
A Recipe for Disaster: Neural Architecture Search
with Search Space Poisoning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We assess the robustness of a Neural Architecture Search (NAS) algorithm known1

as Efficient NAS (ENAS) against data agnostic poisoning attacks on the original2

search space with carefully designed ineffective operations. By evaluating algo-3

rithm performance on the CIFAR-10 dataset, we empirically demonstrate how4

our novel search space poisoning (SSP) approach and multiple-instance poisoning5

attacks exploit design flaws in the ENAS controller to result in high prediction6

error rates for child networks. Furthermore, with just two detrimental operations,7

our one-shot poisoning approach inflates prediction error rates for child networks8

up to 90% and 99% on the CIFAR-10 and CIFAR-100 datasets respectively. Our9

results provide insights into the challenges to surmount in using NAS algorithms10

with parameter sharing for more adversarially robust architecture search.11

1 Introduction12

In the modern ecosystem, the problem of finding the most optimal deep learning architectures has13

been a major focus of the machine learning community. With applications ranging from speech14

recognition [7] to image segmentation [10], deep learning has shown the potential to solve pressing15

issues in several domains including healthcare [21; 17] and surveillance [14]. However, a major16

challenge is to find the best architecture design for a given problem. This relies heavily on the17

researcher’s domain knowledge and involves large amounts of trial and error. More recently, neural18

architecture search (NAS) algorithms have automated this dynamic process of creating and evaluating19

new architectures [27; 13; 12]. These algorithms continually sample operations from a predefined20

search space to construct architectures that best optimize a performance metric over time, eventually21

converging to the best child architectures. This intuitive idea, outlined in Figure 1, greatly reduces22

human intervention by restricting human bias in architecture engineering to just the selection of the23

predefined search space [5].24

Search Space (A) Search Strategy Performance Estimation

Architecture a ∈ A

Performance Metric

Figure 1: Overview of the NAS framework

Although NAS has the potential to revolutionize architecture search across industry and research25

applications, human selection of the search space also presents an open security risk that needs to be26

evaluated before NAS can be deployed in security-critical domains. Due to the heavy reliance of NAS27

on the search space, poor search space selection either due to human error or by an adversary can28

potentially impact the training dynamics of NAS severely. This can alter or completely reverse the29

Submitted to the 5th Workshop on Meta-Learning at NeurIPS 2021, held virtually. Do not distribute.

predictive performance of even the most optimal final architectures derived from such a procedure.30

In this paper, we validate these concerns by evaluating the robustness of one such NAS algorithm31

known as Efficient NAS (ENAS) [16] against data-agnostic search space poisoning (SSP) attacks.32

Related Work A comprehensive overview of NAS algorithms can be found in Wistuba et al. [23]33

and Elsken et al. [5], with Chakraborty et al. [2] summarising advances in adversarial machine34

learning including poisoning attacks. NAS algorithms have recently been employed in healthcare35

and applied in various clinical settings for diseases like COVID-19, cancer and cystic fibrosis [20].36

Furthermore, architectures derived from NAS procedures have shown state of the art performance,37

often outperforming manually created networks in semantic segmentation [4], image classification38

[18; 28] and object detection [28]. With rapid development of emerging NAS methods, recent work39

by Lindauer and Hutter [11] has brought to light some pressing issues pertaining to the lack of40

rigorous empirical evaluation of existing approaches. Furthermore, while NAS has been studied to41

further develop more adversarially robust networks through addition of dense connections [9; 6],42

little work has been done in the past to assess the adversarial robustness of NAS itself. Search phase43

analysis has shown that computationally efficient algorithms such as ENAS are worse at truly ranking44

child networks due to their reliance on weight sharing [26], which can be exploited in an adversarial45

context. Finally, most traditional poisoning attacks involve injecting mislabeled examples in the46

training data, which is fairly limited. The expected result is higher prediction error and in some47

cases a complete reversal of what the network should be predicting. Some examples of traditional48

poisoning attacks have been executed against feature selection methods [24], support vector machines49

