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Abstract

In recent years, the rapid development of Large Language Models (LLMs) has significantly
reshaped the landscape of scientific research, providing powerful support throughout the
research lifecycle. In this survey, we investigate current research concerning the transfor-
mative impact of agentic LLMs on the scientific process. Starting from an analysis of the
limitations of human research, we examine the distinct contributions of LLMs across differ-
ent key stages: hypothesis discovery, experiment implementation, paper writing, and peer
reviewing. Our analysis highlights task-specific approaches and evaluation standards from
a human-centered perspective, offering a detailed overview of the current state of the field.
By outlining existing challenges and future directions, we hope this serves as a guide for
researchers and practitioners seeking to harness these models to propel scientific discovery.

1 Introduction

For centuries, human curiosity has driven scientific research, leading to groundbreaking discoveries that have
shaped our understanding of the world. From the earliest scientific inquiries to frontier innovations, research
has been the cornerstone of progress across fields like physics, medicine, technology, computer science, etc.
This enduring pursuit of knowledge reflects humanity’s relentless drive to explore, understand, and improve
the world around us.

Despite its successes, purely human-led research faces significant hurdles. The growing volume of scientific
literature makes it difficult for researchers to stay current, while biases in study design and interpretation can
skew results. Additionally, the reproducibility crisis has raised concerns about the reliability of many findings,
slowing the pace of true scientific advancement. As research becomes more complex and interdisciplinary,
these challenges threaten to limit the efficiency and impact of human efforts.

Recent advancements in artificial intelligence, particularly Large Language Models (LLMs), offer a promising
way to address these challenges. Trained on vast amounts of text data, LLMs possess a wealth of knowledge
and outstanding abilities in knowledge, reasoning Guo et al. (2025), and tool use Qin et al. (2023). These
abilities make LLM-based agents powerful tools for automating tasks in scientific research. LLM agents
can serve as augmentations to human research society, potentially accelerating the research process and
enhancing the quality of scientific productions.

This survey explores how LLMs can be integrated into various stages of the research process, from idea
generation and experimental design to writing and peer review. While highlighting the benefits and current
progress, we also address the challenges in ethics and applications, aiming to provide a balanced view of
how this technology can complement human efforts. Through this examination, we seek to illuminate the
transformative role LLMs can play in shaping the future of research.

Survey Organization. The structure of this survey is as follows: §2 discusses the current limitations of
human scientific discovery, demonstrating a background for the potential contributions LLM agents could
make to human scientific discovery in realistic settings. §3 focuses on LLMs for scientific hypothesis discovery,
including an overview of methodologies and key challenges. §4 discusses the potential capabilities of LLM
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agents in designing and implementing experiments. §5 delves into LLM-driven paper writing, covering
key steps, including citation generation. Last but not least, §6 investigates current research in potential
applications of LLM agents in peer reviewing. For each topic, we conclude with a summary of current
challenges and a list of future directions.

2 Background — Limitations in Human Research

In this section, we examine the limitations of current human scientific research and highlights potential ways
LLM agents could help address them.

We argue that current research practices suffer from fragmented workflows, rigid formats, and outdated re-
ward systems that prioritize short-term outputs over innovation. Standardization can improve reproducibility
and collaboration but may introduce rigidity and stifle creativity. Traditional publication formats like PDFs
limit interactivity, while newer platforms (e.g., arXiv, GitHub) offer faster, more open sharing—but still face
challenges in evaluation and engagement. Meanwhile, we also posit that current flawed incentive structures
drive researchers toward safe, trend-driven topics and polished presentation, often at the expense of the
depth and originality of their research output. Ethical oversight lags behind modern methodologies, failing
to fully protect participants, researchers, or reviewers. Systemic biases in peer review and unequal access to
funding further compound these issues, limiting diversity and fairness. Together, they call for a rethinking
of the research pipeline toward more dynamic, transparent, and inclusive models where LLMs could play a
transformative role.

