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ABSTRACT

Online 3D Bin Packing Problem (3D-BPP) has widespread applications in indus-
trial automation and has aroused enthusiastic research interest recently. Existing
methods usually solve the problem with limited resolution of spatial discretiza-
tion, and/or cannot deal with complex practical constraints well. We propose to
enhance the practical applicability of online 3D-BPP via learning on a novel hier-
archical representation –– packing configuration tree (PCT). PCT is a full-fledged
description of the state and action space of bin packing which can support pack-
ing policy learning based on deep reinforcement learning (DRL). The size of the
packing action space is proportional to the number of leaf nodes, i.e. candidate
placements, making the DRL model easy to train and well-performing even with
continuous solution space. During training, PCT expands based on heuristic rules,
however, the DRL model learns a much more effective and robust packing policy
than heuristic methods. Through extensive evaluation, we demonstrate that our
method outperforms all existing online BPP methods and is versatile in terms of
incorporating various practical constraints.

1 INTRODUCTION

As one of the most classic combinatorial optimization problems, the 3D bin packing problem usu-
ally refers to packing a set of cuboid-shaped items i ∈ I, with sizes sxi , s

y
i , s

z
i along x, y, z axes,

respectively, into the minimum number of bins with sizes Sx, Sy, Sz , in an axis-aligned fashion.
Traditional 3D-BPP assumes that all the items to be packed are known a priori (Martello et al.,
2000), which is also called offline BPP. The problem is known to be strongly NP-hard (De Cas-
tro Silva et al., 2003). However, in many real-world application scenarios, e.g., logistics or ware-
housing (Wang & Hauser, 2019a), the upcoming items cannot be fully observed; only the current
item to be packed is observable. Packing items without the knowledge of all upcoming items is
referred to as online BPP (Seiden, 2002).

Due to its obvious practical usefulness, online 3D-BPP has received increasing attention recently.
Given the limited knowledge, the problem cannot be solved by usual search-based methods. Dif-
ferent from offline 3D-BPP where the items can be placed in an arbitrary order, online BPP must
place items following their coming order, which imposes additional constraints. Online 3D-BPP is
usually solved with either heuristic methods (Ha et al., 2017) or learning-based ones (Zhao et al.,
2021), with complementary pros and cons. Heuristic methods are generally not limited by the size
of action space, but they find difficulties in handling complex practical constraints such as packing
stability or specific packing preferences. Learning-based approaches usually perform better than
heuristic methods, especially under various complicated constraints. However, the learning is hard
to converge with a large action space, which has greatly limited the applicability of learning-based
methods due to, e.g., the limited resolution of spatial discretization (Zhao et al., 2021).

We propose to enhance learning-based online 3D-BPP towards practical applicability through learn-
ing with a novel hierarchical representation –– packing configuration tree (PCT). PCT is a dynam-
ically growing tree where the internal nodes describe the space configurations of packed items and
∗Work conducted while the author was visiting the National Key Lab for Novel Software Technology.
†Kai Xu is the corresponding author.
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leaf nodes the packable placements of the current item. PCT is a full-fledged description of the state
and action space of bin packing which can support packing policy learning based on deep reinforce-
ment learning (DRL). We extract state features from PCT using graph attention networks (Velickovic
et al., 2018) which encodes the spatial relations of all space configuration nodes. The state feature
is input into the actor and critic networks of the DRL model. The actor network, designed based on
pointer mechanism, weighs the leaf nodes and outputs the action (the final placement).

During training, PCT grows under the guidance of heuristics such as Corner Point (Martello et al.,
2000), Extreme Point (Crainic et al., 2008), and Empty Maximal Space (Ha et al., 2017). Although
PCT is expanded with heuristic rules, confining the solution space to what the heuristics could
explore, our DRL model learns a discriminant fitness function (the actor network) for the candidate
placements, resulting in an effective and robust packing policy exceeding the heuristic methods.
Furthermore, the size of the packing action space is proportional to the number of leaf nodes, making
the DRL model easy to train and well-performing even with continuous solution space where the
packing coordinates are continuous values. Through extensive evaluation, we demonstrate that our
method outperforms all existing online 3D-BPP methods and is versatile in terms of incorporating
various practical constraints such as isle friendliness and load balancing (Gzara et al., 2020). Our
work is, to our knowledge, the first that deploys the learning-based method on solving online 3D-
BPP with continuous solution space successfully.

2 RELATED WORK

Offline 3D-BPP The early interest of 3D-BPP mainly focused on its offline setting. Offline 3D-
BPP assumes that all items are known as a priori and can be placed in an arbitrary order. Martello
et al. (2000) first solved this problem with an exact branch-and-bound approach. Limited by expo-
nential worst-case complexity of exact approaches, lots of heuristic and meta-heuristic algorithms
are proposed to get an approximate solution quickly, such as guided local search (Faroe et al., 2003),
tabu search (Crainic et al., 2009), and hybrid genetic algorithm (Kang et al., 2012). Hu et al. (2017)
decompose the offline 3D-BPP into packing order decisions and online placement decisions. The
packing order is optimized with an end-to-end DRL agent and the online placement policy is a hand-
designed heuristic. This two-step fashion is widely accepted and followed by Duan et al. (2019), Hu
et al. (2020), and Zhang et al. (2021).

Heuristics for Online 3D-BPP Although offline 3D-BPP has been well studied, their search-
based approaches cannot be directly transferred to the online setting. Instead, lots of heuristic meth-
ods have been proposed to solve this problem. For reasons of simplicity and good performance,
the deep-bottom-left (DBL) heuristic (Karabulut & Inceoglu, 2004) has long been a favorite. Ha
et al. (2017) sort the empty spaces with this DBL order and place the current item into the first fit
one. Wang & Hauser (2019b) propose a Heightmap-Minimization method to minimize the volume
increase of the packed items as observed from the loading direction. Hu et al. (2020) optimize the
empty spaces available for the packing future with a Maximize-Accessible-Convex-Space method.

DRL for Online 3D-BPP The heuristic methods are intuitive to implement and can be easily
applied to various scenarios. However, the price of good flexibility is that these methods perform
mediocrely, especially for online 3D-BPP with specific constraints. Designing new heuristics for
specific classes of 3D-BPP is heavy work since this problem has an NP-hard solution space, many
situations need to be premeditated manually by trial and error. Substantial domain knowledge is
also necessary to ensure safety and reliability. To automatically generate a policy that works well on
specified online 3D-BPP, Verma et al. (2020); Zhao et al. (2021) employ the DRL method on solving
this problem, however, their methods only work in small discrete coordinate spaces. Despite their
limitations, these works are soon followed by Hong et al. (2020); Yang et al. (2021); Zhao et al.
(2022) for logistics robot implementation. Zhang et al. (2021) adopt a similar online placement
policy for offline packing needs referring to Hu et al. (2017). All these learning-based methods only
work in a grid world with limited discretization accuracy, which reduces their practical applicability.

Practical Constraints The majority of literature for 3D-BPP (Martello et al., 2000) only considers
the basic non-overlapping constraint 1 and containment constraint 2:

pdi + sdi ≤ pdj + Sd(1− edij) i 6= j, i, j ∈ I, d ∈ {x, y, z} (1)

0 ≤ pdi ≤ Sd − sdi i ∈ I, d ∈ {x, y, z} (2)
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Figure 1: PCT expansion illustrated using a 2D example (in xoz plane) for simplicity and the number of allowed
orientations |O| is 1 (see Appendix B for the 3D version). A newly added item introduces a series of empty
spaces and new candidate placements are generated, e.g., the left-bottom corner of the empty space.

