a transformer-based masked208

language model pre-trained on large-scale209

multilingual corpus and demonstrates state-of-210

the-art performance on multiple cross-lingual211

downstream tasks. As shown in Figure 5a, we212

concatenate the source sentence and the MT213

sentence together to make an input sample: xi =214

<s>wsrc
1 , . . . , wsrc

m </s><s>wmt
1 , . . . , w

mt
n </s>,215

where m is the length of the source sentence (src) 216

and n is the length of the MT sentence (mt). <s> 217

and </s> are two special tokens to annotate 218

the start and the end of the sentence in XLM-R, 219

respectively. 220

For the j-th token wmt
j in the MT sentence, we 221

take the corresponding representation from XLM- 222

R for binary classification to determine whether wj 223

belongs to good translation (OK) or contains trans- 224

lation error (BAD) and use the binary classification 225

loss to train the model: 226

sij = σ(wTXLM-Rj(xi)) (1) 227

Lij = −(y · log sij + (1− y) · log(1− sij))
(2)

228

where XLM-Rj(xi) ∈ Rd (d is the hidden size 229

of XLM-R) indicates the representation output by 230

XLM-R corresponding to the token wmt
j , σ is the 231

sigmoid function, w ∈ Rd×1 is the linear layer for 232

binary classification and y is the ground truth label. 233

3.2 Pre-training on Artificial QE Dataset 234

The translation knowledge contained in the parallel 235

corpus of MT is very helpful for the QE task. As 236

a result, many works use the parallel corpus for 237

pre-training the model. As shown in Figure 5b, the 238

parallel corpus is firstly split into the training and 239

the test set. Then the NMT model is trained with 240

the training split and is used to generate translations 241

for all sentences in the test split. From this, a large 242

number of triplets are obtained, each consisting of 243

source, MT, and target sentences. Finally, the target 244

sentence is regarded as the pseudo-PE from the MT 245

sentence, and the TER toolkit is used to generate 246

word-level OK|BAD tags based on the principle of 247

minimal editing (shown in the bottom of Figure 1). 248
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Substitute(                         ,                          )在 这里 发言 在 这里 讲话

我 很 高兴 被 要求  在 这里 发言  。

我 很 高兴 被 要求  在 这里 讲话  。

Language

Model

perplexity = 20.91

perplexity = 21.38

∆ppl = +0.47

  我 很 高兴     被      要求     在    这里    发言     。

a) The phrase-level alignment and the change of perplexity (∆ppl) after phrase substitution.

TER-based Annotation:

我 很 高兴 邀请 讲话PE Aligned Phrases:

|∆ppl| = 0 < α |∆ppl| = 10.89 > α |∆ppl| = 0.47 < α

  我 很 高兴     被      要求     在    这里    发言     。Refined Annotation:

substitute substitute substitute

tag correct keep unchanged tag correct

b) The proposed tag refinement strategy.

c) The proposed tree-based annotation strategy.

钩 (NP)在 (P) 上 (LC)

在钩上 (PP)

撞在钩上 (VP)

被撞在钩上 (VP)

撞 (VV)

被 (SB)

并 (CC)......  

钩 (NN)

...... 被派往伊斯坦布尔，并被撞在钩上。 (TOP)

∆ppl = -101.18, ∆pplnorm = -20.24

substitute with 被钉在钩子上

∆ppl = -101.18, ∆pplnorm = -25.30

substitute with 钉在钩子上

∆ppl = 20.82, ∆pplnorm = -6.94

substitute with 在钩子上

∆ppl = 20.82, ∆pplnorm = -20.82

substitute with 钩子

Top 

Ranked

...... 被 派往 伊斯坦布尔 ， 

并 被 撞 在 钩 上 。

Generated 

Annotation:

Figure 6: The proposed two tag correcting strategies: Tag Refinement strategy and Tree-based Annotation strategy.

