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Abstract

The adoption of AI techniques within the domain of drug design provides an op-
portunity of systematic and efficient exploration of the vast chemical search space.
In recent years, advancements in this domain have been driven by AI frameworks,
including deep reinforcement learning (DRL). However, the scalability and perfor-
mance of existing methodologies are constrained by prolonged training periods and
inefficient sample data utilization. Furthermore, generalization capabilities of these
models have not been fully investigated. To overcome these limitations, we take a
multi-objective optimization perspective and introduce SMORE-DRL, a fragment
and transformer-based multi-objective DRL architecture for the optimization of
molecules across multiple pharmacological properties, including binding affinity
to a cancer protein target. Our approach involves pretraining a transformer-encoder
model on molecules encoded by a novel hybrid fragment-SMILES representation
method. Fine-tuning is performed through a novel gradient-alignment-based DRL,
where lead molecules are optimized by selecting and replacing their fragments with
alternatives from a fragment dictionary, ultimately resulting in more desirable drug
candidates. Our findings indicate that SMORE-DRL is superior to current DRL
models for lead optimization in terms of quality, efficiency, scalability, and robust-
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ness. Furthermore, SMORE-DRL demonstrates the capability of generalizing its
optimization process to lead molecules that are not present during the pretraining
or fine-tuning phases.

1 Introduction

Successfully developing a drug is a tremendously time-consuming, expensive and difficult endeavour.
On average, it takes 10-15 years and costs $1-2 billion USD to deliver a new drug to market (Sun et al.,
2022). The objective of drug design is to identify molecules that exhibit multiple pharmacological
properties characteristic of pharmaceutical-grade drugs, ensuring they are safe and efficacious. Drug
design thus can be modelled as a multi-objective optimization (MOO) problem. One of the main
challenges of drug design is effectively navigating the immense chemical search space, which is
estimated to contain 1020 – 10200 possible drug-like molecules (Brown, 2015).

AI methods have demonstrated promise in addressing this challenge, primarily through molecular
optimization (Bolcato, Heid, and Boström, 2022; Chen et al., 2021; Fu et al., 2022; Fu et al., 2021;
Jin, Barzilay, and Jaakkola, 2018; Loeffler et al., 2024; Ståhl et al., 2019; Schneuing et al., 2022;
Spiegel and Durrant, 2020; Zhou et al., 2019) and molecular generation (Ai et al., 2024; Bengio
et al., 2021; De Cao and Kipf, 2018; Goel et al., 2021; Gottipati et al., 2021; Hoogeboom et al.,
2022; Igashov et al., 2024; Liu et al., 2018; Pereira et al., 2021; Popova, Isayev, and Tropsha, 2018;
Sattarov et al., 2019; Tang et al., 2023; Wang and Zhu, 2024; Yang et al., 2021a; Yang et al., 2021b;
Zhu et al., 2024). Molecular optimization involves making minor modifications to a lead molecule
to enhance its drug-like properties while maintaining structural similarity. Since molecules with
similar structures are expected to exhibit comparable behaviors, this approach aims to prevent the
generation of unrealistic or undesirable molecules. This differs from molecular generation, where the
task is to generate novel and diverse compounds from scratch (Ståhl et al., 2019). These AI molecular
optimization and generation methods span a wide range of frameworks, including those leveraging
genetic algorithms (GAs) (Ahn et al., 2020; Fu et al., 2022; Spiegel and Durrant, 2020), autoencoders
(Chen et al., 2021; Jin, Barzilay, and Jaakkola, 2018; Liu et al., 2018; Sattarov et al., 2019), generative
adversarial networks (GANs) (De Cao and Kipf, 2018; Tang et al., 2023), flow-based models (Bengio
et al., 2021; Zhu et al., 2024), transformer-based models (Ai et al., 2024; Liu et al., 2023; Yang et al.,
2021a), equivariant diffusion-based models (Hoogeboom et al., 2022; Igashov et al., 2024; Schneuing
et al., 2022), and deep reinforcement learning (DRL) models (Bolcato, Heid, and Boström, 2022;
Goel et al., 2021; Gottipati et al., 2021; Loeffler et al., 2024; Pereira et al., 2021; Popova, Isayev, and
Tropsha, 2018; Ståhl et al., 2019; Tang et al., 2023; Wang and Zhu, 2024; Yang et al., 2021b; Zhou
et al., 2019). However, present methodologies are hindered by lengthy training requirements and
sub-optimal use of training data, resulting in impaired scalability and performance.

In this work, we present SMORE-DRL (Scalable Multi-Objective Robust and Efficient Deep
Reinforcement Learning), a gradient-alignment-based multi-objective DRL (MODRL) framework for
molecular optimization. The key contributions of this research include: (1) molecular optimization
is modelled naturally as a Pareto-based multi-objective reinforcement learning problem where the
challenges of gradient dominance and conflict are addressed with gradient alignment inspired by a
study from multi-task learning; (2) a novel molecular tokenization strategy is proposed to represent
a molecule as a hybrid of fragments and SMILES, enabling efficient policy learning and effective
representation of any new molecules; and (3) a synergistic integration of gradient alignment, hybrid
fragment-SMILES representation, contrastive learning, and a transformer-encoder allows for scalabil-
ity and generalization capability superior to existing MODRL methods. Moreover, SMORE-DRL
demonstrated its ability to effectively scale and generalize its optimization process to new molecules
after fine-tuning. This is a particularly notable aspect of our work, as existing DRL methods lack
scalability and their generalization capacities are under-explored in current literature.

2 Related Work

The fundamental techniques of MODRL and aligned multi-task learning, closely related to this study,
are reviewed below, followed by a brief overview of existing AI methods for molecular optimization.
In addition, see Appendix A.1 for a review of transformer-encoder architectures and MLM.
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2.1 Deep Reinforcement Learning

Reinforcement learning (RL) agents learn through a trial-and-error process guided by the Markov
decision process (MDP). See Appendix A.2 for an introduction to basic RL concepts. When the RL
task entails exploring a vast state or action space, as is often the case in drug design, learning an
exact optimal policy or value function can become computationally intractable. Thus, DRL is used
to approximate policies or value functions (Arulkumaran et al., 2017). The actor-critic framework
approximates both and has been leveraged by various drug development frameworks (Al-Jumaily
et al., 2023; Goel et al., 2021; Gottipati et al., 2021; Pereira et al., 2021; Popova, Isayev, and Tropsha,
2018; Ståhl et al., 2019; Tang et al., 2023; Wang and Zhu, 2024; Yang et al., 2021b). The actor model
is responsible for learning a parameterized policy πθA . This is guided by feedback known as temporal
difference (TD) error from the critic model, which evaluates the actor’s actions based on the state.
One approach to this is by learning the advantage function Aπ(s, a) = Qπ(s, a) − V π(s), which
measures the desirability of taking action a compared to alternative actions available from state s
(Graesser and Keng, 2019).