Where pi means the front-left-bottom coordinate of item i and d the coordinate axis, eij takes
value 1 otherwise 0 if item i precedes item j along d. The algorithms for 3D-BPP are of limited
practical applicability if no even basic real-world constraints, e.g., stability (Ramos et al., 2016),
are considered. Zhao et al. (2022) propose a fast stability estimation method for DRL training and
test their learned policies with real logistics boxes. The flaw of their work is the heightmap (the
upper frontier of packed items) state representation like Zhang et al. (2021) is still used, while the
underlying constraints between packed items are missed. The unavailability of underlying spatial
information makes their problem a partially observable Markov Decision Process (Spaan, 2012)
which is not conducive to DRL training and limits the performance on 3D-BPP instances with more
complex practical constraints, like isle friendliness and load balancing (Gzara et al., 2020).

3 METHOD

In this section, we first introduce our PCT concept in Section 3.1 for describing the online packing
process. The parameterization of the tree structure and the leaf node selection policy are introduced
in Section 3.2 and Section 3.3 respectively. In Section 3.4, we formulate online 3D-BPP as Markov
Decision Process based on PCT, followed by the description of the training method.

3.1 PACKING CONFIGURATION TREE

When a rectangular item nt is added to a given packing with position (pxn, p
y
n, p

z
n) at time step

t, it introduces a series of new candidate positions where future items can be accommodated, as
illustrated in Figure 1. Combined with the axis-aligned orientation o ∈ O for nt based on existing
positions, we get candidate placements (i.e. position and orientation). The packing process can be
seen as a placement node being replaced by a packed item node, and new candidate placement nodes
are generated as children. As the packing time step t goes on, these nodes are iteratively updated
and a dynamic packing configuration tree is formed, denoted as T . The internal node set Bt ∈ Tt
represents the space configurations of packed items, and the leaf node set Lt ∈ Tt the packable
candidate placements. During the packing, leaf nodes that are no longer feasible, e.g., covered by
packed items, will be removed from Lt. When there is no packable leaf node that makes nt satisfy
the constraints of placement, the packing episode ends. Without loss of generality, we stipulate a
vertical top-down packing within a single bin (Wang & Hauser, 2019b).

Traditional 3D-BPP literature only cares about the remaining placements for accommodating the
current item nt, their packing policies can be written as π(Lt|Lt, nt). If we want to promote this
problem for practical demands, 3D-BPP needs to satisfy more complex practical constraints which
also act on Bt. Taking packing stability for instance, a newly added item nt has possibly force and
torque effect on the whole item set Bt (Ramos et al., 2016). The addition of nt should make Bt a
more stable spatial distribution so that more items can be added in the future. Therefore, our packing
policy over Lt is defined as π(Lt|Tt, nt), which means probabilities of selecting leaf nodes from Lt
given Tt and nt. For online packing, we hope to find the best leaf node selection policy to expand
the PCT with more relaxed constraints so that more future items can be appended.

Leaf Node Expansion Schemes The performance of online 3D-BPP policies has a strong rela-
tionship with the choice of leaf node expansion schemes –– which incrementally calculate new can-
didate placements introduced by the just placed item nt. A good expansion scheme should reduce
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the number of solutions to be explored while not missing too many feasible packings. Meanwhile,
polynomially computability is also expected. Designing such a scheme from scratch is non-trivial.
Fortunately, several placement rules independent from particular packing problems have been pro-
posed, such as Corner Point (Martello et al., 2000), Extreme Point (Crainic et al., 2008), and Empty
Maximal Space (Ha et al., 2017). We extend these schemes which have proven to be accurate and
efficient to our PCT expansion. The performance of learned policies will be reported in Section 4.1.

3.2 TREE REPRESENTATION

Given the bin configuration Tt and the current item nt, the packing policy can be parameterized as
π(Lt|Tt, nt). The tuple (Tt, nt) can be treated as a graph and encoded by Graph Neural Networks
(GNNs) (Gori et al., 2005). Specifically, the PCT keeps growing with time step t and cannot be
embedded by spectral-based approaches (Bruna et al., 2014) which require a fixed graph structure.
We adopt non-spectral Graph Attention Networks (GATs) (Velickovic et al., 2018), which require
no priori on graph structures.

The raw space configuration nodes Bt,Lt, nt are presented by descriptors in different formats. We
use three independent node-wise Multi-Layer Perceptron (MLP) blocks to project these hetero-
geneous descriptors into the homogeneous node features: ĥ = {φθB (Bt), φθL(Lt), φθn(nt)} ∈
Rdh×N , dh is the dimension of each node feature and φθ is an MLP block with its parameters θ.
The feature number N should be |Bt| + |Lt| + 1, which is a variable. The GAT layer is used to
transform ĥ into high-level node features. The Scaled Dot-Product Attention (Vaswani et al., 2017)
is applied to each node for calculating the relation weight of one node to another. These relation
weights are normalized and used to compute the linear combination of features ĥ. The feature of
node i embedded by the GAT layer can be represented as:

GAT(ĥi) = WO
N∑
j=1

softmax

(
(WQĥi)

TWK ĥj√
dk

)
WV ĥj (3)

Where WQ ∈ Rdk×dh , WK ∈ Rdk×dh , WV ∈ Rdv×dh , and WO ∈ Rdh×dv are projection
matrices, dk and dv are dimensions of projected features. The softmax operation normalizes the
relation weight between node i and node j. The initial feature ĥ is embedded by a GAT layer and
the skip-connection operation (Vaswani et al., 2017) is followed to get the final output features h:

h′ = ĥ + GAT(ĥ) h = h′ + φFF (h′) (4)

Where φFF is a node-wise Feed-Forward MLP with output dimension dh and h′ is an intermediate
variable. Equation 4 can be seen as an independent block and be repeated multiple times with differ-
ent parameters. We don’t extend GAT to employ the multi-head attention mechanism (Vaswani et al.,
2017) since we find that additional attention heads cannot help the final performance. We execute
Equation 4 once and we set dv = dk. More implementation details are provided in Appendix A.

3.3 LEAF NODE SELECTION

Given the node features h, we need to decide the leaf node indices for accommodating the current
item nt. Since the leaf nodes vary as the PCT keeps growing over time step t, we use a pointer
mechanism (Vinyals et al., 2015) which is context-based attention over variable inputs to select a
leaf node from Lt. We still adopt Scaled Dot-Product Attention for calculating pointers, the global
context feature h̄ is aggregated by a mean operation on h: h̄ = 1

N

∑N
i=1 hi. The global feature h̄ is

projected to a query q by matrixW q ∈ Rdk×dh and the leaf node features hL are utilized to calculate
a set of keys kL by W k ∈ Rdk×dh . The compatibility uL of the query with all keys are:

q = W qh̄ ki = W khi ui =
qT ki√
dk

(5)

Here hi only comes from hL. The compatibility vector uL ∈ R|Lt| represents the leaf node selection
logits. The probability distribution over the PCT leaf nodes Lt is:

πθ(Lt|Tt, nt) = softmax (cclip · tanh (uL)) (6)

Following Bello et al. (2017), the compatibility logits are clipped with tanh, where the range is
controlled by hyperparameter cclip, and finally normalized by a softmax operation.
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3.4 MARKOV DECISION PROCESS FORMULATION

The online 3D-BPP decision at time step t only depends on the tuple (Tt, nt) and can be formulated
as Markov Decision Process, which is constructed with state S, action A, transition P , and reward
R. We solve this MDP with an end-to-end DRL agent. The MDP model is formulated as follows.