3.3 Tag Correcting Strategies249

As we discussed before, the two issues of TER-250

based tags limit the performance improvement of251

pre-training when applied to the downstream DA252

task. In this section, we introduce two tag cor-253

recting strategies, namely tag refinement and tree-254

based annotation, that target these issues and make255

the TER-based artificial QE tags more consistent256

with human judgment.257

Tag Refinement Strategy. In response to the258

first issue (i.e., wrong annotations due to the syn-259

onym substitution or constituent reordering), we260

propose the tag refinement strategy, which corrects261

the false BAD tags to OK. Specifically, as shown262

in Figure 6a, we first generate the alignment be-263

tween the MT sentence and the reference sentence264

(i.e., the pseudo-PE) using FastAlign5 (Dyer et al.,265

2013). Then we extract the phrase-to-phrase align-266

ment through running the phrase extraction algo-267

rithm of NLTK6 (Bird, 2006). Once the phrase-268

level alignment is prepared, we substitute each BAD269

span with the corresponding aligned spans in the270

pseudo-PE and use the language model to calcu-271

late the change of the perplexity ∆ppl after this272

substitution.273

If |∆ppl| < α, where α is a hyperparameter indi-274

cating the threshold, we regard that the substitution275

has little impact on the semantic and thus correct276

the BAD tags to OK. Otherwise, we regard the span277

does contain translation errors and keep the BAD278

tags unchanged (Figure 6b).279

Tree-based Annotation Strategy. Human’s280

DA tends to annotate the smallest constituent that281

causes fatal translation errors as a whole (e.g., the282

5https://github.com/clab/fast_align
6https://github.com/nltk/nltk/blob/

develop/nltk/translate/phrase_based.py

whole words, phrases, clauses, etc.). However, 283

TER-based annotations are often fragmented, with 284

the whole mistranslations being split into multi- 285

ple BAD spans because some stopwords are aligned 286

and labeled as OK. Besides, the BAD spans are often 287

not well-formed in linguistics (e.g., two adjacent 288

words but are from two different phrases). 289

To address this issue, we propose the constituent 290

tree-based annotation strategy. It can be regarded 291

as an enhanced version of the tag refinement strat- 292

egy that gets rid of the TER-based annotation. As 293

shown in Figure 6c, we first generate the con- 294

stituent tree for the MT sentences. Each internal 295

node (i.e., the non-leaf node) in the constituent 296

tree represents a well-formed phrase such as noun 297

phrase (NP), verb phrase (VP), prepositional phrase 298

(PP), etc. For each node, we substitute it with the 299

corresponding aligned phrase in the pseudo-PE. 300

Then we still use the change of the perplexity ∆ppl 301

to indicate whether the substitution of this phrase 302

improves the fluency of the whole translation. 303

To only annotate the smallest constituents that 304

exactly contain translation errors, we normalize 305

∆ppl by the number of words in the phrase and 306

use this value to sort all internal nodes in the con- 307

stituent tree: ∆pplnorm = ∆ppl
r−l+1 , where l and r 308

indicates the left and right position of the phrase, 309

respectively. The words of a constituent node are 310

integrally labeled as BAD only if ∆pplnorm < β 311

as well as there is no overlap with nodes that are 312

higher ranked. β is a hyperparameter indicating the 313

threshold. 314

4 Experiments 315

Datasets. To verify the effectiveness of our 316

proposed tag correcting strategies on word-level 317

QE, we conduct experiments on both DAQE 318

5

https://github.com/clab/fast_align
https://github.com/nltk/nltk/blob/develop/nltk/translate/phrase_based.py
https://github.com/nltk/nltk/blob/develop/nltk/translate/phrase_based.py


Model English-German (En-De) English-Chinese (En-Zh)

MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span

Baselines
FT on DAQE only 26.29 95.08 31.09 20.97 38.56 90.76 47.56 26.66
PT (TER-based) 9.52 34.62 13.54 3.09 15.17 36.66 31.53 2.40
+ FT on DAQE 24.82 94.65 29.82 18.52 39.09 91.29 47.04 25.93