2.1 Efficiency Issues

Time constrains. Human research efficiency is fundamentally constrained by the cognitive capacity of
researchers. Unlike machines, humans have natural limitations in attention, memory, and decision-making.
According to Miller’s law Miller (1956), individuals can typically hold only 8 units of information in working
memory at once. When researchers face an influx of data, literature, or concurrent tasks, this threshold is
quickly surpassed, resulting in information overload. For example, a scientist attempting to synthesize dozens
of papers or manage multiple project variables simultaneously may experience errors or delays, particularly in
complex interdisciplinary studies. Moreover, the constant need to make decisions, ranging from experimental
design to task prioritization, leads to decision fatigue Vohs et al. (2018). Research shows that this cumulative
burden impairs executive functioning and reasoning, increasing reliance on biases and mental shortcuts Vohs
et al. (2005). A striking illustration comes from studies of journal editors Stewart et al. (2012): as they
reviewed more manuscripts per session (from 10–19 to over 20), rejection rates rose from 38% to 44%, with
editors reviewing three or more manuscripts daily rejecting submissions without peer review 6% more often
than those handling fewer. This demonstrates how decision fatigue amplifies biases and undermines decision
quality, significantly impacting research efficiency.

Communication cost. Effective collaboration is vital for interdisciplinary and large-scale research, yet
communication inefficiencies frequently undermine it. Disciplinary differences in terminology and frame-
works create misunderstandings that stall progress. Without a shared vocabulary, integrating knowledge
becomes arduous, especially in projects requiring precision. For example, a term like "model" might mean a
biological system to a biologist but a computational algorithm to a computer scientist, leading to misaligned
interpretations. In addition, challenges in coordination and information overload hinder efficient research in
large research groups. Excessive emails and unstructured meetings overwhelm researchers, while hierarchical
dynamics often silence junior scientists, whose novel ideas go unheard (Azoulay et al., 2018). Geographical
and cultural barriers further complicate matters in international collaborations, with time zone disparities,
differing institutional norms, and communication styles causing delays and conflicts.

Knowledge barrier. As technology progresses rapidly, the scope of knowledge required to become a mature
scientist has grown substantially. Today’s researchers must master not only foundational scientific principles
but also cutting-edge fields like data analysis, advanced computing, and interdisciplinary applications. Fields
like AI-assisted drug design, quantum computing, molecular robotics, and smart cities require integrating
knowledge and methods across disciplines. This expanded knowledge base prolongs the education process
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and necessitates more sophisticated training programs, driving up the cost of preparing a fully equipped
scientist. An extreme case in sci-fi novels can illustrate this limitation: in the future, human knowledge may
grow to the point where the average person will not be able to specialize in a single field in their whole
lifetime. If we stick to purely human research paradigms, human technology will cease to develop when the
threshold is reached.

2.2 Research Reproduction

Reproducibility is a cornerstone of modern scientific research (Moonesinghe et al., 2007; Simons, 2014).
By reproducing previous work independently, we confirm the soundness of conclusions and exclude random
or human factors that might affect the results. Successful reproductions not only bolsters the confidence
of the academic community in the original work but also lays a solid foundation for further studies and
innovations. Moreover, reproducibility promotes transparency and accountability, enabling scientists to
share their methodologies openly and learn from each other’s successes and failures. Responsible scientists
remind themselves to double-check their results before publishing since reliable and reproducible findings lead
to a greater and more positive impact than unverifiable ones. On the contrary, lack of reproducing may cause
untenable results to be accepted by the academia without scrutiny, as exemplified by the "Reproducibility
Project: Psychology"1 conducted to reproduce classic psychological experiments. In this project, only 39%
of the experiments are successfully reproduced, raising people’s concerns about the psychological theories
based upon these experiments.

With the scope and scale of scientific research continuously expanding in recent years, reproducing becomes
more and more challenging. Specifically, two drastic changes in scientific research led to the reproduction
crisis:

The number of research papers. The ease of modern communication and the growth of the academic
community have led to an explosion of research findings. We can observe such an explosion by the statistics
of research papers, the prevalent form of research outcomes. ArXiv, one of the largest and most influential
preprint repositories in academia, has more than doubled the number of monthly paper submissions since
2015, reaching over 20k research papers per month. The number of submissions and accepted papers in
journals and conferences has also exploded in recent years. Namely, the Association for Computational
Linguistics (ACL) received 3378 submissions in 2022, while only 692 papers were submitted in 2015. Manually
verifying all these papers is extremely time-consuming, if even possible.

