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ABSTRACT

The implementation of data privacy regulations such as GDPR and CCPA has
advanced machine learning (MU) technology, which is designed to facilitate the
removal of specific sensitive data points from trained models upon request. Despite
rapid advancements in MU technology, its vulnerabilities are still underexplored,
posing potential risks of privacy breaches by recovering unlearned sensitive in-
formation. Further, existing research on MU vulnerabilities often requires access
to the original models, which violates the core objective of MU. To address this
gap, we reformulate the study of attacks against released unlearned models and
present the first work to explore recovery attacks on MU models without requiring
access to the original model. Our approach, known as Class Membership Inducing
Recovery Attack (CMIRA), effectively recovers forgotten data by exploiting a
probing dataset. Specifically, we implement the CMIRA scheme regarding mutual
knowledge distillation between MU and attack models. Extensive experiments
across multiple datasets and MU methods demonstrate that CMIRA exhibits high
efficacy in both theoretical analysis and practical applications. Our study highlights
the need for developing more robust MU systems and lays the groundwork for
future research to establish new benchmarks for evaluating their security.

1 INTRODUCTION

The emergence of machine unlearning (MU) is driven by stringent data privacy regulations such as
GDPR (Hoofnagle et al., 2019) and CCPA (Itakura & Terada, 2018), which require the removal of
specific sensitive data upon request. MU is designed to forget particular data points from the learned
models (Cao & Yang, 2015). As concerns about the increasing data misuse and privacy breaches,
MU has gained more attention as a critical component in building safe machine learning systems.

Despite rapid advancements in MU techniques (Guo et al., 2023; Bourtoule et al., 2021; Wu et al.,
2020; Brophy & Lowd, 2020; Gupta et al., 2021; Chen et al., 2021a; Thudi et al., 2021; 2022), the
study of their vulnerabilities (Hu et al., 2024) remains underexplored. This oversight poses a potential
risk of privacy breaches by recovering information about forgotten data, highlighting the limited
research to date on the full scope of MU vulnerabilities. The only existing research (Hu et al., 2024)
that investigates attacks against MU models was recently published. However, this work is based on
the impractical assumption that unlearning inversion attacks require access to both originally learned
and unlearned models, as illustrated in Figure 1. In general, MU aims to release an unlearned model
in which the correct map Df : Xf 7→ Yf has been distorted from the original model. It is imperative
that the originally learned model is inaccessible to users, as such a violation may significantly increase
the risk of privacy breaches.

To advance research in this area, we reformulate the study of attacks against released unlearned
models, eliminating the need to access the original models. As demonstrated in Figure 1, our objective
is to design an attack model to recover the correct output Yf given the input data Xf and the unlearned
model. As most MU models (Bourtoule et al., 2021) restrict the scope of the investigation to the
mature unlearning area of image classification tasks, our study is conducted in a similar way on these
MU models. Inspired by the membership inference attack (MIA) (Shokri et al., 2017) against machine
learning models, we propose a class membership inducing recovery attack (CMIRA) scheme against
machine unlearning models.
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Figure 1: The demonstration of recovery attack against MU models, which is critical and prospective to study
the vulnerability of current MU-based privacy preservation.

Analogous to the shadow training sets (Shokri et al., 2017) for MIA, we create a probing dataset
Dp : Xp 7→ Yp that is similar toDf for CMIRA. Note thatDp can be easily created by finding similar
images and their labels through image search engines given the query images Xf . In particular,
we design a mutual knowledge distillation (MKD) approach in which the attack modelMA can
iteratively recover plausible knowledge, that is, Xf 7→ Ŷf , by inducing the unlearned modelMU to
recover the class memberships of Xf with the knowledge distilled from Dp.

We summarize our contributions as follows: ❶ To the best of our knowledge, this is the first attempt
to study the recovery attacks against increasingly used MU models, which can effectively assess the
risk of data privacy breaches and promote the robustness of MU study. ❷ We propose CMIRA, a
MU model-agnostic attack scheme, to effectively recover the true class memberships from mostly
used MU models. ❸ We implement CMIRA with a recovery attack model to recover the class
memberships from MU models via mutual knowledge distillation based on a probing dataset. ❹ We
conducted extensive experiments in four widely used datasets in MU research, demonstrating both
the theoretical and practical efficacy of our approach against various state-of-the-art MU methods.

2 RELATED WORK

Below, we briefly review the limited existing research on MU methods and attacks against MU.

2.1 MACHINE UNLEARNING

Exact Unlearning. Retraining the model from scratch after removing specific data (Retrain) can
intuitively and effectively achieve exact unlearning. In addition, Bourtoule et al. (2021) proposed
SISA (Sharded, Isolated, Sliced, Aggregated) training, which trains isolated models on data shards
for efficient unlearning by retraining only affected shards. Since forgetting data can be regarded as
excluded from the training set, the success rate of unlearning can be evaluated using the Membership
Inference Attack (MIA) (Shokri et al., 2017). Although effective, these unlearning approaches are
computationally expensive and impractical for large-scale models and datasets.

Approximate Unlearning. The idea of modestly sacrificing forgetting accuracy in exchange for
significant improvements in unlearning efficiency has spurred exploration of approximate unlearning
techniques. Model fine-tuning (FT) (Warnecke et al., 2021; Golatkar et al., 2020) capitalizes on the
phenomenon of catastrophic forgetting (Kirkpatrick et al., 2017), achieving unlearning by fine-tuning
on the retained set of data. Gradient ascent (GA) (Graves et al., 2021; Golatkar et al., 2020; Thudi
et al., 2022) reverses model training by adding gradients, thus moving the model towards greater loss
for the data points targeted for removal. Several methods estimate the impact of removed samples
on model parameters and apply modifications for efficient forgetting through the fisher information
matrix (FF) (Becker & Liebig, 2022; Golatkar et al., 2020) or influence function (IU) (Koh & Liang,
2017; Izzo et al., 2021). In addition, the weight pruning (WP) adopted to improve the sparsity of
the model could improve the effectiveness of the data erasure (Jia et al., 2023). However, residual
information from unlearned data can persist in the model after approximate unlearning (Thudi et al.,
2022), thus raising concerns about the ongoing risk of privacy information leakage.

2.2 ATTACKS ON MACHINE UNLEARNING

Despite advancements in unlearning techniques, the field faces significant challenges from various
types of attacks that aim to exploit weaknesses in unlearning mechanisms. Understanding these
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attacks is crucial for developing robust and secure unlearning methods. Although several attacks
are proposed to affect the efficiency (Marchant et al., 2022) or fidelity (Di et al., 2022; Hu et al.,
2023) of unlearning, this section will focus on data privacy attacks that are closely aligned with the
objectives of this study.

Model Inversion Attack. Model inversion attacks aim to reconstruct the original input data from
the model’s outputs. Fredrikson et al. (2015) introduced model inversion attacks by leveraging
confidence scores output by a model to reconstruct input images. Hu et al. (2024) proposed the
first inversion attack against unlearning. It extracts features and labels of forgetting samples, which
most closely match the aims of our study. Although the attack demonstrates notable effectiveness, it
requires access to the original model prior to unlearning, which may be impractical. It also assumes
limited scenarios, such as feature recovery with one single forgotten sample or label inference when
a single category is being forgotten. In contrast, our method only requires information from the
model after unlearning and supports a more versatile unlearning configuration, such as randomly
forgetting multiple samples from different categories. To our knowledge, we are the first to explore
the attack solely using unlearned models for extensive class membership recovery of samples, with
no comparable prior work.

3 PRELIMINARIES

In the following sections, we first introduce the datasets and models used in our study, followed by a
formal definition of the problem.