Pre-training only with tag correcting strategies (ours)
PT w/ Tag Refinement 10.12* 49.33 14.32 3.62 19.36* 53.16 34.10 3.79
PT w/ Tree-based Annotation 8.94 84.50 15.84 6.94 21.53* 59.21 35.54 6.32

Pre-training with tag correcting strategies + fine-tuning on DAQE (ours)
PT w/ Tag Refinement + FT 27.54* 94.21 35.25 21.13 40.35* 90.88 49.33 25.60
PT w/ Tree-based Annotation + FT 27.67* 94.44 32.41 21.38 41.33* 91.22 49.82 27.21

Table 2: The word-level QE performance on the test set of DAQE for two language pairs, En-De and En-Zh. PT
indicates pre-training and FT indicates fine-tuning. Results are all reported by ×100. The numbers with * indicate
the significant improvement over the corresponding baseline with p < 0.05 under t-test (Semenick, 1990).

and MLQE-PE (Fomicheva et al., 2020) datasets.319

MLQE-PE is the official dataset used in the320

WMT20 QE shared task (Specia et al., 2020), and321

DAQE is our collected dataset with word-level DA322

annotations. Note that MLQE-PE and DAQE share323

the same source and MT sentences, thus they have324

exactly the same number of samples. We show the325

detailed statistics in Table 1. For the pre-training,326

we use the parallel dataset provided in the WMT20327

QE shared task to generate the artificial QE dataset.328

Baselines. To confirm the effectiveness of our329

proposed tag correcting strategies, we mainly select330

two baselines for comparison. In the one, we do not331

use the pre-training, but only fine-tune XLM-R on332

the training set of DAQE. In the other, we pre-train333

the model on the TER-based artificial QE dataset334

and then fine-tune it on the training set of DAQE.335

Evaluation. Following WMT20 QE shared task336

(Specia et al., 2020), we use Matthews Correlation337

Coefficient (MCC) as the main metric and also338

provide the F1 score (F) for OK, BAD and BAD339

spans.7340

4.1 Main Results341

The results are shown in Table 2. We can observe342

that the TER-based pre-training only brings very343

limited performance gain or even degrade the per-344

formance when compared to the “FT on DAQE345

only” setting (-1.47 for En-De and +0.53 for En-346

Zh). It suggests that the inconsistency between347

TER-based and DA annotations leads to the limited348

effect of pre-training. However, when applying the349

tag correcting strategies to the pre-training dataset,350

the improvement is much more significant (+2.85351

for En-De and +2.24 for En-Zh), indicating that352

7Please refer to Appendix A for implementation details.

the tag correcting strategies mitigate such inconsis- 353

tency, improving the effect of pre-training. On the 354

other hand, when only the pre-training is applied, 355

the tag correcting strategies can also improve the 356

performance. It shows our approach can also be ap- 357

plied to the unsupervised setting, where no human- 358

annotated dataset is available for fine-tuning. 359

Tag Refinement v.s. Tree-based Annotation. 360

When comparing two tag correcting strategies, we 361

find the tree-based annotation strategy is generally 362

superior to the tag refinement strategy, especially 363

for En-Zh. The MCC improves from 19.36 to 21.53 364

under the pre-training only setting and improves 365

from 40.35 to 41.33 under the pre-training then 366

fine-tuning setting. This is probably because the 367

tag refinement strategy still requires the TER-based 368

annotation and fixes based on it, while the tree- 369

based annotation strategy actively selects the well- 370

formed constituents to apply phrase substitution 371

and gets rid of the TER-based annotation. 372

Span-level Metric. Through the span-level met- 373

ric (F-BAD-Span), we want to measure the unity 374

and consistency of the model’s prediction against 375

human judgment. From Table 2, we find our mod- 376

els with tag correcting strategies also show higher 377

F1 score on BAD spans (from 26.66 to 27.21 for 378

En-Zh), while TER-based pre-training even do 379

harm to this metric (from 26.66 to 25.93 for En- 380

Zh). This phenomenon also confirms the aforemen- 381

tioned fragmented issue of TER-based annotations, 382

and our tag correcting strategies, instead, improve 383

the span-level metric by alleviating this issue. 384

4.2 Analysis 385

Comparison to results on MLQE-PE. To demon- 386

strate the difference between the MLQE-PE (TER- 387

generated tags) and our DAQE datasets, and ana- 388
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Evaluate on →
Fine-tune on ↓