2.2 Multi-Objective Deep Reinforcement Learning

MODRL is a domain within machine learning and also a family within MOO focused on simultane-
ously optimizing two or more objectives (Liu, Xu, and Hu, 2015). In an MODRL setting, the reward
function is extended to a vector of size K, which represents K different objectives (Nguyen et al.,
2020).

2.3 Aligned Multi-Task Learning

Two potential issues that arise when solving an MOO problem directly using gradient descent are
dominating and conflicting gradients. A dominating objective gradient is characterized by the largest
magnitude, which leads to a bias in the solution favouring the corresponding task (Senushkin et al.,
2023). When two objective gradients are conflicting, an increase in the solution towards one objective
decreases the solution for the conflicting objective. Conflicting gradients are characterized by having
a negative cosine similarity (Yu et al., 2020). To address these challenges in the context of multi-task
learning, Senushkin et al., 2023 propose aligned-multi-task learning (AMTL). Let Lk(θ) represent
the objective of task k, where there are K > 1 tasks that are associated with a set of model parameters
θ. The training objective is to converge to a set of θ∗ defined as follows:

θ∗ = arg min
θ∈Rm

{
L0(θ)

def
=

K∑
k=1

1

K
Lk(θ)

}
. (1)

To mitigate conflicting and dominating gradients, AMTL aligns the principal components of an initial
linear system of gradients. This process can be interpreted as re-scaling the axes of a coordinate
system that is determined by the principal components, such that the minimal singular value of
the gradient matrices is identified and all other singular values are adjusted to match it, resulting
in aligned gradients. Subsequently, these aligned gradients are combined into a common gradient
(Senushkin et al., 2023). Inspired by AMTL which formulates a multi-task learning problem to an
MOO problem, we integrate the same gradient alignment technique to solve MODRL for drug design
in this study. A detailed description of AMTL-based MODRL can be found in Appendix A.3.

2.4 Existing AI Approaches for Molecular Optimization

AutoGrow4, proposed by Spiegel and Durrant (2020), uses a genetic algorithm (GA) for molecular
optimization, where fitness is calculated as the docking score for a target protein. Given an initial
set of lead molecules, in the form of SMILES strings, three operations are performed to evolve
the molecules: elitism (selecting the fittest molecules to advance to the next generation), mutation
(altering molecules through conducting chemical reactions), and crossover (joining two molecules
into a new molecule). Fu et al. (2022) built upon AutoGrow4 with Reinforced Genetic Algorithm
(RGA), which reinterprets the evolutionary process as a Markov Decision Process (MDP). Initially,
E(3)-equivariant neural networks (ENNs) are pre-trained to predict the binding affinity of 3D target-
ligand complexes. For fine-tuning, the ENNs take the form of policy networks, which perform
crossover and mutation operations on lead molecules across a set number of timesteps, with the
reward being the binding affinity to the target protein.
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The Junction Tree Variational Autoencoder (JT-VAE) framework, developed by Jin, Barzilay, and
Jaakkola (2018), uses junction trees and graph representations to represent molecules. Molecules
are encoded into a two-part latent representation, with a tree encoder capturing the junction tree
structure and a graph encoder capturing the molecular graph. To decode the latent representation, a
tree decoder reconstructs the junction tree, and then a graph decoder, conditioned on the decoded tree
and graph latent representation, reconstructs the molecular graph. For the optimization task, a neural
network is introduced to predict the property value of a molecule. This network is trained alongside
JT-VAE to predict the property value for a given latent representation of a molecule. Starting from a
lead molecule, a number of gradient ascent steps in the latent space are performed to improve the
predicted score.

Introduced by Fu et al. (2021), MIMOSA utilizes Markov Chain Monte Carlo (MCMC) sampling to
optimize molecules represented as graphs. Two GNNs are pre-trained for distinct tasks: predicting
masked nodes within a molecular graph and determining molecular topology, specifically whether
a node will expand. These GNNs guide the modification of lead molecules through substructure
replacement, addition, or deletion. To sample molecules for the next generation, an unnormalized
target distribution is constructed based on molecular property scores, which reflect the favourability
of each molecule.

DiffSBDD, developed by Schneuing et al. (2022), is an SE(3)-equivariant 3D-conditional diffusion
model that generates molecules specifically conditioned on target protein pockets. Protein and ligand
point clouds are represented as fully-connected graphs and processed using SE(3)-equivariant graph
neural networks (EGNNs). During training, varying levels of noise are introduced to the 3D structures
of real ligands, and a neural network learns to reconstruct their original, noise-free features. For
molecular optimization, lead molecules are partially noised and the trained model is tasked with
denoising them, producing new drug candidates within the same area of the chemical space as the
original leads.

Zhou et al., 2019 developed Molecule Deep Q-Networks (MolDQN), a multi-objective molecular
optimization framework that implements double deep Q-learning (DDQN) and randomized value
functions. For the optimization task, an episode starts with a seed lead molecule and in each timestep,
MolDQN optimizes the molecule through one of the following actions: (1) atom addition, (2) bond
addition, and (3) bond removal. A linear weighted sum method is used for MOO.

Deep Fragment-based Multi-Parameter Optimization (DeepFMPO), introduced by Ståhl et al., 2019,
is an actor-critic multi-objective method for molecular optimization. In this work, a library of
fragments is derived from a set of lead molecules and fragments are encoded using a balanced
binary tree such that similar molecules have similar binary encoding. One modification step involves
replacing a fragment in the lead molecule with a similar fragment from the fragment library. A
constrained reward function is used, where a molecule is either assigned a constant positive reward
for each objective achieved or a reward of zero. If all objectives are met, the reward is doubled.
A dynamic reward mechanism is also implemented, where the model is penalized if it begins to
under-perform compared to previous epochs.

Bolcato, Heid, and Boström, 2022 expand DeepFMPO to include 3D-shape and electrostatics in
the similarity measurements. This extension was applied because a seemingly minor alteration to a
SMILES string can significantly impact its 3D structure. Consequently, the revised representation of
fragments is suggested to achieve a more precise similarity measure.

3 Methods

In this section, we discuss the data pre-processing, pretraining, and fine-tuning steps carried out in
our SMORE-DRL framework.

3.1 Data Preparation: Fragments-SMILES Hybrid Tokenization Strategy

The dataset used for transformer-encoder pretraining is the MolGen task of the Therapeutics Data
Commons (TDC) (Huang et al., 2021), a set of the ChEMBL, MOSES, and ZINC-250K datasets.
We canonicalized all SMILES strings, and only kept strings with a maximum of 100 characters,
resulting in a pretraining dataset of 4 million molecules. We then fragmented each molecule using
the fragmentation method from HierVAE by Jin, Barzilay, and Jaakkola, 2020, which breaks single
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bonds extending from ring atoms (Ståhl et al., 2019). This method is also used by DeepFMPO (Ståhl
et al., 2019) and DeepFMPOv3D (Bolcato, Heid, and Boström, 2022).