[1] and neural networks [25]. To the authors’ knowledge, no study, has approached poisoning in a50

data-agnostic manner, especially one that involves poisoning the search space in NAS. In summary,51

our main contributions through this paper are that:52

• We emphasize the conceptual significance of designing adversarial poisoning attacks that53

leverage the inability of ENAS to alternate between weights shared across effective and54

ineffective operations through a novel data-agnostic poisoning technique called search space55

poisoning (SSP) described in Section 3.56

• We develop multiple-instance poisoning attacks and design poisoning sets with carefully57

chosen operations, described in Section 3.2, that cause ENAS to produce child networks58

with inflated prediction error rates (up to ∼ 85%) on image classification tasks.59

• We improve upon these results by introducing one-shot poisoning in Section 4, which with60

just two poisoning operations inflates prediction error rates for child networks up to 90%61

and 99% on the CIFAR-10 and CIFAR-100 datasets respectively.62

2 Background63

2.1 Efficient Neural Architecture Search (ENAS)64

1 2

3

4

5

6

Figure 2: ENAS search space represented as a DAG. Red arrows represent one child model with
input node 1 and outputs 4, 6 respectively.

Search Space Consider the set A containing all possible neural network architectures or child65

models that can be generated. The ENAS search space is then represented as a directed acyclic graph66

(DAG) denoted by G which is a superset of all the child models sampled by ENAS. Every node in67

Figure 1 represents local computations each having its own parameters with edges representing the68

flow of information between nodes. Sampled architectures are sub-graphs of G with parameters being69

shared amongst child models. The implementation of parameter sharing is the main factor behind70

ENAS’ efficiency as it overcomes the major limitation of NAS. In NAS, all of the architectures were71

trained from scratch, then upon convergence the trained weights were discarded. So, instead of each72

2

child architecture being trained from scratch each sampled model from G inherits the parameters73

from previously-trained ones. Throughout this paper, we focus on the highly effective original ENAS74

search space as outlined in Pham et al. [16] denoted by Ŝ = {Identity, 3x3 Separable Convolution,75

5x5 Separable Convolution, Max Pooling (3x3), Average Pooling (3x3)}.76

Search Strategy The ENAS controller is a predefined long short term memory (LSTM) cell which77

autoregressively samples decisions through softmax classifiers, where it predicts one hyperparameter78

at a time, conditioned on previous predictions. The central goal of the controller is to search for79

optimal architectures by generating a child model a ∈ G, feeding every decision on the previous step80

as an input embedding into the next step. Our main search strategy throughout this paper will be81

macro search where the controller makes two sampling decisions for every layer in the child network:82

(i) connections to previous nodes for skip connections, and (ii) operations to use from the search83

space. The model is finally evaluated for its performance which is further used to optimize reward as84

described next.85

Performance Estimation As outlined in Pham et al. [16], ENAS alternates between training the86

shared parameters ω of the child model m using stochastic gradient descent (SGD), and parameters θ87

of the LSTM controller using reinforcement learning (RL). First, keeping ω fixed, θ is trained with88

REINFORCE [22] and Adam optimiser [8] to maximize the expected reward Em∼π(m;θ)[R(m, ω)]89

(validation accuracy); and second, keeping the controller’s policy π(m, θ) fixed, ω is updated with90

SGD to minimize expected cross-entropy loss Em∼π[L(m;ω)]. It should be noted that different91

operations associated with the same node in G have their own unique parameters.92

2.2 Training Data Poisoning93

Traditionally, training data poisoning is defined as the adversarial contamination of the training94

set T ⊂ D by addition of an extraneous data point (xp, yp) which maximizes prediction error95

across training and validation sets, while significantly impacting loss minimization during training96

[24; 1; 15; 25]. It is assumed here that the data is generated according to an underlying process97

f : X 7→ Y , given a set D = {xi, yi}ni=1 of i.i.d samples drawn from p(X,Y), where X and Y are98

sets containing feature vectors and corresponding target labels respectively. While highly effective,99

existing poisoning techniques are highly data dependent and operate under the assumption that the100

attacker has access to training data. A more relaxed assumption would be to decouple the attack101

modality from training data and make it data agnostic, which is explored in the subsequent section.102

