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Abstract

Word-level Quality Estimation (QE) of Ma-
chine Translation (MT) helps to find out poten-
tial translation errors in translated sentences
without reference. The current collection of
QE datasets is typically based on the exact
matching between the words from MT sen-
tences and post-edited sentences through a
Translation Error Rate (TER) toolkit. How-
ever, we find that the data generated by
TER cannot faithfully reflect human judgment,
which may make the research deviate from
the correct direction. To overcome the limita-
tion, we for the first time collect the direct as-
sessment (DA) dataset for the word-level QE
task, namely DAQE, which is a golden cor-
pus annotated by expert translators on two lan-
guage pairs. Furthermore, we propose two tag
correcting strategies, namely tag refinement
strategy and tree-based annotation strategy, to
make the TER-based artificial QE tags closer
to human judgement, so that the automatically
corrected and large-scale TER-based data can
be used to improve the QE performance by
pre-training. We conduct detailed experiments
on our collected DAQE dataset, as well as
comparison with the TER-based QE dataset
MLQE-PE. The results not only show our pro-
posed dataset DAQE is more consistent with
human judgment but also confirm the effective-
ness of the tag correcting strategies.

1 Introduction

Quality Estimation (QE) of Machine Translation
(MT) aims to automatically estimate the quality
of the translation generated by MT systems, with
no reference available. It typically acts as a post-
processing module in commercial MT systems,
determining whether the translation needs to be
post-edited or alerting the user with potential trans-
lation errors. Recently, with the success of neural

!'The codes and data samples are attached as supplemen-
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T Sentence-level QE

Source: the last conquistador then rides on with his sword drawn .

Machine Translation (MT): &5 i fEiRE 155 ftb A9 € 4ReEmit .

MT Back: the last conquistador rides on his sword and move on.

Post-edited (PE): ]Rf5 — M HRE B LTS, Kk 7 4l.

PE Back: last one conquistador rides on the horse and draws out the sword.
l Word-level QE

Alignment generated by TER toolkit
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Figure 1: The illustration of the sentence-level and
word-level QE tasks. The word-level QE tags are gen-
erated by the TER toolkit.

networks, neural-based QE models have achieved
remarkable performance (Kepler et al., 2019; Kim
et al., 2017; Lee, 2020; Specia et al., 2020; Ranas-
inghe et al., 2020; Wang et al., 2020b).

Figure 1 shows an example of QE. The sentence-
level task predicts a score indicating the overall
translation quality, while the word-level QE needs
to annotate each word as OK or BAD?. Currently,
the collection of QE datasets mainly relies on the
Translation Error Rate (TER) toolkit (Snover et al.,
2006). Specifically, given the machine translations
and their corresponding post-edits (PE, generated
by human translators) or target sentences of paral-
lel corpus as the pseudo-PE (Tuan et al., 2021; Lee,
2020), the rule-based TER toolkit is used to gener-
ate the word-level alignment between the MT and
the PE based on the principle of minimal editing.
All MT words not aligned to PE are annotated as
BAD (shown in Figure 1). Such annotation is also
referred as post-editing effort (Fomicheva et al.,
2020; Specia et al., 2020).

*In this paper, we mainly focus on the word-level QE on
the target side, while we also show in our experiment that
sentence-level QE can be implemented through the word-level

QE.



Source: It is happy for me to be asked to speak here.

MT: #EKREIXE £= . MT Back: Lam so happy to be asked to speak here.

PE: BB A XE AR RS .

PE Back: Being invited to talk here makes me so happy.

TER-based Annotations: ¥ 1R =% # 2R £ X2 £5 .
Human’s Direct Assessment (DA): 3 1R =34 # 2R £ XE £5 .

a) Some words in MT are mistakenly annotated to BAD though the overall semantic is not changed.

Source: The Zaporizhian Hetman was then dispatched to Istanbul, and impaled on hooks.

MT: LK% FRE 18 S M % Kk £ FINEHR, A REAEA L.

MT Back: The Zaporizhian Hetman was then dispatched to Istanbul, and was bumped on the hook.

PE: Zaporizhian Hetman B/5 # ik £ fREMBH/R, HHETHEHTF £

PE Back: Zaporizhian Hetman was then dispatched to Istanbul, and was nailed on hooks.

TER-based Annotations: L % FTRiF 58 S BajF # ik 1+ FHEARR, A HEEB L.
Human’s Direct Assessment (DA): ¥l T 57%iF 458 S ba/g # &  FEHEHAR, HHEEH L.

b) Human’s DA annotates the clause “#E7E$4 L as a whole, while TER-based annotations are fragmented.

Figure 2: Two examples show the gap between the TER-based annotation and human’s direct assessment on word-
level QE task. The red color indicates BAD tags, while the green color indicates OK tags.