While fragmentation is a good technique for reducing the chemical search space, it may result in
a vast token dictionary size. Figure 5 in Appendix A.4 is a fragment frequency chart based on the
4-million molecule dataset, which shows that nearly 68,000 fragments were extracted. Most of these
fragments are rarely encountered in the dataset, with 95% appearing fewer than 100 times. Moreover,
building a token dictionary solely from the pretraining dataset will create obstacles during fine-tuning
tasks. Given the sparse nature of fragment occurrences, it is likely that molecules used for fine-tuning
will contain fragments not present in the dictionary, especially if the fine-tuning dataset differs from
the one used for pretraining.

To reduce the dictionary size while still representing fragments that are absent or infrequently
encountered, we propose a novel hybrid tokenization strategy that uses both fragments and SMILES.
Following the construction of a fragment dictionary from the pretraining dataset, we append tokens
for SMILES and exclude all fragments that appear less than twice. This reduces the dictionary size
from 68,000 to approximately 41,130 tokens. As a result, if a molecule contains a fragment not found
in the reduced dictionary, that fragment is represented atom by atom. See Appendix A.4 for a diagram
of the hybrid tokenization strategy. As part of our ablation studies in Section 4.2, we demonstrate that
further reducing the token dictionary by retaining only the most frequently encountered fragments
(resulting in molecules being primarily represented by SMILES atoms) hinders training performance.

3.2 Pretraining

SMORE-DRL utilizes a transformer-encoder model inspired by architectural aspects of the Bidi-
rectional Encoder Representations from Transformers (BERT) model introduced in MTL-BERT by
Zhang et al., 2022, a multi-task learning model pretrained on SMILES strings and fine-tuned for
downstream ADMET tasks. Rather than representing molecules by SMILES atom tokens as was
done in MTL-BERT, we adopt our hybrid fragment token representation. SMORE-DRL employs a
combination of two pretraining tasks: MLM and contrastive learning.

3.2.1 Masked Language Model (MLM)

Given a training batch of molecules, they are fragmented and encoded into their token representations.
Unlike the static masking technique used for the MLM in the original BERT model, where sequences
are masked once and reused throughout training, we employ the dynamic approach introduced by Liu
et al., 2019 in Robustly Optimized BERT Pretraining Approach (RoBERTa). In each training batch,
20% of the tokens are randomly selected for masking, with 90% of those being masked. If a selected
token is part of a sequence of atom tokens representing a fragment that does not exist in the token
dictionary, 20% of that fragment’s atom token sequence is also masked. The masked molecule token
sequence is then passed into the encoder model, which attempts to accurately reconstruct the original
values of the masked tokens. See Appendix A.5 for a diagram of the MLM process.

3.2.2 Contrastive Learning

We further refine the SMORE-DRL’s contextual understanding of molecules by allowing it to align
its representations of similar molecules. This is particularly valuable during fine-tuning, where the
model is tasked with optimizing lead molecules over multiple timesteps while ensuring that the
optimized molecules in the earlier timesteps retain chemical similarity to the original lead molecule.
To accomplish this, we introduce a straightforward contrastive learning technique that builds upon
the MLM approach. Rather than directly masking tokens in the fragment sequence as previously
described, a “separation” token is inserted at the end of the sequence, followed by an augmented
version of that sequence. Augmentation involves randomly selecting a token to replace with a
fragment token from the token dictionary. If the selected token belongs to a sequence of atom tokens
representing a fragment that is not in the token dictionary, the entire SMILES atom sequence for
that fragment is replaced with a randomly selected fragment token. The masking process consists
of keeping the original molecule sequence fully visible to the model, while masking 25% of the
augmented sequence using the same technique described earlier. See Appendix A.5 for a diagram of
the contrastive learning process.
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3.3 Fine-Tuning

For the fine-tuning phase, SMORE-DRL utilizes a novel multi-objective actor-critic framework with
three pretrained encoder models: a masker, an actor, and a critic. The MDP cycle unfolds as follows:
(1) starting from the initial state, represented by the token sequence of the lead molecule, the masker
model modifies this sequence by masking certain tokens, resulting in a new state, (2) the masked
sequence is processed by the actor model, which replaces the masked tokens with alternatives from
the token dictionary, creating a further updated state; (3) this state is evaluated by the critic model,
which assigns it a reward value; and (4) the updated state is passed to the reward system for the true
reward value. This process repeats iteratively across all timesteps.

3.3.1 Agents

Masker Model: The masker model, denoted as πθM , is responsible for selecting which tokens to
mask from the lead molecule token sequence. At each timestep, it masks at least one token and up to
70% of the token sequence. The model is designed to prefer masking fragment tokens over SMILES
atom tokens. The loss for the masker model is:

L (θM ) =
1

T

T∑
t=0

K∑
k=0

(
−ÂπθA

k (st, at) log πθM (at | st)
)
. (2)

Actor Model: After the lead molecule token sequence is masked by the masker model, it is passed
to the actor model, denoted as πθA . The actor model utilizes the same training head that was used
during the pretraining phase. Hence, its task is to replace the masked tokens with tokens from the
token dictionary. However, rather than focusing on recovering the original tokens, the actor’s task is
to replace the masked tokens with new tokens so that the resulting sequence represents an optimized
yet chemically similar version of the lead molecule. The actor model employs AMTL (Senushkin
et al., 2023) to identify a common objective gradient, thereby avoiding conflicting and dominating
gradients, which ensures that all molecular properties are optimized equally. This process involves
obtaining a gradient matrix that collects all K objective gradients, represented as G = {g1, · · · , gK},
where gk = ∇Lk (θA) and

Lk (θA) =
1

T

T∑
t=0

(
−ÂπθA

k (st, at) log πθA (at | st)
)
. (3)

G is then processed into the gradient matrix alignment algorithm to compute a common gradient,
which is used to update the model. Our AMTL-based actor model optimization algorithm is given in
Algorithm 1 of Appendix A.3. It is crucial for the masker and actor to work in tandem. If the actor
performs well, this will be reflected in the the masker’s loss, as the masker utilizes the advantage
function derived from the actor model’s policy. The fine-tuning process is illustrated in Figure 1.