3 Search Space Poisoning (SSP)103

3.1 General Framework104

Poisoning Set (P)

Search Space (Ŝ) Search Strategy Performance Estimation

Architecture

Performance Metric

Ŝ∪P

Figure 3: Overview of Search Space Poisoning (SSP)

Motivated by the previously described notion of training data poisoning, we introduce search space105

poisoning (SSP) focused on contaminating the operation search space. The idea behind SSP is to106

inject precisely designed ineffective operations into the ENAS search space. Our approach exploits107

the core functionality of the ENAS controller to sample child networks from a large computational108

graph of operations by introducing highly ineffective local operations into the search space. On the109

attacker’s behalf, this requires no a priori knowledge of the problem domain or training dataset being110

used, making this new approach more favourable than traditional poisoning attacks. By the same111

token, SSP could render ENAS prone to human error in search space design. Formally, we describe a112

poisoned search space as S := Ŝ ∪ P , where Ŝ denotes the original ENAS search space operations113

and P denotes a non-empty set of poisonings where each poisoning is an ineffective operation. An114

overview of the SSP approach can be observed Figure 3.115

3

3.2 Multiple-Instance Poisoning Attacks116

Over the course of training, the LSTM controller paired with the RL search strategy in ENAS develops117

the ability to sample architectures with operations that most optimally reduce the validation error.118

We propose multiple-instance poisoning which essentially increases the likelihood of a poisonous119

operation oP being sampled from the poisoned search space S. This is achieved by increasing120

the frequency of sampling oP from S through the inclusion of multiple-instances of each oP from121

the poisoning multiset, so-called to allow for duplicate elements. An instance factor q ∈ N≥1122

represents instance multiplication of oP in the multiset q times. Henceforth, the probabilities of123

sampling oŜ ∈ Ŝ and oP ∈ P , respectively, are, Pr[oŜ] := 1
|S|+q|P| and Pr[oP] :=

q
|S|+q|P| . From124

which, it is evident that under a multiple-instance poisoning framework, the probability of sampling125

poisoned operations is strictly greater than sampling operations in Ŝ; that is, Pr[oŜ] < Pr[oP]. It126

is also important to note that our technique is not the typical image-agnostic perturbation/universal127

adversarial perturbation δ ∈ Rd intended to fool the target neural network f on almost all the input128

images from the target distribution X [3]. Finally, another challenge to overcome within our search129

space poisoning framework is to craft each oP ∈ P such that it counteracts the efficacy of the original130

operations oŜ ∈ Ŝ, which we tackle in the next section.131

3.3 Crafting Poisoning Sets with Operations132

Identity Operation The simplest way to attack the functionality of ENAS is to inject non-133

operations within the original search space which keep the input and outputs intact. As a result, the134

controller will sample child models with layers representing computations which preserve the inputs,135

making the operation highly ineffective within a network architecture. This goal is achieved by the136

inexpensive identity operation which has no numerical effect on the inputs. It should also be noted137

that, the identity operation is not a skip connection. Therefore, we define our first poisoning set:138

P1 := {Identity}.139

Gaussian Noise Layer Typically used in signal processing, electronics and mitigating over-fitting140

as some form of random data augmentation. Gaussian noise is a type of statistical noise which is141

in the form of a Normal distribution (X ∼ N (µ, σ2)). In PyTorch/Keras, the Gaussian noise layer142

additively applies zero-centered Gaussian noise passing in the argument of relative standard deviation143

used to generate the noise. We hypothesize that including such layers with increasingly varied relative144

standard deviations such as σ = 10, can significantly impact the accuracy of the generated child145

models making our poisoning set P2 := {Gaussian (σ = 10)}.146

Dropout Layer While dropout layers have historically been shown to be useful in preventing neural147

networks from over-fitting [19], a high dropout rate can result in severe information loss leading148

to poor performance of the overall network. This is because given a dropout probability p ∈ [0, 1],149

dropout randomly zeroes out some values from the input to decorrelate neurons during training. We150

hypothesize that including such layers with high dropout probability, such as p = 1, has the potential151

to contaminate the search space with irreversible effects on the training dynamics of ENAS. Here, we152

define our poisoning set as P3 := {Dropout (p = 1)}.153

Transposed Convolutions As described earlier, amongst other useful operations the original ENAS154

search space Ŝ also contains 3x3 and 5x5 convolutional layers (separable). Intuitively, transposed155

convolutions upsample the input feature map. It is important to note that transposed convolutions do156

not perform like deconvolutional layers; they actually swap the forward and backward passes of a157

convolution. Transposed convolutions, also known as fractionally strided convolutions, stride over158

the output which is equivalent to a fractional stride over the input. We define our poisoning set: P4 =159