MLQE-PE DAQE

MCC* MCC F-BAD MCC F-BAD

WMT20’s best 59.28 - - - -

No pre-training (fine-tuning only)
MLQE-PE 58.21 46.81 75.02 22.49 34.34
DAQE 49.77 23.68 36.10 45.76 53.77

TER-based pre-training
w/o fine-tune 56.51 33.58 73.85 11.38 27.41
MLQE-PE 61.85 53.25 78.69 21.93 33.75
DAQE 41.39 29.19 42.97 47.34 55.43

Pre-training with tag refinement
w/o fine-tune 55.03 28.89 70.73 18.83 31.39
MLQE-PE 61.35 48.24 77.17 21.85 33.31
DAQE 39.56 25.06 67.40 47.61 55.22

Pre-training with tree-based annotation
w/o fine-tune 55.21 26.79 68.11 20.98 32.84
MLQE-PE 60.92 48.58 76.18 22.34 34.13
DAQE 40.30 26.22 39.50 48.14 56.02

Table 3: Performance comparison for En-Zh with dif-
ferent fine-tuning and evaluation settings. Since the
test labels of MLQE-PE are not publicly available, we
report the results on the validation set of both datasets.
MCC* indicates the MCC score considering both the
target tokens and the target gaps.

lyze how the pre-training and fine-tuning influence389

the results on both datasets, we compare the per-390

formance of different models on MLQE-PE and391

DAQE respectively. The results for En-Zh are392

shown in Table 3.393

When comparing results in each group, we394

find that fine-tuning on the training set identical395

to the evaluation set is necessary for achieving396

high performance. Otherwise, fine-tuning provides397

marginal improvement (e.g., fine-tuning on MLQE-398

PE and evaluating on DAQE) or even degrades the399

performance (e.g., fine-tuning on DAQE and eval-400

uating on MLQE-PE). This reveals the difference401

in data distribution between DAQE and MLQE-PE.402

Besides, we note that our best model on MLQE-403

PE outperforms WMT20’s best model (61.85 v.s.404

59.28) using the same MCC* metric, showing the405

strength of our model, even under the TER-based406

setting.407

On the other hand, we compare the performance408

gain of different pre-training strategies. When eval-409

uating on MLQE-PE, the TER-based pre-training410

brings higher performance gain (+6.44) than pre-411

training with two proposed tag correcting strate-412

gies (+1.43 and +1.77). While when evaluating413

on DAQE, the case is opposite, with the TER-414

based pre-training bringing lower performance gain415

(+1.58) than tag refinement (+1.85) and tree-based416

annotation (+2.38) strategies. In conclusion, the417

pre-training always brings performance gain, no418

Models En-De En-Zh

Pea. Spea. Pea. Spea.

Trained on sentence-level DA dataset
WMT20’s best 56.2 - 55.1 -
XLM-R Large 44.52 45.90 49.93 51.08
+ PT (HTER scores) 49.64 51.27 51.62 51.49

Derived from the prediction of word-level QE model
FT on MLQE-PE 41.12 43.02 31.49 29.19
+ PT (TER-based) 38.88 42.22 33.08 31.41

FT on DAQE 50.29 52.74 42.33 43.48
+ PT (Tag Correcting) 50.07 51.04 44.69 46.41

Table 4: The Pearson’s (Pea.) and Spearman’s
(Spea.) correlation (×100) against the sentence-level
DA scores on the validation set. HTER (Specia et al.,
2020) indicates Human Translation Error Rate, a score
derived from the TER-based tags.