Involved Datasets. ◦ Training dataset Dt : Xt 7→ Yt is all the data used for initially training the
machine learning models, where Xt denotes the image set and Yt denotes the corresponding label
set. ◦ Forgetting dataset Df : Xf 7→ Yf is a subset of Dt, i.e., Df ∈ Dt. In MU, Df is a set of
sensitive data that should be unlearned from the trained model, i.e., the unlearned model should not
tell the truth when Xf is input. ◦ Remaining dataset Dr : Xr 7→ Yr is the remaining data of Dt,
i.e., Dr = Dt \ Df , which should not be forgotten. ◦ Probing dataset Dp : Xp 7→ Yp : is a dataset
constructed by the attacker. In general, Xp is supposed to have a similar distribution to Xf so that it
is possible to infer Yf according to Dp.

Involved Models. ◦ Trained modelMT is the model that has been trained on training dataset Dt. ◦
Unlearned modelMU is the model that has unlearned the forgetting dataset Df . ◦ Attack model
MA is the model that aims to recover the truth map Xf 7→ Yf from the unlearned model with the
probing set Dp.

Problem Formulation. MU aims to remove the influence of some targeted training data Df ∈ Dt on
a trained modelMT , and release a safe unlearned modelMU that has forgotten the true labels Yf
of Xf . This paper introduces CMIRA, a scheme specifically designed to recover sensitive data by
exploiting vulnerabilities in various MU models that are supposed to forget it. To achieve this, we
implement an attack modelMA to induce the unlearned modelMU to recover the class memberships
of Xf , i.e., the true labels Yf of Xf using a probing set Dp.

4 PROPOSED METHOD

In this section, we present the details of the probing dataset Dp construction, various MU methods
addressed, and the implementation process of the proposed CMIRA scheme.

Overview. Figure 2 (a) Training and Unlearning illustrates the process of machine unlearning. After
unlearning, the true labels of Xf cannot be correctly retrieved from the unlearning model MU .
Inspired by MIA Shokri et al. (2017), we propose the CMIRA scheme which can effectively recover
the true forgotten labels through the attack modelMA with an auxiliary dataset Dp to provide prior
knowledge of the class memberships over Xf . Figure 2 (b) Recovery Attack Scheme demonstrates
the workflow of CMIRA. It consists of two main stages, that is, (1) Probing Prior Learning Stage:
it trains attack modelMA with probing dataset Dp, which aims to learn a class membership prior
from Dp : Xp 7→ Yp due to the similar distributions Xp and Xf ; (2) Inducing Recovery Stage: the
attack modelMA recovers the class memberships of Xf , by an iterative MKD process that induces
unlearned modelMU to output plausible labels Ŷf .
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Figure 2: The framework of model training, unlearning, and recovery attack: (a) The workflow to obtain MU
models; (b) The implementation of the CMIRA scheme.

Model Training and Unlearning. Since the proposed CMIRA scheme is agnostic to the MU model,
we utilize various SOTA MU models as follows. Given the training dataset Dt = Df ∪ Dr, we first
use Dt to train a model,Mt, with the parameters Θt, as shown in Figure 2. Then, we apply different
MU methods, as introduced in related work, onMT and result in various MU models {MU}: RT is
the exact MU method by retraining model parameters from scratch over the remaining dataset Dr.
FT trains modelMt on Dr using a few training epochs. The rationale of FT initiates catastrophic
forgetting (Goodfellow et al., 2013). GA reverses the model training on Df by moving Θt towards
the direction of increasing loss. FF adopts additive Gaussian noise on Θt. The noise has zero mean
and covariance determined by the 4th root of the Fisher Information matrix on Dr. IU leverages
the influence function approach to characterize the change in Θt if a training point is removed from
the training loss. WP applies binary mask m over model parameters Θt, where m is determined by
one-shot magnitude pruning (OMP) (Chen et al., 2021b) on Df .

4.1 THE RECOVERY ATTACK SCHEME

As shown in Figure 2 (b), the implementation of CMIRA scheme consists of two main stages: (1)
Probing Prior Learning Stage and (2) Inducing Recovery Stage. We summarize the above CMIRA
scheme in Algorithm 1.

Generation of Probing Dataset. Since both of these two stages are based on the probing dataset Dp,
we first present how to generate Dp. In MIA (Shokri et al., 2017), the attack models are trained with
shadow training data that is distributed similarly to the target model’s training data. Based on the
similar attacking strategy, we need to construct a probing dataset Dp that has a similar distribution to
the forgetting dataset Dp to perform the class membership recovery attack. Dp can be easily created
in the following two ways: ❶ Image search: The image set Xp is retrieved by the query set Xf from
the image database. As a result, Dp : Xp 7→ Yp is constructed. Note that we may need to align the
label set of the image database with the training label set. ❷ Same data source: If the training data is
collected from some known data source, we can generate Dp by sampling data from this data source.
In general, the datasets collected from the same data source have a similar distribution.

Probing Prior Learning Stage. Given the probing set Dp generated as the above, We can pretrain
the attack modelMA over Dp to obtain the rough prior knowledge of the forgetting dataset Df . In
particular, we implementMA by placing a Lipschitz-constrained MLP with SoftMax as the output
(LipSoftMax) over the backbone networks (BBN), such as the ResNet and the VGG families.

MA := LipSoftMaxWL
(BBNSN(WB)(x)) (1)

PMA
:= {px = MA(x)|x ∈ Xp} (2)

ΘA := argmin
ΘA

L(PMA
,Yp) := argmin

ΘA

CrossEntropy(PMA
,Yp) (3)

where the weight matrix for each layer is adopted spectral normalization (Miyato et al., 2018),
namely SN(WL) := WL/σ(WL), to enforce the Lipschitz continuity. According to the clustering

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Mutual Knowledge Distillation based CMIRA Scheme
Input: Probing dataset Dp, forgetting image set Xf

Output: Recovery result Xf 7→ ŶA
Probing Prior Learning Stage:

1: ΘA := argminΘA
L(MA(Xp),Yp) ▷ Pretrain attack model, cf Eq. (1,2,3)

Inducing Recovery Stage:
1: while not converged do
2: DU := (Xf , ŶU , P̂U ),DA := (Xf , ŶA, P̂A) ▷ Construct predictive datasets, cf Eq. (4,5)
3: DUA := {(x, ŷU )}DAU := {(x, ŷA)} ▷ Construct agreement datasets, cf Eq. (6,7)
4: D̄τ

U := {(x,pU ))}, D̃τ
A := {(x,pA))} ▷ Construct disagreement datasets, cf Eq. (8,9)

5: D̃mix
U := Mixup(Dp ∪ DUA ∪ D̄τ

U ) ▷ Construct mixup dataset for SSL, cf Eq. (10)
6: ΘA ← SGD(LMA

(Dmix
U ),ΘA) ▷ UpdateMA by MKD using Dmix

U

7: D̃mix
A := Mixup(Dp ∪ DAU ∪ D̄τ

A) ▷ Construct mixup dataset for SSL, cf Eq. (10)
8: ΘU ← SGD(LMU

(Dmix
A ),ΘU ) ▷ UpdateMU by MKD using Dmix

A
9: end while

10: returnMA(ΘA) : Xf 7→ ŶA

assumption, similar inputs tend to have the same label. LipSoftMax helps to better preserve the
distance distribution between the features of images output by the BBN and its corresponding label
embedding vector. Consequently, LipSoftMax can better infer the forget label Yf according to Yp by
exploiting the similar distributions between Xf and Xp

Inducing Recovery Stage. Although each MU modelMU has performed unlearning on Df , it still
retains the classification capability on the remaining dataset Dr. Since both Df and Dr belong to the
training dataset Dt, it is possible to induceMU to recover the class membership of Xf . In this paper,
we design an iterative MKD process to transfer knowledge between the unlearning modelMU and
the attack modelMA. First, we collect the predictive labels on Xf as follows where We denote the
predictive datasets fromMU andMA as DU and DA:

DU := (Xf , ŶU ), P̂U i.e. PU :=MU (Xf ), ŶU := {argmax
c

p(c)|p ∈ PU} (4)

DA := (Xf , ŶA), P̂A i.e. PA :=MA(Xf ), ŶA := {argmax
c

p(c)|p ∈ PA} (5)

Then, we can easily extract the agreement subsets DUA and DAU in terms of the consistent predictive
labels ŶU and ŶA output byMU andMA:

DUA := {(x, ŷU ),pU | ŷU (x) = ŷA(x);x ∈ Xf} (6)
DAU := {(x, ŷA),pA | ŷU (x) = ŷA(x);x ∈ Xf} (7)

Correspondingly, we can denote the disagreement subsets D̄UA := DU \DUA and D̄AU := DA\DAU .
Then we extract, respectively, a small proportion of data from D̄U and D̄A with the highest predictive
confidence above threshold τ :

D̃τ
U := {(x,pU ) | max

c
p(c) ≥ τ, (x, yU ),p ∈ D̄UA} (8)

D̃τ
A := {(x,pA) | max

c
p(c) ≥ τ, (x, yA),p ∈ D̄AU} (9)

Given a set of probing images Xp with corresponding ground-truth labels Yp, and a set of forgetting
images Xf with unknown labels, the problem can be naturally formulated within the framework
of semi-supervised learning (SSL). Recent work (Berthelot et al., 2019) has shown that Mixup
(Hongyi Zhang, 2018), a simple yet highly effective data augmentation technique, can lead to
substantial improvements in SSL performance.

D̃ := {x̃, p̃} := Mixup
(
(x1,p1), (x2,p2)

)
for (x1,p1), (x2,p2) ∼ D (10)

where x̃ = λx1 + (1− λ)x2, p̃ = λp1 + (1− λ)p2, λ ∼ Beta(α, α) (11)
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Table 1: The overall evaluation of CMIRA’s attack efficacy. All the metric scores are reported by (%)

Dataset Metric
ResNet18 VGG16

RT FT FF GA IU WP RT FT GA IU WP

Cifar-10
AccU 66.25 66.87 51.82 76.34 87.47 40.79 77.66 79.80 59.38 52.73 61.90
AccA 69.40 70.17 95.66 92.13 97.08 54.01 80.77 82.60 82.38 81.18 70.80
RR 4.76 4.93 84.60 20.69 10.99 32.40 4.01 3.50 38.74 53.96 14.37

Cifar-100
AccU 19.56 22.58 50.76 29.16 55.20 15.73 28.80 34.67 14.40 38.93 20.18
AccA 21.96 22.49 96.89 93.69 96.18 16.62 32.62 38.04 89.78 94.76 26.84
RR 12.27 -0.39 90.89 221.34 74.24 5.65 13.27 9.74 523.46 143.38 33.04

TinyImg
AccU 29.20 31.52 59.68 44.56 14.96 31.04 38.72 41.04 34.88 23.04 36.48
AccA 38.96 39.52 96.88 98.56 98.64 52.80 53.92 47.92 99.04 98.48 51.76
RR 33.42 25.38 62.33 121.18 559.36 70.10 39.26 16.76 183.94 327.43 41.89

FMNIST
AccU 95.82 96.23 74.02 77.33 46.16 24.39 96.15 96.94 27.70 27.43 92.90
AccA 96.22 96.83 89.88 96.55 81.25 35.56 96.63 97.39 49.61 75.45 94.61
RR 0.42 0.62 21.42 24.85 76.01 45.81 0.50 0.47 79.14 175.07 1.84

Key Insights. In Algorithm 1, the probing dataset Dp is used to optimize bothMU andMA to learn
the map Xp 7→ Yp that provides the strongest prior to better inferring Xf 7→ Yf . The subsets DUA

and DAU alignMU andMA with consistently aligned labels: ŷU and ŷA which helps recover the
original class membership based on mutual agreement. Moreover, D̃τ

U and D̃τ
A are the disagreement

subsets with high confidence, which performs MKD to alignMA andMU Han et al. (2018). The
above step is performed iteratively to build agreement betweenMA andMU as much as possible.
Finally, we obtain the result of recovered class memberships,MA(ΘA) : Xf 7→ ŶA.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. Four widely used image classification datasets are used in our experiments. These include
Cifar-10 and Cifar-100 (Krizhevsky et al., 2009), which consists of 32x32 color images with 10
and 100 classes respectively; Tiny-ImageNet-200 (TinyImg (Le & Yang, 2015), which contains
200 classes of 64x64 color images; and Fashion-MNIST (FMNIST (Xiao et al., 2017), a dataset
featuring 28x28 grayscale images of 10 different apparel items.

Target Machine Unlearning Models. Since CMIRA is an MU model-agnostic attack scheme, we
comprehensively evaluated the performance of CMIRA against six SOTA MU models as described in
Proposed Method, including Retrain (RT), Fine-Tune (FT), Gradient Ascend (GA), Fish Forgetting
(FF), Influence Unlearning (IU), and Weight Prune (WP). Moreover, we further assessed the perfor-
mance of two representative backbone architectures for image classification: ResNet18 (He et al.,
2016) and VGG16 (Simonyan & Zisserman, 2014). These two model architectures are widely used
in the evaluation of SOTA MU methods. We first trained the RestNet18 and VGG16 models over
the training set Dt for each experimental dataset, i.e., Cifar-10, Cifar-100, TinyImage and FMNIST.
Then, each of the above MU methods was performed on the trained models to obtain the various
unlearned models. This diversity of MU models over different datasets and backbone architectures
allows for a comprehensive assessment of CMIRA’s efficacy in various MU scenarios.

Experimental Details. The official dataset splits (e.g., Cifar-10: 80% for training, 20% for testing)
are used for the evaluation of MU methods. The training set is used asDt to train the backbone models.
Five classes from Dt are selected to construct the forgetting dataset Df by randomly sampling 50%
of data from them. In general, the split set for testing is similarly distributed to Df since they were
collected from the same data source. Therefore, the testing split is a suitable data source to generate
the probing dataset Dp as described in Proposed Method. All experiments utilized an SGD optimizer
and were conducted on 8 NVIDIA A100 GPUs. More details of the experiments can be found in the
supplementary materials.

5.2 EVALUATION METRICS

The effectiveness of recovery attacks can be intuitively assessed by evaluating the prediction accuracy
(Acc) on the set of forgetting inputs Xf . To provide a more comprehensive and detailed evaluation of

6
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Table 2: The evaluation results on efficacy of class membership recovery. In each cell, we report MU ’s prediction
accuracy AccU in percentage (%) with its corresponding recovery improvement ↑ RI achieved by CMIRA.