The complexity of research papers. As human continues to explore the world and science continues
to develop, the complexity for verifying scientific findings has sharply increased. On one hand, frontier
discoveries often involve prohibitively costly types of equipment. For instance, state-of-the-art language
models utilize thousands of GPUs and trillions of text tokens to train (Guo et al., 2025; Achiam et al., 2023),
which is far beyond the ability of all but a few Well-resourced institutes or corporations. Similar challenges
arise in other fields of research: In physics, high-energy particle colliders are built to explore new particles,
which cost billions of dollars to build Albajar et al. (1987); in materials science, advanced microscopes like
TEM (Kübel et al., 2005) and ESEM (Zhang et al., 2020) are essential for analysing molecules.

2.3 Research Pipeline

Modern human research across disciplines typically proceeds through a series of stages, from initial con-
ception to validation. While the specifics vary by field, a general pipeline includes steps like hypothesis
generation, literature review, experiment implementation, analysis and interpretation, communication, and
dissemination. Ideally, each step of this pipeline is executed with rigor and honesty to advance knowledge.
However, current academic incentive structures often misalign with these stages, introducing distortions at
multiple points. The well-known “publish or perish” culture means researchers are rewarded primarily for
outputs – notably, published papers in high-impact venues – rather than for the quality of processes that
lead to those outputs. Career advancement in academia is heavily dependent on metrics like the number
of publications, journal prestige (impact factor), citation counts, and grant dollars obtained (Edwards &

1https://osf.io/ezcuj/
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Roy, 2017). Likewise, the race to publish in prestigious journals that value novel, striking results encourages
scientists to sensationalize findings and may even prompt them to hide null or inconclusive results that are
deemed unlikely to be accepted Trueblood et al. (2025). As detailed below, such research format rewards
(tied to how and where work is published) and outcome-based rewards (tied to the nature of the results)
skew decisions throughout the research process – from which hypotheses get pursued, to how studies are
conducted and reported, all the way to which findings see the light of day.

First, researchers are frequently evaluated based on formal research outputs—especially peer-reviewed publi-
cations in high-impact venues Edwards & Roy (2017). This emphasis on publication count, journal prestige,
and grant acquisition creates pressure to prioritize quantity over quality, encourage salami-slicing, and focus
on trendy or publishable topics rather than fundamental or high-risk questions. Key research stages such
as thorough literature reviews, transparent methodological design, and open data sharing are undervalued
as they offer little immediate reward in metric-driven evaluation systems. The focus on format often disin-
centivizes careful, time-intensive work that enhances reproducibility or long-term scientific value Trueblood
et al. (2025).

Second, reward structures that prioritize positive, novel results over negative or null findings further distort
the research pipeline Nosek et al. (2012); Bik (2024). This leads to selective reporting, outcome embellish-
ment, and a systemic bias against replication. As studies with “publishable” outcomes are more likely to
be accepted and cited, researchers may avoid high-risk or exploratory projects in favor of those that are
more likely to yield confirmatory, marketable results. Replication studies—essential for scientific valida-
tion—are rarely rewarded and thus remain scarce. The result is a literature biased toward optimistic claims,
contributing to poor reproducibility and undermining public trust in science.

In summary, the current human research pipeline still requires realigning incentives with each stage of that
pipeline. Currently, research format rewards (e.g., counting publications and valuing prestigious venues) and
outcome-based rewards (e.g., prioritizing positive, novel results) often conflict with methodological rigor and
transparency. Recognizing these distortions is the first step toward reforms that encourage comprehensive
literature reporting, honesty about negative outcomes, and routine replication, thereby realigning academic
rewards with the core stages of the research process and the production of reliable knowledge.

2.4 Regulation Constraints

While ethical regulations in human research have been instrumental in promoting safety, fairness, and ac-
countability, their practical limitations increasingly hinder their effectiveness across modern research con-
texts. Institutional Review Boards (IRBs), for example, are foundational to participant protection, yet their
processes are often procedural and static, lacking the capacity to adapt to evolving risks in long-term or
technologically complex studies (Stahl & Stahl, 2021; Grady, 2015). This rigidity can delay critical research
and inadequately address novel ethical dilemmas arising in fields such as artificial intelligence and behavioral
tracking.

