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ABSTRACT

Large vision-language models such as CLIP align images and captions as wholes
but falter on long, detailed descriptions. Fine-grained understanding demands
capture of hierarchical semantics, seeing both forest and trees, within and across
domains. Yet syntactic and semantic structures seldom mirror visual organization,
and vision alone tends to create spurious fragments unless text anchors and unifies.
We propose F-CAST, a hierarchical image-text representation learning framework
that discovers aligned spatially oriented text and visual hierarchies directly from
image and long-caption corpora, without region-sentence labels. It uses a CAST
visual encoder for fine-to-coarse scene parsing and a hierarchical transformer text
encoder that first encodes each sentence then fuses them into a whole-caption rep-
resentation. A two-level alignment loss, extending FLAIR, aligns whole images
with whole texts while biasing image-sentence matches so coarse concepts emerge
from fine-grained evidence rather than ignoring it.
Trained on 30M image–text pairs, F-CAST delivers strong scaling and sets state-
of-the-art performance on six long-text benchmarks. Experiments show that hi-
erarchical alignment of vision and language enables F-CAST to discover fine-
grained, visually grounded text understanding without supervision.

1 INTRODUCTION

A red bus is never just a red bus (Figure 1): a modern red double-decker, labeled route 38, front
angled toward the camera, pedestrians nearby, a hatchback passing. Such long text can be both a
blessing and a trap: every extra clause adds information but also noise. Given four photos of London
buses, a model that merely matches whole captions to whole images may seize on the wrong clue
(Radford et al., 2021; Zhang et al., 2024; Wu et al., 2024). To get it right, a system must see forest
and trees both within and across two domains (Biederman, 1987; Maurer et al., 2002).

This is an image of a modern red double-decker bus, specifically labeled route 38, on a city street. The front of
the bus is angled towards the camera, showing its distinctive curved design and large glass windscreen. The bus has
a black trim around the base and wheel arches, and it features the typical London transport logo. Pedestrians are
on the pavement to the left, with one person stepping onto the bus. Behind the double-decker, another red bus
is visible. A red hatchback car drives by on the road, and behind it is a stone building with arched windows and
a flagpole on its roof. The sky is partly cloudy.

Find the image that best matches the caption ! 

This is an image of a modern red double-decker bus, specifically labeled route 38, on a city street. The front of
the bus is angled towards the camera, showing its distinctive curved design and large glass windscreen. The bus has
a black trim around the base and wheel arches, and it features the typical London transport logo. Pedestrians are
on the pavement to the left, with one person stepping onto the bus. Behind the double-decker, another red bus
is visible. A red hatchback car drives by on the road, and behind it is a stone building with arched windows and
a flagpole on its roof. The sky is partly cloudy.

Find the image that best matches the caption ! 

Figure 1: Long-text image retrieval with hierarchical grounding. How to find the image that
matches a long caption? It requires locating the image region that grounds each descriptive phrase.
This illustrates that long-text image understanding hinges on aligning the text hierarchy (whole
caption and its sub-phrases) with the image hierarchy (whole scene and its constituent regions).
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Syntactic parsing (constituency)

Semantic parsing

Syntactic parsing (dependency)

Five white horses standing in the green grass of a park, as a 
man on the far right of the image walks in front of them 
from right to left. He's wearing a dark grey short-sleeve polo 
shirt and dark grey pants, holding a straw broom in his right 
hand and a piece of red wood in his left. Behind the horses 
and people are coniferous and deciduous trees and bushes.

Five white horses 
standing in the 
green grass of a 
park, as a man on 
the far right of 
the image walks 
in front of them 
from right to 
left.

He's wearing a 
dark grey short-
sleeve polo shirt 
and dark grey 
pants, holding a 
straw broom in his 
right hand and a 
piece of red wood 
in his left. 

Behind the horses 
and people are 
coniferous and 
deciduous trees 
and bushes.

Figure 2: Fine-grained image-text understanding requires aligned hierarchical parsing in both
domains. Parse trees capture grammar and semantic graphs capture events (center). The spatially
composed visual hierarchy (left) must be matched by a spatially oriented text hierarchy (right).

Visual parsing needs to group image patches into objects, and objects into a scene, while tracking
relations like pedestrians stepping aboard and traffic moving past (Fukushima, 1980; Kuzovkin
et al., 2018). Language can guide this process, but not in its standard syntactic or semantic guises
(Figure 2). Parse trees describe grammar (Shi et al., 2019; Drozdov et al., 2019). Semantic graphs
capture events and relationships rather than the geometric assembly of buses, cars, and buildings
(Johnson et al., 2015; Zellers et al., 2018; Yang et al., 2018). We need a text hierarchy that
mirrors how scenes are built, where each sentence can point to a visual component (Figure 3).

Five white horses standing in the green 
grass of a park, as a man on the far right 
of the image walks in front of them from 
right to left. He's wearing a dark grey 
short-sleeve polo shirt and dark grey 
pants, holding a straw broom in his right 
hand and a piece of red wood in his left. 
Behind the horses and people are 
coniferous and deciduous trees and bushes. 

Five white horses standing in 
the green grass of a park, as 
a man on the far right of 
the image walks in front of 
them from right to left. He's 
wearing a dark grey short-
sleeve polo shirt and dark 
grey pants, holding a straw 
broom in his right hand and 
a piece of red wood in his 
left. Behind the horses and 
people are coniferous and 
deciduous trees and bushes. 