Although the TER-based annotation can auto-
matically generate large-scale artificial QE data,
we find two issues that make it inconsistent with
human judgment. First, the PE sentences often
substitute some words with better synonyms and
reorder some sentence constituents for polish pur-
poses. These operations do not destroy the transla-
tion semantics, but make some words mistakenly
annotated under the exact matching criterion of
TER. (shown in Figure 2a). Second, when fatal
errors occur in MTs, a human’s DA typically an-
notates the whole sentence or clause as BAD. How-
ever, TER-based annotations still try to find trivial
words that align with PE, resulting in fragmented
annotations (shown in Figure 2b). The WMT20
QE shared task includes the DA on the sentence-
level QE as a subtask (Fomicheva et al., 2020), but
it neglects the DA on the word-level QE. Mean-
while, most previous works still use the TER-based
dataset as the evaluation benchmark of the word-
level QE task. Their experimental results may not
truly reflect the model’s ability on finding transla-
tion errors, making the research deviate from the
correct direction. Thus, there is an urgent need
for a DA dataset that can precisely reflect human
judgment on the word-level QE.

To overcome the limitations stated above, for
the first time, we concentrate on the direct assess-
ment of the word-level QE task. We first collect a
new QE dataset called DAQE that reflects human’s
direct assessments at the word level. Our analy-
sis shows that DAQE is more consistent with hu-
man judgment than TER-based QE datasets. Then,
considering collecting such a golden dataset is ex-
pensive and labor-consuming, we further propose

two automatic tag correcting strategies, namely tag
refinement strategy and tree-based annotation strat-
egy, which make the TER-based annotations more
consistent with human judgment. We directly use
the large-scale corrected TER-based dataset in the
pre-training phase and achieve significant improve-
ment on DAQE.

Our contributions can be summarized as follows:
1) We collect a new word-level QE dataset called
DAQE that reflects human’s direct assessments
rather than the post-editing effort. We conduct de-
tailed analyses and demonstrate two differences be-
tween DAQE and the previous TER-based dataset.
2) Considering data collection is labor-consuming,
we also propose two automatic tag correcting strate-
gies to make the TER-based artificial dataset more
consistent with human judgment and then boost the
performance by large-scale pre-training. 3) We con-
duct experiments on our collected DAQE dataset
as well as the TER-based dataset MLQE-PE. The
results of the automatic and human evaluation show
that our approach not only achieves better perfor-
mance but also demonstrates higher consistency
with human judgment.

2 Data Collection and Analysis

2.1 Data Collection

To make our word-level DA annotations compara-
ble to TER-generated ones, we directly take the
source and MT texts from MLQE-PE (Fomicheva
et al., 2020), the official dataset for the WMT20 QE
shared task. It includes two language pairs that con-
tain TER-generated annotations: English-German
(En-De) and English-Chinese (En-Zh). The source
texts are sampled from Wikipedia documents and



English-German

English-Chinese

Dataset Split
samples tokens = MT BADtags MT Gap BAD tags samples  tokens MT BAD tags  MT Gap BAD tags
MLQE-PE train 7000 112342 31621 (28.15%) 5483 (4.59%) 7000 120015 65204 (54.33%) 10206 (8.04%)
valid 1000 16160 4445 (27.51%) 716 (4.17%) 1000 17063 9022 (52.87%) 1157 (6.41%)
train 7000 112342 10804 (9.62%) 640 (0.54%) 7000 120015 19952 (16.62%) 348 (0.27%)
DAQE (ours) valid 1000 16160 1375 (8.51%) 30 (0.17%) 1000 17063 2459 (14.41%) 8 (0.04%)
test 1000 16154 993 (6.15%) 28 (0.16%) 1000 17230 2784 (16.16%) 11 (0.06%)

Table 1: Statistics of TER-based MLQE-PE dataset and our proposed DAQE dataset.
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Figure 3: The length distribution of BAD spans.

use the Transformer-based neural machine transla-
tion (NMT) system (Vaswani et al., 2017) to obtain
the translations.

To obtain the word-level DA annotations, we
show human translators the source sentences with
the corresponding MTs. Then we ask them to find
words, phrases, clauses, or even the whole sen-
tences that contain translation errors and annotate
them as BAD, according to their professional knowl-
edge. Note that although the PE sentences exist in
MLQE-PE, the human annotators have no access to
them, making the annotation process as fair and un-
biased as possible. All of the annotated samples are
cross-validated to ensure the accuracy rate above
95%.

2.2 Statistics and Analysis

Overall Statistics. In Table 1, we show detailed
statistics of MLQE-PE and DAQE. First, we see
that the total number of BAD tags decreases heavily
when human’s DA replaces the TER-based annota-
tions (from 28.15% to 9.62% for En-De, and from
54.33% to 16.62% for En-Zh). It indicates that the
human’s DA tends to annotate OK as long as the
translation correctly expresses the meaning of the
source sentence, but ignores the secondary issues
like synonym substitutions and constituent reorder-
ing. Second, we find the number of BAD tags in the
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Figure 4: The distribution that reveals how many BAD
spans in every single sample.

gap (indicating a few words are missing between
two MT tokens) also greatly decreases. It’s be-
cause that human’s DA tends to regard the missing
translations (i.e., the BAD gaps) and the translation
errors as a whole but only annotate BAD tags on
MT tokens>.