Informed consent, though a central ethical safeguard, frequently falls short in practice. Documents are often
laden with technical jargon, impeding participant comprehension, especially among vulnerable groups (Clark-
Kazak, 2019). Furthermore, consent is usually treated as a one-time event, failing to account for the dynamic
nature of data use. Participants rarely retain control over how their information is repurposed or shared in
secondary analyses, raising concerns about autonomy and transparency (Yadav et al., 2023).

Efforts to ensure fairness in scientific evaluation, such as double-blind peer review and transparency platforms,
are undermined by persistent structural inequities. Reviewer anonymity can often be breached through
writing style or institutional references, and systemic biases related to race, gender, and geographic affiliation
continue to shape publication and funding outcomes (Heidt, 2023; Freeman & Robbins, 2005). Ethical
norms promoting equity remain aspirational without standardized enforcement or reform of entrenched
power structures.

The push for reproducibility and open science has also revealed significant barriers. Although open data
mandates and pre-registration frameworks aim to improve transparency, many researchers face disincentives
to comply, including fear of being scooped, lack of infrastructure, and the high cost of open-access publish-
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ing (Gundersen et al., 2018; Kwon, 2022). Data-sharing requirements are often inconsistently applied, and
commercial or proprietary constraints further limit reproducibility in industry-influenced research (Bostrom,
2018).

In summary, while ethical regulations provide necessary frameworks, their current implementation is ham-
pered by inflexibility, inconsistent enforcement, and limited capacity to respond to the complexities of con-
temporary human research. More adaptive, participatory, and enforceable approaches are needed to align
ethical governance with the realities of modern scientific practice.

3 Hypothesis Discovery

Proposing a hypothesis is the first step in scientific research, which lays the foundation for further experiments
and analysis. Although hypothesis discovery in frontier scientific research is primarily conducted by humans,
we do see potential for LLMs in proposing valuable scientific hypotheses.

Before the age of LLMs, automated hypothesis discovery was rooted in literature-based discovery (LBD)
and inductive reasoning. LBD, pioneered by Swanson (1986), seeks to uncover novel insights by connecting
previously unlinked pieces of information within scientific literature. Early LBD methods relied on techniques
like word vectors Tshitoyan et al. (2019) and link prediction models Sybrandt et al. (2020); Wang et al. (2019),
which were effective for identifying pairwise relationships but struggled to capture the deeper contextual
understanding that human researchers naturally employ. Modern advancements, such as SciMON Wang
et al. (2024a), have overcome these limitations by incorporating natural language contexts, enabling the
generation of more sophisticated and nuanced hypotheses. Alongside LBD, inductive reasoning has played
a critical role in deriving general hypotheses from specific observations Norton (2003)—a process central to
scientific breakthroughs. This approach requires hypotheses to be consistent with observations, reflective of
reality, and generalizable Yang et al. (2022); Qiu et al. (2023).

Building on these foundations, the development of methods for scientific hypothesis discovery using large
language models (LLMs) has progressed along a structured trajectory, integrating several key innovations.
Inspiration retrieval, the process of identifying and gathering relevant knowledge or information from existing
sources, has advanced from pulling semantically similar content or graph-based neighbors Wang et al. (2024a)
to relying on LLMs to select relevant inspirations based on their parametric knowledge, like MOOSE Yang
et al. (2023) and MOOSE-Chem Yang et al. (2024). In addition, several feedback mechanisms are proposed
to address the uncertainty in LLMs and to ensure hypothesis quality. For instance, novelty checkers compare
outputs to existing literature for originality, validity checkers use heuristics or experimental data to confirm
accuracy, and clarity checkers refine hypotheses for precision and detail. Human researchers often reiterate
and refine hypotheses multiple times; similarly, evolutionary algorithms inspired by biological principles are
proposed for LLMs to optimize hypotheses through iterative mutation and selection Ma et al. (2024).

Besides this core trajectory, a range of alternative methods have emerged to tackle distinct challenges in
scientific discovery. For instance, Pu et al. (2024) proposes IdeaSynth, a system designed for developing
research ideas by representing concepts as interconnected nodes on a visual interface; Weng et al. (2024)
proposes a dual framework that creates ideas and evaluates them in turns; Li et al. (2024a) optimizes LLMs
for idea generation with post-training techniques, using a framework that blends Supervised Fine-Tuning
(SFT) with Controllable Reinforcement Learning (RL). These diverse approaches demonstrated LLMs’ ability
to adapt to specialized domains and unify different discovery paradigms.