State The state st at time step t is represented as st = (Tt, nt), where Tt consists of the internal
nodes Bt and the leaf nodes Lt. Each internal node b ∈ Bt is a spatial configuration of sizes
(sxb , s

y
b , s

z
b) and coordinates (pxb , p

y
b , p

z
b) corresponding to a packed item. The current item nt is a size

tuple (sxn, s
y
n, s

z
n). Extra properties will be appended to b and nt for specific packing preferences,

such as density, item category, etc. The descriptor for leaf node l ∈ Lt is a placement vector of sizes
(sxo , s

y
o , s

z
o) and position coordinates (px, py, pz), where (sxo , s

y
o , s

z
o) indicates the sizes of nt along

each dimension after an axis-aligned orientation o ∈ O. Only the packable leaf nodes which satisfy
placement constraints are provided.

Action The action at ∈ A is the index of the selected leaf node l, denoted as at = index(l).
The action space A has the same size as Lt. A surge of learning-based methods (Zhao et al., 2021)
directly learn their policy on a grid world through discretizing the full coordinate space, where |A|
grows explosively with the accuracy of the discretization. Different from existing works, our action
space solely depends on the leaf node expansion scheme and the packed items Bt. Therefore, our
method can be used to solve online 3D-BPP with continuous solution space. We also find that even if
only an intercepted subset Lsub ∈ Lt is provided, our method can still maintain a good performance.

Transition The transition P(st+1|st) is jointly determined by the current policy π and the prob-
ability distribution of sampling items. Our online sequences are generated on-the-fly from an item
set I in a uniform distribution. The generalization performance of our method on item sampling
distributions different from the training one is discussed in Section 4.4.

Reward Our reward function R is defined as rt = cr · wt once nt is inserted into PCT as an
internal node successfully, otherwise, rt = 0 and the packing episode ends. Here cr is a constant
and wt is the weight of nt. The choice of wt depends on the customized needs. For simplicity and
clarity, unless otherwise noted, we set wt as the volume occupancy vt of nt, where vt = sxn · syn · szn.

Training Method A DRL agent seeks for a policy π(at|st) to maximize the accumulated dis-
counted reward. Our DRL agent is trained with the ACKTR method (Wu et al., 2017). The actor
weighs the leaf nodes Lt and outputs the policy distribution πθ(Lt|Tt, nt). The critic maps the global
context h̄ into a state value prediction to predict how much accumulated discount reward the agent
can get from t and helps the training of the actor. The action at is sampled from the distribution
πθ(Lt|Tt, nt) for training and we take the argmax of the policy for the test.

ℎ𝑙෠ℎ𝑙

(a) (b)

Packed / Placement / Current / Dummy node

Tree edge Relation Projection

Figure 2: Batch calculation for PCT.

ACKTR runs multiple parallel processes for gather-
ing on-policy training samples. The node number N
of each sample varies with the time step t and the
packing sequence of each process. For batch calcu-
lation, we fullfill PCT to a fixed length with dummy
nodes, as illustrated by Figure 2 (a). These redundant
nodes are eliminated by masked attention (Velickovic
et al., 2018) during the feature calculation of GAT.
The aggregation of h only happens on the eligible
nodes. For preserving node spatial relations, state st
is embedded by GAT as a fully connected graph as
Figure 2 (b), without any inner mask operation. More
implementation details are provided in Appendix A.

4 EXPERIMENTS

In this section, we first report the performance of our PCT model combined with different leaf node
expansion schemes. Then we will demonstrate the benefits of the PCT structure: better node spatial
relation representations as well as more flexible action space. Finally, we test the generalization
performance of our method and extend it to other online 3D-BPP with complex practical constraints.

Baselines Although there are very few online packing implementations publicly available, we still
do our best to collect or reproduce various online 3D-BPP algorithms, both heuristic and learning-
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based, from potentially relevant literature. We help the heuristic methods to make a pre-judgment of
placement constraints, e.g., stability, in case of premature downtime. The learning-based agents are
trained until there are no significant performance gains. Although both Zhao et al. (2022) and Zhao
et al. (2021) are learning-based methods recently proposed, we only compare with the former since
it is the upgrade of the latter. We also compare with the reported results of Zhang et al. (2021) under
the same condition. All methods are implemented in Python and tested on 2000 instances with a
desktop computer equipped with a Gold 5117 CPU and a GeForce TITAN V GPU. We publish the
source code of our method along with related baselines at Github1.

Datasets Some baselines like Karabulut & Inceoglu (2004) need to traverse the entire coordinate
space to find the optimal solution, and the running costs explode as the spatial discretization accuracy
increases. To ensure that all algorithms are runnable within a reasonable period, we use the discrete
dataset proposed by Zhao et al. (2021) without special declaration. The bin sizes Sd are set to 10
with d ∈ {x, y, z} and the item sizes sd ∈ Z+ are not greater than Sd/2 to avoid over-simplified
scenarios. Our performance on a more complex continuous dataset will be reported in Section 4.3.
Considering that there are many variants of 3D-BPP, we choose three representative settings:

Setting 1: Following Zhao et al. (2022), the stability of the Bt is checked when nt is placed. Only
two horizontal orientations (|O| = 2) are permitted for robot manipulation convenience.
Setting 2: Following Martello et al. (2000), item nt only needs to satisfy Constraint 1 and 2. Arbi-
trary orientation (|O| = 6) is allowed here. This is the most common setting in 3D-BPP literature.
Setting 3: Inherited from setting 1, each item nt has an additional density property ρ sampled from
(0, 1] uniformly. This information is appended into the descriptors of Bt and nt.

4.1 PERFORMANCE OF PCT POLICIES

We first report the performance of our PCT model combined with different leaf node expansion
schemes. Three existing schemes which have proven to be both efficient and effective are adopted
here: Corner Point (CP), Extreme Point (EP), and Empty Maximal Space (EMS). These schemes
are all related to boundary points of a packed item along d axis. We combine the start/end points of
nt with the boundary points of b ∈ Bt to get the superset, namely Event Point (EV). See Appendix B
for details and learning curves. We extend these schemes to our PCT model. Although the number
of leaf nodes generated by these schemes is within a reasonable range, we only randomly intercept a
subset Lsubt from Lt if |Lt| exceeds a certain length, for saving computing resources. The intercep-
tion length is a constant during training and determined by a grid search (GS) during the test. See
Appendix A for implementation details. The performance comparisons are summarized in Table 1.

Table 1: Performance comparisons. Uti. and Num. mean the average space utilization and the average number
of packed items separately. Var. (×10−3) is the variance of Uti. and Gap is w.r.t. the best Uti. across all methods.
Random andRandom& EV randomly pick placements from full coordinates and full EV nodes respectively.
DBL, LSAH, MACS, and BR are heuristic methods proposed by Karabulut & Inceoglu (2004), Hu et al. (2017),
Hu et al. (2020), and Zhao et al. (2021). Ha et al. (2017), LSAH, and BR are heuristics based on EMS.