The Length of BAD Spans. We show the num-
ber of BAD spans* of different lengths in Figure
3. We can see that most BAD spans only contain
a few tokens, showing the well-known long-tail
distribution. For En-De, the long-tail distribution is
sharper, where 70.5% of BAD spans are one-token
spans. When comparing the TER-based annota-
tions with the DA ones, we find that DA includes
fewer BAD spans of each length, but the overall
distribution is similar.

Unity of BAD Spans. To reveal the unity of the
DA annotations, we group the samples according
to the number of BAD spans in each single sample,
and show the overall distribution. From Figure 4,
we can find that the TER-based annotations follow
the Gaussian distribution, where a large propor-
tion of samples contain 2, 3, or even more BAD

3As a result, we do not include the subtask of predicting
gap tags in our experiments.

“Here, the BAD spans indicate the longest continuous
tokens with BAD tags.
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Figure 5: The model architecture and the construction of artificial QE dataset.

spans, indicating the TER-based annotations are
fragmented. However, our collected DA annota-
tions are more unified, with only a small propor-
tion of samples including more than 2 BAD spans.
Besides, we find a large number of samples that
are fully annotated as OK in the DA annotations.
However, the number is extremely small for TER-
based annotations (78 in English-German and 5 for
English-Chinese). This shows a large proportion of
BAD spans in TER-based annotations do not really
destroy the semantic of translations and are thus
regarded as OK by human’s DA.

3 Approach

The annotation of DA on the word-level QE is ex-
pensive and time-consuming, while the large-scale
TER-based artificial dataset (Tuan et al., 2021; Lee,
2020) is inconsistent with the downstream DA task,
resulting in limited improvement. In this section,
we will first introduce the backbone of the model
and the construction of the TER-based artificial
dataset for pre-training. Then, we propose two cor-
recting strategies to make the TER-based artificial
tags closer to the human judgment.

3.1 Model Architecture

Following (Ranasinghe et al., 2020; Lee, 2020;
Moura et al., 2020; Ranasinghe et al., 2021),
we select the XLM-RoBERTa (XLM-R) (Con-
neau et al.,, 2020) as the backbone of our
model. XLM-R is a transformer-based masked
language model pre-trained on large-scale
multilingual corpus and demonstrates state-of-
the-art performance on multiple cross-lingual
downstream tasks. As shown in Figure 5a, we
concatenate the source sentence and the MT
sentence together to make an input sample: x; =
<s>wi€ . wi</s><s>wiM™, L wit< /s>,

where m is the length of the source sentence (src)
and n is the length of the MT sentence (mt). <s>
and </s> are two special tokens to annotate
the start and the end of the sentence in XLM-R,
respectively.

For the j-th token w;m in the MT sentence, we
take the corresponding representation from XLM-
R for binary classification to determine whether w;
belongs to good translation (OK) or contains trans-
lation error (BAD) and use the binary classification
loss to train the model:

sij = o(w' XLM-R;(z;)) (1)

Lij = —(y-logsi; + (1 —y) -log(1 — si;))
2

where XLM-R;(z;) € R? (d is the hidden size
of XLM-R) indicates the representation output by
XLM-R corresponding to the token wj", o is the
sigmoid function, w € R4*! is the linear layer for
binary classification and y is the ground truth label.

3.2 Pre-training on Artificial QE Dataset

The translation knowledge contained in the parallel
corpus of MT is very helpful for the QE task. As
a result, many works use the parallel corpus for
pre-training the model. As shown in Figure 5b, the
parallel corpus is firstly split into the training and
the test set. Then the NMT model is trained with
the training split and is used to generate translations
for all sentences in the test split. From this, a large
number of triplets are obtained, each consisting of
source, MT, and target sentences. Finally, the target
sentence is regarded as the pseudo-PE from the MT
sentence, and the TER toolkit is used to generate
word-level OK | BAD tags based on the principle of
minimal editing (shown in the bottom of Figure 1).
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Figure 6: The proposed two tag correcting strategies: Tag Refinement strategy and Tree-based Annotation strategy.

3.3 Tag Correcting Strategies

As we discussed before, the two issues of TER-
based tags limit the performance improvement of
pre-training when applied to the downstream DA
task. In this section, we introduce two tag cor-
recting strategies, namely tag refinement and tree-
based annotation, that target these issues and make
the TER-based artificial QE tags more consistent
with human judgment.