Challenges. One major challenge in automated hypothesis discovery is verification. As the nature of
scientific discovery is to find novel knowledge that has not been verified by wet lab experiments, automatically
evaluating the hypothesis is very challenging. Building accurate and well-structured benchmarks highly relies
on experts, but the size of an expert-composed benchmark is usually very limited. In some disciplines, such
as chemistry, even an expert’s evaluation of the generated novel hypothesis is unreliable. This causes a need
for automated experiments to verify the large-scale machine-generated hypotheses. Another challenge is the
creativity of language models. Although proven to propose valid hypotheses, LLMs are known to have limited
creativity Chakrabarty et al. (2024), given their next-token-prediction nature. Therefore, AI-generated
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hypotheses are often combinations of existing work or marginal improvements, which lack fundamental
novelty.

4 Experiment Implementation

In addition to generating hypotheses, large language models (LLMs) are playing an increasingly vital role
in scientific research by automating experimental design and enhancing workflow efficiency. With extensive
built-in world knowledge, LLMs can make informed decisions in real-world contexts without requiring training
on domain-specific data. To fully leverage their capabilities, LLMs are often structured as agents with two
essential features (Kambhampati et al., 2024): modularity and tool integration. Modularity allows for smooth
interaction with external systems such as databases, experimental platforms, and computational tools. At
the same time, integration with specialized tools enables LLMs to function as central coordinators within
research workflows, managing tasks like data access, computation, and experimental operations. This section
focuses on how LLMs contribute to the strategic planning and execution of scientific research.

4.1 Experiment Design

Experimental design—the structured process of planning, organizing, and executing scientific investiga-
tions—is fundamental to producing reliable and meaningful results. Traditionally, human researchers have
led this process, relying on domain expertise and intuition to define variables, control conditions, and select
appropriate methodologies. However, human-led design is often constrained by cognitive biases, limited
capacity to process vast datasets, and difficulty in managing the complexity of multifactorial experiments.

LLMs are reshaping this landscape by addressing many of these limitations. First, advanced prompting-
based techniques such as Chain-of-Thought (Wei et al., 2023) and ReAct (Yao et al., 2022) are increasingly
used in studies related to experiment design to enhance the accuracy in experiment workflows. Moreover, the
growing capabilities of reflection and refinement (Madaan et al., 2023; Shinn et al., 2023) also allow LLMs to
iteratively evaluate and refine the experimental plans. For example, previous studies tried to use LLMs to
simulate expert discussions by letting LLMs engage in collaborative dialogue to challenge assumptions and
analyze outputs (Li et al., 2024b).

With their abilities to analyze extensive datasets and generate insights at scale, LLMs support researchers
in breaking down complex experimental questions into manageable sub-tasks, identifying optimal design
strategies, and refining experimental structures (Boiko et al., 2023; M. Bran et al., 2024; Huang et al.,
2024; Rasal & Hauer, 2024; Shen et al., 2023; Wu et al., 2023). For example, HuggingGPT Shen et al.
(2023) uses LLMs to parse user queries into structured task lists while determining execution sequences and
resource dependencies. Leveraging such capabilities of LLMs in scientific discovery has great potential in
experiment design. In a recent work, ChemCrow (M. Bran et al., 2024) uses iterative reasoning and dynamic
planning, using a structured framework to refine experimental approaches based on real-time feedback.
ChemCrow (M. Bran et al., 2024) not only aids expert chemists and lowers barriers for non-experts but also
fosters scientific advancement by bridging the gap between experimental and computational chemistry.

4.2 Experiment Execution

Experiment execution—the process of carrying out planned procedures to gather data and evaluate hypothe-
ses—is a fundamental yet demanding phase of scientific research. It involves a range of meticulous tasks,
from preparing data and managing protocols to conducting trials and recording results. Human-led execu-
tion often struggles with inefficiencies, errors, and the cognitive load of coordinating complex or large-scale
experiments. Data preparation, which encompasses cleaning, labeling, and feature engineering, is notori-
ously time-consuming and labor-intensive. These limitations can hinder progress, reduce reproducibility,
and constrain the scope of inquiry. Addressing these challenges requires methods that not only streamline
execution but also enhance consistency, scalability, and interpretability across experimental workflows.