Five white horses on green 
grass as a man in dark 
clothes walks past with a 
broom, trees and bushes in 
the background

Five white horses standing in the green 
grass of a park, as a man on the far right 
of the image walks in front of them from 
right to left. He's wearing a dark grey 
short-sleeve polo shirt and dark grey 
pants, holding a straw broom in his right 
hand and a piece of red wood in his left. 
Behind the horses and people are 
coniferous and deciduous trees and bushes. 

Five white horses standing in the green 
grass of a park, as a man on the far right 
of the image walks in front of them from 
right to left. He's wearing a dark grey 
short-sleeve polo shirt and dark grey 
pants, holding a straw broom in his right 
hand and a piece of red wood in his left. 
Behind the horses and people are 
coniferous and deciduous trees and bushes. 

a) CLIP, LotLIP b) LongCLIP c) FLAIR d) F-CAST
Figure 3: Cross-domain alignment at whole and part levels. Many methods aim to match text
and image features over the same-colored regions. They focus on full-image understanding (a,b) or
both whole and parts (c), confounding semantic and spatial hierarchies. Our method aligns semantic
hierarchy with spatial hierarchy across both domains (d).

We propose F-CAST based on three design insights. 1) Spatially oriented long-caption data.
Many long captions consist of sentences that each describe a distinct object or scene component.
We exploit this structure to form a spatial text hierarchy where each sentence can match an image
region counterpart, without supervision. 2) Consistent within-domain hierarchy. Images and texts
are decomposed so that coarse levels are explicitly built from finer ones, ensuring that holistic under-
standing grows from detailed evidence. We design a hierarchical transformer text encoder inspired
by HAT (Chalkidis et al., 2022): Each sentence is first encoded in parallel, and its embeddings are
then combined in a second stage to form the representation of the full description. We adopt CAST
(Ke et al., 2022) as the visual backbone to capture this structure through concurrent fine-to-coarse
segmentation, so a red double-decker bus labeled route 38 is never visually collapsed into merely
a bus. 3) Two-level cross-domain alignment loss. F-CAST discovers aligned parts and wholes in
image and text domains through a hierarchical alignment objective. We adopt FLAIR (Xiao et al.,
2025) and extend its text-conditioned image representation so that mid-level visual features align
with part-text embeddings for localized grounding, and top-level visual features align with whole-
text embeddings to capture global scene semantics.
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(a) Top3 text-to-image retrieval results (b) Attention visualization for each sub-caption (ours)

Behind the double-
decker, another red 
bus is visible.

A stone building 
with arched 
windows…

A red hatchback 
car drives by on 
the road.
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(a) Top3 text-to-image retrieval results (b) Attention visualization for each sub-caption (ours)

Behind the double-
decker, another red 
bus is visible.

A stone building 
with arched 
windows…

A red hatchback 
car drives by on 
the road.
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Figure 4: Our F-CAST demonstrates fine-grained visually grounded long-text understanding.
Left) Top 3 text-to-image retrievals show that FLAIR wavers among look-alikes, while F-CAST
picks the clear winner. Right) Attention visualization for each sub-caption shows that our gain stems
from visually grounding sub-sentences during recognition, discovered entirely without supervision.

Trained on 30M image-text pairs, F-CAST scales well and sets new records on six long-text re-
trieval benchmarks. Ablation studies show that its hierarchical design matters: Modeling visual
and linguistic structure sharpens recognition, and part-to-whole alignment delivers the biggest gain.
Experiments confirm that aligning vision and language through consistent hierarchies lets F-CAST
discover fine-grained, visually grounded text understanding without supervision (Figure 4).

2 RELATED WORKS

CLIP with long captions has recently emerged as a promising direction, enabled by synthetic long
captions generated by MLLMs (Zheng et al., 2024; Chen et al., 2024). These longer captions provide
richer supervision than raw web annotations. To adapt longer input, several studies (Zhang et al.,
2024; Najdenkoska et al., 2024; Choi et al., 2025; Asokan et al., 2025) extend CLIP’s capacity by
enlarging the positional encoding from 77 to 248 tokens, while LoTLIP (Wu et al., 2024) explores
this from scratch. However, these methods struggle to capture both the local details in sub-captions
and the holistic semantics of the full caption. To address this limitation, we propose a hierarchical
transformer text encoder that hierarchically captures both local and holistic semantics.

Fine-grained vision–language understanding has been explored to improve models across many
downstream tasks (Antol et al., 2015; Vinyals et al., 2015; Pak et al., 2024; Wang et al., 2025).
Such approaches typically ground local elements, such as noun phrases, with dense annotations
(e.g., bounding boxes). For example, GLIP (Li et al., 2022) aligns phrases with regions using
large-scale human-labeled data, while GOAL (Choi et al., 2025) employs SAM to obtain regions of
interest (Kirillov et al., 2023) and aligns them with sub-captions through a pretrained CLIP. More re-
cently, FLAIR introduces text-conditioned attention pooling to localize sentences on visual patches,
enabling fine-grained representations without dense labels. Building on FLAIR’s attention pool-
ing, our F-CAST also learns such implicit grounding but further integrates fine-grained regions into
holistic semantics—capabilities not explored in prior vision–language pretraining.

