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ABSTRACT

High-quality visual representations are crucial for success in multi-task dense pre-
diction. The Mamba architecture, initially designed for natural language process-
ing, has garnered interest for its potential in computer vision due to its efficient
modeling of long-range dependencies. However, when applied to multi-task dense
prediction, it reveals inherent limitations. Unlike text processing with diverse
tokenization strategies, image token partitioning requires careful consideration
of multiple options. In multi-task dense prediction, each task may require spe-
cific levels of granularity in scene structure. Unfortunately, the current Mamba
implementation, which segments images into fixed patch scales, fails to match
these requirements, leading to sub-optimal performance. This paper proposes a
simple yet effective Multi-Scale Mamba (MSM) for multi-task dense prediction.
Firstly, we employ a novel Multi-Scale Scanning (MS-Scan) to establish global
feature relationships at various scales. This module enhances the model’s capa-
bility to deliver a comprehensive visual representation by integrating information
across scales. Secondly, we adaptively merge task-shared information from mul-
tiple scales across different task branches. This design not only meets the diverse
granularity demands of various tasks but also facilitates more nuanced cross-task
feature interactions. Extensive experiments on two challenging benchmarks, i.e.,
NYUD-V2 and PASCAL-Context, show the superiority of our MSM vs its state-
of-the-art competitors.

1 INTRODUCTION

Multi-task dense prediction is a critical visual task designed to simultaneously predict outputs for
various pixel-level tasks, such as semantic segmentation, depth prediction, surface normal estima-
tion, and saliency detection. In the context of deep learning, the quality of image representation is
paramount (Vandenhende et al., 2021; Crawshaw, 2020). The representation is enriched not only by
extracting rich features from the input images (Xu et al., 2018; Zhang et al., 2023) but also by the
synergistic interactions and complementarities among features from various tasks (Ye & Xu, 2022;
Sinodinos & Armanfard, 2024). These dynamic cross-task feature interactions significantly enhance
the robustness and effectiveness of the task representations in accurately capturing a wide array of
visual attributes.

Initially, methodologies for multi-task dense prediction predominantly employed Convolutional
Neural Networks (CNNs). These networks (Xu et al., 2018; Gao et al., 2019; Sun et al., 2021)
were meticulously designed with distinct branches for each task, complemented by modules that
facilitated cross-task information interactions, aiming to fortify the robustness of the representa-
tions. Nonetheless, the inherently limited receptive fields of CNN architectures frequently led to
suboptimal performance. In response to these challenges, transformer-style networks (Ye & Xu,
2022; Xu et al., 2023) demonstrate exceptional proficiency in modeling long-range dependencies.
This capability substantially improves the representational effectiveness of models in handling the
complexities of multi-task scenarios. the computational complexity of attention mechanisms, which
increases quadratically with the resolution, presents a substantial challenge for multi-task dense pre-
diction. To mitigate this limitation, researchers (Bhattacharjee et al., 2022; 2023; Jiang et al., 2024)
have adopted the Swin Transformer (Liu et al., 2021) as the foundational framework for imple-
menting window-based attention to reduce computational demands. However, when implementing
task feature refinement in the decoder, this strategy greatly limits the scope of cross-task interaction,
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Figure 1: Comparison of task attention with (w/ MS) and without MS-Scan (w/o MS). Our approach
demonstrates superior alignment between scene structural relationships and task-specific require-
ments across all tasks.

contradicting the original objective of task interaction, which is to extract as much valuable informa-
tion as possible. Therefore, how to enhance global modeling capability while maintaining reduced
computational cost remains an unresolved issue.

Recently, with linear complexity in long-range dependency modeling, Mamba (Gu & Dao, 2024;
Dao & Gu, 2024) has excelled in natural language processing and demonstrated the potential in
visual tasks (Liu et al., 2024; Ma et al., 2024). Inspired by these, MTmamba (Lin et al., 2024)
replaced window-based attention with the Mamba module in decoder stage, thereby enhancing rep-
resentation quality, which combines Self-Task Mamba (STM) block and Cross-Task Mamba (CTM)
block to facilitate cross-task information exchange and model long-range dependencies. However,
they overlooked the gap between the fixed tokenization in Mamba processing and the requirement
for representation diversity in multi-task dense prediction. Specifically, Mamba processes features
by converting them into sequences of tokens, which is more complex for images than text. Unlike
text, where multiple tokenization strategies are viable, image tokenization (patches) requires careful
consideration of diverse options. And this is crucial in multi-task dense prediction, due to each task
may have varying requirements of granularity in scene representation. Unfortunately, the current
implementation of MTMamba, which segments images into fixed patches, will propagate shared
information at the same granularity, consequently resulting in sub-optimal performance.