{3x3 transposed convolution, 5x5 transposed convolution}.160

3.4 Experimental Results161

To test the effectiveness of our proposed approach, we designed experiments based on previously162

described methods outlined in Table 1. Each experiment involved training ENAS on the CIFAR-10163

dataset for 300 epochs (hyperparameters used can be found in Appendix A). The results presented164

4

Figure 4: Experimental results for each search space outlined in Table 1. First column represents
moving average of the validation error per 20 epochs for 300 total epochs; second column represents
final validation and test classification errors as a function of multiple operation instances; and the
third column displays the kernel density estimate of the number of bad operations within networks of
depth 12 sampled by the ENAS controller over 300 epochs.

5

POISONING SET SEARCH SPACE EXPERIMENT POISONING MULTISET VALIDATION ERROR TEST ERROR
P S q(P)

∅ Ŝ Original ∅ 19.53 25.33
1a 6(P1) 24.40 30.93

P1 = {Identity} S1 = Ŝ ∪ P1 1b 36(P1) 38.54 41.31
1c 120(P1) 50.07 52.38
1d 300(P1) 69.78 67.97
2a 6(P2) 43.71 46.73

P2 = {Gaussian (σ = 10)} S2 = Ŝ ∪ P2 2b 36(P2) 73.64 73.82
2c 120(P2) 84.94 84.44
2d 300(P2) 86.26 85.49
3a 6(P3) 32.23 37.60

P3 = {Dropout (p = 1.0)} S3 = Ŝ ∪ P3 3b 36(P3) 48.67 51.88
3c 120(P3) 70.63 71.16
3d 300(P3) 84.89 84.31
4a 3(P4) 19.50 22.43

P4 = {3x3 transposed convolution, S4 = Ŝ ∪ P4 4b 18(P4) 36.00 37.15
5x5 transposed convolution} 4c 60(P4) 67.53 63.89

4d 150(P4) 67.68 64.14
5a 1(P2 + P5) 29.38 33.73

P5 := P1 ∪ P2 ∪ P3 ∪ P4 S5 = Ŝ ∪ P5 5b 6(P2 + P5) 55.06 56.02
5c 20(P2 + P5) 80.88 79.03
5d 50(P2 + P5) 72.56 70.14

Table 1: Summary of experimental search spaces with corresponding final validation and test
accuracies for SSP. Note that the multiset seed for experiments 5a-5d includes two instances of P2 to
convenient round out the cardinality of the multisets.

in this paper are the average of three runs per experiment. The software used includes Python165

(3.6.x-3.8.x) and PyTorch (1.9), with CUDA (10.2, 11.1).166

Identity Operation Figure 4 shows that multiple-instanced identity operations increase the error167

considerably. Experiments 1b, 1c, 1d have several identity operations and resulted in high errors, with168

the extreme 69.19% in experiment 1d. In contrast, experiment 1a only has one identity per original169

operation and only raised error slightly to 27.28%. These results reinforce our hypothesis laid in the170

equation in 3.2. Figure 4c illustrates moderate probability distributions of bad operation frequencies171

across instance-multiplied search spaces.172

Gaussian Noise Layer Contaminating the search space with Gaussian noise layers exhibited a173

similar pattern to identity layers, but the poisoning effect was more dramatic. Experiments with174

σ = 10 proved to be quite effective, with the highest instance-factor of 300 producing a final test175

error of 85.49%. Figure 4f shows that the probability distribution of bad operation frequency is wider176

at the lower instance factors, but highly concentrated in space 2d around 12 bad operations.177