Leveraging hierarchy in vision-language model training has been scarcely studied, due to match-
ing difficulty. HiCLIP (Geng et al., 2023) employs a hierarchical architecture for vision and text,
uncovering part-to-whole hierarchy and thereby improving fine-grained recognition. However, Hi-
CLIP’s recognition objective is applied only at the top layer, limiting its ability to fully exploit the
hierarchy. Both HiVLP (Chen et al., 2022) and HieCLIP (Hua et al., 2025) propose multi-level
alignment between image and text, but their representations lack an explicit part–whole structure,
resulting in suboptimal performance. In contrast, our approach is designed to leverage both the
hierarchical architecture and the two-level alignment loss.

3 HIERARCHICAL PART-TO-WHOLE VISION-LANGUAGE ALIGNMENT

We introduce F-CAST, a novel vision-language model that learns hierarchical part-to-whole align-
ment from long captions. It combines FLAIR and CAST, leveraging CAST’s part-whole struc-
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A man with wind-tossed hair 
reaches over a wire fence to 
offer his hand to a dark horse. 
Beside him, a woman in a blue 
jacket gently pets a chestnut 
horse’s forehead. A dark horse 
stands closest to the camera, 
ears forward and nostrils 
flared with curiosity. The 
chestnut horse enjoys a gentle 
forehead rub, eyes half-closed 
in a relaxed blink.
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reaches over a wire fence to 
offer his hand to a dark horse.

Beside him, a woman in a 
blue jacket gently pets a 
chestnut horse’s forehead

A dark horse stands closest to 
the camera, ears forward and 
nostrils flared with curiosity

The chestnut horse enjoys a 
gentle forehead rub, eyes 
half-closed in a relaxed blink.
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curiosity. …

𝓛𝒔𝒊𝒈𝒎𝒐𝒊𝒅

[CLS] [CLS]

A
d

a
p

te
r

Figure 5: Overview of our proposed F-CAST. The model builds hierarchical representations in
both vision and language and aligns them at matched granularities. Visual hierarchy: We employ
CAST (Ke et al., 2022) as the vision encoder to produce fine-to-coarse segment tokens via graph
pooling. Textual hierarchy: A hierarchical transformer text encoder encodes part descriptions and
a whole-caption representation (via [CLS]); an adapter gathers part tokens. Losses: We apply a
part-level text-grounded sigmoid loss between segment tokens and their associated subcaption, and
a whole-level sigmoid loss between the image embedding and the whole caption.

ture (Ke et al., 2022) to extend FLAIR’s learning framework (Xiao et al., 2025). We now detail how
F-CAST aligns the 1) visual hierarchy with 2) long caption hierarchy 3) in a part-to-whole manner.

3.1 PART-WHOLE STRUCTURE IN VISION

To understand the complex visual scenes, people parse them into part-whole hierarchies (Hinton,
1979), providing what-is-where substantiation and specifying compositional structure. Our objec-
tive in the vision branch is learning such an explicit part-whole hierarchy for recognition and by
recognition.

We build upon recent work CAST (Ke et al., 2022). CAST employs superpixel tokens that are pro-
gressively merged via the proposed graph pooling module. Their fine-to-coarse superpixel grouping,
learned under the recognition objective, naturally reveals part-whole relationships as an internal part
of the recognition process (see the top of Figure 11).

Specifically, our model starts from 196 superpixel tokens and progressively groups them into 64,
32, and 16, thereby moving from finer to coarser segment tokens. Among these, the segment tokens
at the 2nd stage, denoted as vfine ∈ R64×C , are used for the part-level alignment, while the [CLS]
token from the final layer, denoted as vcoarse ∈ RC , serves as the representation for the whole-level
alignment. This selection is for matching grounding granularity. The lower level of the hierarchy
contains more localized and finer-grained information while the higher levels capture more holistic
semantics. Therefore, finer segment features can be effective in capturing fine details for object
description (e.g., red double-decker bus, specifically labeled route 38), whereas coarser segment
features can be helpful for scene description.

3.2 PART-WHOLE STRUCTURE IN LANGUAGE

Aligning the visual hierarchy with the textual hierarchy in a one-to-one manner is highly chal-
lenging. Whether the textual hierarchy is semantic or syntactic, elements that are close in visual
appearance may be far apart in textual meaning, and vice versa. However, from long captions we
identify a new spatial hierarchy that aligns well with the visual hierarchy. Previous work (Zheng
et al., 2024) observed that each sub-caption of a long caption tends to describe a specific part of
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the scene (e.g., an object, a part of an object, or background context). We therefore interpret the
hierarchy between sub-captions and the long caption as corresponding to the part–whole structure
of the image. To effectively capture the hierarchical structure where sub-captions compose a long
caption, we propose a hierarchical transformer text encoder, with a divide-and-conquer manner: (1)
first stage encodes each sub-captions independently to learn a distinct representation, and (2) second
stage encodes the long caption from pre-generated sub-caption embedding from the first stage.

Chunking. We first obtain sub-captions by splitting the long caption into N chunks T1, T2, ..., TN :
we split the original caption into individual sentences following DreamLIP (Zheng et al., 2024), and
then concatenate 1-3 consecutive sentences into each chunk. See more details in the Section C.