Model Method Class #1
Airplane

Class #2
Automobile

Class #3
Cat

Class #4
Dog

Class #5
Frog

AR (%)

ResNet18

RT 70.71 ↑ 5.51 79.07 ↑ 2.66 48.58 ↑ 2.35 57.11 ↑ 2.40 75.78 ↑ 2.84 11.20
FT 72.36 ↑ 4.13 80.58 ↑ 2.71 49.38 ↑ 3.55 55.96 ↑ 0.97 76.09 ↑ 5.11 10.54
FF 34.49 ↑ 56.58 99.91 ↑ 0.05 33.42 ↑ 60.00 33.16 ↑ 62.97 58.13 ↑ 39.60 314.98
GA 78.80 ↑ 14.44 75.64 ↑ 16.49 73.29 ↑ 18.58 77.16 ↑ 14.08 76.80 ↑ 15.38 44.68
IU 94.84 ↑ 3.60 86.76 ↑ 9.55 85.82 ↑ 11.02 86.62 ↑ 10.85 83.29 ↑ 13.02 20.31
WP 43.42 ↑ 20.45 51.69 ↑ 14.80 36.49 ↑ 1.95 24.84 ↑ 9.96 47.51 ↑ 18.93 84.69

VGG16

RT 81.07 ↑ 4.17 89.24 ↑ 1.52 65.96 ↑ 4.26 66.80 ↑ 3.51 85.24 ↑ 2.09 8.71
FT 81.91 ↑ 4.49 90.31 ↑ 0.98 69.56 ↑ 3.86 71.60 ↑ 2.27 85.64 ↑ 2.36 7.96
GA 64.36 ↑ 23.15 38.31 ↑ 23.29 61.07 ↑ 25.86 60.22 ↑ 24.00 72.93 ↑ 18.71 90.99
IU 62.71 ↑ 25.11 38.67 ↑ 24.97 55.64 ↑ 31.47 41.78 ↑ 35.11 64.84 ↑ 25.60 129.66
WP 72.71 ↑ 8.36 85.91 ↑ 4.22 33.60 ↑ 11.20 61.96 ↑ 2.13 55.33 ↑ 18.58 31.57

the recovery attack’s effectiveness, we introduced two additional metrics: ❶ Recovery Rate(RI ) and
❷ Area of Membership Recovery(AR), both of which are briefly described below.

Recovery Rate (RR) is defined as the relative improvement of prediction accuracy: RR =
AccA−AccU

AccU
, where AccA represents the accuracy of the attack modelMA on the forgetting set Xf ,

and AccU is the accuracy of the unlearned modelMU . To simplify this expression, we define the
numerator as the Recovery Improvement (RI ): RI = AccA −AccU .

Area of Membership Recovery (AR) evaluates the recovery capability ofMA from multi-class
perspective. First, we can calculate the accuracy for each forgetting class, which forms a polygon as
shown in Figure 4. Then, we calculate the area of the polygon and get the value of area AA forMA

and AU forMU . Accordingly, AR is defined as: AR = AA−AU

AU
.

For further details, please refer to the supplementary material.

5.3 MAIN RESULTS

5.3.1 OVERALL EFFICACY OF CMIRA

Figure 3: The recovery improvement RI by CMIRA is
reported in percentage (%). Each subplot displays the
results for a specific dataset, with the horizontal axis
representing the various MU methods and the vertical
axis representing different backbone architectures.

We comprehensively evaluated the recovery
attack performance of CMIRA across four
datasets and diverse configurations of the MU
model, as reported in Table 1. From all of the re-
sults, it is easy to find that the proposed CMIRA
scheme is capable of significantly improving the
prediction accuracy on the forgetting data for
all MU models targeted, which strongly proves
that CMIRA is a very effective and versatile
MU model-agnostic method to recover the for-
getting data. However, a closer look at Table 1
reveals that the recovery rate RR for RT and FT
is relatively lower than for other MU methods.
We attribute this to RT is the exact unlearning
method that is not trained with any forgetting
data, i.e., no knowledge can be transferred to
the attack model. Similarly, FT is able to reach
a similar effect to RT due to catastrophic forget-
ting. In comparison, other MU methods retain
more forgetting data-related knowledge inside the models, so CMIRA can effectively induce the
remaining knowledge from these models to achieve a high recovery rate.

As illustrated in Figure 3, the absolute improvement in prediction accuracy by CMIRA is evident
from a more intuitive perspective. This robust performance highlights the potential of CMIRA as
a valuable tool in assessing the risk of privacy information leakage associated with MU methods,
thereby facilitating the development of more effective and robust approaches.
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Figure 4: Class membership recovery polygon over five forgetting classes. The red area represents the prediction
accuracy of GA model for each class, while the blue area represents the prediction accuracy of CMIRA. ‘#n’
represents the n-th forgetting class.

5.3.2 EFFICACY OF CLASS MEMBERSHIP RECOVERY

As implied by the name CMIRA, our primary objective is to recover the true class memberships for
the forgetting images Xf . We further conducted in-depth evaluations w.r.t. each forgetting class over
all four datasets and MU models. Table 2 demonstrates the performance on Cifar-10. By carefully
checking each cell of the table, we can find the recovery improvement RI is consistently positive
across all classes. Moreover, we further visualize the results with radar charts in Figure 4. It is easy
to find that the accuracy polygons of CMIRA envelop those of MU models with obvious margins
for all cases, and AMR is reported in the last column of Table 2. Through these comprehensive
evaluations, it can be concluded that CMIRA is an effective approach to the recovery of forgetting
class memberships. Due to the space limits, more results can be found in the supplement.

5.3.3 CLASS MEMBERSHIP VISUALIZATION

Figure 5: t-SNE plots of Cifar-10 datapoints in Df and
Dp w.r.t. unlearned models, pretrained attack models, and
CMIRA models. The legend labels followed by a question
mark indicate the forgetting classes.

Figure 5 demonstrates the t-SNE of Cifar-
10 datapoints w.r.t. unlearned models, pre-
trained attack models, and CMIRA mod-
els. The forgetting data are heavily mixed
with the remaining data where no clear class
boundaries can be found.

The t-SNE of pretrained attack models
shows some improvement in forgetting data
thanks to the knowledge learned from the
probing data Dp, but most classes are still
mixed together. In comparison, the t-SNE
of CMIRA shows clear boundaries between
classes, and most samples are correctly as-
signed to their labeled clusters. We attribute
this to the effectiveness of the proposed
CMIRA approach in recovering forgotten
class memberships.

5.4 ABLATION STUDY Table 3: Results of ablative models are
evaluated on Cifar-10 with the backbone
of ResNet18. The accuracy of MU mod-
els AccU in percentage (%) is reported as
baseline, P, P+U and P+U+A stand for the
models MP , MP+U , and MP+U+A.

MU Method RT FT FF GA IU WP

Baseline 66.25 66.87 51.82 76.34 87.47 40.79

P 57.49 57.49 57.49 57.49 57.49 57.49

P+U 66.27 67.05 53.49 76.29 87.45 47.15

P+U+A 69.40 70.17 95.66 92.13 97.08 54.01

In this section, we discuss the effectiveness of each com-
ponent in the implementation of CMIRA framework. The
models for the ablation study include: ❶ MP : this attack
model is obtained by only performing the pretraining over
probing set Dp, i.e. 1st stage only. ❷ MP+U : this attack
model is obtained by freezing the MU model and only up-
dating the attack model, i.e. single-direction knowledge
distillation. ❸ MP+U+A: the full attack model presented
in this paper with pretraining and MKD.

5.4.1 COMPARISON RESULTS

Table 3 reports the results obtained on Cifar-10 using ResNet18. The precision of each MU model
on forgetting dataset Df is reported as the baseline. Please refer to the supplementary material
for additional results on other datasets and model architectures. From the results, the full model

8
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MP+U+A overall outperforms the ablative models MP and MP+U . Note that MP is simply
trained on Dp irrelevant to any MU models, so the results are identical across different MU methods.
The low performance ofMP can be attributed to the difference of distributions between the probing
data and the forgetting data in nature. As a result, even below the baseline, such as in RT, FT, GA,
and IU scenarios.MP+U outperformsMP due to the one-way distillation of knowledge from the
MU models to the attack model. However, MU models can only transfer the unforgotten knowledge
to the attack model, whereas the information on forgetting data is very limited or even wrong. As a
result, the recovery rate ofMP+U is accordingly small. Through the iterative distillation of mutual
knowledge between the attack model and the MU model, both models can keep improving their
classification upper bound by utilizing the co-agreement and disagreement knowledge (see Algorithm
1). As a result, the full modelMP+U+A achieves the best recovery rate.

5.4.2 VISUALIZATION OF CONFUSION MATRIX

Figure 6: The plots of normalized confusion matrices
demonstrate the classification performance of ablative
models MP , MP+U , and MP+U+A on Cifar-10 using
the GA method. The labels are reordered (the five forget-
ting classes are listed first) to better emphasize the class
membership recovery capability achieved by CMIRA
with the MKD technique.