Tag Refinement Strategy. In response to the
first issue (i.e., wrong annotations due to the syn-
onym substitution or constituent reordering), we
propose the tag refinement strategy, which corrects
the false BAD tags to OK. Specifically, as shown
in Figure 6a, we first generate the alignment be-
tween the MT sentence and the reference sentence
(i.e., the pseudo-PE) using FastAlign® (Dyer et al.,
2013). Then we extract the phrase-to-phrase align-
ment through running the phrase extraction algo-
rithm of NLTK® (Bird, 2006). Once the phrase-
level alignment is prepared, we substitute each BAD
span with the corresponding aligned spans in the
pseudo-PE and use the language model to calcu-
late the change of the perplexity Appl after this
substitution.

If |Appl| < «, where « is a hyperparameter indi-
cating the threshold, we regard that the substitution
has little impact on the semantic and thus correct
the BAD tags to OK. Otherwise, we regard the span
does contain translation errors and keep the BAD
tags unchanged (Figure 6b).

Tree-based Annotation Strategy. Human’s
DA tends to annotate the smallest constituent that
causes fatal translation errors as a whole (e.g., the

Shttps://github.com/clab/fast_align
Shttps://github.com/nltk/nltk/blob/
develop/nltk/translate/phrase_based.py

whole words, phrases, clauses, etc.). However,
TER-based annotations are often fragmented, with
the whole mistranslations being split into multi-
ple BAD spans because some stopwords are aligned
and labeled as OK. Besides, the BAD spans are often
not well-formed in linguistics (e.g., two adjacent
words but are from two different phrases).

To address this issue, we propose the constituent
tree-based annotation strategy. It can be regarded
as an enhanced version of the tag refinement strat-
egy that gets rid of the TER-based annotation. As
shown in Figure 6¢, we first generate the con-
stituent tree for the MT sentences. Each internal
node (i.e., the non-leaf node) in the constituent
tree represents a well-formed phrase such as noun
phrase (NP), verb phrase (VP), prepositional phrase
(PP), etc. For each node, we substitute it with the
corresponding aligned phrase in the pseudo-PE.
Then we still use the change of the perplexity Appl
to indicate whether the substitution of this phrase
improves the fluency of the whole translation.

To only annotate the smallest constituents that
exactly contain translation errors, we normalize
Appl by the number of words in the phrase and
use this value to sort all internal nodes in the con-
stituent tree: Applporm = ﬁffl, where [ and r
indicates the left and right position of the phrase,
respectively. The words of a constituent node are
integrally labeled as BAD only if Applporm < B
as well as there is no overlap with nodes that are
higher ranked. [ is a hyperparameter indicating the
threshold.

4 Experiments

Datasets. To verify the effectiveness of our
proposed tag correcting strategies on word-level
QE, we conduct experiments on both DAQE
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English-German (En-De)

English-Chinese (En-Zh)

Model
MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span
Baselines
FT on DAQE only 2629  95.08 31.09 20.97 38.56  90.76  47.56 26.66
PT (TER-based) 9.52 3462 13.54 3.09 15.17 36.66 31.53 2.40
+ FT on DAQE 2482  94.65 29.82 18.52 39.09  91.29 47.04 25.93
Pre-training only with tag correcting strategies (ours)
PT w/ Tag Refinement 10.12*%  49.33 14.32 3.62 19.36% 53.16  34.10 3.79
PT w/ Tree-based Annotation 894 8450 15.84 6.94 21.53* 59.21 3554 6.32
Pre-training with tag correcting strategies + fine-tuning on DAQE (ours)
PT w/ Tag Refinement + FT 27.54*% 9421  35.25 21.13 40.35%  90.88  49.33 25.60
PT w/ Tree-based Annotation + FT  27.67* 94.44 3241 21.38 41.33* 9122  49.82 27.21

Table 2: The word-level QE performance on the test set of DAQE for two language pairs, En-De and En-Zh.

PT

indicates pre-training and FT indicates fine-tuning. Results are all reported by x 100. The numbers with * indicate
the significant improvement over the corresponding baseline with p < 0.05 under t-test (Semenick, 1990).

and MLQE-PE (Fomicheva et al., 2020) datasets.
MLQE-PE is the official dataset used in the
WMT20 QE shared task (Specia et al., 2020), and
DAQE is our collected dataset with word-level DA
annotations. Note that MLQE-PE and DAQE share
the same source and MT sentences, thus they have
exactly the same number of samples. We show the
detailed statistics in Table 1. For the pre-training,
we use the parallel dataset provided in the WMT20
QE shared task to generate the artificial QE dataset.
Baselines. To confirm the effectiveness of our
proposed tag correcting strategies, we mainly select
two baselines for comparison. In the one, we do not
use the pre-training, but only fine-tune XLM-R on
the training set of DAQE. In the other, we pre-train
the model on the TER-based artificial QE dataset
and then fine-tune it on the training set of DAQE.
Evaluation. Following WMT20 QE shared task
(Specia et al., 2020), we use Matthews Correlation
Coefficient (MCC) as the main metric and also
provide the F1 score (F) for OK, BAD and BAD

spans.’