Dropout Layer Instance-multiplying dropout operations exhibits expected behaviour, as seen178

in Figure 4g. The experiments progressively worsen in error with experiment 3d hitting 83.69%179

validation and 82.07% test errors. Adding these dropout layers produces similar patterns to previous180

experiments, with a poisoning effect stronger than that of identity functions, but weaker than that181

of Gaussian noise layers. This is somewhat unexpected as we had hypothesized that dropout with182

p = 1.0 (discarding all information) would be the most detrimental operation. Here, the distribution183

of bad operation frequency is lower than previous experiments (Figure 4i).184

Transposed Convolutions Adding transposed convolutions has a relatively weaker poisoning185

effect. Between the first three instance factors (q = 3, 18, 60), validation and test errors increase as186

expected, but between the last two (q = 60, 150), it stagnates at a 65.41% test error. Although these187

errors are quite low in comparison to other experiments, it reinforces the possibility of saturation188

points, similar to Gaussian noise layers. Figure 4` illustrates a sharp left skew in bad operation189

frequency distribution just like the Gaussian experiments in 2a-2d in Figure 4f.190

Grouped Operations Grouping together our poisoning operations appears to be moderately ef-191

fective. Over time, the validation error exhibited similar behaviour to our Gaussian noise poisoning192

spaces using P2; this is illustrated in Figure 4d and 4m. Reviewing the final errors shown in Figure193

4n, we note the high final error of experiment 5c at 79.03% for test. Interestingly, experiment 5d had194

a much lower test error at 70.14% despite having a higher instance factor q = 50, suggesting there195

6

exists a point of diminishing returns between q = 20 and q = 50. Figure 4o shows the distributions196

of bad operation frequencies having a left skew, similar to those of Gaussian noise and transposed197

convolution poisoning sets in Figures 4f and 4`.198

4 Towards One Shot Poisoning199

As seen in Figure 4, the frequency of bad operations far outweighs that of good operations resulting in200

a left skewed probability distribution for our most effective multiple-instance poisoning experiments.201

To further improve the attack, we attempt to reduce the number of poisonous operations to a minimum;202

we call this technique one shot poisoning. In contrast to multiple-instance poisoning, this new203

approach does not require such high operation frequencies if the poisoning sets are crafted carefully.204

In addition to our previous dropout layer, we further infect the original search space Ŝ with a widely205

padded and dilated variant of a convolution from Ŝ. Our rationale is that dropout operations with206

p = 1 would erase all information and produce catastrophic values such as 0 or not-a-number (NaN).207

The largely dilated kernel in this stretched convolution gives it a wider (but not larger) receptive field208

to spread these catastrophic values. During backpropagation, the resulting loss and gradient values209

would similarly be nonsensical causing a ripple effect and leaving the child networks untrained. Since210

the shared parameters are initially trained from scratch, such child networks would essentially be211

randomly guessing despite training.212

4.1 Experimental Results213

Figure 5: Network produced by ENAS on CIFAR-10 under one shot poisoning. Good and bad
operations highlighted in green and red, respectively. The search space used is Ŝ + 2(P+

3).

To be precise, we define P+
3 := {Conv(k = 3, p, d = 50),Dropout(p = 1)}. Our first experiment214

used the lowest cardinality |q(P+
3)| = 6 from our previous multiple-instance technique, and our215

second reduced it to |q(P+
3)| = 2, the minimum search space with these two bad operations.216

POISONING SET SEARCH SPACE CARDINALITY VAL ERROR TEST ERROR

P S := Ŝ + q(P) |q(P)|
∅ Ŝ +∅ 0 19.53% 25.33%

P3 = {Dropout(p = 1)} Ŝ + 300(P3) 300 84.89% 84.31%

P+
3 = {Conv(k = 3, p, d = 50),Dropout(p = 1)} Ŝ + 6(P+

3) 6 90.14% 90.00%

Ŝ + 2(P+
3) 2 90.12% 90.00%

Table 2: Comparing low-instance poisoned search spaces in one shot SSP to our previous multiple-
instance poisoning technique shows that one shot SSP can be more effective. Note that in P+

3 the
humble cardinality of 2 roughly matches the 90% test error of cardinality 6.