Figure 6 (a-c) presents the normalized confusion
matrices of Df with respect to MP , MP+U ,
andMP+U+A. From these visualizations, we
observe consistent patterns that align with the
results reported in Table 3.

In the case ofMP , we observe a relatively high
prediction error rate, particularly in the five for-
getting classes. The confusion matrix shows
significant off-diagonal elements, suggesting a
substantial misclassification due to the distribu-
tion difference between Dp and Df . Although
the non-forgetting classes maintain better diag-
onal accuracy, there is still slight performance
degradation, highlighting the challenge of gen-
eralization.

For MP+U , a marginal improvement is ob-
served. The confusion matrix reveals a some-
what clearer diagonal, implying that the addi-
tional information from Df helps retain some
class knowledge. However, this recovery is limited as off-diagonal misclassifications remain sig-
nificant, especially in forgetting classes. Nevertheless, the improvement in non-forgetting classes
suggests that the model benefits from the residual information, though it is not yet sufficient for fully
restoring forgotten class memberships.

The most significant improvement comes withMP+U+A, where the confusion matrix exhibits a
sharp diagonal, particularly in the forgetting classes. This model achieves near-perfect classification
in these classes, indicating the success of the MKD technique in restoring true class memberships.
Moreover,MP+U+A manages to balance performance across both forgetting and non-forgetting
classes, without sacrificing accuracy in either set. This result underscores the importance of using
auxiliary information along with a robust distillation mechanism to effectively mitigate forgetting.

6 CONCLUSION

In this study, we present Class Membership Inducing Recovery Attack (CMIRA), a novel attack
method that can recover true class memberships from machine unlearning (MU) models without
needing access to the original model. By using mutual knowledge distillation (MKD) with a probing
dataset, CMIRA effectively retrieves forgotten labels. Our experiments with four widely used datasets
show that CMIRA is both theoretically sound and practically effective against various MU methods.
Our findings highlight the need for future research to focus on developing more robust MU systems
and establish new benchmarks for evaluating their security.
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Appendix

A DETAILED EXPERIMENTAL SETUP

A.1 DATASETS

This part provides an expanded interpretation of the Datasets section within the Experiment Setup
part of the main paper.

For each dataset, we used the official training and testing splits, such as 50,000 images for the training
and 10,000 for the testing in Cifar-10 (Krizhevsky et al., 2009) 90 % of the training set is used as Dt

to train the initial modelMT with the remaining 10% for validation, while the probing dataset Dp

was constructed from the testing set for pretraining the recovery attack modelMA. Subsequently,
we selected data from five categories within Dt, using half of the data from each selected category to
form the forgetting dataset Df , and the rest serving as Dr. Various MU methods were then applied to
MT to produce the unlearned modelsMU with Df and Dr. The detailed settings for each data set
are shown in Table A1.

Table A1: Details of the dataset split. For TinyImg we used 100% of training set as Dt because it provides
additional validation set with 10,000 images.

Dataset Train Test Dt Df Dp

Cifar-10 50,000 10,000 45,000 2250×5 10,000
Cifar-100 50,000 10,000 45,000 225×5 10,000
TinyImg 100,000 10,000 100,000∗ 250×5 10,000
FMNIST 60,000 10,000 54,000 2700×5 10,000

Table A2: Detailed parameters for training machine unlearning models across various datasets and backbone
networks. The table presents the parameters used for each dataset: CIFAR-10, CIFAR-100, TinyImageNet,
and FMNIST. FC refers to the forgotten classes through machine unlearning. Specifically, for CIFAR-10, the
forgotten classes 0, 1, 3, 5, and 6 correspond to Airplane, Automobile, Cat, Dog, and Frog, respectively. For
CIFAR-100, classes 11, 22, 33, 44, and 55 represent Boy, Clock, Forest, Lizard, and Otter. For TinyImageNet,
classes 1, 51, 101, 151, and 198 refer to Salamander, Baboon, Hammer, Umbrella, and Slug. Lastly, for FMNIST,
classes 1, 3, 5, 7, and 9 stand for Trouser, Dress, Sandal, Sneaker, and Ankle Boot. NFC indicates the number of
forgotten samples in each class. Epochs refers to the number of epochs used for training the machine unlearning
models. Unlearn lr represents the learning rate applied during the training of the machine unlearning models.
Alpha denotes the scaling hyperparameter on updating model parameters during the training of the machine
unlearning models. This comprehensive summary provides the details of reproducing and understanding of the
machine unlearning processes applied in this study.

Dataset #Para
ResNet18 VGG16

RT FT GA FF IU WP RT FT GA FF IU WP

Cifar-10

FC Airplane (#0) Automobile (#1) Cat (#3) Dog (#5) Frog (#6)
NFC 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250
Epochs 100 100 4 100 100 50 100 100 4 100 100 50
Unlearn lr 0.1 0.1 0.0001 0.1 0.1 0.01 0.1 0.1 0.0001 0.1 0.1 0.01
Alpha NA NA NA 16.5 16 0.005 NA NA NA 16.5 40 0.005

Cifar-100

FC Boy (#11) Clock (#22) Forest (#33) Lizard (#44) Otter (#55)
NFC 225 225 225 225 225 225 225 225 225 225 225 225
Epochs 100 100 4 100 100 50 100 100 4 100 100 50
Unlearn lr 0.1 0.1 0.001 0.1 0.1 0.001 0.1 0.1 0.001 0.1 0.1 0.001
Alpha NA NA NA 20 160 0.005 NA NA NA 16.5 200 0.005

TinyImg

FC Salamander (#11) Baboon (#51) Hammer (#101) Umbrella (#151) Slug (#198)
NFC 250 250 250 250 250 250 250 250 250 250 250 250
Epochs 100 100 5 100 100 50 100 100 4 100 100 30
Unlearn lr 0.1 0.1 0.00001 0.1 0.1 0.001 0.1 0.1 0.0001 0.1 0.1 0.002
Alpha NA NA NA 20 160 0.001 NA NA NA 16.5 100 0.001

FMNIST

FC Trouser (#1) Dress (#3) Sandal (#5) Sneaker (#7) Ankle Boot (#9)
NFC 250 250 250 250 250 250 250 250 250 250 250 250
NFC 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700
Epochs 100 100 5 100 100 50 100 100 4 100 100 50
Unlearn lr 0.1 0.1 0.00001 0.1 0.1 0.02 0.1 0.1 0.0001 0.1 0.1 0.005
Alpha NA NA NA 16.5 100 0.03 NA NA NA 16.5 40 0.02
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A.2 TRAINING DETAILS

This part provides an expanded interpretation of the Experimental Details section within the
Experiment Setup part in the main body of the paper.

In our experiment, we used the SGD optimizer for training. MT was trained for 100 epochs with
lr = 0.1. During training ofMU , we adopted the hyper-parameter settings recommended in (Jia
et al., 2023) for various unlearning methods and made fine adjustments on this basis, we can find
detailed parameters for trainingMU in Table A2. In implementing CMIRA, we first pre-trained
MA for 200 epochs with lr = 0.01. In the inducing recovery stage, we iteratively trained both
MA andMU , and updated DUA over 200 iterations. In each iteration,MA andMU were trained
for 10 epochs with lr = 0.001. We employed an early-stop strategy, terminating the process if the
recovery accuracy did not improve for 7 consecutive iterations. All experiments were conducted on
the computing system equipped with 8 NVIDIA® A100 GPUs.

B DETAILED EVALUATION METRICS

This part provides an expanded interpretation of the Evaluation metrics section within the Experi-
ments part in the main body of the article. Below we explain the evaluation metrics we used in our
study in more detail.