Transformer Stage 1. Next, we independently forward each chunk through a stage-1 transformer
to encode N sub-caption embeddings tsub.

tsub
k = TransformerStage1(Tokenize(Tk)) ∈ RD, k = 1, . . . , N (1)

tsub = {tsub
k }Nk=1 ∈ RN×D (2)

Transformer Stage 2. Finally, we obtain the long caption embedding tlong ∈ RD by feeding the
sub-caption embeddings together with a [CLS] token into the stage-2 transformer. Before we feed,
we refine the sub-caption embeddings with light-weight residual MLP adapter (Gao et al., 2024):

tlong = TransformerStage2
(
Adapter(tsub);[CLS]]

)
∈ RD (3)

3.3 TWO-LEVEL VISION-LANGUAGE ALIGNMENT

Training batch construction. We train F-CAST from scratch on a synthetic long text-image paired
dataset, where each image is annotated with multiple long and short captions. At each iteration,
we construct a batch of B images, each image Ii paired with K positive sub-captions {Tik}Kk=1
Among the K sub-captions, the first N sub-captions are derived from a single long caption, while
the remaining (K−N ) sub-captions are sampled from multiple captions. Therefore, the second
stage of the text encoder takes only the first N sub-captions for its input. The resulting batch input
and hierarchical outputs are therefore constructed as follows:

batched input : {(Ii, {Tik}Kk=1)}Bi=1, (4)

intermediate outputs : {(vfine
i , {tsub

ik
}Kk=1)}Bi=1, final outputs : {(vcoarse

i , tlong
i )}Bi=1 (5)

Part-level Text-grounded Sigmoid Loss aim to align each sub-caption feature with its correspond-
ing visual region features without dense annotation (e.g., bounding box). Following FLAIR, we
adopt an attention pooling module (Ilse et al., 2018) to obtain text-grounded visual features. Let
vfine
i denote visual segment features from image i, and tsub

jk
denote k-th sub-caption features from

caption j. Then attention pooling computes a text-grounded visual feature:

vtg
i,jk

= AttnPool
(
tsub
jk

, vfine
i ,vfine

i

)
∈ RD (6)

This operation aggregates the visual segments relevant to the given sub-caption query tsubjk
via at-

tention scores. We then compare vtg
i,jk

again with the query tsub
jk

:

Lpart
i,j,k =

1

1 + exp
(
yi,j

(
−τpart⟨vtg

i,jk
, tsub

jk
⟩+ bpart

)) . (7)

where τpart and bpart is a learnable temperature and a bias term, and ⟨·, ·⟩ denotes cosine similarity.
The label yi,j indicates whether the pair is postive or negative: yi,j=+1 for a positive pair (vtg

i,ik
,

tsub
ik

), and yi,j=−1 for a negative pair (when i ̸= j).

Whole-level Sigmoid Loss aims to align the global image feature vcoarse
i with the long caption

feature tlong
i , in contrast to FLAIR, which aligns the global image feature with multiple sub-captions.

Lwhole
i,j =

1

1 + exp
(
yi,j

(
−τwhole⟨vcoarse

i , tlong
j ⟩+ bwhole

)) . (8)
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(a) Retreival Correct Predicitions (b) Retreival Incorrect Predicitions

Figure 6: Visual part-to-whole parsing quality correlates with image-text retrieval. (a) Correct
predictions exhibit coherent fine-to-coarse grouping that uncovers explicit part-to-whole struction.
(b) Incorrect predictions show fragmented, inconsistent groupings that correlate with misalignment.
We compare fine-to-coarse segmentations for correct (a) and incorrect (b) image-to-text retrieval re-
sults on the Urban-1k and ShareGPT4V datasets to illustrate how the quality of hierarchical grouping
affects comprehensive scene understanding.

We use separate learnable parameters for the whole-level sigmoid loss: τpart and bpart, distinct from
the part-level ones. We use the same yi,j as in part-level one.

Optimization. We optimize F-CAST with two proposed loss functions: L = Lpart + Lwhole. The
Lpart encourages alignment between the visual region and sub-captions at the intermediate layer,
while the Lwhole enforces alignment between the entire image and long caption at the final layer. We
adopt a sigmoid loss instead of softmax for both Lpart and Lwhole. Sigmoid is not only more stable
when the batch size is small but also effective at dealing with multiple positives (Zhai et al., 2023).

Inference with F-CAST. F-CAST only utilizes whole-level alignment at inference time. As the
bottom-up hierarchy sufficiently enriches the holistic embeddings, making part-level alignment un-
necessary. In other words, part-level alignment can be viewed as an auxiliary loss that boosts fine-
grained and localized image embedding for whole understanding.

4 EXPERIMENTS

We study whether F-CAST discovers better visual parts and wholes (Section 4.2) and sub-caption
grounding (Section 4.3), and how it performs on image-text retrieval benchmarks (Section 4.4). We
then analyze contributions of our design choices (Section 4.5).

4.1 EXPERIMENTAL SETTING

Training Datasets. We train F-CAST on DreamLIP’s (Zheng et al., 2024) re-captioned datasets,
which provide long and detailed captions sufficiently for learning both part and whole-level visual
representations. The DreamLIP dataset consists of CC3M-recap, CC12M-recap, and YFCC15M-
recap, which are merged into a unified corpus of 30M samples (Merged-30M).