Previous studies have demonstrated that LLMs have great potential in dealing with such tasks that usually
consume amounts of human effort. First, in terms of data preparation, LLMs can automate the process of
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data cleaning, data labeling, and even feature engineering (Chen et al., 2024; Zhang et al., 2024; Tan et al.,
2024; Ziems et al., 2024). In addition, human researchers often face great challenges when data is difficult to
obtain. LLMs can also be used to synthesize experimental data directly (Li et al., 2023; Liu et al., 2023a).
Second, previous studies have also shown that LLMs can play a diverse role in automating experimental
workflows to execute the experiments across different disciplines (M. Bran et al., 2024; Boiko et al., 2023;
Wang et al., 2025; Ramos et al., 2023; Liu et al., 2023b; Ye et al., 2023; Rives et al., 2021; Lin et al., 2023)
since they can acquire task-specific capabilities through pretraining, finetuning, and tool-augmented learning.
For example, Coscientist (Boiko et al., 2023) uses LLMs to autonomously design, plan, and perform complex
experiments by incorporating LLMs empowered by tools in experimental workflows, showcasing its potential
for accelerating research across diverse tasks like the successful reaction optimization of palladium-catalyzed
cross-couplings. Meanwhile, Wang et al. (Wang et al., 2025) demonstrate that the joint usage of LLMs with
evolutionary algorithms yields superior performances by improving both the quality and the final solution
and convergence speed, thereby reducing the number of required objective evaluations for many chemical
experiments.

4.3 Challenges

LLMs show promise for experiment design and execution but face key challenges, especially in autonomous
planning. However, they often lack the structured reasoning and domain-specific insight needed for scientific
tasks, frequently hallucinate facts, and struggle with prompt sensitivity and ethical nuance (Kambhampati
et al., 2024; Zhuo et al., 2023). Addressing these issues will require smarter modular architectures, real-time
fact-checking, adaptive prompting, and the integration of expert reasoning. With these improvements, LLMs
can evolve from text generators into reliable collaborators in complex, high-stakes scientific research.

5 Paper Writing

Large language models (LLMs) have seen widespread adoption in academic writing contexts, where they
serve as valuable tools to support and enhance the scientific writing process. Researchers have actively
investigated the use of LLMs across several core components of scholarly paper composition, including the
automatic generation of citation contexts, the drafting of related work sections, and the overall structuring
and writing of full manuscripts. These applications demonstrate the potential of LLMs to alleviate the
cognitive and time-intensive aspects of writing, offering assistance in both content creation and stylistic
refinement. This section delves into the specific roles that LLMs play in facilitating various academic writing
tasks, highlighting the methodologies employed, the benefits they offer, and the limitations or challenges
that remain in their integration into scientific authorship workflows.

5.1 Citation Generation

Citation text generation refers to the task of automatically crafting concise and contextually relevant sum-
maries of referenced works within a citing paper. This process is crucial for synthesizing prior research in a
coherent and informative manner. Traditionally, scholars must manually read, interpret, and integrate nu-
merous sources—a time-consuming and cognitively demanding task that can lead to oversight, inconsistency,
or superficial coverage of related work.

With recent advances in LLMs, previous studies have shown that they can enhance the efficiency, consistency,
and depth of citation writing through their ability to process large volumes of information and maintain
contextual accuracy (Xing et al., 2020; Li & Ouyang, 2024a; Wang et al., 2021; Ge et al., 2021; Gu &
Hahnloser, 2024). For example, Li and Ouyang Li & Ouyang (2024a) prompt an LLM to generate a natural
language description that emphasizes the relationships between pairs of papers in the citation network.
Meanwhile, previous researchers have also developed models to produce rich citation texts. For example,
AutoCite (Wang et al., 2021) is an automatic writing assistant model that not only infers potentially related
work but also automatically generates the citation context at the same time. To create an efficient experience
to support researchers, Gu et al. Gu & Hahnloser (2024) further integrate the manuscript context, the context
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of the referenced paper, and the desired control attributes into a structured template and use it to finetune
the LLMs, providing humans with more control in citation generation with LLMs.