B.1 RECOVERY RATE (RR)

It is used to assess the comprehensive recovery capability of CMIRA for forgotten data. We denote
the accuracy of the attack model MA in forgetting data Xf as AccA and that of the unlearned
modelMU as AccU , and the difference between them can reflect the extent of recovery in class
membership prediction, which could be defined as Recovery Improvement (RI ):

RI = AccA −AccU (12)

Due to significant variations in AccU across different model and unlearn method configurations, we
focus on its relative recovery rate RR, defined as:

RR =
RI

AccU
=

AccA −AccU
AccU

(13)

B.2 AREA OF MEMBERSHIP RECOVERY (AR)

It evaluates the recovery capability of CMIRA from a multi-class perspective. We define the concept
of the Membership Recovery Polygon (MRP) to facilitate the evaluation. The polygon is generated
through the radar chart, where each vertex of the polygon in the radar chart corresponds to a specific
class, with the distance from the center to the point indicating the accuracy level of that class (e.g.
AcciU or AcciA for the i-th class). By plotting these points and connecting them sequentially, the
Membership Recovery polygon (MRP) is formed. This graphical representation provides an intuitive
overview of performance in different classes, highlighting recovery effectiveness in a comparative
context.

We further obtain the area of the polygon, AA forMA and AU forMU :

• AU : This metric indicates that the smaller it is, the better the unlearning effect ofMU , meaning
the poorer the membership memory retention, which is the goal of various unlearning methods.

• AA: This metric indicates that the larger it is, the better the recovery effect ofMA, meaning the
better the membership recovery after the attack.

Similar to RR, we prioritize its relative recovery rate AR, defined as:

AR =
AA −AU

AU
(14)
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C ADDITIONAL MAIN RESULTS

This section provides an expanded interpretation of the Main Results Details section within the
Experiments part in the main body of the paper.

C.1 CLASS MEMBERSHIP RECOVERY

This part provides an expanded interpretation of the Efficacy of Class Membership Recovery section
within the Main Results part in the main body of the paper.

We evaluated our proposed method, CMIRA, on four datasets—CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), TinyImageNet (Le & Yang, 2015), and FMNIST (Xiao et al., 2017)—using two
backbone networks, ResNet18 (He et al., 2016) and VGG16 (Simonyan & Zisserman, 2014). We
tested its performance across six different MU methods: Retrain, FF (Becker & Liebig, 2022;
Golatkar et al., 2020), FT (Warnecke et al., 2021; Golatkar et al., 2020), GA (Graves et al., 2021;
Golatkar et al., 2020; Thudi et al., 2022), IU (Koh & Liang, 2017; Izzo et al., 2021), and WP (Jia
et al., 2023). As shown in Table A3 and Figure A1, applying the CMIRA attack strategy to models
trained on these datasets for predicting forgotten classes led to significant improvements both in Ri

I ,
which is the recovery improvement of each class i and in the area of membership recovery AR. These
metrics showed substantial enhancements compared to the performance of the original MU models.

C.2 T-SNE VISUALIZATION

This part provides an expanded interpretation of the Class membership Visualization section within
the Main Results part in the main body of the paper.

Due to space limitations, the main paper presents the t-SNE plots for the Retrain and IU methods,
while the supplementary material encompasses the t-SNE plots corresponding to the four remaining
MU methods (FF, FT, WP, and GA). The visualization results of Figure A2 demonstrate that these
four methods exhibit consistency in recovery from unlearning with those depicted in the main paper.
Specifically, when confronted with instances initially misclassified by the MU models, after applying
the CMIRA method, it is observed that the attack model can successfully restore the classification
capability.

D ADDITIONAL ANALYSIS

Due to the length of the main paper, this part of the experimental results is not mentioned in the
main body. The experimental results of this part aim to explore the factors that can affect CMIRA.
We explore the influence of datasets, MU methods, and backbone networks on unlearning recovery
attacks.

D.1 IMPACT OF DIFFERENT DATASETS

We aggregated all CMIRA performance metrics within the same dataset to analyze how different
datasets might influence their effectiveness. The results of this analysis are shown in Figure A3. The
experimental results demonstrate that the diversity of datasets significantly influences the effectiveness
of recovery attack. Specifically, TinyImageNet shows the highest recovery improvement and diversity,
followed by Cifar-100, Cifar-10, and FMNIST. Higher dataset diversity, characterized by richer
categories and greater sample differences, leads to more pronounced unlearning effects and a higher
recovery rate. This suggests that while models trained on the more diverse dataset are more prone to
forgetting, they are also at higher risk of induced recovery attacks.

D.2 IMPACT OF DIFFERENT UNLEARNING METHODS

We aggregated CMIRA’s recovery performance according to different unlearning methods, recording
the recovery rate RR and the area of membership recovery AR for each. The results are displayed
in Figure A4. The experimental results show that the recovery improvement RI varies significantly
with different MU methods. The highest to lowest recovery improvement ranking is IU, GA, FF,
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 NA  

 NA 

 NA 

 NA

Figure A1: Membership Recovery Polygon (MRP). The red area represents the prediction accuracy of the
unlearned model for each label, while the blue area represents the prediction accuracy after memory recovery by
CMIRA. ‘#n’ represents the n-th forgetted class.The FT Prune in the figure is referred to WP.
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FF
Unleaned Model Pretrained Model CMIRA

FT
Unleaned Model Pretrained Model CMIRA

WP
Unleaned Model Pretrained Model CMIRA

GA
Unleaned Model Pretrained Model CMIRA

Figure A2: t-SNE plots of Cifar-10 datapoints in Df and Dp w.r.t. unlearned models, pretrained attack models,
and CMIRA models. The legend labels followed by a question mark indicate the forgetting classes. This figure
shows the complete t-SNE figures of FF, FT, WP, and GA unlearning methods.
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WP, FT, and RT. In particular, IU, GA, and FF are more susceptible to recovery attacks, indicating
that their unlearning effects are relatively unstable. WP and FT perform moderately by adopting
fine-tuning or pruning. RT is an exact unlearning method results in models with less forgotten privacy
information, reducing the attack effects.

D.3 IMPACT OF DIFFERENT BACKBONE MODELS

We aggregated CMIRA’s recovery performance according to different backbone models, recording
the recovery rate RR and the area of membership recovery AR for each. The results are displayed
in Figure A5. The experimental results indicate that when the backbone is similar, the unlearning
recovery effect is not significantly affected by the network architecture. However, it is observed
that VGG16 is more susceptible than ResNet18. This can be attributed to the simpler convolutional
structure of VGG16, which allows for more detailed feature adjustments, enhancing the unlearning
recovery effect compared to the residual structure of ResNet18.

E ADDITIONAL ABLATION STUDY RESULTS

This part provides a complete interpretation of the Visualization of Confusion Matrix section within
the Ablation Study part in the main body of the article.

As shown in Table A4 and Table A5, as well as the confusion matrices in Figure A6 of the ablation
studies, the complete CMIRA method consistently demonstrates the best performance in the vast
majority of cases.
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Figure A3: The boxplot compares the Recovery Rate and Area of Membership Recovery based on different
datasets. Each section in the boxplot includes two indicators: the average value of the Recovery Rate (RR)
grouped by dataset, and the average value of the Area of Membership Recovery (AR) grouped by dataset.

Figure A4: The boxplot compares the Recovery Rate and Area of Membership Recovery based on different
machine unlearning (MU) methods. Each section in the boxplot includes two indicators: the average value of the
Recovery Rate (RR) grouped by MU method, and the average value of the Area of Membership Recovery (AR)

grouped by MU method. The FT Prune in the figure is referred to WP.