Implementation Details. We develop our model based on FLAIR (Xiao et al., 2025) code imple-
mentation. We employ CAST-B (Ke et al., 2022) as the vision encoder, which is comparable in size
to ViT-B/16 (Dosovitskiy et al., 2020). The input image size is set to 224 × 224. We follow the
vanilla Transformer architecture (Vaswani et al., 2017) for the text encoder, except for adopting a
two-stage design. The first stage transformer consists of L1 = 8 layers, while the second stage has
L2 = 4 layers. In total, this results in L = 12 layers, matching the depth of the original CLIP text
encoder (Radford et al., 2021). The context length of the first stage is set to 77, consistent with
CLIP, whereas the second stage uses a context length of N = 4, corresponding to the chunk size.
The embedding dimension is set to 512 for both image and text features across our study. For a fair
comparison with FLAIR, we follow their training hyperparameter but use a reduced batch size of
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(1) A bustling city scene with a focus on a luxurious red 
car in the foreground. (2) Behind the car lie iconic 
London landmarks; the prominent Big Ben. (3) The sky is 
partly cloudy.

(1) Two road workers wearing high-visibility jackets are 
on a city street. (2) There's urban architecture in the 
background, including the red brick and buildings. (3) 
The truck has yellow and red stripes, a warning sign.

(1) A person is wearing a checked shirt in shades of beige, 
brown, and green. (2) In the background, multiple tall 
buildings with balconies rise high against the blue sky. (3) 
They stand in a parking lot with vehicles of various colors 
like black, white, and red visible around them.

(1) A procession of elephants is marching down a city 
street. (2) In the foreground, a child wearing a red 
jacket is walking and looking to the side. (3) The 
elephants are adorned with red and white decorative 
coverings and circular logos.

Figure 7: F-CAST provides spatially precise, compositional grounding. We show head-averaged
attention maps from the AttnPool module for three subcaptions per example. The leftmost image
is the input; the three heatmaps to the right depict attention for subcaptions (1) to (3). Our attention
maps localize precisely to relevant regions across spatial positions (worker vs. building) and scales
(nearby vs. distant), with sharp boundaries that reflect a consistent visual hierarchy. Interestingly,
the attention also exhibits compositional behavior. For instance, in the behind the car lies the promi-
nent Big Ben example (top left), both the car and the Big Ben are activated, with stronger focus on
Big Ben, reflecting its greater prominence in the caption. Other examples include road worker with
high-visibility jacket (top right) and elephants adorned with coverings (bottom right).

2K due to GPU memory limits. We also follow the number of subcaptions per image, K=8. The
learnable temperature parameters τpart, τwhole and bias terms bpart, bwhole are initialized to 0.07 and
-10, respectively, following SigLIP (Zhai et al., 2023). We utilized 8 A100 GPUs (80GB) for train-
ing. The training duration scaled linearly with the dataset size, and training Merged-30M required 5
days (total 40 GPU-days).

4.2 PART-WHOLE HIERARCHY IN VISION

Our vision encoder learns a part-to-whole hierarchy via progressive fine-to-coarse token merging.
This inductive bias composes small, locally coherent regions into progressively larger structures
and reveals how the model recognizes a scene (Figure 6). Notably, the hierarchy emerges under
language-only supervision (i.e., without any segmentation labels). As shown in Figure 6a, the en-
coder naturally aggregates micro-parts into semantically meaningful units (e.g., fingers into a hand).

This hierarchy is not merely interpretable; it is essential for comprehensive scene understanding.
When grouping is correct, evidence from parts integrates into a coherent whole, yielding faithful
image-text alignment and accurate retrieval. When grouping is incorrect, local cues do not com-
pose, and the model fails to retrieve the ground-truth image (e.g., fails to parse individual books in
Figure 6b). Therefore, explicit fine-to-coarse grouping is key to achieving both fine-grained detail
and global coherence, enabling robust scene comprehension under language-only supervision.

4.3 VISUAL GROUNDING PROPERTY

Figure 7 visualizes head-averaged attention maps from the AttnPool module for each subcaption, il-
lustrating how F-CAST aggregates relevant segment tokens. In the first example, the model grounds
not only the target object (i.e., car) but also its background context (e.g., Big Ben and sky), indicating
compositional understanding. The road-workers case demonstrates that F-CAST is able to localize
both large structures (e.g., buildings) and small objects (e.g., workers). The elephant example shows
that the model grounds both the entire object (e.g., elephant) and its specific parts (e.g., logos).

These behaviors emerge at an intermediate encoder layer, where localized semantics are formed
and subsequently merged into a holistic scene representation. Taken together, the visualizations
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Table 1: F-CAST achieves state-of-the-art results on zero-shot long text-image retrieval tasks.
I2T and T2I indicate the R@1 score on image-to-text and text-to-image retrieval, respectively. The
best results are bold, second-best are underlined. All models use ViT-B/16 as the vision encoder.
DCI and DOCCI use human-annotated captions, while the other datasets rely on VLM-generated
synthetic captions and generally achieve higher scores. F-CAST consistently outperforms prior
methods across all benchmarks by large margins.