Critic Model: The optimized token sequence is then fed into the critic model, VθC , which generates
a vector of size K, corresponding to K properties. The critic’s output reflects its assessment of the
desirability of sequence as a potential drug candidate. The loss of the critic model is:

L (θC) =
1

T

T∑
t=0

K∑
k=0

(
rt,k + V̂

πθA

θCk (st+1)− V
πθA

θCk (st)
)2

. (4)

3.3.2 Reward System

To assess a molecule’s potential as a drug candidate, we use the following three properties: (1)
logarithm of partition coefficient (ClogP), which impacts a drug’s administration, absorption, transport
and excretion, (2) synthetic accessibility score (SAS), which measures the difficulty of synthesizing a
molecule, and (3) binding affinity score (BAS) to LPA1, which quantifies the binding capability of a
drug to a target protein (Brown, 2015; Ertl and Schuffenhauer, 2009; Li et al., 2019). However, the
number and type of properties can be tailored to any specific optimization task. RDKit is used for
ClogP and SAS calculations, and QuickVina2-GPU-2.1 (Tang et al., 2024) is used to calculate BAS.
Lysophosphatidic acid receptor 1 (LPA1/LPAR1), a bioactive lipid mediator primarily derived from
membrane phospholipids, is chosen as the target protein for BAS. LPA Receptors (LPARs) have been
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Figure 1: Our MODRL fine-tuning process for one molecule.

found to be over-expressed in multiple types of cancer, with LPA1 specifically expressed in ovarian
cancer, breast cancer, liver cancer, gastric cancer, pancreatic cancer, lung cancer, glioblastoma and
osteosarcoma. LPA1 promotes metastasis and tumor motility, making it a natural choice for targeting
in efforts to inhibit cancer spread and cell movement (Lin, Lin, and Chen, 2021).

To convert a property value to a reward, we treat all properties to be minimized and normalize property
values. The reward for molecule m, where property p is ClogP or SAS, is defined as:

rp,m =
pthresh − pm

pthresh − ptrue_min
, (5)

where pthresh is the target maximum parameter that is set for p, pm is the p score for molecule m, and
ptrue_min is the true minimum of p. The pthresh parameter controls the difficulty of the optimization
task for a given property, with a lower threshold demanding molecules of higher quality. When p
is BAS, the absolute mean BAS score of the lead molecule set (|plead_mean|) is used, as no true
minimum exists for BAS:

rp,m =
pthresh − pm
|plead_mean|

. (6)

A widely known challenge of utilizing molecular docking is that it requires significant time (Thafar
et al., 2022). To overcome this, for all intermediate timesteps, we assign a partial reward to the
molecule that only includes ClogP and SAS, and in the final timestep, BAS is calculated and a full
reward comprised of ClogP, SAS and BAS is given.

The following three criteria are also examined for each epoch: (1) validity: the ratio of chemically
valid optimized molecules, checked using RDKit, (2) novelty: the ratio of optimized molecules that
are different from the lead molecules from which they were derived, and (3) uniqueness: the ratio
of unique molecules in the optimized molecules (Mukaidaisi et al., 2022). In each timestep, if a
molecule is valid, unique, and novel, it is assigned its reward, else it is assigned a reward of -1 for
each objective, for a total reward of -3, if it is the final timestep. If all properties are achieved by a
molecule, it is provided with extra reinforcement by doubling the final reward.

Thus, the output of the reward function is rK =
[
r1, r2, . . . , rK

]
, where K = 3 for the final timestep

and K = 2 for all intermediate timesteps. The values of the reward system are listed in Table 1 of the
next section.
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4 Experiments & Results

4.1 Pretraining

The encoder model was pretrained for six consecutive epochs on a combination of MLM and
contrastive learning tasks, where the same training head was used throughout learning. While the
main experiment employs the 2-frequency token dictionary (41,130 tokens), we also investigate the
effect that different dictionaries have on pretraining and fine-tuning. The pretraining results using the
2-frequency, 100-frequency (3,460 tokens), and 1000-frequency (790 tokens) token dictionaries can
be found in Appendix A.6.

4.2 Fine-Tuning

In this section, we demonstrate SMORE-DRL’s molecular optimization performance against three
other DRL methods, as well as its scalability and generalization abilities. For the masker, actor and
critic models, encoder weights are not frozen. Additionally, the actor model uses the same head from
the pretraining phase. We show that these configurations achieve optimal results in our experiments.

4.2.1 Performance Comparison of SMORE-DRL against other DRL Methods for Molecular
Optimization

We compare SMORE-DRL’s optimization performance with three other MODRL optimization
frameworks: (1) DeepFMPOv3D, (2) DeepFMPO and (3) MolDQN. A primary goal of this paper is to
present the scalability of SMORE-DRL. However, it is not feasible to conduct large-scale optimization
using thousands of lead molecules to compare with the other models, as these benchmarks lack the
efficiency for scalability. As described in their papers, DeepFMPOv3D, DeepFMPO and MolDQN
optimized a set of 138, 387 and 800 lead molecules, respectively. To facilitate comparison with
these methods, a small-scale dataset was utilized. Scalability and generalizability of SMORE-DRL
are demonstrated in the following sections. Challenging property values were selected for the
optimization task, as noted in Table 1. The results of this comparative study represent the mean scores
of three separate runs for all models.

Table 1: Targeted Molecular Properties and Their Maximal Thresholds and True Minimum/Lead
Mean Score

Property Target Value True Min/Lead Mean
ClogP <3 -3 (True Min)
SAS <2.5 (2.75 for Testing) 1 (True Min)

BAS (LPA1) <-6 -5.27 (Lead Mean)

All models were trained on a subset of 1,000 lead molecules from the DrugBank database (Wishart
et al., 2018) that do not satisfy all properties. SMORE-DRL trained for 70 epochs, during which all
lead molecules were optimized over 4 timesteps per epoch. The molecules optimized in the final
timestep of the last epoch are used for our comparisons. DeepFMPOv3D and DeepFMPO trained
for 1,000 epochs, optimizing random batches of 512 unique molecules per epoch. DeepFMPOv3D
performed optimization over 4 timesteps and DeepFMPO used 8 timesteps. In the final epoch, all
lead molecules were optimized, and results from this epoch are used for our comparisons. MolDQN
was trained for 6,000 epochs. For the first 5,000, a random molecule from the dataset is selected and
optimized for 20 timesteps. The final 1,000 epochs focus on optimizing each lead molecule, with the
resulting optimized molecules utilized for comparison. To calculate property rewards, all models use
the normalization method described in Section 3.3.2. In DeepFMPOv3D and DeepFMPO, a single
cumulative reward for all objectives is assigned in the final timestep. For MolDQN, a partial reward
excluding BAS is assigned at each intermediate timestep, while a full reward is assigned in the final
timestep.

Figure 2 compares each model’s learning progression while Table 2 displays the target property
percentages achieved by the lead molecules and the optimized outputs of the various models. MolDQN
is excluded from Figure 2 as it optimizes one lead molecule per epoch. Figure 9 of Appendix A.7
depicts the property-wise distributions of the final epoch. The optimization capabilities of SMORE-
DRL clearly surpass those of the other models. While all other models struggled heavily with the
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optimization task, SMORE-DRL maintained stability throughout training. Further, it successfully
optimized 23.54% of molecules to meet all properties, while maintaining comparable computation
time. The next best model, DeepFMPO, managed only 0.92%. MolDQN had the worst overall
performance, failing to produce a single molecule that achieved all properties.

Figure 2: Percentages of valid molecules and those achieving target properties through training for
SMORE-DRL, DeepFMPOv3D, and DeepFMPO.