To address these challenges, we propose a simple yet effective Multi-Scale Mamba (MSM) method.
MSM is an extension of the existing MTMamba (Lin et al., 2024) approach with a task-aware hierar-
chical scene modeling function, which improves the adaptability of individual task representations,
as shown in Figure 1. Specifically, we introduce a novel Multi-Scale Scanning (MS-Scan) to de-
liver a comprehensive visual representation. Based on the MS-Scan mechanism, we developed the
Task-Specific Multi-Scale Mamba (TS-MSM) module and the Cross-Task Multi-Scale Mamba (CT-
MSM) module. In the TS-MSM module, features are initially partitioned into multiple spaces,
where the scene structure of images is modeled at various scales. Subsequently, specific tasks inte-
grate multi-scale scene structural information to enhance task-specific representations as required.
Within the CT-MSM module, we first consolidate all task representations and extract hierarchical
task-shared scene structural information. Following that, different task branches adaptively merge
task-shared representations from multiple scales to accommodate the varying demands of different
tasks for image structural granularity.

The main contributions of this study are summarized as follows:

• We propose MSM for multi-task dense prediction, featuring a novel MS-Scan at its core to
alleviate the difficulty of feature learning in multi-task dense scene prediction.

• We design a TS-MSM module and a CT-MSM module. these modules enhance the model’s
capability to deliver a comprehensive visual representation and meet the diverse granularity
demands of tasks.

• Extensive experiments on two multi-task dense prediction benchmarks (i.e. PASCAL Con-
text and NYUD-v2) verify the effectiveness of the proposed method, which demonstrates
superior performance compared with the previous state-of-the-art methods.
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2 RELATED WORK

Multi-Task Learning. Most existing multi-task learning works have primarily focused on opti-
mizing training processes and designing network structures. The optimization approaches can be
categorized into gradient manipulation (Yu et al., 2020; Navon et al., 2022; Jeong & Yoon, 2024;
Ye et al., 2024) and loss-balancing (Chen et al., 2018; Kendall et al., 2018) to coordinate resource
allocation for various tasks during training. The approaches of structural design endeavor to enhance
task representation learning by devising various mechanisms. Some CNN-based methods manually
design interaction mechanisms to extract useful information across tasks. For example, using in-
termediate auxiliary tasks (Xu et al., 2018) or designing distillation methods (Vandenhende et al.,
2020) to fuse encoder features from multiple stages. With the advancement of Transformer, current
methods have gained improved global task interaction capabilities to enhance task representation
efficiency. Certain approaches (Bhattacharjee et al., 2022; Shoouri et al., 2023) employ pairwise in-
teractions through the selection of a reference task, whereas others (Ye & Xu, 2022; Xu et al., 2023;
Ye & Xu, 2023; Li et al., 2024) facilitate global interactions across all tasks. To mitigate computa-
tional complexity, MTMamba (Lin et al., 2024) introduced Mamba (Gu & Dao, 2024) to multi-task
learning, which showcases effective long sequence modeling capabilities and achieving satisfactory
performance. However, it overlooked the different requirements of scene structure granularity for
various tasks in cross-task interaction.

State Space Models. In efficient long-range dependency modeling methods, state space models (Gu
et al., 2021b; Smith et al., 2022) has become a striking alternative to Transformers. (Gu et al., 2021a)
proposed a Structured State Space Sequence (S4) model based on a new parameterization, which al-
leviates the computational and memory efficiency issues faced by SSM. Subsequently, numerous
efforts (Fu et al., 2023; Mehta et al., 2022) are dedicated to bridging the performance disparity
between SSMs and Transformers. For example, H3 (Fu et al., 2023) proposed a new SSM layer
to bridge the gap between performance and computational efficiency. Mamba (Gu & Dao, 2024)
introduced an input-based parameterization method and hardware-aware algorithm, achieving per-
formance on par with Transformers in natural language processing. This success has spurred various
endeavors (Zhu et al., 2024) towards Mamba’s adaptation for visual tasks.