4.1 Main Results

The results are shown in Table 2. We can observe
that the TER-based pre-training only brings very
limited performance gain or even degrade the per-
formance when compared to the “FT on DAQE
only” setting (-1.47 for En-De and +0.53 for En-
Zh). It suggests that the inconsistency between
TER-based and DA annotations leads to the limited
effect of pre-training. However, when applying the
tag correcting strategies to the pre-training dataset,
the improvement is much more significant (+2.85
for En-De and +2.24 for En-Zh), indicating that

"Please refer to Appendix A for implementation details.

the tag correcting strategies mitigate such inconsis-
tency, improving the effect of pre-training. On the
other hand, when only the pre-training is applied,
the tag correcting strategies can also improve the
performance. It shows our approach can also be ap-
plied to the unsupervised setting, where no human-
annotated dataset is available for fine-tuning.

Tag Refinement v.s. Tree-based Annotation.
When comparing two tag correcting strategies, we
find the tree-based annotation strategy is generally
superior to the tag refinement strategy, especially
for En-Zh. The MCC improves from 19.36 to 21.53
under the pre-training only setting and improves
from 40.35 to 41.33 under the pre-training then
fine-tuning setting. This is probably because the
tag refinement strategy still requires the TER-based
annotation and fixes based on it, while the tree-
based annotation strategy actively selects the well-
formed constituents to apply phrase substitution
and gets rid of the TER-based annotation.

Span-level Metric. Through the span-level met-
ric (F-BAD-Span), we want to measure the unity
and consistency of the model’s prediction against
human judgment. From Table 2, we find our mod-
els with tag correcting strategies also show higher
F1 score on BAD spans (from 26.66 to 27.21 for
En-Zh), while TER-based pre-training even do
harm to this metric (from 26.66 to 25.93 for En-
Zh). This phenomenon also confirms the aforemen-
tioned fragmented issue of TER-based annotations,
and our tag correcting strategies, instead, improve
the span-level metric by alleviating this issue.

4.2 Analysis

Comparison to results on MLQE-PE. To demon-
strate the difference between the MLQE-PE (TER-
generated tags) and our DAQE datasets, and ana-



Evaluate on — MLQE-PE DAQE

Fine-tuneon | njecs MCC F-BAD  MCC  F-BAD

WMT20’s best ~ 59.28 - - - -
No pre-training (fine-tuning only)

MLQE-PE 58.21 46.81 75.02 2249 3434
DAQE 49.77 23.68 36.10 45.76  53.77
TER-based pre-training
w/o fine-tune 56.51 33.58 73.85 11.38  27.41
MLQE-PE 61.85 53.25 78.69 2193 3375
DAQE 4139  29.19 4297 47.34 5543
Pre-training with tag refinement
w/o fine-tune 55.03 28.89 70.73 18.83  31.39
MLQE-PE 61.35 4824 7717 21.85 3331
DAQE 39.56  25.06 67.40 47.61 5522
Pre-training with tree-based annotation
w/o fine-tune 5521 26779  68.11 2098  32.84
MLQE-PE 60.92 48.58 76.18 2234 3413
DAQE 40.30 2622 39.50 48.14  56.02

Table 3: Performance comparison for En-Zh with dif-
ferent fine-tuning and evaluation settings. Since the
test labels of MLQE-PE are not publicly available, we
report the results on the validation set of both datasets.
MCC* indicates the MCC score considering both the
target tokens and the target gaps.

lyze how the pre-training and fine-tuning influence
the results on both datasets, we compare the per-
formance of different models on MLQE-PE and
DAQE respectively. The results for En-Zh are
shown in Table 3.

When comparing results in each group, we
find that fine-tuning on the training set identical
to the evaluation set is necessary for achieving
high performance. Otherwise, fine-tuning provides
marginal improvement (e.g., fine-tuning on MLQE-
PE and evaluating on DAQE) or even degrades the
performance (e.g., fine-tuning on DAQE and eval-
uating on MLQE-PE). This reveals the difference
in data distribution between DAQE and MLQE-PE.
Besides, we note that our best model on MLQE-
PE outperforms WMT20’s best model (61.85 v.s.
59.28) using the same MCC* metric, showing the
strength of our model, even under the TER-based
setting.

On the other hand, we compare the performance
gain of different pre-training strategies. When eval-
uating on MLQE-PE, the TER-based pre-training
brings higher performance gain (+6.44) than pre-
training with two proposed tag correcting strate-
gies (+1.43 and +1.77). While when evaluating
on DAQE, the case is opposite, with the TER-
based pre-training bringing lower performance gain
(+1.58) than tag refinement (+1.85) and tree-based
annotation (+2.38) strategies. In conclusion, the
pre-training always brings performance gain, no

Models En-De En-Zh
Pea. Spea. Pea. Spea.
Trained on sentence-level DA dataset
WMT20’s best 56.2 - 55.1 -
XLM-R Large 44.52  45.90 4993 51.08
+ PT (HTER scores) 49.64 51.27 51.62 5149

Derived from the prediction of word-level QF model

FT on MLQE-PE 41.12 43.02 3149 29.19
+ PT (TER-based) 38.88 42.22 33.08 31.41
FT on DAQE 50.29 52.74 4233 43.48
+ PT (Tag Correcting) 50.07 51.04 44.69 46.41

Table 4: The Pearson’s (Pea.) and Spearman’s
(Spea.) correlation (x100) against the sentence-level
DA scores on the validation set. HTER (Specia et al.,
2020) indicates Human Translation Error Rate, a score
derived from the TER-based tags.

matter evaluated on MLQE-PE or DAQE. However,
the optimal strategy depends on the consistency be-
tween the pre-training dataset and the downstream
evaluation task.