The results are promising, with error rates shooting up to 90% sharply during training as shown in217

Table 2 and Figure 6a. Figure 5 shows an example child network produced under this framework. A218

reasonable frequency of bad operations in child networks can still achieve this 90% test error (Figure219

6b). Also, it appears that including stretched convolutions in the poisoning sets tightly constrains220

the performance of child networks irrespective of instance-factor q. In other words, overwhelming221

the search spaces with more bad operations has little effect on one shot poisoning. This pattern is222

consistent in comparing experiments with Ŝ + 6(P+
3) to Ŝ + 2(P+

3) in Table 2. This 90% error223

translates to 10% accuracy, which is roughly equal to randomly guessing, supporting our hypothesis.224

7

Figure 6: (a) Validation error for one shot poisoning over 300 epochs (b) Distribution of bad operations
sampled by the ENAS controller after 300 epochs.

Further Experiments on CIFAR-100 We additionally ran ENAS on the CIFAR-100 dataset to test225

the efficacy of one shot poisoning. After three runs of 150 epochs, ENAS on the baseline search space226

resulted in child networks that improve slowly. This is much expected as the task has 100 classes227

rather than just the 10 from CIFAR-10. Moreover, after running one shot poisoning experiments with228

the same search space Ŝ + 2(P+
3), we observe error around 99%, implying an accuracy of 1%. In229

the context of CIFAR-100, 1% accuracy is roughly equivalent to randomly guessing. A child network230

produced under this framework is illustrated in Figure 7.231

Figure 7: Network produced by ENAS on CIFAR-100 under one shot poisoning. Good and bad
operations highlighted in green and red, respectively. The search space used is Ŝ + 2(P+

3).

The implication is that our one shot poisoning technique causes ENAS to produce child networks that232

randomly guess. Under one shot poisoning, the training dynamics also exhibit many not-a-number233

(NaN) values for loss and gradient. Given these findings, we suspect that the controller is unable to234

learn anything from its child networks, and continues to produce randomly-guessing networks.235

5 Conclusion236

NAS algorithms present an important opportunity for researchers and industry leaders by enabling237

the automated creation of optimal architectures. However, it is also important to evaluate obvious238

vulnerabilities in these systems which can result in unforeseen model outcomes if not dealt with239

beforehand. In this paper, we focused on examining the robustness of ENAS under our newly proposed240

SSP paradigm. We found that infecting the original search space resulted in child architectures that241

were highly inaccurate in their predictive abilities. Consistent with the earlier findings in Yu et al. [26],242

our results highlighted how the controller’s dependence on parameter sharing resulted in inaccurate243

predictions. Moreover, our carefully designed poisoning sets demonstrated the potential to make it244

easy for an attacker without prior knowledge or access to the training data to still drastically impact245

the quality of child networks. These findings pave the way for machine learning researchers to explore246

improvements to the search space and controller design for more adversarially robust search. Finally,247

our results also present an opportunity for researchers to extend similar ideas to other NAS methods.248

8

References249

[1] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector machines. arXiv250

preprint arXiv:1206.6389, 2012.251

[2] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay. Adversarial252

attacks and defences: A survey. arXiv preprint arXiv:1810.00069, 2018.253

[3] A. Chaubey, N. Agrawal, K. Barnwal, K. K. Guliani, and P. Mehta. Universal adversarial254

perturbations: A survey, 2020.255

[4] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, and J. Shlens.256

Searching for efficient multi-scale architectures for dense image prediction. arXiv preprint257

arXiv:1809.04184, 2018.258

[5] T. Elsken, J. H. Metzen, F. Hutter, et al. Neural architecture search: A survey. J. Mach. Learn.259

Res., 20(55):1–21, 2019.260

[6] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin. When nas meets robustness: In search of robust261

architectures against adversarial attacks. In Proceedings of the IEEE/CVF Conference on262

Computer Vision and Pattern Recognition, pages 631–640, 2020.263

[7] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,264

P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech recogni-265

tion: The shared views of four research groups. IEEE Signal processing magazine, 29(6):82–97,266