The preservation of comprehensive image structural information poses a critical challenge in
Mamba’s sequential processing model, which has attracted considerable attention and effort (Zhu
et al., 2024; Liu et al., 2024; Yang et al., 2024; Huang et al., 2024; Zhao et al., 2024). Vision
Mamba (Zhu et al., 2024) introduces a novel bidirectional Mamba block (Vim) that annotates im-
age sequences by embedding positional information, employing a bidirectional state space model to
compress visual representations. Additionally, VMamba (Liu et al., 2024) proposes the 2D Selec-
tive Scan (SS2D), a four-way scanning mechanism tailored for spatial domain traversal, aimed at
enhancing Mamba’s image modeling capabilities. Subsequent research studies have explored vari-
ous scan patterns and combinations tailored to different tasks or scenarios (Yang et al., 2024; Huang
et al., 2024; Zhao et al., 2024). However, by utilizing fixed token sizes, these methods overlook the
importance of hierarchical spatial structural information in visual tasks.

3 MAIN METHOD

We first outline the overall architecture of Multi-Scale Mamba for multi-task dense prediction in
Section 3.1, then delve into the Multi-Scale Mamba Decoder and Multi-Scale Scan in Section 3.2
and 3.3 respectively, followed by a discussion of the optimization objectives in Section 3.4.

3.1 PINELINE OF MULTI-TASK DENSE PREDICTION

Similar to previous approaches (Bhattacharjee et al., 2022; Zhang et al., 2023; Lin et al., 2024),
our MSM for multi-task dense prediction consists of two main components: a task-shared encoder
Φ for extracting task-generic representations and a decoder Θ for refining features and generating
predictions for individual tasks, as illustrated in Figure 2(a). This can be formulated as:

Ŷ = {Ŷ1, Ŷ2, . . . , ŶT } = Θ ◦ Φ(I), (1)

where I ∈ RH×W×3 denotes the RGB input, Ŷt represents the prediction for task t with the same
height H and width W as I , and T denotes the total number of tasks. The decoder is the key
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Figure 2: Framework of the proposed MSM for multi-task dense prediction. (a) overall of MSM,
illustrating with depth estimation and surface normal estimation tasks. (b) Details of the MFR block,
which include T task-specific TS-MSM blocks and a task-shared CT-MSM block. (c) Details of TS-
MSM, the core component MS-Scan is illustrated in Figure 3.

component of our method and will be described in detail in the following section. Here, we first
introduce the encoder.

The encoder shares similarities with other methods (Lin et al., 2024). We utilized a pretrained Swin
Transformer (Liu et al., 2021) to extract task-generic features, which begins by dividing the input
image I ∈ RH×W×3 into H/w×W/w tokens of dimension C through patch partitioning and linear
layers, where w denotes the partition size. These tokens are then processed through multiple stages
involving alternating patch merging and Swin Transformer block processing, ultimately yielding
hierarchical image representations:

G = {G1,G2,G3,G4} = Φ(I), Gi ∈ RCi×Hi×Wi , (2)

where G represents the task-generic features extracted from the encoder Φ. In our practical imple-
mentation, we utilize a partition size of 4, resulting in the following shapes for G: C× H

4 ×W
4 , 2C×

H
8 × W

8 , 4C × H
16 × W

16 and 8C × H
32 × W

32 , respectively.

3.2 MULTI-SCALE MAMBA DECODER

As the core of the proposed MSM Model, the Multi-Scale Mamba Decoder consists of three Multi-
Scale Mamba Feature Refinement (MFR) blocks and T task heads, as depicted in Figure 2(a). This
architecture refines the task-generic features G obtained from the encoder into task-specific features
F, which are crucial for generating task predictions Ŷ. The task-specific features are represented as
F = {Ft}Tt=1, where each Ft is defined as follows:

Ft = {F1
t ,F2

t ,F3
t}, t ∈ {1, 2, . . . , T}, (3)

where Ft comprises three representations that correspond to the first three encoder stages, with
dimensions of 4C × H

16 ×
W
16 , 2C × H

8 × W
8 , and C × H

4 × W
4 , respectively. Finally, the last refined

features {F3
t}Tt=1 are input into the task heads to produce the final predictions {Ŷt}Tt=1.

The proposed MFR block in the decoder is designed to bridge the gap between task-generic and
task-specific representations, as illustrated in Figure 2(b). To meet the varying demands for scene
structure granularity across different tasks, especially during task interactions, we introduce two
specialized multi-scale Mamba modules: TS-MSM and CT-MSM. For the s-th MFR block, the
input is derived from two sources: (1) task-generic features G4−s from the corresponding encoder
stage, and (2) F̄s−1, which is obtained by expanding the fine-tuned features Fs−1 = {Fs−1

t }Tt=1

from the preceding MFR block. For the first MFR block, G4 is replicated T times, substituting
for Fs−1 as input for each task. During MFR processing, task-generic features G4−s are initially
concatenated with the expanded task-specific features F̄s−1

t within each task branch. This combined
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input then undergoes processing through the TS-MSM and CT-MSM modules to yield the refined
features Fs. For clarity, we will utilize a superscript s to denote processing in the s-th MFR block
in the subsequent sections.