Sentence-level DA Scores. Predicting sentence-
level DA scores typically requires another model
that trained on sentence-level QE task. However,
with our word-level DA dataset, the sentence-level
DA score can also be derived from word-level pre-
dictions. In this way, we can unify the DA predic-
tions of word-level and sentence-level QE without
the need of additional sentence-level DA dataset.

To show the performance of sentence-level DA
score derived from the word-level DA model, we
use the sentence-level DA scores in MLQE-PE as
the gold scores and calculate the Pearson’s correla-
tion or Spearman’s correlation between them and
the model’s predictions.

Table 4 illustrates the results. The first group
gives the performance of sentence-level QE models
that are trained on sentence-level DA datasets. Spe-
cially, we provide the best model® in the WMT20
QE shared task (sentence-level DA) and use them
as a strong baseline.

In the second group, we obtain the sentence-level
score by averaging the word-level scores: s{*" =
ﬁ > j Sijs where s;; is the word-level score of
the j-th token calculated by Equation 1. We can
see the models trained on DAQE achieve higher
sentence-level performance than those trained on
MLQE-PE with a large margin (+9.17 for En-De
and +11.61 for En-Zh). For En-De, Pearson’s cor-
relation (50.29) is even closer to WMT20’s best
model (56.2). Besides, our proposed tag correct-

$http://www.statmt.org/wmt20/
quality-estimation-task_results.html
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En-De En-Zh

Scores

TER DA TER DA
1 (terrible) 3 1 5 0
2 (bad) 36 16 34 6
3 (neutral) 34 20 29 21
4 (good) 26 61 24 59
5 (excellent) 1 2 8 14
Average score:  2.86  3.47 296 3.81
% DA > TER: 89% 91%

Table 5: The results of human evaluation. We select
the best-performed model fine-tuned on MLQE-PE and
DAQE respectively.

ing strategies can also improve the sentence-level
performance for En-Zh (+2.36).

Human Evaluation. To evaluate and compare
the models trained on TER-based tags and DA tags
more objectively, human evaluation is conducted
for both models. For En-Zh and En-De, we ran-
domly select 100 samples (the source and MT sen-
tences) from the validation set and use two mod-
els to predict word-level OK or BAD tags for them.
Then, we ask human translators to give a score for
each prediction, between 1 and 5, where 1 indicates
the predicted tags are fully wrong, and 5 indicates
the tags are fully correct.

Table 5 shows the results. We can see that the
model trained on DA tags achieves higher human
evaluation scores than that trained on TER-based
tags on average. For about 90% of samples, the
prediction of the DA model can outperform or tie
with the prediction of TER-based model.

5 Related Work

Early approaches on QE, such as QuEst (Specia
et al., 2013) and QuEst++ (Specia et al., 2015),
mainly pay attention to the feature engineering.
They aggregate various features and feed them
to the machine learning algorithms for classifica-
tion or regression. Kim et al. (2017) first propose
the neural-based QE approach, called Predictor-
Estimator. They first pre-train an RNN-based pre-
dictor on the large-scale parallel corpus that pre-
dicts the target word given its context and the
source sentence. Then, they extract the features
from the pre-trained predictor and use them to train
the estimator for the QE task. This model achieves
the best performance on the WMT17 QE shard task.
After that, many variants of Predictor-Estimator are
proposed (Fan et al., 2019; Moura et al., 2020; Cui
et al., 2021). Among them, Bilingual Expert (Fan

et al., 2019) replaces RNN with multi-layer trans-
formers as the architecture of the predictor, and
proposes the 4-dimension mismatching feature for
each token. It achieves the best performance on
WMT18 QE shared task. The Unbabel team also
releases an open-source framework for QE, called
OpenKiwi (Kepler et al., 2019), that implements
the most popular QE models with configurable ar-
chitecture.

Recently, with the development of pre-trained
language models, many works select the cross-
lingual language model XLM-RoBERTa (Conneau
et al., 2020) as the backbone (Ranasinghe et al.,
2020; Lee, 2020; Moura et al., 2020; Rubino and
Sumita, 2020; Ranasinghe et al., 2021; Zhao et al.,
2021). Many works also explore the joint learn-
ing or transfer learning of the multilingual QE task
(i.e., on many language pairs) (Sun et al., 2020;
Ranasinghe et al., 2020, 2021).