Figure A5: The boxplot compares the Recovery Rate and Area of Membership Recovery based on different
backbone models. Each section in the boxplot includes two indicators: the average value of the Recovery Rate
(RR) grouped by backbone model, and the average value of the Area of Membership Recovery (AR) grouped

by backbone model.
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Retrain FF

FT WP

IU GA

Figure A6: The plots of normalized confusion matrices demonstrate the classification performance of ablative
models MP , MP+U , and MP+U+A on Cifar-10 using the RT(Retrain)/FF/FT/WP/IU method respectively.
The labels are reordered (the five forgetting classes are listed first) to better emphasize the class membership
recovery capability achieved by CMIRA with the mutual knowledge distillation technique.
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Table A3: Complete Class-wise evaluation on recovery attack efficacy of CMIRA (full performance). For
the forgetting data of class #i, we present the MU ’s prediction accuracy AcciU (%) and the recovery amount
achieved by CMIRA, displayed as ↑(AcciA - AcciU ).

Dataset Model Method Class #1
Airplane

Class #2
Automobile

Class #3
Cat

Class #4
Dog

Class #5
Frog

AR (%)

Cifar-10

ResNet18

RT 70.71 ↑ 5.51 79.07 ↑ 2.66 48.58 ↑ 2.35 57.11 ↑ 2.40 75.78 ↑ 2.84 11.20

FT 72.36 ↑ 4.13 80.58 ↑ 2.71 49.38 ↑ 3.55 55.96 ↑ 0.97 76.09 ↑ 5.11 10.54

FF 34.49 ↑ 56.58 99.91 ↑ 0.05 33.42 ↑ 60.00 33.16 ↑ 62.97 58.13 ↑ 39.60 314.98

GA 78.80 ↑ 14.44 75.64 ↑ 16.49 73.29 ↑ 18.58 77.16 ↑ 14.08 76.80 ↑ 15.38 44.68

IU 94.84 ↑ 3.60 86.76 ↑ 9.55 85.82 ↑ 11.02 86.62 ↑ 10.85 83.29 ↑ 13.02 20.31

WP 43.42 ↑ 20.45 51.69 ↑ 14.80 36.49 ↑ 1.95 24.84 ↑ 9.96 47.51 ↑ 18.93 84.69

VGG16

RT 81.07 ↑ 4.17 89.24 ↑ 1.52 65.96 ↑ 4.26 66.80 ↑ 3.51 85.24 ↑ 2.09 8.71

FT 81.91 ↑ 4.49 90.31 ↑ 0.98 69.56 ↑ 3.86 71.60 ↑ 2.27 85.64 ↑ 2.36 7.96

GA 64.36 ↑ 23.15 38.31 ↑ 23.29 61.07 ↑ 25.86 60.22 ↑ 24.00 72.93 ↑ 18.71 90.99

IU 62.71 ↑ 25.11 38.67 ↑ 24.97 55.64 ↑ 31.47 41.78 ↑ 35.11 64.84 ↑ 25.60 129.66

WP 72.71 ↑ 8.36 85.91 ↑ 4.22 33.60 ↑ 11.20 61.96 ↑ 2.13 55.33 ↑ 18.58 31.57

Dataset Model Method Class #1
Boy

Class #2
Clock

Class #3
Forest

Class #4
Lizard

Class #5
Otter

AR (%)

Cifar-100

ResNet18

RT 16.00 ↓ 2.67 27.56 ↑ 1.77 33.78 ↑ 11.11 11.56 ↓ 0.89 8.89 ↑ 2.67 16.74

FT 16.44 ↑ 0.45 34.67 ↓ 7.56 36.44 ↑ 9.78 13.33 ↓ 0.00 12.00 ↓ 3.11 -2.24

FF 50.22 ↑ 44.00 79.56 ↑ 18.66 40.00 ↑ 58.67 60.89 ↑ 36.89 23.11 ↑ 72.45 279.63

GA 29.78 ↑ 64.00 28.44 ↑ 63.56 20.44 ↑ 71.12 38.67 ↑ 59.11 28.44 ↑ 64.89 942.53

IU 71.11 ↑ 26.67 42.67 ↑ 50.22 34.67 ↑ 59.55 76.89 ↑ 22.22 50.67 ↑ 46.22 182.81

WP 10.67 ↑ 4.00 30.22 ↓ 6.66 28.44 ↑ 11.56 7.56 ↓ 5.34 1.78 ↑ 0.89 6.07

VGG16

RT 24.89 ↑ 3.11 46.67 ↑ 0.89 46.22 ↑ 12.89 11.56 ↓ 0.00 14.67 ↑ 2.22 25.39

FT 28.89 ↑ 0.89 52.44 ↑ 1.78 50.67 ↑ 10.22 24.44 ↑ 0.89 16.89 ↑ 3.11 18.21

GA 10.67 ↑ 82.66 23.56 ↑ 56.88 11.56 ↑ 84.44 16.44 ↑ 73.34 9.78 ↑ 79.55 4378.30

IU 25.33 ↑ 67.11 55.11 ↑ 39.11 28.44 ↑ 69.34 78.22 ↑ 20.89 7.56 ↑ 82.66 708.15

WP 3.56 ↑ 7.55 42.22 ↑ 2.22 48.44 ↑ 12.00 6.67 ↑ 11.55 0.00 ↓ 0.00 74.04

Dataset Model Method Class #1
Salamander

Class #2
Baboon

Class #3
Hammer

Class #4
Umbrella

Class #5
Slug

AR (%)

TinyImg

ResNet18

RT 56.00 ↑ 15.20 16.40 ↑ 1.20 26.80 ↑ 8.40 16.80 ↑ 6.40 30.00 ↑ 17.60 71.88

FT 57.20 ↑ 17.60 16.40 ↓ 0.40 36.40 ↓ 0.00 12.40 ↑ 6.40 35.20 ↑ 16.40 67.20

FF 62.40 ↑ 37.60 40.40 ↑ 54.00 56.00 ↑ 38.40 76.40 ↑ 21.20 63.20 ↑ 34.80 162.01

GA 43.20 ↑ 56.00 38.40 ↑ 59.20 54.40 ↑ 43.60 38.80 ↑ 60.00 48.00 ↑ 51.20 400.92

IU 23.60 ↑ 75.60 5.60 ↑ 92.40 9.60 ↑ 88.40 36.00 ↑ 64.00 0.00 ↑ 98.00 5273.35

WP 55.20 ↑ 32.80 18.00 ↑ 3.60 35.20 ↑ 20.80 28.80 ↑ 6.80 18.00 ↑ 44.80 186.25

VGG16

RT 60.00 ↑ 14.80 31.20 ↑ 10.80 44.00 ↑ 13.60 23.20 ↑ 13.20 35.20 ↑ 23.60 83.35

FT 63.20 ↑ 13.60 28.40 ↑ 0.80 47.60 ↑ 5.60 27.60 ↑ 2.80 38.40 ↑ 11.60 39.61

GA 36.40 ↑ 62.40 35.20 ↑ 62.40 39.20 ↑ 60.40 30.80 ↑ 69.20 32.80 ↑ 66.40 694.94

IU 93.20 ↑ 6.40 3.20 ↑ 95.20 0.00 ↑ 99.60 16.40 ↑ 82.80 2.40 ↑ 93.20 531.60

WP 70.80 ↑ 12.00 20.80 ↑ 14.80 43.20 ↑ 12.80 18.40 ↑ 14.40 29.20 ↑ 22.40 81.75

Dataset Model Method Class #1
Trouser

Class #2
Dress

Class #3
Sandal

Class #4
Sneaker

Class #5
Ankle boot

AR (%)