Table 2: Percentage of molecules that satisfy each property from the 1,000 lead molecules and the
molecules optimized in the last training epoch by SMORE-DRL, DeepFMPOv3D, DeepFMPO, and
MolDQN.

Property Lead Molecules SMORE-DRL DeepFMPOv3D DeepFMPO MolDQN
Compute Time - ~6 hrs ~4.5 hrs ~6 hrs ~5.5 hrs

Validity - 99.80% (±0.00) 80.00% (±2.16) 77.33% (±3.09)100% (±0.00)
Novelty - 98.52% (±0.05) 80.01% (±1.85) 82.99% (±0.27)100% (±0.00)

Uniqueness - 93.63% (±1.47) 79.68% (±2.09) 82.71% (±0.30)100% (±0.00)
ClogP 73.94% 97.25% (±0.26) 54.90% (±0.83) 61.78% (±2.44)87.6% (±0.94)
SAS 38.93% 71.83% (±2.29) 10.96% (±0.60) 22.86% (±3.82)0.70% (±0.29)

BAS (LPA1) 8.65% 30.85% (±2.77) 6.60% (±0.17) 7.86% (±1.43) 1.73% (±0.66)
All Properties 0% 23.54% (±1.56) 0.03% (±0.05) 0.92% (±0.42) 0% (±0.00)

4.2.2 Scalability of SMORE-DRL

To examine scalability, SMORE-DRL was trained for 70 epochs using 10,000 molecules-5,000 from
the DrugBank database (Wishart et al., 2018) and 5,000 from the Collection of Open Natural Products
(COCONUT) database (Sorokina et al., 2021). COCONUT molecules were included to attempt to
test the model’s robustness, as they are different from those typically encountered during pretraining.
All lead molecules were optimized over 4 timesteps per epoch, with those from the final timestep of
the last epoch used for comparisons. While the baseline model was run five times, ablation studies
were also conducted. These included: (1) without the use of AMTL, (2) with a weight emphasis on
the BAS reward (0.25 for ClogP, 0.25 for SAS, and 0.5 for BAS), (3) with the freezing of encoder
weights for all agents, (4) with the use of pretraining on the 100-frequency dictionary, and (5) with
the use of pretraining on the 1000-frequency dictionary. Figure 3 demonstrates that freezing encoder
weights and pretraining on the 100-frequency and 1000-frequency dictionaries significantly impair
the model’s learning progress. As such, these experiments were limited to a single run of 25 epochs
and excluded from further analysis. To evaluate the impact of omitting AMTL and placing greater
emphasis on the BAS reward, these model variations were run three times for 70 epochs, while the
baseline model ran five times. Presented results are based on run averages.

As displayed in Figure 3, incorporating AMTL improves training stability and enhances the overall
quality of optimized molecules. Findings in Table 3 support this by demonstrating that omitting
AMTL significantly impairs most properties, namely uniqueness.

The baseline (SMORE-DRL) model can effectively scale to optimize thousands of lead molecules in
a timely manner, even if the molecules are structurally distinct from those used during pretraining.
This demonstrates its scalability, efficiency and robustness. Figure 10 (Appendix A.7) exhibits the
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property-wise distributions, while examples of lead molecules optimized by SMORE-DRL from
these experiments are presented in Appendix A.8.

Interestingly, emphasizing the BAS reward did not necessarily produce molecules that were more
optimized for BAS compared to the baseline version of SMORE-DRL. A possible explanation for this
is that doing so may constrict the model’s exploration of the search space, leading it to focus primarily
on BAS. This narrow focus may result in the model converging to a local minimum, hindering
its ability to discover more optimal solutions in other areas of the search space. A more effective
approach would be to implement a dynamic weighting system, initially assigning equal weights to
encourage exploration. Over time, these weights could be adjusted to prioritize specific properties.

Figure 3: Percentages of valid molecules and those achieving target properties through training for
different versions of SMORE-DRL.

Table 3: Percentage of molecules that satisfy each property from the 10,000 lead molecules and the
molecules optimized in the last training epoch by SMORE-DRL, SMORE-DRL without AMTL, and
SMORE-DRL with a reward emphasis on BAS.

Property Lead Molecules SMORE-DRL No AMTL BAS Reward Focus
Compute Time - ~60 hrs ~60 hrs ~60 hrs

Validity - 99.54% (±0.08)99.33% (±0.34) 99.64% (±0.10)
Novelty - 99.98% (±0.01)99.97% (±0.02) 99.99% (±0.00)

Uniqueness - 89.31% (±1.59)67.30% (±3.88) 90.49% (±1.91)
ClogP 62.06% 94.57% (±1.35)95.04% (±1.90) 95.83% (±0.50)
SAS 25.64% 57.08% (±0.92)51.67% (±2.17) 56.74% (±0.70)

BAS (LPA1) 9.79% 53.87% (±2.05)31.71% (±1.30) 46.79% (±2.90)
All Properties 0% 32.22% (±1.15)17.20% (±1.03) 29.20% (±1.92)

4.2.3 Generalization Performance of SMORE-DRL

While many MODRL drug design frameworks focus on optimization tasks, their ability to generalize
and optimize molecules that they have not encountered before remains unexplored. The weights of the
baseline SMORE-DRL model from the scalability experiments were frozen, with their optimization
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process tested on 40,000 molecules from the COCONUT dataset that differ from those used in the
scalability experiments. The following are the average results of the five SMORE-DRL model runs
from the fine-tuning phase. To encourage similarity to lead molecules, optimization was restricted to
two timesteps. Additionally, the SAS target maximum parameter was increased from 2.5 to 2.75.

SMORE-DRL took 1.25 hours to optimize a test set of 40,000 lead molecules, none of which
originally achieved all target properties. 19% of the resulting molecules met all target properties,
and all properties were significantly improved (see Table 4). Property-wise distributions are seen in
Figure 11 of Appendix A.7, and examples of lead molecule optimized are presented in Appendix A.9.

Table 4: Generalization results – percentage of molecules that satisfy each property from the 40,000
test lead molecule set and the molecules optimized by SMORE-DRL over two timesteps.

Property Lead Molecules SMORE-DRL
Avg Compute Time - ~1.25 hrs

Validity - 99.38% (±0.14)
Novelty - 99.76% (±0.10)

Uniqueness - 89.85% (±0.94)
ClogP 51.13% 85.01% (±2.60)
SAS 38.91% 51.54% (±1.47)

BAS (LPA1) 16.98% 38.19% (±1.69)
All Properties 0% 18.50% (±0.51)

4.3 Discussion

In this paper, we introduce SMORE-DRL, a novel transformer-based MODRL model for molecular
optimization. Three sets of experiments were conducted to evaluate the model’s performance: (1) a
comparative study against DeepFMPO, DeepFMPOv3D, and MolDQN, three MODRL molecular
optimization models, tasked with optimizing 1,000 lead molecules, (2) a scalability study, where the
model was tasked with optimizing 10,000 lead molecules, and (3) a generalization study to assess
how well the model, after training in the scalability study, can optimize 40,000 lead molecules in a
test scenario.