matter evaluated on MLQE-PE or DAQE. However, 419

the optimal strategy depends on the consistency be- 420

tween the pre-training dataset and the downstream 421

evaluation task. 422

Sentence-level DA Scores. Predicting sentence- 423

level DA scores typically requires another model 424

that trained on sentence-level QE task. However, 425

with our word-level DA dataset, the sentence-level 426

DA score can also be derived from word-level pre- 427

dictions. In this way, we can unify the DA predic- 428

tions of word-level and sentence-level QE without 429

the need of additional sentence-level DA dataset. 430

To show the performance of sentence-level DA 431

score derived from the word-level DA model, we 432

use the sentence-level DA scores in MLQE-PE as 433

the gold scores and calculate the Pearson’s correla- 434

tion or Spearman’s correlation between them and 435

the model’s predictions. 436

Table 4 illustrates the results. The first group 437

gives the performance of sentence-level QE models 438

that are trained on sentence-level DA datasets. Spe- 439

cially, we provide the best model8 in the WMT20 440

QE shared task (sentence-level DA) and use them 441

as a strong baseline. 442

In the second group, we obtain the sentence-level 443

score by averaging the word-level scores: ssent
i = 444

1
|xi|

∑
j sij , where sij is the word-level score of 445

the j-th token calculated by Equation 1. We can 446

see the models trained on DAQE achieve higher 447

sentence-level performance than those trained on 448

MLQE-PE with a large margin (+9.17 for En-De 449

and +11.61 for En-Zh). For En-De, Pearson’s cor- 450

relation (50.29) is even closer to WMT20’s best 451

model (56.2). Besides, our proposed tag correct- 452

8http://www.statmt.org/wmt20/
quality-estimation-task_results.html
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Scores En-De En-Zh

TER DA TER DA

1 (terrible) 3 1 5 0
2 (bad) 36 16 34 6
3 (neutral) 34 20 29 21
4 (good) 26 61 24 59
5 (excellent) 1 2 8 14

Average score: 2.86 3.47 2.96 3.81
% DA ≥ TER: 89% 91%

Table 5: The results of human evaluation. We select
the best-performed model fine-tuned on MLQE-PE and
DAQE respectively.