Setting 1 Setting 2 Setting 3
Method Uti. Var. Num. Gap Uti. Var. Num. Gap Uti. Var. Num. Gap

H
eu

ri
st

ic

Random 36.7% 10.3 14.9 51.7% 38.6% 8.3 15.7 55.1% 36.8% 10.6 14.9 51.4%
BR 49.0% 10.8 19.6 35.5% 56.7% 6.6 22.6 34.1% 48.9% 10.7 19.5 35.4%
Ha et al. 52.1% 20.1 20.6 31.4% 59.9% 10.4 23.8 30.3% 51.9% 20.2 20.6 31.4%
LSAH 52.5% 12.2 20.8 30.9% 65.0% 6.1 25.6 24.4% 52.4% 12.2 20.7 30.8%
Wang & Hauser 57.6% 11.5 24.1 24.2% 66.1% 8.4 25.9 23.1% 56.5% 11.2 22.3 25.4%
MACS 57.7% 10.5 22.6 24.1% 50.8% 8.8 20.1 40.9% 57.7% 10.6 22.6 23.8%
DBL 60.5% 8.8 23.8 20.4% 70.6% 7.9 27.8 17.9% 60.5% 8.9 23.8 20.1%

L
ea

rn
in

g-
ba

se
d

Zhao et al. 70.9% 6.2 27.5 6.7% 70.3% 4.3 27.4 18.3% 59.6% 5.4 23.1 21.3%
PCT & CP 69.4% 5.4 26.7 8.7% 81.8% 2.0 31.3 4.9% 69.5% 5.4 26.7 8.2%
PCT & EP 71.9% 6.6 27.8 5.4% 78.1% 3.8 30.3 9.2% 72.2% 5.8 27.9 4.6%
PCT & FC 72.4% 4.7 28.0 4.7% 76.9% 3.3 29.7 10.6% 69.8% 5.3 27.1 7.8%
PCT & EMS 75.8% 4.4 29.3 0.3% 86.0% 1.9 33.0 0.0% 75.5% 4.7 29.2 0.3%
PCT & EV 76.0% 4.2 29.4 0.0% 85.3% 2.1 32.8 0.8% 75.7% 4.6 29.2 0.0%
PCT & EVF 75.7% 4.8 29.2 0.4% 80.5% 2.9 31.0 6.4% 73.5% 4.6 28.4 2.9%
PCT & EV/GS 75.8% 4.7 29.2 0.3% 84.8% 2.1 32.6 1.4% 75.5% 4.8 29.1 0.3%
Random & EV 45.7% 13.5 18.4 39.9% 51.0% 8.3 20.4 40.7% 45.1% 12.5 18.1 40.4%

1https://github.com/alexfrom0815/Online-3D-BPP-PCT
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Although PCT grows under the guidance of heuristics, the combinations of PCT with EMS and
EV still learn effective and robust policies outperforming all baselines by a large margin regarding
all settings. Note that the closer the space utilization is to 1, the more difficult online 3D-BPP is.
It is interesting to see that policies guided by EMS and EV even exceed the performance of the
full coordinate space (FC) which is expected to be optimal. This demonstrates that a good leaf
node expansion scheme reduces the complexity of the problem and helps DRL agents learn better
performance. To prove that the interception of Lt will not harm the final performance, we train
agents with full leaf nodes derived from the EV scheme (EVF) and the test performance is slightly
worse than the intercepted cases. We conjecture that the interception keeps the final performance
may be caused by two reasons. First, sub-optimal solutions for online 3D-BPP may exist even in
the intercepted leaf node set Lsub. In addition, the randomly chosen leaf nodes force the agent
to make new explorations in case the policy π falls into the local optimum. We remove GS from
EV cases to prove its effectiveness. The performance of Zhao et al. (2022) deteriorates quickly in
setting 2 and setting 3 due to the multiplying orientation space and insufficient state representation
separately. Running costs, scalability performance, behavior understanding, visualized results, and
the implementation details of our real-world packing system can all be found in Appendix C.

We also repeat the same experiment as Zhang et al. (2021) which pack items sampled from a pre-
defined item set |I| = 64 in setting 2. While Zhang et al. (2021) packs on average 15.6 items and
achieves 67.0% space utilization, our method packs 19.7 items with a space utilization of 83.0%.

4.2 BENEFITS OF TREE PRESENTATION

Here we verify that the PCT representation does help online 3D-BPP tasks. For this, we embed each
space configuration node independently like PointNet (Qi et al., 2017) to prove the node spatial
relations help the final performance. We also deconstruct the tree structure into node sequences and
embed them with Ptr-Net (Vinyals et al., 2015), which selects a member from serialized inputs, for
indicating that the graph embedding fashion fits our tasks well. We have verified that an appropriate
choice of Lt makes DRL agents easy to train, then we remove the internal nodes Bt from Tt, along
with its spatial relations with other nodes, to prove Bt is also a necessary part. We choose EV as the
leaf node expansion scheme here. The comparison results are summarized in Table 2.

Table 2: A graph embedding for complete PCT helps the final performance.

Setting 1 Setting 2 Setting 3
Presentation Uti. Var. Num. Gap Uti. Var. Num. Gap Uti. Var. Num. Gap

PointNet 69.2% 6.7 26.9 8.9% 78.9% 3.2 30.5 7.5% 71.5% 5.3 27.7 5.5%
Ptr-Net 64.1% 10.0 25.1 15.7% 77.5% 4.1 30.1 9.1% 63.5% 7.9 24.8 16.1%
PCT (T /B) 70.9% 5.9 27.5 6.7% 84.1% 2.6 32.3 1.4% 70.6% 5.3 27.4 6.7%
PCT (T ) 76.0% 4.2 29.4 0.0% 85.3% 2.1 32.8 0.0% 75.7% 4.6 29.2 0.0%

If we ignore the spatial relations between the PCT nodes or only treat the state input as a flattened
sequence, the performance of the learned policies will be severely degraded. The presence of B
functions more on setting 1 and setting 3 since setting 2 allows items to be packed in any empty
spaces without considering constraints with internal nodes. This also confirms that a complete PCT
representation is essential for online 3D-BPP of practical needs.

4.3 PERFORMANCE ON CONTINUOUS DATASET

𝑧

xo

The most concerning issue about online 3D-BPP is their solution space limit.
Given that most learning-based methods can only work in a limited discrete
coordinate space, we directly test our method in a continuous bin with sizes
Sd = 1 to prove our superiority. Due to the lack of public datasets for online
3D-BPP issues, we generate item sizes through a uniform distribution sd ∼
U(a, Sd/2), a is set to 0.1 in case endless items are generated. Specifically,
for 3D-BPP instances where stability is considered, the diversity of item size
sz needs to be controlled. If all subsets of Bt meet:∑

i∈Bsub1

szi 6=
∑

i∈Bsub2

szi Bsub1 6= Bsub2,Bsub1,Bsub2 ∈ Bt (7)
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This means any packed items cannot form a new plane for providing support in the direction of
gravity and the available packing areas shrink. Excessive diversity of sz will degenerate 3D-BPP into
1D-BPP as shown in the toy demo. To prevent this degradation from leading to the underutilization
of the bins, we sample sz from a finite set {0.1, 0.2, . . . , 0.5} on setting 1 and setting 3.

Table 3: Online 3D-BPP with continuous solution space.

Setting 1 Setting 2 Setting 3
Method Uti. Var. Num. Gap Uti. Var. Num. Gap Uti. Var. Num. Gap

H
eu

. BR 40.9% 7.4 16.1 37.5% 45.3% 5.2 17.8 31.7% 40.9% 7.3 16.1 38.6%
Ha et al. 43.9% 14.2 17.2 32.9% 46.1% 6.8 18.1 30.5% 43.9% 14.2 17.2 34.1%
LSAH 48.3% 12.1 18.7 26.1% 58.7% 4.6 22.8 11.5% 48.4% 12.2 18.8 27.3%

D
R

L GD 5.6% − 2.2 91.4% 7.5% − 2.9 88.7% 5.2% − 2.1 92.2%
PCT & EMS 65.3% 4.4 24.9 0.2% 66.3% 2.3 27.0 0.0% 66.6% 3.3 25.3 0.0%
PCT & EV 65.4% 3.3 25.0 0.0% 65.0% 2.6 26.4 2.0% 65.8% 3.6 25.1 2.7%

We find that some heuristic methods (Ha et al., 2017) also have the potential to work in the contin-
uous domain. We improve these methods as our baselines. Another intuitive approach for solving
online 3D-BPP with continuous solution space is driving a DRL agent to sample actions from a
gaussian distribution (GD) and output continuous coordinates directly. The test results are summa-
rized in Table 3. Although the continuous-size item set is infinite (|I| = ∞) which increases the
difficulty of the problem and reduces the performance of all methods, our method still performs
better than all competitors. The DRL agent which outputs continuous actions directly cannot even
converge and their variance is not considered. Our work is, to our knowledge, the first that deploys
the learning-based method on solving online 3D-BPP with continuous solution space successfully.