Taks-Specific Mluti-Scale Mamba Block. The TS-MSM primarily aims to construct comprehen-
sive representations through task-internal interactions. Its architecture is illustrated in Figure 2(c)
and comprises two main branches: the scan branch and the gating branch. In the scan branch,
we integrate local information using convolutional layers and activation functions, followed by the
implementation of a novel Multi-Scale Scan mechanism (MS-Scan) to derive a hierarchical global
scene structure representation Fs

h. Simultaneously, in the gating branch, we generate a gating signal
Gs using an activation function to regulate the flow of information within the scan branch. Sub-
sequently, we adjust the channel dimensions of the multi-scale scene representation by applying a
linear projection P and establish a residual connection between Fs

h and the input Fs
in. This process

is repeated twice to produce the final output Fs:

Fs = Fs
in + P(Fs

h × Gs). (4)

Cross-Task Mluti-Scale Mamba Block. The CT-MSM is designed to address the varying demands
for scene granularity across tasks during task interactions. As illustrated in the upper portion of
Figure 2(b), it begins by concatenating features {Fs

t }Tt=1 from different task branches to construct
multi-scale task-shared features Fs

ms using the Multi-Scale Scan (MS-Scan) mechanism. Subse-
quently, each task branch adaptively merges Fs

ms using the Merge operation to obtain finely-tuned
task representations Fs = {Fs

t}Tt=1:

Fs
t = Merget ◦Ψ ◦ P([Fs

1 ,Fs
2 , . . . ,Fs

T ]), t ∈ {1, 2, . . . , T}, (5)

where [·, ·] denotes channel-wise concatenation, P represents a linear projection, Ψ is the MS-Scan
block (which will be elaborated in the following Section 3.3), and Merget is the feature fusion
method in MTMamba (Lin et al., 2024) for task t, where Fs

t is first processed through convolution,
SS2D (Liu et al., 2024) and sigmoid function to generate the selection value Gs

t . The final fused
feature is obtained by weighting Fs

ms and Gs
t on Gs

t , the detail is described in Appendix A.1.

Task Head. After obtaining the final refined task representations FS from the last MFR block, each
task employs a task-specific head to produce the final output. We incorporate an expansion layer
alongside a linear projection:

Ŷt = P ◦ Expand(FS
t ), t ∈ {1, 2, . . . , T}, (6)

where Expand denotes a module designed to double the feature resolution H and W , consisting of
a linear projection followed by a reshape operation. The operator P represents a linear layer that
projects the feature channels to the required number of channels specific to each task.

3.3 MULTI-SCALE SCAN

Mamba processes features by converting them into sequences of tokens. While a variety of to-
kenization strategies exist for text, image tokenization requires careful consideration of multiple
approaches. Previous research has demonstrated that multi-scale processing is particularly effective
for image data. To leverage this advantage, we propose a multi-scale scan mechanism that serves
as a cornerstone of MSM model, as illustrated in Figure 3. In this framework, we employ multiple
scanning scales, denoted as {si}Ni=1, in multiple branches {Bi}Ni=1, and transform the input image
feature x ∈ RC×H×W into token sequences of varying dimensions for Mamba modeling. For in-
stance, the initial image feature can be tokenized into a sequence with a total length of H × W ,
where each token has a dimension of C, represented as C × (H ×W ). When applying a scanning
scale of si = 2, the image is divided into non-overlapping patches, resulting in a tokenized fea-
ture sequencewith a dimensionality of 4C ×

(
H
2 × W

2

)
. Specifically, MS-Scan comprises three key

components: input handling, multi-scale scanning, and multi-scale fusion.

Input Handling. To construct inputs for N different scanning branches B = {Bi}Ni=1, we perform
two main operations. (1) Channel Split (S): We begin by splitting the input representation x into
N sub-features {xi}Ni=1 ∈ Rm×H×W along the channel dimension, where m = C/N . (2) Window
Tokenization (Wi): For the i-th branch Bi with scan scale si, we first divide xi into H

si
× W

si
non-

overlapping patches, each of size m × si × si. Subsequently, we concatenate the pixel feature

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

�−1

� ��

��
�

Multi-Scale Scanning

ℬ1

ℬ�

ℬ2

...

SSM 
BlockSequence

construction
N121 ...