The QE model can be applied to the Computer-
Assisted Translation (CAT) system together with
other models like translation suggestion (TS) or
automatic post-edit (APE). Wang et al. (2020a)
and Lee et al. (2021) use the QE model to identify
which parts of the machine translations need to
be correct, and the TS (Yang et al., 2021) also
needs the QE model to determine error spans before
giving translation suggestions.

6 Conclusion

In this paper, we focus on the task of word-level
QE in machine translation and target the inconsis-
tency issues between the TER-based QE dataset
and human judgment. We for the first time collect
a word-level QE dataset called DAQE that reflects
human’s direct assessments. Besides, we propose
two tag correcting strategies that correct the TER-
based artificial QE tags in the pre-training phase
and further improve the performance. We conduct
thorough experiments and analyses, demonstrating
the necessity of our proposed dataset and the effec-
tiveness of our proposed approaches. Our future
directions include improving the performance of
phrase-level alignment, introducing phrase-level se-
mantic matching, and applying data augmentation®.
We hope our work will provide a new perspective
for future researches on quality estimation.

“We provide case studies and discuss the current limita-
tions and potential strategies in the appendix.



Broader Impacts

Quality estimation often serves as a post-
processing module in recent commercial machine
translation systems. It can be used to indicate the
overall translation quality or detect the specific
translation errors in the sentences. This work fo-
cuses on the direct assessment task, training the
model to fit the human judgment at the word level.
To do this, we collect a new QE dataset and propose
tag correcting strategies to force the TER-based ar-
tificial dataset used in the pre-training phase closer
to human judgment. When applying our approach,
the users should pay special attention to the fol-
lowing: a) The data source of DAQE is Wikipedia,
so our model should perform well on a similar do-
main but may perform poorly on other irrelevant
domains. b) Since our approach is still data-driven,
the data (as well as the pre-training parallel dataset)
should be ethical and unbiased, or unexpected prob-
lems may arise. c) The proposed tag correcting
strategies work well on En-De and En-Zh, but do
not necessarily applicable to other language pairs
since the characteristics among target languages
are different. d) Since the system is neural-based,
the interpretability is limited. It can still mistakenly
annotate some forbidden or sensitive words to OK
and cause unexpected accidents.
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A Implementation Details

Our implementation of QE model is based on an
open-source framework, OpenKiwi'? (Kepler et al.,
2019). We use the large-sized XLM-R model and
obtain it from hugging-face’s library''. We use the
KenLM'? (Heafield, 2011) to train the language
model on all target sentences in the parallel corpus
and calculate the perplexity of the given sentence.
For the tree-based annotation strategy, we obtain
the constituent tree through LTP'3 (Che et al., 2010)
for Chinese and through Stanza'* (Qi et al., 2020)
for German. We set « to 1.0 and 3 to -3.0 in our tag
correcting strategies based on the case studies and
empirical judgment. In the preprocessing phase,
we filter out parallel samples that are too long or
too short, and only reserve sentences with 10-100
tokens.

We pre-train the model on 8 NVIDIA Tesla
V100 (32GB) GPUs for two epochs, with the batch
size set to 8 for each GPU. Then we fine-tune the
model on a single NVIDIA Tesla V100 (32GB)
GPU for up to 10 epochs, with the batch size set to
8 as well. Early stopping is used in the fine-tuning
phase, with the patience set to 20. We evaluate
the model every 10% steps in one epoch. The
pre-training often takes more than 15 hours and
the fine-tuning takes 1 or 2 hours. We use Adam
(Kingma and Ba, 2014) to optimize the model with
the learning rate set to Se-6 in both the pre-training
and fine-tuning phases. For all hyperparameters
in our experiments, we manually tune them on the
validation set of DAQE.

B Main Results on the Validation Set

In Table 6, we also report the main results on the
validation set of DAQE.

C Case Study

In Figure 7, we show some cases from the valida-
tion set of English-Chinese language pair. From the
examples, we can see that the TER-based model
(noted as PE Effort Prediction) often annotates
wrong BAD spans and is far from human judgment.
For the first example, the MT sentence correctly

Yhttps://github.com/Unbabel/OpenKiwi

"https://huggingface.co/
x1lm-roberta-large

Zhttps://kheafield.com/code/kenlm.tar.
gz

13http://ltp.ai/index.html

“https://stanfordnlp.github.io/stanza/
index.html
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reflects the meaning of the source sentence, and the
PE is just a paraphrase of the MT sentence. Our DA
model correctly annotates all words as OK, while
TER-based one still annotates many BAD words.
For the second example, the key issue is the trans-
lation of “unifies” in Chinese. Though “4t—" is
the direct translation of “unifies” in Chinese, it can
not express the meaning of winning two titles in
Chinese context. And our DA model precisely an-
notated the “4t— 1 ” in the MT sentence as BAD.
For the third example, the MT model fails to trans-
late the “parsley” and the “sumac” to “EXJ7 and
“Eh kR in Chinese, since they are very rare words.
While the TER-based model mistakenly predicts
long BAD spans, our DA model precisely identities
both mistranslation parts in the MT sentence.