4.4 GENERALIZATION ON DIFFERENT DISTRIBUTIONS

The generalization ability of learning-based methods has always been a concern. Here we demon-
strate that our method has a good generalization performance on item size distributions different
from the training one. We conduct this experiment with continuous solution space. We sample sd
from normal distributions N(µ, σ2) for generating test sequences where µ and σ are the expecta-
tion and the standard deviation. Three normal distributions are adopted here, namely N(0.3, 0.12),
N(0.1, 0.22), and N(0.5, 0.22), as shown in Figure 3. The larger µ of the normal distribution, the
larger the average size of sampled items. We still control sd within the range of [0.1, 0.5]. If the
sampled item sizes are not within this range, we will resample until it meets the condition.

Table 4: Generalization performance on different kinds of item sampling distributions.

Setting 1 Setting 2 Setting 3
Test Distribution Method Uti. Var. Num. Uti. Var. Num. Uti. Var. Num.

LSAH 48.3% 12.1 18.7 58.7% 4.6 22.8 48.4% 12.2 18.8
sd ∼ U(0.1, 0.5) PCT & EMS 65.3% 4.4 24.9 66.3% 2.3 27.0 66.6% 3.3 25.3

PCT & EV 65.4% 3.3 25.0 65.0% 2.6 26.4 65.8% 3.6 25.1

LSAH 49.2% 11.1 18.9 60.0% 4.1 22.9 49.2% 11.0 18.9
sd ∼ N(0.3, 0.12) PCT & EMS 66.1% 3.6 25.1 64.3% 3.5 25.6 66.4% 3.0 25.2

PCT & EV 65.1% 2.8 24.7 63.7% 2.6 25.3 66.2% 2.9 25.1

LSAH 52.4% 8.9 30.3 62.9% 2.4 44.3 52.3% 8.9 30.2
sd ∼ N(0.1, 0.22) PCT & EMS 68.5% 2.5 39.0 66.4% 3.0 49.7 69.2% 2.5 39.4

PCT & EV 66.5% 2.7 38.0 64.9% 2.7 48.3 67.4% 2.4 38.5

LSAH 47.3% 12.6 13.0 56.0% 5.5 12.9 47.3% 12.6 13.0
sd ∼ N(0.5, 0.22) PCT & EMS 63.5% 5.0 17.3 64.5% 2.8 15.4 65.2% 3.8 17.7

PCT & EV 65.1% 3.3 17.7 64.5% 2.8 15.3 65.1% 3.7 17.7

We directly transfer our policies trained onU(0.1, 0.5) to these new datasets without any fine-tuning.
We use the best-performing heuristic method LSAH (Hu et al., 2017) in Section 4.3 as a baseline.
The test results are summarized in Table 4. Our method performs well on the distributions different
from the training one and always surpasses the LSAH method. See Appendix C for more results
about the generalization ability of our method on disturbed distributions and unseen items.
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Figure 3: The probability distribution for sampling item sizes. The area of the colored zone is normalized to 1.

4.5 MORE COMPLEX PRACTICAL CONSTRAINTS

To further prove that our method fits 3D-BPP with complex constraints well, we give two demon-
strations about extending our method to online 3D-BPP with additional practical constraints: isle
friendliness and load balancing (Gzara et al., 2020):

3D-BPP with Isle Friendliness Isle friendliness refers to that items belonging to the same cat-
egory should be packed as closely as possible. The item weight is set as wt = max(0, vt − c ·
dist(nt,Bt)), c is a constant. The additional object function dist(nt,Bt) means the average dis-
tance between nt and the items of the same category in Bt. The additional category information is
appended into the descriptors of Bt and nt. Four item categories are tested here.

3D-BPP with Load Balancing Load balancing dictates that the packed items should have an even
mass distribution within the bin. The item weight is set as wt = max(0, vt−c ·var(nt,Bt)). Object
var(nt,Bt) is the variance of the mass distribution of the packed items on the bottom of the bin.

Table 5: Online 3D-BPP with practical constraints. Obj. means the task-specific objective score, the smaller
the better. Setting 2 involves no mass property and the load balancing is not considered.

Setting 1 Setting 2 Setting 3
Method Uti. Num. Obj. Uti. Num. Obj. Uti. Num. Obj.

Isle Friendliness Zhao et al. 58.3% 22.5 4.58 64.2% 24.8 4.67 59.0% 22.8 4.60
PCT & EV 72.1% 29.0 4.44 85.2% 32.8 2.69 74.6% 28.8 4.45

Load Balancing Zhao et al. 60.3% 23.3 88.0 − 61.1% 23.7 30.1
PCT & EV 73.7% 28.6 40.5 − 74.0% 28.7 20.9

We choose the learning-based method Zhao et al. (2022) as our baseline since heuristic methods only
take space utilization as their objects. The results are summarized in Table 5. Compared with the
baseline algorithm, our method better achieves the additional object while still taking into account
the space utilization as the primary.

5 DISCUSSION

We formulate the online 3D-BPP as a novel hierarchical representation -– packing configuration
tree. PCT is a full-fledged description of the state and action space of bin packing which makes
the DRL agent easy to train and well-performing. We extract state feature from PCT using graph
attention networks which encodes the spatial relations of all space configuration nodes. The graph
representation of PCT helps the agent with handling online 3D-BPP with complex practical con-
straints, while the finite leaf nodes prevent the action space from growing explosively. Our method
surpasses all other online 3D-BPP algorithms and is the first learning-based method that solves on-
line 3D-BPP with continuous solution space successfully. Our method performs well even on item
sampling distributions different from the training one. We also give demonstrations to prove that our
method is versatile in terms of incorporating various practical constraints. For future research, we
are extremely interested in applying our method to the more difficult irregular shape packing (Wang
& Hauser, 2019a), where the sampling costs for training DRL agents are more expensive and the
solution space will be far more complex. A good strategy for balancing exploration and exploitation
for learning agents is eagerly needed in this situation. Finding other alternatives for better represent-
ing 3D-BPP with different packing constraints and designing better leaf node expansion schemes
for PCT are also interesting directions.
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We believe the broader impact of this research is significant. BPP is considered one of the most
needed academic problems due to its wide applicability in our daily lives (Skiena, 1997). Providing
a good solution to online 3D-BPP yields direct and profound impacts beyond academia. We note
that online packing setups have been already widely deployed in logistics hubs and manufacturing
plants. A good online 3D-BPP policy benefits all the downstream operations like package wrapping,
transportation, warehousing, and distribution.

Our method can also be treated as a separate decision module and utilized to solve other variants
of 3D-BPP issues, such as multi-bin online 3D-BPP, online 3D-BPP with lookahead (Zhao et al.,
2021), online placement decision for offline 3D-BPP (Hu et al., 2017), and the logistics robot imple-
mentation for online packing (Zhao et al., 2022), which have been well studied in previous works.
We give demonstrations about applying our method to solving online 3D-BPP with various complex
practical constraints, the similar idea can also be adopted to meet other customized desires.
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Our real-world video demo is submitted with the supplemental material. The source code of
our method and related baselines is published at https://github.com/alexfrom0815/
Online-3D-BPP-PCT.
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In this appendix, we provide more details and statistical results of our PCT method. Our real-world
packing demo is also submitted with the supplemental material.