... Nn21

... N221
SSM 
Block

SSM 
Block

Sequence
Recovery

Multi-Scale Fusion

Input Handling
��

��
−1

�

� �
×

� �
×

�

1
1

1234

�
�

1 2
3 4

��

�

�� ��
−1

Figure 3: Left: Instructions for MS-Scan. It consists of three distinct operations, Input Handling,
Multi-Scale Scanning, and Multi-Scale Fusion. Right: Illustration of Window Tokenization (Wi)
and Token Windowing (W−1

i ) with a scan scale of 2.

values in each patch along the channel dimension, resulting in the scan input x̄i with a shape of
(m× si × si)× H

si
× W

si
. Ultimately, we obtain the input for all branches:

{x̄1, x̄2, . . . , x̄N} = {W1,W2, . . . ,WN} ◦ S(x). (7)

Multi-Scale Scanning. Following the input handling process, we employ distinct scanning scales
to construct a multi-scale scene representation in each branch. For all branches B, we utilize the
four-way scanning method (SS2D) from VMamba (Liu et al., 2024) to generate scene features at
the specified scale. This method creates four token sequences, each shaped as Ci × (Hi ×Wi), by
scanning the input features x̄i ∈ RCi×Hi×Wi in four directions. The resulting sequences are then
processed by SSM (Gu & Dao, 2024) and combined to produce the output feature ȳ = {ȳi}Ni=1:

ȳi = SS2D(x̄i) ∈ RCi×Hi×Wi . (8)

Multi-Scale Fusion. In our approach to multi-scale feature fusion, we adopt a methodology that
reverses the input handling process, consisting of two key steps. (1) Token Windowing (W−1

i ):
For each branch Bi, we split each pixel feature into si × si segments along the channel dimension:
{ȳi,j}si×si

j=1 ∈ Rm×1×1 These segments are then concatenated along the spatial dimensions (height
and width) to form patches, which are subsequently combined to produce the output for Bi. (2)
Channel Concatenation (S−1): We concatenate the features from all branches along the channel
dimension, yielding the final output feature y ∈ RC×H×W :

y = S−1 ◦ {W−1
1 ,W−1

2 , . . . ,W−1
n }(ȳ1, ȳ2, . . . , ȳn), (9)

where S−1 and W−1
i refer to the inverse operation of S and Wi respectively.

3.4 OPTIMIZATION OBJECTIVE

We jointly train all tasks to optimize muti-scale mamba decoder Θ and task-shared encoder Φ. To
maintain consistency with previous approaches, we use L1 loss for depth estimation and surface nor-
mal estimation tasks and the cross-entropy loss for other tasks, therefore, the optimization objective
can be expressed as follows:

L =
∑
ti∈T

λtLt(Θ ◦ Φ(I),Yt), (10)

where T is the set of all tasks, λt, Lt and Yt are the loss weight, loss function, and task label for
image I in task t respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We performed experiments using the benchmark datasets NYUDv2 (Silberman et al.,
2012) and PASCAL Context (Chen et al., 2014). NYUDv2 primarily focuses on indoor scenes,

6
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(a) task-share features (b) scan scales

Figure 4: (a) Preference for task-share features in MFR blocks. (b) Preference for different scan
scales in the final MFR block.

with 795 and 654 RGB images for training and testing purposes. Tasks in NYUDv2 include 40-
class semantic segmentation, monocular depth estimation, surface normal estimation, and object
boundary detection. PASCAL Context encompasses indoor and outdoor scenes, offering pixel-
level labels for tasks like semantic segmentation, human parsing, object boundary detection, surface
normal estimation, and saliency detection tasks. This dataset contains 4,998 training images and
5,105 test images.

Implementation Details. We employ a pretrained Swin-Large Transformer (Liu et al., 2021) on
ImageNet-22K (Deng et al., 2009) as our encoder. Our models are trained on the NYUD-v2 dataset
for 50,000 iterations with a batch size of 4, and on the Pascal Context dataset for 75,000 iterations
with a batch size of 6. Across all datasets, we use the Adam optimizer with a learning rate of
5 × 10−5 and a weight decay rate of 1 × 10−5, alongside a polynomial learning rate scheduler.
The preliminary decoder has an output channel number of 768. We follow common practice (Ye &
Xu, 2022; Lin et al., 2024) in resizing the input images and applying data augmentation techniques.
Specifically, we resize the input images of NYUDv2 and PASCAL-Context to 448× 576 and 512×
512, respectively, and apply random color jittering, random cropping, random scaling, and random
horizontal flipping.