Method Data DCI DOCCI SV-1k SV-10k Urban-1k IIW
I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

Trained on Short-Captions Only
OpenCLIP 2B 56.0 55.4 - - 90.3 87.7 69.6 66.8 69.5 65.8 - -
LiT 100M 41.7 40.9 - - 86.0 80.0 61.4 50.6 - - - -
ALIGN 700M 56.5 57.4 - - 86.3 85.3 65.1 62.7 - - - -
SigLIP 10B 57.7 56.2 - - 85.8 83.4 83.4 63.0 62.7 62.1 - -

Trained on Short Captions → Finetuned on Long-Captions
Long-CLIP 400M→1M 47.4 44.1 - - 90.6 87.4 73.1 62.0 78.9 79.5 - -
FineLIP 400M→1M - - 77.1 79.5 - - - - 90.7 89.3 - -
TULIP 400M→1M - - - - 98.6 98.6 - - 88.1 86.6 - -
FG-CLIP 400M→1.6B 61.8 60.6 - - 96.7 94.9 - - - - - -

Trained on Long-Captions from Scratch
LoTLIP 100M 62.1 61.0 - - 95.5 86.8 86.8 81.4 - - 94.0 92.5
FLAIR 30M 61.3 66.2 70.3 72.6 98.5 98.0 90.3 89.4 83.6 87.7 91.3 91.5
F-CAST (ours) 30M 69.4 69.4 80.6 80.4 99.0 98.8 95.1 94.5 93.6 93.9 97.4 96.1
vs. previous SOTA +7.3 +3.2 +3.5 +0.9 +0.4 +0.2 +4.8 +5.1 +2.9 +4.6 +3.4 +3.6

indicate that F-CAST delivers spatially precise, compositional grounding that supports robust scene
understanding. Additional visualizations are available in Appendix F.

4.4 ZERO-SHOT LONG TEXT-IMAGE RETRIEVAL ON BENCHMARK

Evaluation Benchmark. We evaluate Recall@1 (R@1) for long text-image cross-modal re-
trieval on six widely used benchmarks: DCI (Urbanek et al., 2024), DOCCI (Onoe et al., 2024),
ShareGPT4V-1k (Chen et al., 2024), ShareGPT4V-10k (Chen et al., 2024), Urban-1k (Zhang et al.,
2024), and IIW (Garg et al., 2024). Detailed statistics for each dataset are provided in Appendix D.

Comparison with state-of-the-art. We organize prior work into three settings: i) models trained
only on short captions, ii) models pretrained on short captions and then finetuned on long captions,
and iii) models trained from scratch on long captions. Table 1 provides an extensive comparison
across six long-text benchmarks (DCI, DOCCI, SV-1k, SV-10k, Urban-1k, and IIW), while most
existing studies evaluate on only two or three datasets. Within this unified setting, F-CAST achieves
the best overall performance, surpassing FLAIR at the same data scale (30M pairs) and outper-
forming finetuned models despite using far fewer pretraining samples. This highlights both the
effectiveness and the data efficiency of our hierarchical design for long-caption retrieval.

Scaling behavior. As shown in Figure 8, both FLAIR and F-CAST improve steadily as the training
data scales from 3M to 30M pairs. F-CAST consistently stays above FLAIR with a similar slope,
showing that part–whole alignment is compatible with scaling laws and improves data efficiency at
small scales while remaining effective as data grows.

4.5 ABLATION STUDIES: FROM FLAIR TO F-CAST

We perform an ablation study on CC3M-recap (batch size 2K), starting from FLAIR and examining
the three components of F-CAST: i) CAST for the visual hierarchy, ii) hierarchical transformer for
the textual hierarchy, and iii) a two-level alignment loss for hierarchical alignment. Table 2 shows
that all three components contribute, demonstrating the necessity of aligning visual and textual hi-
erarchies.

Visual hierarchy. Leveraging CAST, we observe consistent performance gains across all datasets
(second row in Table 2). This improvement stems from the hierarchical structure introduced by
CAST. A flat ViT partitions images into uniform patches without explicit structure, whereas CAST

8
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DCI DOCCI SV-10k Urban-1k IIW

I2
T

T
2I

Figure 8: Scaling laws for FLAIR and F-CAST. F-CAST consistently achieves higher accuracy
than FLAIR as the training set grows, with both models improving steadily as the scale increases.
This suggests that our hierarchical inductive bias enables robust scaling behavior.

Table 2: Ablation study from FLAIR to F-CAST. Relative to FLAIR, F-CAST introduces three
changes: i) replacing the ViT vision encoder with CAST, ii) replacing the CLIP text encoder with
hierarchical transformer, and iii) adding the two-level alignment loss. All three components con-
tribute to the overall performance gains, together leading to the final F-CAST model.

Method DCI DOCCI SV-10k Urban-1k IIW
I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

FLAIR (reproduced) 48.3 52.0 52.9 53.6 73.3 72.1 67.3 73.7 80.4 83.5
+ ViT → CAST 49.8 54.1 54.0 55.0 76.1 74.7 71.3 73.8 82.5 83.8
+ CLIP text encoder → hierarchical 53.4 50.0 63.5 58.9 82.3 82.4 78.6 81.8 91.0 87.3
+ flat loss → two-level loss 56.6 55.8 66.7 63.7 85.6 84.7 82.8 84.9 92.3 92.2

merges superpixels into coarser segments, forming a natural hierarchy from parts to wholes. This
inductive bias is crucial because sub-captions typically describe objects or regions that require part-
level grounding, which is difficult without a compositional visual encoder.