• Section A gives more descriptions about training methods, which include the implementa-
tion of the deep reinforcement learning method, specific GAT network designs for extract-
ing problem features from PCT, and recommendations for finding suitable PCT length.

• Section B elaborates the concept of the leaf node expansion schemes adopted for finding
candidate placements in our method. Learning curves and the computational complexity
analysis of these schemes are also provided in this section.

• Section C reports more statistical results of our method, including further discussions on
generalization ability, running costs, and scalability. The understanding of model behav-
iors, the visualized results, and details of our real-world packing system are also provided.

A IMPLEMENTATION DETAILS

Deep Reinforcement Learning We formulate online 3D-BPP as Markov Decision Process and
solve it with the deep reinforcement learning method. A DRL agent seeks for a policy π to maximize
the accumulated discounted reward:

J(π) = Eτ∼π[

∞∑
t=0

γtR(st, at)] (8)

Where γ ∈ [0, 1] is the discount factor, and τ = (s0, a0, s1, . . .) is a trajectory sampled based on the
policy π. We extract the feature of state st = (Tt, nt) using graph attention networks (Velickovic
et al., 2018) for encoding the spatial relations of all space configuration nodes. The context feature
is fed to two key components of our pipeline: an actor network and a critic network. The actor
network, designed based on pointer mechanism, weighs the leaf nodes of PCT, which is written as
π(at|st). The action at is an index of selected leaf node l ∈ Lt, denoted as at = index(l). The
critic network maps the context feature into a state value prediction V (st) which helps the training
of actor network. The whole network is trained via a composite loss L = α · Lactor + β · Lcritic
(α = β = 1 in our implementation), which consists of actor loss Lactor and critic loss Lcritic.
These two loss functions are defined as:{

Lactor = (rt + γV (st+1)− V (st)) log π(at|st)
Lcritic = (rt + γV (st+1)− V (st))

2 (9)

Where rt = cr · wt is our reward signal and we set γ as 1 since the packing episode is finite. We
adopt a step-wise reward rt = cr · wt once nt is inserted into PCT as an internal node successfully.
Otherwise, rt = 0 and the packing episode ends. The choice of item weight wt depends on the
packing preferences. In the general sense, we set wt as the volume occupancy vt = sxn ·syn ·szn of nt,
and the constant cr is 10/(Sx ·Sy ·Sz). For online 3D-BPP with additional packing constraints, this
weight can be set as wt = max(0, vt − c · O(st, at)). While term vt ensures that space utilization
is still the primary concern, the objective function O(st, at) guides the agent to satisfy additional
constraints like isle friendliness and load balancing. We adopt ACKTR (Wu et al., 2017) method
for training our DRL agent, which iteratively updates an actor and a critic using Kronecker-factored
approximate curvature (K-FAC) (Martens & Grosse, 2015) with trust region. Zhao et al. (2021)
have demonstrated that this method has a surprising superiority on online 3D packing problems over
other model-free DRL algorithms like SAC (Haarnoja et al., 2018).

Feature extraction Specifically, ACKTR runs multiple parallel processes (64 here) to interact
with their respective environments and gather samples. The different processes may have different
packing time step t and deal with different packing sequences, the space configuration nodes number
N also changes. To combine these data with irregular shapes into one batch, we fullfill Bt and Lt to
fixed lengths, 80 and 25 · |O| respectively, with dummy nodes. The descriptors for dummy nodes are
all-zero vectors and have the same size as the internal nodes or the leaf nodes. The relation weight
logits uij of dummy node j to arbitrary node i is replaced with −inf to eliminate these dummy
nodes during the feature calculation of GAT. The global context feature h̄ is aggregated only on the
eligible nodes h: h̄ = 1

N

∑N
i=1 hi. All space configuration nodes are embedded by GAT as a fully

connected graph as Figure 2 (b), without any inner mask operation.
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We only provide the packable leaf nodes which satisfy placement constraints for DRL agents. For
setting 2, we check in advance if a candidate placement satisfies Constraint 1 and 2. For setting 1
and setting 3 where the mass of item nt is vt and ρ · vt respectively, we will additionally check if
one placement meets the constraints of packing stability. Benefits from the fast stability estimation
method proposed by Zhao et al. (2022), this pre-checking process can be completed in a very short
time, and our DRL agent samples data at a frequency of more than 400 FPS.

The node-wise MLPs φθB , φθL , and φθn used to embed raw space configuration nodes are two-layer
linear networks with LeakyReLU activation function. φFF is a two-layer linear structure activated
by ReLU. The feature dimensions dh, dk, and dv are 64. The hyperparameter cclip used to control
the range of clipped compatibility logits is set to 10 in our GAT implementation.

Choice of PCT Length Since PCT allows discarding some valid leaf nodes and this will not
harm our performance, we randomly intercept a subset Lsubt from Lt if |Lt| exceeds a certain
length. Determining the suitable PCT length for different bin configurations is important, we give
our recommendations for finding this hyperparameter. For training, we find that the performance
of learned policies is more sensitive to the number of allowed orientations |O|. Thus we set the
PCT length as c · |O| where c can be determined by a grid search nearby c = 25 for different bin
configurations. For our experiments, c = 25 works quite well. During the test, the PCT length can
be different from the training one, we suggest searching this interception length with a validation
dataset via a grid search which ranges from 50 to 300 with step length 10.

B LEAF NODE EXPANSION SCHEMES
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Figure 4: Learning curves on setting 1. A good
expansion scheme for PCT reduces the complex-
ity and helps DRL methods for more efficient
learning and better performance. EVF means the
full EV leaf node set without an interception.

We introduce the leaf node expansion schemes
adopted in our PCT implementation here. These
schemes are used to incrementally calculate new can-
didate placements introduced by the just placed item
nt. A good expansion scheme should reduce the num-
ber of solutions to be explored while not missing too
many feasible packings. Meanwhile, polynomially
computability is also expected. As shown in Figure 4,
the policies guided by suitable leaf node expansion
schemes outperform the policy trained on a full coor-
dinate (FC) space in the whole training process. We
extend three existing heuristic placement rules which
have proven to be both accurate and efficient to our
PCT expansion, i.e. Corner Point, Extreme Point, and
Empty Maximal Space. Since all these schemes are
related to boundary points of packed items, we com-
bine the start/end points of nt with these boundary
points as a superset, namely Event Point.

Corner Point Martello et al. (2000) first introduce the concept of Corner Point (CP) for their
branch-and-bound methods. Given 2D packed items in the xoy plane, the corner points can be
found where the envelope of the items in the bin changes from vertical to horizontal, as shown in
Figure 5 (a). The past corner points which no longer meet this condition will be deleted. Extend
this 2D situation to 3D cases, the new candidate 3D positions introduce by the just placed item
nt are a subset of {(pxn + sxn, p

y
n, p

z
n), (pxn, p

y
n + syn, p

z
n), (pxn, p

y
n, p

z
n + szn)} if the envelope of the

corresponding 2D plane, i.e.xoy, yoz, and xoz, is changed by nt. The time complexity of finding
3D corner points incrementally is O(c) with an easy-to-maintained bin height map data structure to
detect the change of envelope on each plane, c is a constant here.