Evaluation Metrics. Mean Intersection over Union (mIoU) is employed for semantic and human
parsing tasks. Root Mean Square Error (RMSE) and mean angle error (mErr) are used for depth and
surface normal estimation tasks respectively. Saliency detection tasks utilize maximal F-measure
(maxF), and object boundary detection tasks use optimal-dataset-scale F-measure (odsF). We also
use the multi-task gain ∆MTL (Vandenhende et al., 2021) evaluate the overall task performance.

4.2 EXPERIMENTAL RESULTS

Statistical Analysis of Task Preferences. We analyzed the task preferences for the multi-scale
task-share feature across different decoding stages. Specifically, we conducted statistics in three
MFRblocks in the decoder, which were set to scan scales of {1, 2}, {1, 2, 4}, and {1, 2, 4, 6}, re-
spectively. In Figure 4 (a), we calculated the mean of the task-share feature selection value Ḡt in
CT-MSM across all scan scales in the module and averaged the results over all test images. The
results indicate that as the network depth increases, the specialization of features for each task is
enhanced, thereby reducing the demand for task-share representation. In Figure 4 (b), we compared
the selection value G3

t across four scan scales at the last MFR block. There are significant differ-
ences among tasks within the same cross-task interaction stage. These results indicate that meeting
the requirements of different tasks for scene structure granularity is crucial in the interaction process.

Comparison with State-of-the-art Methods. Table 1 and Table 2 report a comparison of the pro-
posed MSM against previous state-of-the-art methods, including MTmamba (Lin et al., 2024), MQ-
Transformer (Xu et al., 2023), InvPT (Ye & Xu, 2022), ATRC (Brüggemann et al., 2021), MTI-
Net (Vandenhende et al., 2020), PAD-Net (Xu et al., 2018), PSD (Zhang et al., 2019), PAP (Zhou
et al., 2020), Cross-Stitch (Misra et al., 2016) and ASTMT (Maninis et al., 2019) on NYUD-V2
and PASCAL-Context dataset respectively. Notably, the previous best method, i.e., MTmamba, and
our MSM are built upon the Transformer-encoder Mamba-decoder architecture with the same back-

7
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Table 1: Quantitative comparison of differ-
ent methods on NYUD-v2 dataset.

Model Semseg Depth Normal Boundary
mIoU ↑ RMSE↓ mErr ↓ odsF ↑

CNN based
Cross-Stitch 36.34 0.6290 20.88 76.38

PAP 36.72 0.6178 20.82 76.42
PSD 36.69 0.6246 20.87 76.42

PAD-Net 36.61 0.6270 20.85 76.38
MTI-Net 45.94 0.5365 20.27 77.86

ATRC 46.33 0.5363 20.18 77.94

Transformer based
InvPT 53.66 0.5183 19.04 78.10

MQTransformer 54.84 0.5325 19.67 78.20

Mamba based
MTMamba 55.82 0.5066 18.63 78.70

Ours 57.79 0.4832 18.63 79.00

Table 2: Quantitative comparison of different meth-
ods on Pascal-Context dataset.

Model Semseg Parsing Saliency Normal Boundary
mIoU ↑ mIoU ↑ maxF↑ mErr ↓ odsF ↑

CNN based
PAD-Net 53.60 59.60 65.80 15.30 72.50
ASTMT 68.00 61.10 65.70 14.70 72.40
MTI-Net 61.70 60.18 84.78 14.23 70.80

ATRC 62.69 59.42 84.70 14.20 70.96
ATRC-ASPP 63.60 60.23 83.91 14.30 70.86

ATRC-BMTAS 67.67 62.93 82.29 14.24 72.42

Transformer based
InvPT 79.03 67.61 84.81 14.15 73.00

MQTransformer 78.93 67.41 83.58 14.21 73.90

Mamba based
MTmamba 81.11 72.62 84.14 14.14 78.80

Ours 81.38 72.87 84.41 14.13 78.83

bone. On NYUD-v2, the performance of Semseg is clearly boosted from the previous best, i.e.,
55.82 to 57.79 (+1.97). on Pascal-Context, we achieved superior performance on all tasks compared
to MTMamba.

Effectiveness of TS-MSM and CT-MSM. We performed ablation experiments on TS-MSM and
CT-MSM using the NYUD-V2 dataset. These experiments all used Swin-Large Transformer as
encoder. The term ”single-task” indicates that each task possesses its task-specific model, utiliz-
ing two particular Swin Transformer blocks in each stage of the decoder, “baseline” denotes MT-
Mamba, “TS-MSM only” denotes only equipped baseline with TS-MSM, “CT-MSM only” denotes
only equipped baseline with CT-MSM, and “ST-MSM+CT-MSM” is the default method of MSM.
The results presented in Table 3 highlight the essential role of satisfying the diverse demands for
scene structural granularity in task interaction. Furthermore, the application of MS-scan during
task-internal feature refinement in TS-MSM has been shown to significantly improve performance,
showcasing the advantages of the MSM design.