FMNIST

ResNet18

RT 98.67 ↓ 0.19 90.00 ↑ 1.52 97.70 ↑ 0.26 95.56 ↑ 0.29 97.19 ↑ 0.11 0.64

FT 98.48 ↑ 0.04 91.11 ↑ 1.93 98.19 ↑ 0.33 96.52 ↑ 0.67 96.85 ↑ 0.04 1.06

FF 97.26 ↑ 2.07 10.52 ↑ 47.07 84.70 ↑ 13.67 77.70 ↑ 17.52 99.93 ↓ 1.04 40.69

GA 88.78 ↑ 10.52 72.41 ↑ 19.81 80.63 ↑ 18.00 88.48 ↑ 10.52 56.37 ↑ 37.22 51.41

IU 90.81 ↑ 8.08 50.70 ↑ 33.37 41.59 ↑ 47.22 0.85 ↑ 38.67 46.85 ↑ 48.11 118.82

WP 21.78 ↑ 54.07 0.00 ↑ 1.70 5.67 ↓ 4.86 94.48 ↑ 4.56 0.00 ↑ 0.37 497.19

VGG16

RT 98.78 ↓ 0.00 89.59 ↑ 2.11 98.11 ↓ 0.04 97.07 ↑ 0.04 97.19 ↑ 0.29 0.85

FT 98.67 ↑ 0.22 92.59 ↑ 1.37 98.85 ↑ 0.08 97.19 ↑ 0.33 97.41 ↑ 0.26 0.86

GA 5.52 ↑ 5.48 90.41 ↑ 5.55 27.78 ↑ 33.00 14.11 ↑ 46.56 0.67 ↑ 19.00 251.32

IU 0.04 ↑ 22.85 19.30 ↑ 57.92 20.85 ↑ 72.59 33.48 ↑ 53.63 63.48 ↑ 33.11 775.58

WP 96.41 ↑ 0.44 86.70 ↑ 4.97 94.89 ↑ 0.70 93.85 ↑ 2.30 92.63 ↑ 0.15 3.26
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Table A4: Ablation Studies on ResNet18. All the metric scores are reported by (%). The accuracy of MU models
AccU in percentage (%) is reported as baseline. And P, P+U and P+U+A stand for the models MP , MP+U ,
and MP+U+A respectively.

Cifar-10
RT FT FF GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 66.25 - - 66.87 - - 51.82 - - 76.34 - - 87.47 - - 40.79 - -
P 57.49 -13.22 -21.49 57.49 -14.02 -23.42 57.49 10.94 62.22 57.49 -24.69 -40.27 57.49 -34.27 -55.29 57.49 40.95 107.68
P+U 66.27 0.03 0.61 67.05 0.27 0.91 53.49 3.22 14.61 76.29 -0.06 -0.07 87.45 -0.02 -0.03 47.15 15.58 35.74
P+U+A 69.40 4.76 11.20 70.17 4.93 10.54 95.66 84.60 314.98 92.13 20.69 44.68 97.08 10.99 20.31 54.01 32.40 84.69

Cifar-100
RT FT FF GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 19.56 - - 22.58 - - 50.76 - - 29.16 - - 55.20 - - 15.73 - -
P 11.29 -42.27 -69.03 11.29 -50.00 -76.22 11.29 -77.76 -95.23 11.29 -61.28 -86.13 11.29 -79.55 -96.45 11.29 -28.25 -54.58
P+U 18.76 -4.09 -10.37 23.47 3.94 7.57 50.84 0.18 0.34 29.42 0.91 1.87 55.29 0.16 0.21 16.27 3.39 5.01
P+U+A 21.96 12.27 16.74 22.49 -0.39 -2.24 96.89 90.89 279.63 93.69 221.34 942.53 96.18 74.24 182.81 16.62 5.65 6.07

TinyImg
RT FT FF GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 29.20 - - 31.52 - - 59.68 - - 44.56 - - 14.96 - - 31.04 - -
P 6.72 -76.99 -97.99 6.72 -78.68 -98.14 6.72 -88.74 -99.34 6.72 -84.92 -98.77 6.72 -55.08 -86.83 6.72 -78.35 -98.01
P+U 33.36 14.25 39.92 35.12 11.42 30.35 59.84 0.27 1.24 45.68 2.51 6.93 17.68 18.18 153.70 33.44 7.73 31.70
P+U+A 38.96 33.42 71.88 39.52 25.38 67.20 96.88 62.33 162.01 98.56 121.18 400.92 98.64 559.36 5273.4 52.80 70.10 186.25

FMNIST
RT FT FF GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 95.82 - - 96.23 - - 74.02 - - 77.33 - - 46.16 - - 24.39 - -
P 94.19 -1.71 -3.19 94.19 -2.12 -3.81 94.19 27.24 51.95 94.19 21.79 44.46 94.19 104.03 179.13 94.19 286.24 5233.2
P+U 96.04 0.22 0.41 96.26 0.03 0.04 77.93 5.27 8.57 81.84 5.83 11.57 53.13 15.08 20.13 26.16 7.26 50.47
P+U+A 96.22 0.42 0.64 96.83 0.62 1.06 89.88 21.42 40.69 96.55 24.85 51.41 81.25 76.01 118.82 35.56 45.81 497.19

Table A5: Ablation Studies on VGG16. All the metric scores are reported by (%). The accuracy of MU models
AccU in percentage (%) is reported as baseline. And P, P+U and P+U+A stand for the models MP , MP+U ,
and MP+U+A respectively.

Cifar-10
RT FT GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 77.66 - - 79.80 - - 59.38 - - 52.73 - - 61.90 - -
P 57.49 -25.97 -42.48 57.49 -27.96 -45.18 57.49 -3.17 -2.75 57.49 9.04 19.90 57.49 -7.12 -11.86
P+U 77.64 -0.02 -0.06 79.80 -0.01 0.07 58.63 -1.26 -0.60 54.84 4.01 11.36 63.13 1.98 5.02
P+U+A 80.77 4.01 8.71 82.60 3.50 7.96 82.38 38.74 90.99 81.18 53.96 129.66 70.80 14.37 31.57

Cifar-100
RT FT GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 28.80 - - 34.67 - - 14.40 - - 38.93 - - 20.18 - -
P 11.29 -60.80 -86.00 11.29 -67.44 -90.19 11.29 -21.60 -35.84 11.29 -71.00 -89.40 11.29 -44.05 -72.31
P+U 28.00 -2.78 -5.56 34.84 0.51 0.45 13.87 -3.70 9.86 38.49 -1.14 -1.17 19.56 -3.08 -13.07
P+U+A 32.62 13.27 25.39 38.04 9.74 18.21 89.78 523.46 4378.3 94.76 143.38 708.15 26.84 33.04 74.04

TinyImg
RT FT GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 38.72 - - 41.04 - - 34.88 - - 23.04 - - 36.48 - -
P 6.72 -82.64 -98.67 6.72 -83.63 -98.80 6.72 -80.73 -98.06 6.72 -70.83 -98.45 6.72 -81.58 -98.67
P+U 38.56 -0.41 3.12 40.80 -0.58 0.04 38.24 9.63 31.40 22.56 -2.08 -3.63 36.56 0.22 -0.30
P+U+A 53.92 39.26 83.35 47.92 16.76 39.61 99.04 183.94 694.94 98.48 327.43 531.60 51.76 41.89 81.75

FMNIST
RT FT GA IU WP

Acc RR AR Acc RR AR Acc RR AR Acc RR AR Acc RR AR

Baseline 96.15 - - 96.94 - - 27.70 - - 27.43 - - 92.90 - -
P 94.19 -2.04 -3.77 94.19 -2.84 -5.04 94.19 240.06 1462.7 94.19 243.37 1567.6 94.19 1.39 2.74
P+U 96.20 0.05 0.08 97.00 0.06 0.08 29.98 8.24 20.40 35.71 30.19 74.54 93.87 1.04 1.90
P+U+A 96.63 0.50 0.85 97.39 0.47 0.86 49.61 79.14 251.32 75.45 175.07 775.58 94.61 1.84 3.26
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