SMORE-DRL demonstrated outstanding performance in all experiments. In the comparative study,
it significantly outperformed all other models. In the scalability study, SMORE-DRL performed
efficiently, optimizing a set of lead molecules that did not achieve all properties such that one third of
produced molecules satisfied all properties. Additionally, SMORE-DRL’s robustness allowed it to
successfully generalize its optimization approach to unseen molecules. With just two modification
steps, it improved the lead molecules from 0% to 19% achieving all target properties. The inclusion
of AMTL has proven to be a vital component of SMORE-DRL, enhancing training stability and
improving the overall performance.

As discussed, the primary objective of molecular optimization is developing a novel molecule similar
to a lead molecule, aiming to have both molecules exhibit comparable qualities. As such, the
progression of SMORE-DRL’s optimized molecules were analyzed by comparing their similarity to
lead molecules and their corresponding rewards across all timesteps. Figure 4 depicts the average
similarity and reward for each of the four optimization timesteps performed on 1,000 molecules
during the scalability study. To measure similarity, we utilize the method described in DeepFMPO
(Ståhl et al., 2019), which employs a combination of maximum common substructure Tanimoto
similarity and Levenshtein distance. A similarity score greater than or equal to 0.7 indicates high
similarity, while a score between 0.5 and 0.7 is considered medium similarity (Loeffler et al., 2024).
While SMORE-DRL does not achieve high similarity, it still presents strong results. As seen in Figure
4, there is an inverse correlation between average similarity and average sum of rewards across all
objectives, where as similarity decreases, reward increases. This represents a trade-off: restricting
the optimization process to minimal modifications of a lead molecule may result in high similarity,
but will likely restrict exploration and hinder the development of superior candidates. Nonetheless,
the next iteration of SMORE-DRL should balance exploration with maintaining similarity to lead
molecules, aiming to generate high-quality compounds without sacrificing similarity. One possible
approach involves incorporation of a dynamic similarity component into the reward function, allowing
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for exploration in the initial training epochs while penalizing molecules with low similarity to lead
molecules in the later epochs.

Figure 4: An analysis of: (1) the average similarity to lead molecules and (2) the average sum of
rewards across all properties over four optimization timesteps for 1,000 molecules optimized by
SMORE-DRL.

5 Conclusion

In this work, we present SMORE-DRL, a scalable gradient-alignment-based MODRL framework
for molecular optimization. A novel hybrid fragment-SMILES representation to depict molecules
enables SMORE-DRL to select and replace fragments in the lead molecules with alternatives from
the fragment dictionary, resulting in improved drug candidates. This is achieved by using three agents:
a masker, actor and critic, all pretrained on MLM and contrastive learning tasks. SMORE-DRL
excelled as a lead molecule optimizer, significantly outperforming other MODRL models while
demonstrating scalability. Furthermore, when evaluated on new molecules post fine-tuning, SMORE-
DRL effectively generalized its optimization process. The next development of SMORE-DRL will
include additional measures to encourage the model to produce molecules that are as effective as
those in the current version, but with greater similarity to lead compounds. The implementation of
SMORE-DRL is available at https://anonymous.4open.science/r/SMORE-DRL-F38B.

Acknowledgments

This work is supported in part by funds from (1) the AI for Design Challenge Pro-gram, National
Research Council Canada (AI4D-108 to YL), (2) the Discovery Grant Program, Natural Sciences and
Engineering Research Council of Canada (RGPIN 2021-03879 to YL), (3) Canada Research Chair
Program (to YL), (4) Canada Foundation for Innovation (to YL), (5) Ontario Research Fund – Small
Infrastructure Fund (to YL), and (6) the Vector Scholarship for AI from the Vector Institute (to AAJ)

12

https://anonymous.4open.science/r/SMORE-DRL-F38B


References
Ahn, Sungsoo et al. (2020). “Guiding deep molecular optimization with genetic exploration”. In:

Advances in neural information processing systems 33, pp. 12008–12021.
Ai, Chengwei et al. (2024). “MTMol-GPT: De novo multi-target molecular generation with

transformer-based generative adversarial imitation learning”. In: PLOS Computational Biology
20.6, e1012229.

Arulkumaran, Kai et al. (Aug. 2017). “A Brief Survey of Deep Reinforcement Learning”. In: IEEE
Signal Processing Magazine 34. DOI: 10.1109/MSP.2017.2743240.

Bengio, Emmanuel et al. (2021). “Flow network based generative models for non-iterative diverse
candidate generation”. In: Advances in Neural Information Processing Systems 34, pp. 27381–
27394.

Bolcato, Giovanni, Esther Heid, and Jonas Boström (2022). “On the Value of Using 3D Shape and
Electrostatic Similarities in Deep Generative Methods”. In: Journal of Chemical Information and
Modeling 62.6, pp. 1388–1398.

Brown, Nathan (2015). In silico Medicinal Chemistry: Computational Methods to Support Drug
Design. Royal Society of Chemistry.

Chen, Ziqi et al. (2021). “A deep generative model for molecule optimization via one fragment
modification”. In: Nature machine intelligence 3.12, pp. 1040–1049.

De Cao, Nicola and Thomas Kipf (2018). “MolGAN: An implicit generative model for small
molecular graphs”. In: ICML 2018 workshop on Theoretical Foundations and Applications of Deep
Generative Models.

Devlin, Jacob et al. (June 2019). “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Minneapolis,
Minnesota: Association for Computational Linguistics, pp. 4171–4186.

Ertl, Peter and Ansgar Schuffenhauer (2009). “Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions”. In: Journal of Cheminfor-
matics 1.1, pp. 1–11.

Fu, Tianfan et al. (2021). “Mimosa: Multi-constraint molecule sampling for molecule optimization”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 1, pp. 125–133.

Fu, Tianfan et al. (2022). “Reinforced genetic algorithm for structure-based drug design”. In: Advances
in Neural Information Processing Systems 35, pp. 12325–12338.

Goel, Manan et al. (2021). “MoleGuLAR: Molecule generation using reinforcement learning with
alternating rewards”. In: Journal of Chemical Information and Modeling 61.12, pp. 5815–5826.

Gottipati, Sai Krishna et al. (2021). “Towered actor critic for handling multiple action types in
reinforcement learning for drug discovery”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35, pp. 142–150.

Graesser, Laura and Wah Loon Keng (2019). Foundations of Deep Reinforcement Learning: Theory
and Practice in Python. Addison-Wesley Professional.

Hoogeboom, Emiel et al. (2022). “Equivariant diffusion for molecule generation in 3d”. In: Interna-
tional conference on machine learning. PMLR, pp. 8867–8887.

Huang, Kexin et al. (2021). “Therapeutics Data Commons: Machine Learning Datasets and Tasks for
Drug Discovery and Development”. In: NeurIPS Datasets and Benchmarks.