Table 3: Effectiveness of ST-MSM and CT-MSM on NYUDv2 dataset.

Model Semseg Depth Normal Boundary MTL Gain
mIoU ↑ RMSE↓ mErr ↓ odsF ↑ ∆m ↑

STL Model 54.32 0.5166 19.21 77.30 +0.00

Baseline 55.82 0.5066 18.63 78.70 +2.38
TS-MSM only 56.89 0.4840 18.68 78.80 +3.93
CT-MSM only 57.13 0.4822 18.67 78.80 +4.14

ST-MSM+CT-MSM 57.79 0.4832 18.63 79.00 +4.51

Ablation Study on Scan Scales. We experimented with the impact of varying scan scales on model
performance, as shown in Figure 5. Experiments were conducted on NYUDv2 dataset with Swin-
Large Transformer as encoder. We experimented with three different settings, Type 1: all MFRs
use {1,2} two scan scales; Type 2: three MFRs utilize {1,2}, {1,4}, {1,6} respectively; Type 3: all
MFRs use {1,4} two scan scales. The results showed that in multi-scale scanning, all scale divisions
achieved better performance than single scale, i.e., MTMamba (mark with dashed lines in Figure 5).
Ultimately, we adopt the 1,4 scale setting for all MFRs as the final configuration for MSM.

Ablation Study on Scan Numbers. We conduct ablation experiments on the impact of varying scan
numbers, as shown in Table 4. We compared four different settings: (1) all three MFRs use {1} scan
scale; (2) three MFRs use {1,2}, {1,4}, and {1,6} respectively; (3) all MFRs use {1,2,4}; (4) three
MFRs use {1,2}, {1,2,4} and {1,2,4,6} respectively. The results showed that employing appropriate
scan scale partitions can effectively enhance overall performance. Significantly, all variations in
scan quantity settings yielded notable performance enhancements.
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Figure 5: Performance comparison of different scan scale settings in MSM.

Table 4: Different scan numbers.
Scan Scale Semseg Depth Normal Boundary MTL Gain

MFR 1 MFR 2 MFR 3 mIoU ↑ RMSE↓ mErr ↓ odsF ↑ ∆m ↑

{1} {1} {1} 55.82 0.5066 18.63 78.70 +2.38
{1,2,4} {1,2,4} {1,2,4} 56.63 0.4878 18.83 78.70 +3.40
{1,2} {1,2,4} {1,2,4,6} 56.93 0.4850 18.52 78.90 +4.15
{1,4} {1,4} {1,4} 57.79 0.4832 18.63 79.00 +4.51

Table 5: Different encoders.
Model Semseg Depth Normal Boundary

mIoU ↑ RMSE↓ mErr ↓ odsF ↑

MTMamba-Base 53.62 0.5126 19.28 77.70
MSM-Base 54.64 0.5038 19.03 78.10

MTMamba-Large 55.82 0.5066 18.63 78.70
MSM-Large 57.79 0.4832 18.63 79.00

Performance on Different Encoder. We evaluate the effect of model size on experimental perfor-
mance, presented in Table 5. All experiments were conducted on the NYUDv2 dataset. We compare
our method with the previous best-performing model, MTMamba, using two different encoders:
Swin-Base Transformer (denoted as ‘-Base’) and Swin-Large Transformer (denoted as ‘-Large’).
The results suggest that models with greater capacities typically exhibit superior performance. Fur-
thermore, our approach has demonstrated superior performance across all encoder variants.

Qualitative Visualization. We qualitatively compared our proposed MSM with the previous best-
performing method, as shown in Figure 6. Our method shows clear improvements in detail, as
highlighted in the circled regions. For more visual comparisons, please refer to Appendix A.3.

Input Semseg Depth Normal Boundry

M
T
m
am

ba
O
ur
s

G
T

Figure 6: Qualitative comparison with the best performing method on NYUD-v2. Our method
generates better multi-task prediction details.

5 CONCLUSION

We proposed a Multi-Scale Mamba (MSM) framework for addressing the diverse preferences of
scene structure granularity for different tasks in multi-task dense prediction. We introduce a multi-
scale scanning mechanism (MS-Scan) that comprehensively constructs scene structure information
at various scales. Additionally, we build two multi-scale Mamba modules (TS-MSM and CT-MSM)
that meet the diverse needs of task representation construction, thereby alleviating the difficulty of
feature learning in multi-task dense scene prediction. Both qualitative and quantitative results show
that our method significantly enhances performance.
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A APPENDIX

A.1 FEATURE MERGE DETAILS OF CT-MSM
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Figure 7: Merge Details of CT-MSM.