5.2 Literature Review Generation

Literature review generation in academic writing refers to the automated creation of coherent, contextually
relevant summaries that synthesize findings from multiple scholarly sources. This task plays a central role
in framing the background, significance, and intellectual lineage of a research work. However, conducting
a comprehensive literature review is one of the most demanding aspects of scholarly writing—it requires
significant time, effort, and cognitive load to identify, interpret, and integrate a wide array of research
papers. Human researchers often struggle with information overload, limited memory, and unintentional
biases, which can lead to incomplete or surface-level reviews.

Automated literature review generation, particularly with the aid of LLMs, can help address these limitations
by processing large volumes of text, identifying thematic connections, and generating structured, fluent
summaries. Studying literature review generation began before the development of LLMs (Hoang & Kan,
2010). Recently, researchers have developed case studies to explore the use of ChatGPT for literature
review tasks and related work generation, showcasing its capabilities to assist researchers in completing
these tasks (Zimmermann et al., 2024). Among current research in this field, retrieval-augmented generation
(RAG), which enhances LLM-based literature review generation by grounding in factual content retrieved
from external sources, is widely used to help address the challenges such as hallucinations (Agarwal et al.,
2025; Hu et al., 2025; Shi et al., 2023; Susnjak et al., 2025; Yu et al., 2024). For example, LitLLM introduced
a toolkit that operates on RAG principles, specialized prompting and instructing techniques with the help
of LLMs, thus reducing the time and effort needed for comprehensive literature reviews while minimizing
hallucinations (Agarwal et al., 2025).

5.3 Draft and Writing

Draft or manuscript writing involves the structured composition of scientific content—including definitions,
explanations, and visual descriptions—into a coherent, publication-ready form. This process can be highly
labor-intensive for researchers, requiring clarity, precision, and audience awareness. To ease this burden,
researchers have also explored potential opportunities to use LLMs to assist humans in different draft writing
settings. August et al. August et al. (2022) introduced a new task and dataset for defining scientific terms and
controlling the complexity of generated definitions as a way of adapting academic writing to a specific reader’s
background knowledge. To augment authors’ writing process, Hsu et al. (Hsu et al., 2021) automates the
generation of captions for scientific figures, enabling qtime-consuminguick and accurate descriptions of visual
data. Despite such specific techniques, researchers also developed holistic systems such as PaperRobot (Wang
et al., 2019) to use LLMs to help organize and draft sections of papers based on user inputs. Similarly,
CoAuthor (Lee et al., 2022) takes a human-AI collaborative approach to let LLMs help authors by generating
suggestions and expanding text. In addition, AI Scientist (Lu et al., 2024) developed a broader system that
integrates different workflows into the paper writing.

5.4 Challenges

While LLMs offer promise in academic writing, they face key challenges in maintaining factual accuracy, con-
textual coherence, and analytical depth. Issues like hallucinated citations, limited context windows, and shal-
low reasoning undermine the rigor required for scholarly work (Wang et al., 2024b). Ethical concerns—such
as plagiarism and misrepresentation—further complicate their use (Li & Ouyang, 2024b). Addressing these
problems calls for better retrieval systems, longer context handling, improved citation validation, and domain-
specific fine-tuning. Integrating human oversight and enforcing clear ethical standards will be essential to
ensure responsible, high-quality AI-assisted academic writing.
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6 Peer Reviewing

As mentioned in 2, verifying and reviewing scientific findings is a highly specialized and time-consuming
process. In order to free researchers from the timely peer review, researchers have utilized LLMs to assist
them in evaluating papers, generating meta-reviews, detecting errors, and addressing ethical concerns.

There are two styles of building AI reviewers: utilizing a single LLM and building a system with multiple
modules. In the single-LLM line of work, researchers find LLMs are capable of generating review comments
by analyzing paper content against human-defined criteria, such as significance, methodological rigidity, and
novelty. Based on that, more advanced reviewing methods are proposed: MetaGen Bhatia et al. (2020)
first generates extractive summarization and then provide careful feedback; Kumar et al. (2021) trains a
neural architecture for joint decision prediction and review generation; MReD Shen et al. (2021) introduced
structure-controlled generation using sentence-level functional labels; ReviewRobot Wang et al. (2020) uti-
lizes knowledge graphs to systematically identify and structure knowledge elements.