2012.267

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint268

arXiv:1412.6980, 2014.269

[9] S. Kotyan and D. V. Vargas. Evolving robust neural architectures to defend from adversarial270

attacks. arXiv e-prints, pages arXiv–1906, 2019.271

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional272

neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.273

[11] M. Lindauer and F. Hutter. Best practices for scientific research on neural architecture search.274

Journal of Machine Learning Research, 21(243):1–18, 2020.275

[12] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and276

K. Murphy. Progressive neural architecture search. In Proceedings of the European Conference277

on Computer Vision (ECCV), pages 19–34, 2018.278

[13] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv preprint279

arXiv:1806.09055, 2018.280

[14] X. Liu, W. Liu, T. Mei, and H. Ma. A deep learning-based approach to progressive vehicle281

re-identification for urban surveillance. In European conference on computer vision, pages282

869–884. Springer, 2016.283

[15] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C. Lupu, and284

F. Roli. Towards poisoning of deep learning algorithms with back-gradient optimization. In285

Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 27–38,286

2017.287

[16] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via288

parameters sharing. In International Conference on Machine Learning, pages 4095–4104.289

PMLR, 2018.290

[17] F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, and G. Fortino. A survey on deep learning291

in medicine: Why, how and when? Information Fusion, 66:111–137, 2021.292

[18] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier293

architecture search. In Proceedings of the aaai conference on artificial intelligence, volume 33,294

pages 4780–4789, 2019.295

9

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple296

way to prevent neural networks from overfitting. The journal of machine learning research, 15297

(1):1929–1958, 2014.298

[20] M. van der Schaar. Automl and interpretability: Powering the machine learning revolution in299

healthcare. In Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference,300

pages 1–1, 2020.301

[21] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck. Deep learning for identifying302

metastatic breast cancer. arXiv preprint arXiv:1606.05718, 2016.303

[22] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement304

learning. Machine learning, 8(3-4):229–256, 1992.305

[23] M. Wistuba, A. Rawat, and T. Pedapati. A survey on neural architecture search. arXiv preprint306

arXiv:1905.01392, 2019.307

[24] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli. Is feature selection secure308

against training data poisoning? In International Conference on Machine Learning, pages309

1689–1698. PMLR, 2015.310

[25] C. Yang, Q. Wu, H. Li, and Y. Chen. Generative poisoning attack method against neural311

networks. arXiv preprint arXiv:1703.01340, 2017.312

[26] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann. Evaluating the search phase of neural313

architecture search. arXiv preprint arXiv:1902.08142, 2019.314

[27] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint315

arXiv:1611.01578, 2016.316

[28] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable317

image recognition. In Proceedings of the IEEE conference on computer vision and pattern318

recognition, pages 8697–8710, 2018.319

10

Appendix320

A. Hyperparameters321

HYPERPARAMETER VALUE

search_for macro
dataset CIFAR10 or CIFAR100

n_classes 10 or 100
n_train 45000
n_val 5000

batch_size 128
search_for 300

seed 69
cutout 0

fixed_arc False
child_num_layers 12
child_out_filters 36
child_grad_bound 5.0

child_l2_reg 0.00025
child_keep_prob 0.9
child_lr_max 0.05
child_lr_min 0.0005
child_lr_T 10

controller_lstm_size 64
controller_lstm_num_layers 1
controller_entropy_weight 0.0001
controller_train_every 1

controller_num_aggregate 20
controller_train_steps 50

controller_lr 0.001
controller_tanh_constant 1.5
controller_op_tanh_reduce 2.5
controller_skip_target 0.4
controller_skip_weight 0.8

controller_bl_dec 0.99
p (Dropout Rate) 1.0

Table 3: Summary of experiment hyperparameters

11

	Introduction
	Background
	Efficient Neural Architecture Search (ENAS)
	Training Data Poisoning

	Search Space Poisoning (SSP)
	General Framework
	Multiple-Instance Poisoning Attacks
	Crafting Poisoning Sets with Operations
	Experimental Results

	Towards One Shot Poisoning
	Experimental Results

	Conclusion