Extreme Point Crainic et al. (2008) extend the concept of Corner Point to Extreme Point (EP)
and claim their method reaches the best offline performance of that era. Its insight is to provide
the means to exploit the free space defined inside a packing by the shapes of the items that already
exist. When the current item nt is added, new EPs are incrementally generated by projecting the
coordinates {(pxn + sxn, p

y
n, p

z
n), (pxn, p

y
n + syn, p

z
n), (pxn, p

y
n, p

z
n + syn)} on the orthogonal axes, e.g.,

project (pxn+sxn, p
y
n, p

z
n) in the directions of the y and z axes to find intersections with all items lying

between item nt and the boundary of the bin. The nearest intersection in the respective direction is an
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(a) CPs (b) EPs (c) EMSs (d) EVs

xo

y

Envelope

Figure 5: Full candidate positions generated by different PCT expansion schemes (all in xoy plane). The gray
dashed lines are the boundaries of the bin. Circles in (a) and (b) represent corner points and extreme points
respectively. (c): The candidate positions (circles) introduced by different EMSs are rendered with different
colors. All intersections of two dashed lines in (d) constitute event points.

extreme point. Since we stipulate a vertical top-down loading direction, the 3D extreme points in the
strict sense may exist a large item blocking the loading direction. So we find the 2D extreme points
(see Figure 5 (b)) in the xoy plane and repeat this operation on each distinct pz value (i.e. start/end
z coordinate of a packed item) which satisfies pzn ≤ pz ≤ pzn + szn. The time complexity of this
method is O(m · |B2D|), where B2D is the packed items that exist in the corresponding z plane and
m is the number of related z scans.

Empty Maximal Space Empty Maximal Spaces (EMSs) (Ha et al., 2017) are the largest empty
orthogonal spaces whose sizes cannot extend more along the coordinate axes from its front-left-
bottom (FLB) corner. This is a simple and effective placement rule. An EMS e is presented by
its FLB corner (pxe , p

y
e , p

z
e) and sizes (sxe , s

y
e , s

z
e). When the current item nt is placed into e on its

FLB corner, this EMS is split into three smaller EMSs with positions (pxe + sxn, p
y
e , p

z
e), (p

x
e , p

y
e +

syn, p
z
e), (p

x
e , p

y
e , p

z
e+szn) and sizes (sxe−sxn, sye , sze), (sxe , sye−syn, sze), (sxe , sye , sze−szn), respectively.

If the item nt only partially intersects with e, we can apply a similar volume subtraction to the
intersecting part for splitting e. For each ems, we define the left-up (pxe , p

y
e + sye , p

z
e), right-up

(pxe + sxe , p
y
e + sye , p

z
e), left-bottom (pxe , p

y
e , p

z
e), and right-bottom (pxe + sxe , p

y
e , p

z
e) corners of its

vertical bottom as candidate positions, as shown in Figure 5 (c). These positions also need to be
converted to the FLB corner coordinate for placing item nt. The left-up, right-up, left-bottom and
right-bottom corners of e should be converted to (pxe , p

y
e+sye−syn, pze), (pxe+sxe−sxn, pye+sye−syn, pze),

(pxe , p
y
e , p

z
e), and (pxe + sxe − sxn, p

y
e , p

z
e) respectively. Since all EMSs e ∈ E in the bin needs to

detect intersection with nt, the time complexity of finding 3D EMSs incrementally is O(|E|). A 3D
schematic diagram of PCT expansion guided by EMSs is provided in Figure 6.

Initial Configuration

𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑𝒕 = 𝟎 . . .
Figure 6: A 3D PCT expansion schematic diagram. This PCT grows under the guidance of the EMS expansion
scheme. For simplicity, we only choose the bottom-right-up corners of each EMS as candidate positions and
we set |O| = 1 here.

Event Point It’s not difficult to find that all schemes mentioned above are related to boundary
points of a packed item along d ∈ {x, y} axes (we assume the initial empty bin is also a special
packed item here). When the current item nt is packed, we update the existing PCT leaf nodes by
scanning all distinct pz values which satisfy pzn ≤ pz ≤ pzn + szn and combine the start/end points
of nt with the boundary points that exist in this z plane to get the superset (see Figure 5 (d)), which
is called Event Points. The time complexity for detecting event points is O(m · |B2D|2).
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C MORE RESULTS

In this section, we report more results of our method. Section C.1 further discusses the generalization
ability of our method on disturbed item sampling distributions and unseen items. Section C.2 reports
the running cost of each method. Section C.3 scales our method to a larger problem and reports
the performance. Section C.4 visualizes packing sequences to analyze model behavior and more
visualized results are provided in Section C.5. Section C.6 introduces our real-world packing system.

C.1 FURTHER DISCUSSIONS ON GENERALIZATION

We have verified in Section 4.4 that our method has good generalization performance on item sam-
pling distributions different from the training one. Now we further analyze the generalization ability
of our method. Firstly, we demonstrate that our algorithm has a good generalization performance on
disturbed item sampling distributions. We conduct this experiment in the discrete setting where the
item set is finite (|I| = 125). For each item i ∈ I, we add a random non-zero disturbance δi on its
original sample probability pi, e.g., pi = pi ·(1−δi). We normalize the disturbed pi as the final item
sampling probability. Note that δi is fixed during sampling one complete sequence. The state tran-
sition of DRL P(st+1|st) which is partly determined by the probabilities of sampling items will be
different from the training transition where the uniform distribution sample items with equal proba-
bilities. Generalizing to a new transition is a classic challenge for reinforcement learning (Taylor &
Stone, 2009). We test different ranges of δi and the results are summarized in Table 6.

Table 6: Transfer the best-performing PCT policies directly to the disturbed item sampling distributions.
Dif. means how much the generalization performance drops from the undisturbed case (δi = 0).

Setting 1 Setting 2 Setting 3
Disturbance Uti. Var. Num. Dif. Uti. Var. Num. Dif. Uti. Var. Num. Dif.

δi = 0 76.0% 4.2 29.4 0.0% 86.0% 1.9 33.0 0.0% 75.7% 4.6 29.2 0.0%
δi ∈ [−20%, 20%] 75.6% 4.6 29.1 0.5% 85.7% 2.1 32.8 0.3% 75.3% 4.5 29.0 0.5%
δi ∈ [−40%, 40%] 75.5% 4.5 29.0 0.7% 85.6% 2.1 32.8 0.5% 75.6% 4.8 29.3 0.1%
δi ∈ [−60%, 60%] 75.5% 4.3 28.9 0.7% 85.8% 2.1 32.8 0.2% 75.5% 4.8 28.9 0.3%
δi ∈ [−80%, 80%] 75.7% 4.5 29.2 0.4% 85.6% 2.2 32.9 0.5% 75.4% 4.9 29.3 0.4%
δi ∈ [−100%, 100%] 75.8% 4.4 29.0 0.3% 85.5% 2.2 32.6 0.6% 75.3% 4.7 29.3 0.5%

Benefits from the efficient guidance of heuristic leaf node expansion schemes, our method maintains
its performance under various amplitude disturbances. Our method even behaves well with a strong
disturbance δi ∈ [−100%, 100%] applied, which means some items may never be sampled by some
distributions when δi = 1 and pi · (1− δi) = 0 in a specific sequence.

Beyond experiments on generalization to disturbed distributions, we also test our method with un-
seen items. We conduct this experiment in the discrete setting. We randomly delete 25 items from I
and train PCT policies with |Isub| = 100. Then we test the trained policies on full I. See Table 7 for
results. Our method still performs well on datasets where unseen items exist regarding all settings.

Table 7: Generalization performance on unseen items. All policies are trained with the EV scheme.