Textual hierarchy. In our ablations, hierarchical transformer for text encoder yields the largest sin-
gle performance gain (third row), suggesting that language modeling may have a stronger impact
than visual in long-text image pre-training. This improvement arises from the way the hierarchical
transformer handles long caption. whereas CLIP’s text encoder flattens long captions, conflating
local and global semantics, our hierarchical transformer first encodes each sub-caption and then
composes them into a whole-caption representation, preserving local detail while supporting holis-
tic understanding. This hierarchical encoding complements the visual hierarchy and enables long
captions to serve as effective supervision for fine-grained grounding. Furthermore, our hierarchical
text encoder enables processing of longer inputs without being truncated by the 77-token context
limit.

Two-level alignment loss. Compared with a flat loss, the two-level loss consistently leads to signif-
icant performance gains (fourth row). Even with hierarchical encoders, parts and wholes should not
be learned in isolation. The two-level cross-modal alignment loss explicitly links local alignments
to global ones, ensuring that detailed matches integrate into a coherent scene representation.

5 CONCLUSION

F-CAST is a hierarchical vision-language framework that aligns the visual hierarchy of images with
the spatial hierarchy of long captions. It combines a CAST-based vision encoder for fine-to-coarse
visual grouping with a hierarchical transformer text encoder that encodes subcaptions and fuses
them into a whole-caption representation. A two-level cross-domain alignment loss links these
hierarchies: mid-level segment tokens align with sub-caption embeddings for localized grounding,
while top-level tokens align with the whole-caption representation. Trained on 30M long–text-image
pairs, F-CAST achieves state-of-the-art performance on six long-text retrieval benchmarks, exhibits
strong scaling and data efficiency.
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Ethics statement. This work adheres to the ICLR Code of Ethics. The research does not involve
human or animal subjects, nor does it rely on private or sensitive data. All datasets used are publicly
available, and we comply with their licenses and usage guidelines. To the best of our knowledge,
the methods and findings do not pose foreseeable risks of harm, misuse, or negative societal impact.

Reproducibility statement. Implementation details are provided in sections 3 and 4, and the Ap-
pendix. The full code will be released upon acceptance.
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A TRAINING CONFIGURATIONS

We follow FLAIR’s pretraining configuration as displayed in Table 3. However, we use 2K batch
size for all datasets, due to GPU RAM limit.

Table 3: Training configuration for different datasets.

Config CC3M-recap CC12M-recap YFCC15M-recap Merged-30M

Batch size 2,048
Optimizer AdamW (Loshchilov & Hutter, 2017)
Learning rate 5× 10−4

Weight decay 0.5 0.5 0.5 0.2
Adam β β1, β2 = (0.9, 0.98)
Adam ϵ 1× 10−8 1× 10−8 1× 10−8 1× 10−6

Total epochs 32
Warm up 2,000 (steps)
LR scheduler cosine decay

B DIRECT COMPARISON WITH CAST

Compared to naı̈ve CAST, we differ in three aspects. First, we further explore language supervision
as the recognition objective, whereas CAST only considers discrimination (Chen et al., 2021) or
label supervision. Second, we encourage segment tokens to directly localize semantics via part-level
loss, unlike CAST, which handles supervision only at the global level (i.e., [CLS] token). Third, we
replace CAST’s superpixel algorithm SEEDS (Van den Bergh et al., 2012) with SFCN (Yang et al.,
2020), which alleviates its limitation in capturing thin structures (see the tree branch in the first image
of (a) in Figure 6). Additionally, we discard the final graph pooling module in CAST (reducing 16
tokens to 8), since it is not used during the pre-training stage.

C DETAILS ON THE CHUNKING STRATEGY

In Section 3.2, we briefly introduced the idea of dividing a long caption into N sub-captions
(chunks). This section provides a detailed description of the chunking strategies used in training
and inference. Specifically, we adopt random chunking during training and balanced chunking
during inference.

Chunking begins by splitting a long caption into L sentences:

S1, S2, . . . , SL,

where L is a variable length depending on each sample.

Random chunking. During training, each chunk is formed to contain 1, 2, or 3 sentences, with
the number chosen randomly. We enforce two constraints: (1) each chunk must contain at least
one sentence, and (2) no chunk may contain more than three sentences. Therefore, when L > 3N ,
excess sentences are discarded. Conversely, if L < N , sentences are randomly resampled with
replacement until all chunks are filled.

Balanced chunking. During inference, results may vary depending on how sentences are distributed
across chunks. To ensure stable and reproducible inference, we employ balanced chunking, which
divides sentences as fairly as possible. Each chunk first receives ⌊L/N⌋ sentences, and the remain-
ing sentences are allocated to the earlier chunks in order.

For example:
if L = 6, N = 4 ⇒ [2, 2, 1, 1],

if L = 11, N = 4 ⇒ [3, 3, 3, 2].