Igashov, Ilia et al. (2024). “Equivariant 3D-conditional diffusion model for molecular linker design”.
In: Nature Machine Intelligence, pp. 1–11.

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola (2018). “Junction tree variational autoen-
coder for molecular graph generation”. In: International conference on machine learning. PMLR,
pp. 2323–2332.

– (2020). “Hierarchical generation of molecular graphs using structural motifs”. In: International
Conference on Machine Learning, pp. 4839–4848.

Al-Jumaily, Aws et al. (2023). “Examining multi-objective deep reinforcement learning frameworks
for molecular design”. In: Biosystems 232, p. 104989.

Li, Yanjun et al. (2019). “DeepAtom: A framework for protein-ligand binding affinity prediction”. In:
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp. 303–
310.

Lin, Yu-Hsuan, Yueh-Chien Lin, and Chien-Chin Chen (2021). “Lysophosphatidic acid receptor
antagonists and cancer: the current trends, clinical implications, and trials”. In: Cells 10.7, p. 1629.

13

https://doi.org/10.1109/MSP.2017.2743240


Liu, Bo et al. (2021). “Conflict-averse gradient descent for multi-task learning”. In: Advances in
Neural Information Processing Systems 34, pp. 18878–18890.

Liu, Chunming, Xin Xu, and Dewen Hu (2015). “Multiobjective reinforcement learning: A com-
prehensive overview”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 45.3,
pp. 385–398.

Liu, Qi et al. (2018). “Constrained graph variational autoencoders for molecule design”. In: Advances
in neural information processing systems 31.

Liu, Xuhan et al. (2023). “DrugEx v3: scaffold-constrained drug design with graph transformer-based
reinforcement learning”. In: Journal of Cheminformatics 15.1, p. 24.

Liu, Yinhan et al. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:
1907.11692 [cs.CL].

Loeffler, Hannes H et al. (2024). “Reinvent 4: Modern AI–driven generative molecule design”. In:
Journal of Cheminformatics 16.1, p. 20.

Mukaidaisi, Muhetaer et al. (2022). “Multi-objective drug design based on graph-fragment molecular
representation and deep evolutionary learning”. In: Frontiers in Pharmacology 13, p. 920747.

Nguyen, Thanh Thi et al. (2020). “A multi-objective deep reinforcement learning framework”. In:
Engineering Applications of Artificial Intelligence 96, p. 103915.

Pereira, Tiago et al. (2021). “Diversity oriented Deep Reinforcement Learning for targeted molecule
generation”. In: Journal of Cheminformatics 13.1, pp. 1–17.

Popova, Mariya, Olexandr Isayev, and Alexander Tropsha (2018). “Deep reinforcement learning for
de novo drug design”. In: Science Advances 4.7, eaap7885.

Sattarov, Boris et al. (2019). “De novo molecular design by combining deep autoencoder recurrent
neural networks with generative topographic mapping”. In: Journal of chemical information and
modeling 59.3, pp. 1182–1196.

Schneuing, Arne et al. (2022). “Structure-based drug design with equivariant diffusion models”. In:
arXiv preprint arXiv:2210.13695.

Senushkin, Dmitry et al. (2023). “Independent component alignment for multi-task learning”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20083–
20093.

Shreyashree, S. et al. (2022). “A Literature Review on Bidirectional Encoder Representations from
Transformers”. In: Inventive Computation and Information Technologies. Ed. by S. Smys, Valentina
Emilia Balas, and Ram Palanisamy. Singapore: Springer Nature Singapore, pp. 305–320.

Sorokina, Maria et al. (2021). “COCONUT online: Collection of open natural products database”. In:
Journal of Cheminformatics 13.1, p. 2.

Spiegel, Jacob O and Jacob D Durrant (2020). “AutoGrow4: an open-source genetic algorithm for de
novo drug design and lead optimization”. In: Journal of cheminformatics 12, pp. 1–16.

Ståhl, Niclas et al. (2019). “Deep Reinforcement Learning for Multiparameter Optimization in de
novo Drug Design”. In: Journal of Chemical Information and Modeling 59.7, pp. 3166–3176.

Sun, Duxin et al. (2022). “Why 90% of clinical drug development fails and how to improve it?” In:
Acta Pharmaceutica Sinica B 12.7, pp. 3049–3062.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement Learning: An Introduction. MIT press.
Tang, Huidong et al. (2023). “EarlGAN: An enhanced actor–critic reinforcement learning agent-driven

GAN for de novo drug design”. In: Pattern Recognition Letters 175, pp. 45–51.
Tang, Shidi et al. (2024). “Vina-GPU 2.1: Towards Further Optimizing Docking Speed and Precision

of AutoDock Vina and Its Derivatives”. In: IEEE/ACM Transactions on Computational Biology
and Bioinformatics, pp. 1–13.

Thafar, Maha et al. (Mar. 2022). “Affinity2Vec: Drug-target binding affinity prediction through
representation learning, graph mining, and machine learning”. In: Scientific Reports 12.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Neural Information Processing Systems.
Wang, Jing and Fei Zhu (2024). “ExSelfRL: An exploration-inspired self-supervised reinforcement

learning approach to molecular generation”. In: Expert Systems with Applications 260, p. 125410.
ISSN: 0957-4174.

Wettig, Alexander et al. (May 2023). “Should You Mask 15% in Masked Language Modeling?” In:
Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics. Ed. by Andreas Vlachos and Isabelle Augenstein. Dubrovnik, Croatia: Association for
Computational Linguistics, pp. 2985–3000.

Wishart, David S. et al. (2018). “DrugBank 5.0: A major update to the DrugBank database for 2018”.
In: Nucleic Acids Research 46.Database, pp. D1074–D1082.

14

https://arxiv.org/abs/1907.11692


Yang, Lijuan et al. (2021a). “Transformer-based generative model accelerating the development of
novel BRAF inhibitors”. In: ACS omega 6.49, pp. 33864–33873.

Yang, Soojung et al. (2021b). “Hit and lead discovery with explorative RL and fragment-based
molecule generation”. In: Advances in Neural Information Processing Systems 34.

Yu, Tianhe et al. (2020). “Gradient surgery for multi-task learning”. In: Advances in Neural Informa-
tion Processing Systems 33, pp. 5824–5836.

Zhang, Xiao-Chen et al. (2022). “Pushing the Boundaries of Molecular Property Prediction for Drug
Discovery with Multitask Learning BERT Enhanced by SMILES Enumeration”. In: Research
2022, p. 0004.

Zhou, Zhenpeng et al. (2019). “Optimization of molecules via deep reinforcement learning”. In:
Scientific Reports 9.1, pp. 1–10.

Zhu, Yiheng et al. (2024). “Sample-efficient multi-objective molecular optimization with gflownets”.
In: Advances in Neural Information Processing Systems 36.