ing strategies can also improve the sentence-level453

performance for En-Zh (+2.36).454

Human Evaluation. To evaluate and compare455

the models trained on TER-based tags and DA tags456

more objectively, human evaluation is conducted457

for both models. For En-Zh and En-De, we ran-458

domly select 100 samples (the source and MT sen-459

tences) from the validation set and use two mod-460

els to predict word-level OK or BAD tags for them.461

Then, we ask human translators to give a score for462

each prediction, between 1 and 5, where 1 indicates463

the predicted tags are fully wrong, and 5 indicates464

the tags are fully correct.465

Table 5 shows the results. We can see that the466

model trained on DA tags achieves higher human467

evaluation scores than that trained on TER-based468

tags on average. For about 90% of samples, the469

prediction of the DA model can outperform or tie470

with the prediction of TER-based model.471

5 Related Work472

Early approaches on QE, such as QuEst (Specia473

et al., 2013) and QuEst++ (Specia et al., 2015),474

mainly pay attention to the feature engineering.475

They aggregate various features and feed them476

to the machine learning algorithms for classifica-477

tion or regression. Kim et al. (2017) first propose478

the neural-based QE approach, called Predictor-479

Estimator. They first pre-train an RNN-based pre-480

dictor on the large-scale parallel corpus that pre-481

dicts the target word given its context and the482

source sentence. Then, they extract the features483

from the pre-trained predictor and use them to train484

the estimator for the QE task. This model achieves485

the best performance on the WMT17 QE shard task.486

After that, many variants of Predictor-Estimator are487

proposed (Fan et al., 2019; Moura et al., 2020; Cui488

et al., 2021). Among them, Bilingual Expert (Fan489

et al., 2019) replaces RNN with multi-layer trans- 490

formers as the architecture of the predictor, and 491

proposes the 4-dimension mismatching feature for 492

each token. It achieves the best performance on 493

WMT18 QE shared task. The Unbabel team also 494

releases an open-source framework for QE, called 495

OpenKiwi (Kepler et al., 2019), that implements 496

the most popular QE models with configurable ar- 497

chitecture. 498

Recently, with the development of pre-trained 499

language models, many works select the cross- 500

lingual language model XLM-RoBERTa (Conneau 501

et al., 2020) as the backbone (Ranasinghe et al., 502

2020; Lee, 2020; Moura et al., 2020; Rubino and 503

Sumita, 2020; Ranasinghe et al., 2021; Zhao et al., 504

2021). Many works also explore the joint learn- 505

ing or transfer learning of the multilingual QE task 506

(i.e., on many language pairs) (Sun et al., 2020; 507

Ranasinghe et al., 2020, 2021). 508

The QE model can be applied to the Computer- 509

Assisted Translation (CAT) system together with 510

other models like translation suggestion (TS) or 511

automatic post-edit (APE). Wang et al. (2020a) 512

and Lee et al. (2021) use the QE model to identify 513

which parts of the machine translations need to 514

be correct, and the TS (Yang et al., 2021) also 515

needs the QE model to determine error spans before 516

giving translation suggestions. 517

6 Conclusion 518

In this paper, we focus on the task of word-level 519

QE in machine translation and target the inconsis- 520

tency issues between the TER-based QE dataset 521

and human judgment. We for the first time collect 522

a word-level QE dataset called DAQE that reflects 523

human’s direct assessments. Besides, we propose 524

two tag correcting strategies that correct the TER- 525

based artificial QE tags in the pre-training phase 526

and further improve the performance. We conduct 527

thorough experiments and analyses, demonstrating 528

the necessity of our proposed dataset and the effec- 529

tiveness of our proposed approaches. Our future 530

directions include improving the performance of 531

phrase-level alignment, introducing phrase-level se- 532

mantic matching, and applying data augmentation9. 533

We hope our work will provide a new perspective 534

for future researches on quality estimation. 535

9We provide case studies and discuss the current limita-
tions and potential strategies in the appendix.
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Broader Impacts536

Quality estimation often serves as a post-537

processing module in recent commercial machine538

translation systems. It can be used to indicate the539

overall translation quality or detect the specific540

translation errors in the sentences. This work fo-541

cuses on the direct assessment task, training the542

model to fit the human judgment at the word level.543

To do this, we collect a new QE dataset and propose544

tag correcting strategies to force the TER-based ar-545

tificial dataset used in the pre-training phase closer546

to human judgment. When applying our approach,547

the users should pay special attention to the fol-548

lowing: a) The data source of DAQE is Wikipedia,549

so our model should perform well on a similar do-550

main but may perform poorly on other irrelevant551

domains. b) Since our approach is still data-driven,552

the data (as well as the pre-training parallel dataset)553

should be ethical and unbiased, or unexpected prob-554

lems may arise. c) The proposed tag correcting555

strategies work well on En-De and En-Zh, but do556

not necessarily applicable to other language pairs557

since the characteristics among target languages558

are different. d) Since the system is neural-based,559

the interpretability is limited. It can still mistakenly560

annotate some forbidden or sensitive words to OK561

and cause unexpected accidents.562
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A Implementation Details726