D Limitation and Discussion

We analyze some samples that are corrected by
our tag correcting strategies and find a few bad
cases. These are mainly because of the following:
1) There is noise from the parallel corpus (i.e., the
source sentence and the target sentence are not well
aligned). 2) The alignment generated by FastAlign
contains unexpected errors, making some entries
in the phrase-level alignments are missing or mis-
aligned. 3) The scores given by KenLM (through
the change of the perplexity after the phrase substi-
tution) are sometimes not consistent with human
judgment.

We also propose some possible solutions in re-
sponse to the above problems as our future explo-
ration direction. For the noise in the parallel corpus,
we can use parallel corpus filtering methods that
filter out samples with low confidence. We can also
apply the data augmentation methods that expand
the corpus based on the clean parallel corpus. For
the errors by FastAlign, we may use a more ac-
curate alignment model. For the scoring, we may
introduce the neural-based phrase-level semantic
matching model (e.g., Phrase-BERT (Wang et al.,
2021)) instead of the KenLM.
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English-German (En-De) English-Chinese (En-Zh)

Model
MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span
Baselines
FT on DAQE only 34.69 9428 40.38 28.65 45776 9196  53.77 29.84
PT (TER-based) 13.13 3730 18.80 4.72 11.38 2591 27.41 2.16
+ FT on DAQE 35.02 94.00 40.86 26.68 4734 9130 5543 28.53
With tag correcting strategies (ours)
PT w/ Tag Refinement 13.26 52.43 19.78 6.42 18.83 53.29  31.39 3.48
+ FT on DAQE 3770  94.08 43.32 30.83 47.61 9239 5522 28.33
PT w/ Tree-based Annotation 13.92 84.79  22.75 9.64 2098 5932 32.84 6.53
+ FT on DAQE 37.03 9446 42.54 31.21 48.14 91.88  56.02 28.17
PT w/ Both 13.12 39.68 18.94 5.26 21.39 56.76  32.74 5.72
+ FT on DAQE 3890 9444  44.35 32.21 48.71 90.74  56.47 25.51

Table 6: The word-level QE performance on the validation set of DAQE for two language pairs, En-De and En-Zh.
PT indicates pre-training and FT indicates fine-tuning.

Source: To win, a wrestler must strip their opponent’s tuxedo off.
MT: £ 18 3Rt |, #RER BT8R w91 48 3 F 89 $LAR BTk
MT Back: To win, the wrestler had to take his opponent’s dress off.
PE: E 5ifS MF, B 15 o5 BiiE F 50 RERR

PE Back: To win the victory, the wrestler had to remove his opponent’s tuxedo.

PE Effort Prediction: 2 18 KM , ¥ E&I5 451 8 5F B LAk RT3k .
DA Prediction: = 18 Zkj , #RE: BRI R S0 8 %F B9 FLAR Be T3k .

Source: April 28 Juan Diaz unifies the WBA and WBO Lightweight titles after defeating Acelino Freitas.

MT: 4 B 28 H , A% - Wit 7£ 0 I Y07 i - 355 547 /5 %i— 7 WBA F1 WBO RER BE .

MT Back: On April 28, Juan Diaz Unified the WBA and WBO lightweight titles after defeating Acelino Freitas.

PE: 4 B 28 H, Juan Diaz £ 7% Acelino Freitas Zf5 , ¥ WA EH e MtER Z2H AL W EERBTERT —5 .
PE Back: On April 28, Juan Diaz won both the WBA and WBO lightweight titles after defeating Acelino Freitas.

PE Effort Prediction: 4 5 28 H , #% - b 7 0 B 07 i - 385 3B /5 46— T WBA f1 WBO BES BE .
DA Prediction: 4 F 28 H , $% - &I HT 7£ 50 BT Y171 i& - 35 38 /5 %£— 7 WBA #1 WBO REL B .

Source: Fattoush is a combination of toasted bread pieces and parsley with chopped cucumbers, radishes, tomatoes and flavored by sumac.
MT: Zi AR EESR Mk SIE M ER . E 1. BOMm . fFEE R FK B iHER N EE .

MT Back: Fadush is a combination of toast and pasai with chopped cucumbers, radishes, tomatoes and onions and scented consumables.
PE: Fattoush 2 EEEH M KT SN AN, B, BAMMBBNEE, I L EBKAKERK

PE Back: Fattoush is a combination of toast and parsley with chopped cucumbers, radishes, tomatoes and scallions, seasoned with rhus salt.

PE Effort Prediction: S5ftft 2 BHEEH MBI XS YIHMER . Fh ALRH . FFEURER O HEEROES
DA Prediction: S5it(H2 BHER MBS UM EL . F b BELMH . 3R AR &K 5 HER B HE .

Figure 7: Examples of word-level QE from the validation set of English-Chinese language pair.

12