In CT-MSM, we have adapted the feature fu-
sion approach from MTMamba (Lin et al.,
2024) to merge multi-scale task-share features
Fs

ms and task-specific features Fs
t , as illus-

trated in the figure 7. The core is to generate se-
lection values {Gs

t }Tt=1 for weighting the task-
shared Fs

ms and task-specific features {Fs
t }Tt=1

to obtain the fused task features {Fs
t}Tt=1 for all

tasks. In implementation, before weighting the
task-specific features, they undergo further re-
finement through convolution and SS2D (Liu
et al., 2024) operations.

Fs
t,LN = LN(Fs

t ), (11)

Gs
t = Sigmoid ◦ P(Fs

t,LN ), (12)

F̂s
t = LN ◦ SS2D ◦ SiLU ◦ Conv ◦ P(Fs

t,LN ), (13)

Fs
t = Gs

t ×Fs
ms + (1− Gs

t )× F̂s
t , (14)

where LN denotes the Layer Normalization, P represents a linear projection, Sigmoid and SiLU are
the sigmoid function and SiLu function respectively, Conv(·) is the convolution layer.

A.2 LIGHTWEIGHT MSM

MSM framework introduces minimal additional computational cost (+0.01 GFLOPs) compared to
the original MTMamba, yet achieves significant performance improvements. To further validate the
effectiveness of our method, we present Dilated Multi-Scale Mamba (DMSM), a lightweight version
of MSM, which achieves superior performance with reduced computational complexity compared
to MTMamba. DMSM conducts sparse scanning within each scan branch B. Specifically, as shown
in Figure 8, we perform dilated sampling in generating multi-scale sequences from image features
instead of using all tokens. When restoring sequences to image features, we perform linear in-
terpolation. These operations do not introduce any parameters and exhibit a reduced computational
burden due to sampling a subset of tokens for modeling. Experimental results, as depicted in Table 6,
demonstrate the effectiveness of meeting the diverse requirements of tasks for scene granularity in
multi-task dense prediction. Among them, FLOPsm denotes the complexity of SSM operations,
FLOPso is the complexity of other operations, and FLOPs = FLOPsm + FLOPso the total com-
plexity. All experiments utilize Swin-Large Transformer as encoder.
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Figure 8: Comparision of MSM and DMSM.
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Table 6: Performance Comparison of Dilated Multi-Scale Mamba (DMSM) and MTMamba.

Model Semseg Depth Normal Boundary MTL Gain FLOPsm FLOPso FLOPs # Params
mIoU ↑ RMSE↓ mErr ↓ odsF ↑ ∆m ↑ (G)↓ (G)↓ (G)↓ (M)↓

STL Model 54.32 0.5166 19.21 77.30 +0.00 - - 1074.79 888.77

MTMamba 55.82 0.5066 18.63 78.70 +2.38 81.72 459.09 540.81 307.99
DMSM (Ours) 56.95 0.4813 18.64 78.90 +4.18 60.50 450.57 511.07 307.99
MSM (Ours) 57.79 0.4832 18.63 79.00 +4.51 81.72 459.10 540.82 396.54

A.3 MORE VISUAL COMPARISON RESULTS

Task Attention. To compare task attention against the state-of-the-art method, we visualize the re-
sults in Figure 11. Our method demonstrates a more precise attention range across all tasks, aligning
with the intrinsic requirements of specific tasks. Specifically, it accurately captures task-specific ob-
ject relationships, thereby improving overall performance and scene understanding. These findings
suggest that the incorporation of multi-scale scanning in MSM addresses the varying demands for
scene structural granularity across distinct tasks, thereby mitigating the difficulties in feature learn-
ing within multi-task dense prediction and improving the alignment of task-specific features with
the intrinsic requirements of each task.
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Figure 9: More task attention comparison on NYUD-v2 dataset.

Qualitative Comparison. We present more qualitative results compared with the SOTA methods,
MTMamba (Lin et al., 2024). In Figure 11 - Figure 13, we can see that our method generates better
multi-task prediction details, highlighted in the circled regions.
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Figure 10: More Qualitative comparison on NYUD-v2 dataset.
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Figure 11: More Qualitative comparison on NYUD-v2 dataset.
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Figure 12: More Qualitative comparison on Pascal-Context dataset.
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Figure 13: More Qualitative comparison on Pascal-Context dataset.
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