Our implementation of QE model is based on an727

open-source framework, OpenKiwi10 (Kepler et al.,728

2019). We use the large-sized XLM-R model and729

obtain it from hugging-face’s library11. We use the730

KenLM12 (Heafield, 2011) to train the language731

model on all target sentences in the parallel corpus732

and calculate the perplexity of the given sentence.733

For the tree-based annotation strategy, we obtain734

the constituent tree through LTP13 (Che et al., 2010)735

for Chinese and through Stanza14 (Qi et al., 2020)736

for German. We set α to 1.0 and β to -3.0 in our tag737

correcting strategies based on the case studies and738

empirical judgment. In the preprocessing phase,739

we filter out parallel samples that are too long or740

too short, and only reserve sentences with 10-100741

tokens.742

We pre-train the model on 8 NVIDIA Tesla743

V100 (32GB) GPUs for two epochs, with the batch744

size set to 8 for each GPU. Then we fine-tune the745

model on a single NVIDIA Tesla V100 (32GB)746

GPU for up to 10 epochs, with the batch size set to747

8 as well. Early stopping is used in the fine-tuning748

phase, with the patience set to 20. We evaluate749

the model every 10% steps in one epoch. The750

pre-training often takes more than 15 hours and751

the fine-tuning takes 1 or 2 hours. We use Adam752

(Kingma and Ba, 2014) to optimize the model with753

the learning rate set to 5e-6 in both the pre-training754

and fine-tuning phases. For all hyperparameters755

in our experiments, we manually tune them on the756

validation set of DAQE.757

B Main Results on the Validation Set758

In Table 6, we also report the main results on the759

validation set of DAQE.760

C Case Study761

In Figure 7, we show some cases from the valida-762

tion set of English-Chinese language pair. From the763

examples, we can see that the TER-based model764

(noted as PE Effort Prediction) often annotates765

wrong BAD spans and is far from human judgment.766

For the first example, the MT sentence correctly767

10https://github.com/Unbabel/OpenKiwi
11https://huggingface.co/

xlm-roberta-large
12https://kheafield.com/code/kenlm.tar.

gz
13http://ltp.ai/index.html
14https://stanfordnlp.github.io/stanza/

index.html

reflects the meaning of the source sentence, and the 768

PE is just a paraphrase of the MT sentence. Our DA 769

model correctly annotates all words as OK, while 770

TER-based one still annotates many BAD words. 771

For the second example, the key issue is the trans- 772

lation of “unifies” in Chinese. Though “统一” is 773

the direct translation of “unifies” in Chinese, it can 774

not express the meaning of winning two titles in 775

Chinese context. And our DA model precisely an- 776

notated the “统一了” in the MT sentence as BAD. 777

For the third example, the MT model fails to trans- 778

late the “parsley” and the “sumac” to “欧芹” and 779

“盐肤木” in Chinese, since they are very rare words. 780

While the TER-based model mistakenly predicts 781

long BAD spans, our DA model precisely identities 782

both mistranslation parts in the MT sentence. 783

D Limitation and Discussion 784

We analyze some samples that are corrected by 785

our tag correcting strategies and find a few bad 786

cases. These are mainly because of the following: 787

1) There is noise from the parallel corpus (i.e., the 788

source sentence and the target sentence are not well 789

aligned). 2) The alignment generated by FastAlign 790

contains unexpected errors, making some entries 791

in the phrase-level alignments are missing or mis- 792

aligned. 3) The scores given by KenLM (through 793

the change of the perplexity after the phrase substi- 794

tution) are sometimes not consistent with human 795

judgment. 796

We also propose some possible solutions in re- 797

sponse to the above problems as our future explo- 798

ration direction. For the noise in the parallel corpus, 799

we can use parallel corpus filtering methods that 800

filter out samples with low confidence. We can also 801

apply the data augmentation methods that expand 802

the corpus based on the clean parallel corpus. For 803

the errors by FastAlign, we may use a more ac- 804

curate alignment model. For the scoring, we may 805

introduce the neural-based phrase-level semantic 806

matching model (e.g., Phrase-BERT (Wang et al., 807

2021)) instead of the KenLM. 808
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Model English-German (En-De) English-Chinese (En-Zh)

MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span

Baselines
FT on DAQE only 34.69 94.28 40.38 28.65 45.76 91.96 53.77 29.84
PT (TER-based) 13.13 37.30 18.80 4.72 11.38 25.91 27.41 2.16

+ FT on DAQE 35.02 94.00 40.86 26.68 47.34 91.30 55.43 28.53

With tag correcting strategies (ours)
PT w/ Tag Refinement 13.26 52.43 19.78 6.42 18.83 53.29 31.39 3.48