Setting 1 Setting 2 Setting 3
Train Test Uti. Var. Num. Uti. Var. Num. Uti. Var. Num.

|I| = 125 |I| = 125 76.0% 4.2 29.4 85.3% 2.1 32.8 75.7% 4.6 29.2
|Isub| = 100 |Isub| = 100 74.4% 5.1 29.4 86.3% 1.7 33.8 74.2% 4.7 29.3
|Isub| = 100 |I| = 125 74.6% 5.4 28.9 85.6% 2.6 33.0 74.4% 5.2 28.8

C.2 RUNNING COSTS

For 3D-BPP of online needs, the running cost for placing each item is especially important. We
count the running costs of the experiments in Section 4.1 and Section 4.3 and summarize them in
Table 8. Each running cost at time step t is counted from putting down the previous item nt−1 until
the current item nt is placed, which includes the time to make placement decisions, the time to check
placement feasibility, and the time to interact with the packing environment. The running cost of
our method is comparable to most baselines. Our method can meet real-time packing requirements
in both discrete solution space and continuous solution space.
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Table 8: Running costs (seconds) tested on online 3D-BPP with discrete solution space (Section 4.1) and
continuous solution space (Section 4.3). The running costs of the latter are usually more expensive since
checking Constraint 1 and 2 in the continuous domain is more time-consuming.

Setting 1 Setting 2 Setting 3
Method Discrete Continuous Discrete Continuous Discrete Continuous

H
eu

ri
st

ic

Random 4.59× 10−2 − 2.03× 10−2 − 4.62× 10−2 −
Wang & Hauser 4.76× 10−2 − 3.01× 10−2 − 4.55× 10−2 −
DBL 5.58× 10−2 − 1.87× 10−2 − 5.44× 10−2 −
BR 1.50× 10−2 1.69× 10−2 1.74× 10−2 1.76× 10−2 1.42× 10−2 1.62× 10−2

Ha et al. 5.89× 10−3 1.48× 10−2 3.39× 10−3 7.17× 10−3 4.86× 10−3 1.38× 10−2

LSAH 1.22× 10−2 1.44× 10−2 4.98× 10−3 7.02× 10−3 1.14× 10−2 1.33× 10−2

MACS 2.68× 10−2 − 3.00× 10−2 − 2.79× 10−2 −

D
R

L

Zhao et al. 5.51× 10−2 − 1.33× 10−2 − 3.31× 10−2 −
PCT & CP 8.43× 10−3 1.61× 10−2 7.36× 10−3 1.52× 10−2 8.79× 10−3 1.73× 10−2

PCT & EP 1.22× 10−2 3.73× 10−2 1.13× 10−2 1.57× 10−2 1.25× 10−2 3.65× 10−2

PCT & EMS 1.77× 10−2 4.11× 10−2 9.49× 10−3 2.36× 10−2 1.80× 10−2 3.08× 10−2

PCT & EV 2.66× 10−2 4.46× 10−2 1.25× 10−2 3.21× 10−2 2.61× 10−2 4.38× 10−2

C.3 SCALABILITY

The number of PCT nodes changes constantly with the generation and removal of leaf nodes during
the packing process. To verify whether our method can solve packing problems with a larger scale
|B|, we conduct a stress test on setting 2 where the most orientations are allowed and the most
leaf nodes are generated. We limit the maximum item sizes sd to Sd/5 so that more items can be
accommodated. We transfer the best-performing policies on setting 2 (trained with EMS) to these
new datasets without any fine-tuning. The results are summarized in Table 9.

Table 9: Scalability on larger packing problems. |L| is the average number of leaf nodes per step. Run. is the
running cost. |L| will not increase exponentially with |B| since invalid leaf nodes will be removed.

Discrete Continuous
Item sizes |B| |L| Uti. Run. |L|/|B| |B| |L| Uti. Run. |L|/|B|

[Sd/10, Sd/2] 33.0 51.5 86.0% 9.5× 10−2 1.6 27.0 197.5 66.3% 2.4× 10−2 7.3
[Sd/10, Sd/5] 241.3 67.2 81.3% 9.8× 10−3 0.3 185.4 956.5 61.9% 3.7× 10−2 5.2

PCT size will not grow exponentially with packing scale |B| since invalid leaf nodes will be removed
from leaf nodes L during the packing process, both discrete and continuous cases. For continuous
cases, |L| is more sensitive to |B| due to the diversity of item sizes (i.e. |I| =∞), however, |L| still
doesn’t explode with |B| and it grows in a sub-linear way. Our method can execute packing decisions
at a real-time speed with controllable PCT sizes even if the item scale is around two hundred.

C.4 UNDERSTANDING OF MODEL BEHAVIORS

The qualitative understanding of model behaviors is important, especially for practical concerns. We
visualize our packing sequences to give our analysis. The behaviors of learned models differ with
the packing constraints. If there is no specific packing preference, our learned policies will start
packing nearby a fixed corner (Figure 7 (a)). The learned policies tend to combine items of different
heights together to form a plane for supporting future ones (Figure 7 (b)). Meanwhile, it prefers
to assign little items to gaps and make room (Figure 7 (c)) for future large ones (Figure 7 (d)). If
additional packing preference is considered, the learned policies behave differently. For online 3D-
BPP with load balancing, the model will keep the maximum height in the bin as low as possible and
pack items layer by layer (Figure 7(e)). For online 3D-BPP with isle friendliness, our model tends
to pack the same category of items nearby the same bin corner (Figure 7 (f)).

C.5 VISUALIZED RESULTS

We visualize the experimental results of Section 4.1 in Figure 8. Each plot is about a randomly gener-
ated item sequence packed by our best-performing policies (PCT & EV on setting 1 and setting 3,
PCT & EMS on setting 2).
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(a) (b) (c) (d) (e) (f)

Figure 7: (a)∼(d): Different packing stages of the same sequence. The learned policies assign little items
(colored in blue) to gaps and save room for future uncertainty. (e): Online 3D-BPP where load balancing is
considered. (f): Online 3D-BPP with isle-friendliness, different color means different item categories.
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Figure 8: Visualized results of our method.

C.6 REAL-WORLD PACKING SYSTEM

On-conveyor
camera

On-bin
camera

Figure 9: Our packing system. The on-conveyor
camera detects packing targets. The on-bin cam-
era monitors possible drifts of packed items.

We follow the online autonomous bin packing system
implementation of Zhao et al. (2022) in a logistics
warehouse to validate our PCT method. As shown
in Figure 9, the conveyor belt transports items to the
robot arm (STEP®SR20E) at a fixed speed. The on-
conveyor RGB-D camera (PhoXi 3D Scanner XL)
recognizes the size and location of the current item.
This information is sent to the robot arm for picking
the current item and our PCT model for the placement
decision. We align the bin coordinate with the robot
coordinate and transform the packing decision to a
real-world position. Then the robot arm places the
current item into the bin which is a table trolley with
sizes Sx = 110cm, Sy = 90cm, and Sz = 80cm.
We record sizes and positions of packed items as de-
scriptors of internal nodes B.

Different from the original implementation of Zhao et al. (2022) where only one on-conveyor camera
is used for detecting the target item to be packed, we add one more on-bin RGB-D camera and adopt
Mask R-CNN (He et al., 2017) for instance segmentation of input depth image, for monitoring
possible drift of packed items. If a packed item deviates from the position of the PCT decision and
this drift is detected, we will correct the descriptor of the corresponding internal node b ∈ B with the
offset position. We use items with sx and sy ranging from 20cm to 40cm, and sz ranging from 10cm
to 25cm. We fill items with paddings of the same density and train PCT policies on setting 1 with
the EV scheme and the load balancing constraint. We test our system with 50 random sequences
and our method achieves 78.6% space utilization with 50.9 items packed. Our real-world packing
video demo is also submitted with the supplemental material.
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