It is worth noting that our divide-and-conquer approach with chunking is also computationally ef-
ficient under the quadratic self-attention mechanism (Song et al., 2024). In contrast, recent CLIP
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variants for long-text understanding (Zhang et al., 2024; Wu et al., 2024; Asokan et al., 2025; Naj-
denkoska et al., 2024) process up to 248 tokens at once, leading to substantial computational cost.

D STATISTICS ON THE LONG-TEXT IMAGE RETRIEVAL BENCHMARKS

We present the detailed statistics of the long-text-image retrieval datasets we use in Table 4. For
DOCCI, we use only the test split for evaluation, leaving the rest untouched.

Table 4: Statistics of the long-text-image retrieval datasets.

Dataset # Images # Texts # Sub-captions per Text # Tokens per Text

DCI 7,805 7,805 10.81 172.73
DOCCI 5,000 5,000 7.12 141.52
ShareGPT4v-1k 1,000 1,000 8.15 173.24
ShareGPT4v-10k 10,000 10,000 8.24 173.66
Urban-1k 1,000 1,000 5.97 131.36
IIW 612 612 10.16 239.73

E ADDITIONAL ABLATIONS

In this section, we present an additional ablation study on the role of two-level losses. In Section 4.5,
we compared our hierarchical loss with FLAIR’s flat loss, where both whole-level and part-level
alignments are applied only at the top layer. Another design choice, adopted by LoTLIP (Wu et al.,
2024), is to use only the whole-level alignment loss at the top layer. Table 5 reports the comparison
between our full F-CAST and a variant without the part-level alignment loss. Removing the part-
level loss leads to a significant performance drop, directly demonstrating that fine-grained scene
understanding requires detailed associations of local elements.

F ADDITIONAL VISUALIZATIONS

We present additional attention maps from the AttnPool module for each subcaption in Figure 9.
The visualizations illustrate how F-CAST grounds colors, shapes, and text in images. As a sanity
check, the attention map remains inactive when a caption does not correspond to the image.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely as general-purpose editing tools to refine grammar
and phrasing. They did not contribute to research ideation, analysis, or substantive writing.
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Table 5: Ablation study on part-level alignment loss.

Method DCI DOCCI SV-10k Urban-1k IIW
I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

FLAIR (reproduced) 48.3 52.0 52.9 53.6 73.3 72.1 67.3 73.7 80.4 83.5

F-CAST (ours) 56.6 55.8 66.7 63.7 85.6 84.7 82.8 84.9 92.3 92.2
F-CAST w/o Part alignment 51.4 54.1 65.2 60.7 82.1 82.2 80.7 83.2 88.4 86.9

(1) Three pink circles.
(2) Three green triangles.
(3) Three light purple squares.

(1) A cute brown cat is lying on sofa.
(2) The soccer player in a white uniform is celebrating.
(3) The boy is looking at the stars through a telescope.

(1) A cream colored labrador puppy standing on a 
concrete floor.

(2) The puppy has a brown leash on.
(3) A white baseball sits in front of the fence.

(1) The image captures a procession of horse-mounted 
individuals, likely ceremonial guards.

(2) The scene is set against a backdrop of abundant 
green foliage from trees lining the street.

(3) Traffic is seen including a black Volkswagen 
Transporter van.

(1) Both poster boards have a patchy painted beige 
background.

(2) The board on the left has a triangle that is hand 
painted in a thick red line.

(3) The board on the right has a five-point star that is 
hand painted in a thick yellow line.

(1) This image captures a street view featuring the 
façade of a two-story building branded "ORANGE 
TREE IMP”.

(2) In the foreground, part of a silver sedan and the 
front end of a gray minivan are visible.

(3) The structure has a gable roof and is painted white 
with a contrasting black trim around the storefront.

Figure 9: F-CAST provides spatially grounded, compositional visual grounding. We visualize
attention maps from the AttnPool module for three subcaptions in each example. The leftmost
image is the input; the three heatmaps to the right show head-averaged attention with respect to
subcaptions (1)-(3). The scribble example shows F-CAST distinguishing pink circles from green
triangles. With incorrect captions, F-CAST’s attention maps remain mostly inactive. Querying with
the text ORANGE TREE IMP, F-CAST grounds it accurately. These are preliminary examples, with
possible confounding factors.
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“White horses on the grass, 
and a man wearing a polo 

shirt and holding a broom”

“White horses on the grass”

“A man wearing a polo shirt 
and holding a broom”

“White horses” “On the grass”

“A man wearing a polo shirt” “Holding a broom”

Figure 10: F-CAST is capable of visual grounding across multiple levels of granularity. A
single caption may describe different objects simultaneously, and can be decomposed into smaller
units. To reflect this hierarchical nature of caption, we decompose the sentence-level caption into
smaller phrases and visualize their corresponding grounding results. Remarkably, F-CAST (1) can
locate multiple objects at the same time (e.g., both ‘a man’ and ‘horses’ in the bottom left) and (2)
precisely identify individual parts in the phrases (e.g., ‘holding a broom’ in the bottom right).

(a) Image (b) Global alignment (c) Local alignment

Figure 11: Visualization of global alignment. We revisit the examples from Fig. 7 and compare
global alignment, captured by the full long caption, with local alignment derived from each sub-
caption. As shown in (b), the global alignment results based on CAM (Li et al., 2025) highlight
broad, major regions of the images, whereas each local alignment in (c) focuses on more specific
and localized areas.
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