+ FT on DAQE 37.70 94.08 43.32 30.83 47.61 92.39 55.22 28.33
PT w/ Tree-based Annotation 13.92 84.79 22.75 9.64 20.98 59.32 32.84 6.53

+ FT on DAQE 37.03 94.46 42.54 31.21 48.14 91.88 56.02 28.17
PT w/ Both 13.12 39.68 18.94 5.26 21.39 56.76 32.74 5.72

+ FT on DAQE 38.90 94.44 44.35 32.21 48.71 90.74 56.47 25.51

Table 6: The word-level QE performance on the validation set of DAQE for two language pairs, En-De and En-Zh.
PT indicates pre-training and FT indicates fine-tuning.

Source: To win, a wrestler must strip their opponent’s tuxedo off.

MT: 要 想 获胜 , 摔跤 运动员 必须 把 对手 的 礼服 脱下来 .  

MT Back: To win, the wrestler had to take his opponent’s dress off.

PE: 要 赢得 胜利 ， 摔跤 运动员 必须 脱掉 对手 的 燕尾服 。 

PE Back: To win the victory, the wrestler had to remove his opponent’s tuxedo.

PE Effort Prediction: 要 想 获胜 , 摔跤 运动员 必须 把 对手 的 礼服 脱下来 .

DA Prediction: 要 想 获胜 , 摔跤 运动员 必须 把 对手 的 礼服 脱下来 .

Source: April 28 Juan Díaz unifies the WBA and WBO Lightweight titles after defeating Acelino Freitas.

MT: 4 月 28 日 , 胡安 · 迪亚斯 在 击败 阿 切利 诺 · 弗雷 塔斯 后 统一 了 WBA 和 WBO 轻量级 冠军 . 

MT Back: On April 28, Juan Díaz Unified the WBA and WBO lightweight titles after defeating Acelino Freitas.

PE: 4 月 28 日 ， Juan Díaz 在 击败 Acelino Freitas 之后 ， 将 W 世界 拳击 协会 和 世界 拳击 组织 的 轻量级 冠军 揽于 一身 。 

PE Back: On April 28, Juan Díaz won both the WBA and WBO lightweight titles after defeating Acelino Freitas.

PE Effort Prediction: 4 月 28 日 , 胡安 · 迪亚斯 在 击败 阿 切利 诺 · 弗雷 塔斯 后 统一 了 WBA 和 WBO 轻量级 冠军 . 

DA Prediction: 4 月 28 日 , 胡安 · 迪亚斯 在 击败 阿 切利 诺 · 弗雷 塔斯 后 统一 了 WBA 和 WBO 轻量级 冠军 . 

Source: Fattoush is a combination of toasted bread pieces and parsley with chopped cucumbers, radishes, tomatoes and flavored by sumac.

MT: 法杜什是 烤面包片 和 帕斯 莱 与 切碎 的 黄瓜 、 萝卜 、 西红柿 、 和 洋葱 以及 香味 的 消耗品 的 组合 。 

MT Back: Fadush is a combination of toast and pasai with chopped cucumbers, radishes, tomatoes and onions and scented consumables.

PE: Fattoush 是 烤面包片 和 欧芹 与 切碎 的 黄瓜 ， 萝卜 ， 西红柿 和 葱 的 组合 ， 并 以 盐肤木 调味 。
PE Back: Fattoush is a combination of toast and parsley with chopped cucumbers, radishes, tomatoes and scallions, seasoned with rhus salt.

PE Effort Prediction: 法杜什是 烤面包片 和 帕斯 莱 与 切碎 的 黄瓜 、 萝卜 、 西红柿 、 和 洋葱 以及 香味 的 消耗品 的 组合 。

DA Prediction: 法杜什是 烤面包片 和 帕斯 莱 与 切碎 的 黄瓜 、 萝卜 、 西红柿 、 和 洋葱 以及 香味 的 消耗品 的 组合 。

Figure 7: Examples of word-level QE from the validation set of English-Chinese language pair.
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