To provide high-quality feedback for longer and more complex research papers, researchers developed more
sophisticated systems by leveraging multiple specialized models to handle different aspects of the review
process. These architectures integrate diverse LLMs, each fine-tuned or prompted for specific subtasks, such
as assessing novelty, summarizing reviewer comments, or detecting methodological errors. For instance,
Zeng et al. (2024) proposes a framework where one LLM extracts key arguments from reviewer narratives
while another synthesizes them into a structured meta-review, ensuring a balanced summary that captures
critical feedback. Reviewer2 Gao et al. (2024) is another multi-LLM framework where one LLM generates
a context-aware scoring rubric, and the other LLM provides targeted responses. Similarly, Kuznetsov et al.
(2024) highlights the use of multi-model systems to cross-validate findings, where one model evaluates tech-
nical accuracy and another checks for ethical concerns, reducing biases inherent in single-model outputs.
By distributing tasks across models, these architectures improve robustness and mitigate limitations like
overgeneralization Yuan et al. (2022).

Additionally, LLMs can also assist in meta-review generation, where they synthesize multiple peer reviews
into a cohesive summary. For instance, (Santu et al., 2024; Zeng et al., 2024) highlight LLMs’ ability
to produce structured meta-reviews by summarizing reviewer narratives, ensuring key points are captured
accurately. LLMs’ ability to aggregate multiple information sources is particularly useful for editors who
need to consolidate diverse feedback.

Besides efficiency, LLM reviewers can also help reduce bias and unprofessional behaviors in human research
by providing objective, standardized evaluations that minimize subjective influences often present in human
reviews Cortes & Lawrence (2021); Goldberg et al. (2025). LLMs can also flag unprofessional conduct, such
as derogatory comments or plagiarism, ensuring a more respectful and ethical review process.

Challenges. Although LLMs can provide high-quality feedback to research papers efficiently, some issues
still exist, which limits the broader application of LLM reviewers. Although LLMs possess vast commonsense
knowledge, reviewing papers often requires deep expertise and nuanced understanding, which exceeds the
capability of current models. For example, LLMs are not good at theorem proving and mathematical calcu-
lations, which makes them fail to recognize subtle but critical assumptions in papers related to theoretical
physics Zhou et al. (2024).

The complexity of academic writing also presents unique challenges, especially with longer documents. Al-
though context windows in language models are growing, LLMs still have difficulty sustaining coherent
analysis throughout lengthy texts, often losing the thread of intricate arguments that span several sections.
This can lead to evaluations that are inconsistent or even contradictory Chamoun et al. (2024).

7 Limitations

In this survey, our objective is to provide a human-centered investigation of the potential capabilities of
LLM agents for accelerating scientific discovery. Therefore, our analysis is based on the current limitations
of human research, and our discussion is toward addressing such challenges across different stages of the
research pipeline. However, we acknowledge that the general concept of “LLM for Science Discovery” is a

9
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huge topic. Our survey does not aim to provide a comprehensive view of LLM agents for scientific discovery
in different fields, including mathematics, physics, and chemistry. Meanwhile, since our analysis is rooted in
the potential capabilities of LLM agents in replicating the human research process, our goal is not to provide
an overview of novel pathways in which LLM could reshape the research process.

8 Conclusion

Our survey provides a comprehensive examination of how Large Language Models (LLMs) are reshaping
the entire scientific research workflow—from the early stages of hypothesis discovery and experiment imple-
mentation to paper writing and peer evaluation. We investigate the emerging opportunities and ongoing
challenges associated with deploying LLMs in these contexts, shedding light on their current strengths, con-
straints, and broader impact on research efficiency. Starting from a human-centered point of view, we discuss
current limitations in the human research process and then analyze potential ways LLM agents could ad-
dress these challenges. Although LLMs offer novel tools to support and streamline diverse research activities,
their application is still limited by technical, contextual, and ethical concerns. However, rapid progress in
LLM development suggests a future where these models become integral to scientific inquiry, accelerating
knowledge generation and enabling new forms of interdisciplinary collaboration.
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