15



A Appendix

A.1 Transformer-Encoder

Transformer-encoder models are made for pretraining on unlabeled data in a bidirectional fashion
(Vaswani et al., 2017; Devlin et al., 2019; Shreyashree et al., 2022). To extract features, an embedding
layer transforms the input fragment tokens x = (x1, x2, . . . , xn) into learnable embedding vectors
w = (w1, w2, . . . , wn), with the addition of a sinusoidal positional encoding vectors to reflect
sequential location information. This is done using an embedding dictionary D ∈ RV×F, where
wi ∈ RF,V is the vocabulary size, and F is the embedding vector size. As an input feature matrix
Y ∈ RN×F is passed through the multi-head self-attention layer, it is linearly transformed into
the following h = 1, 2, . . . ,H matrices: (1) the query matrix Qh = YWQ

h , (2) the key matrix
Kh = YWK

h , and (3) the value matrix Vh = YWV
h , where WQ

h ,W
K
h , and WV

h are model weight
matrices. The scaled dot-product attention is then computed for each linear projection, producing
the output for a single attention head: Oh = softmax

(
QhK

T
h√

dk

)
Vh, where

√
dk is a scaling factor.

To get the final attention output, all attention heads O1,O2, . . . ,OH are then concatenated and fed
into a linear layer. Finally, during pretraining, the attention output is processed by a feed-forward
network, referred to as the “pretraining head.” This head is typically replaced with task-specific head
during the fine-tuning stage (Zhang et al., 2022).

The Masked Language Model (MLM) task, a denoising-based auto-encoding technique, is often
used to pretrain encoder models (Devlin et al., 2019). The goal is to reconstruct a noisy token
sequence, where some tokens are masked, back to its original form. The model achieves this by
using the surrounding visible tokens to build context for predicting the masked tokens (Zhang et al.,
2022). More formally, given an input token sequence x, a noisy version x̃ is generated by masking a
percentage m of its tokens (Wettig et al., 2023). The model’s task is to predict on the masked token
setM of x̃ to recover x:

L(C) = E
x∈C

E
M⊂x

|M|=m|x|

[ ∑
xi∈M

log p (xi | x̃)

]
. (7)

A.2 Reinforcement Learning

The MDP is defined by the tuple (S,A,P,R, γ), where S and A represent the state and action
spaces, P is the state transition probability distribution P(st+1|st, at),R is the reward distribution
R(rt|st, at), and γ is the discount factor used to control the trade-off between immediate rewards and
future rewards, where t is the current timestep, and rt is a scalar reward function for t (Al-Jumaily et
al., 2023; Graesser and Keng, 2019). The goal of an RL agent is to learn a policy distribution π(at|st)
that maximizes long-term cumulative rewards through exploration of the environment over multiple
timesteps. This is accomplished by the agent starting at state st, selecting action at, receiving reward
rt, and transitioning to the new state st+1 (Sutton and Barto, 2018). To assess the value of states
and actions with respect to expected long-term returns, two functions are formulated: V π(s), which
measures the desirability of s: V π(s) = Es0=s,τ∼π

[∑T
t=0 γ

trt

]
, and Qπ(s, a), which measure the

desirability of taking action a given state s: Qπ(s, a) = Es0=s,a0=a,τ∼π

[∑T
t=0 γ

trt

]
(Graesser and

Keng, 2019).

When the RL task entails exploring a vast state or action space, as is often the case in drug design,
learning an exact optimal policy or value function can become computationally intractable. Thus,
DRL is used to approximate policies or value functions (Arulkumaran et al., 2017). The actor-critic
framework approximates both and has been leveraged by various drug development frameworks
(Al-Jumaily et al., 2023; Goel et al., 2021; Gottipati et al., 2021; Pereira et al., 2021; Popova,
Isayev, and Tropsha, 2018; Ståhl et al., 2019; Tang et al., 2023; Wang and Zhu, 2024; Yang et
al., 2021b). The actor model is responsible for learning a parameterized policy πθA , guided by
feedback, known as temporal difference (TD) error from the critic model, which evaluates the actor’s
actions based on the state. One approach to this evaluation is by learning the advantage function
Aπ(s, a) = Qπ(s, a) − V π(s), which measures the desirability of taking action a compared to
alternative actions available from state s (Graesser and Keng, 2019). However, having the critic
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model learn both Qπ(s, a) and V π(s) is computationally expensive. Therefore, in practice, the critic
model only learns V π(s) and combines it with reward information from the trajectory to estimate the
advantage function:

Aπ (st, at) = Qπ (st, at)− V π (st)

≈ rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n + γn+1V̂ π (st+n+1)− V̂ π (st) .
(8)

Thus, the value function is parameterized as V π
θC

(s) and is updated using loss function:

Lval (θC) =
1

T

T∑
t=0

(
rt + V̂ π

θC (st+1)− V π
θC (st)

)2

, (9)

while the loss function for the actor is given by:

Lpol (θA) =
1

T

T∑
t=0

(
−Âπ (st, at) log πθA (at | st)

)
. (10)

A.3 AMTL-based MODRL Algorithm

For the MODRL training, we aim to use the gradient modulation method AMTL (Senushkin et al.,
2023) for policy learning. AMTL specifically addresses the multi-task optimization challenges, i.e.,
gradient dominance and gradient conflicts, by aligning principal components of a gradient matrix.
The existence of conflicting or dominating gradients disrupts the stability of the training process and
leads to a deterioration in overall performance.

It is acknowledged that the gradient dominance can be measured with a gradient magnitude similarity
(Yu et al., 2020), and a cosine distance between vectors can measure the gradient conflicts (Liu et al.,
2021). However, the two metrics cannot offer a comprehensive assessment if taken in isolation. One
of the key components of AMTL is the proposal of the condition number, a stability criterion that
can indicate the presence of both challenges. The value of the condition number is the ratio of the
maximum and minimum singular values of the corresponding matrix. Minimizing the condition
number of the linear system of gradients, a linear combination of gradients for all objectives, mitigates
dominance and conflicts within this system. If we apply singular value decomposition (SVD), we can
have

G = UΣV T, (11)

where Σ = diag(σ1, σ2, · · · , σK) and the eigen-values are arranged in decreasing order. One can
easily obtain that

GTG = V ΣUTUΣV T = V ΣΣV T = V ΛV T, (12)

where Λ = diag(λ1, λ2, · · · , λK) and we know that σk =
√
λk. Thus, the singular values in the

SVD of G correspond to the squared roots of the eigen-values from the eigen-decomposition of the
Gram matrix GTG. According to AMTL, a gradient matrix with a minimal condition number (i.e.,
the singular values are equal to the last positive singular value) can be decomposed as:

Ĝ = UΣ̂V T = UσIV T = σUV T = σGV Σ−1V T, (13)

where σ =
√
λK and U = GV Σ−1 because of Equation (11), and Ĝ is the aligned gradient matrix.

A linear combination of the aligned objective-specific gradient vectors using the objective importance
would be Ĝω =

∑K
k=1 ωkĝk. The gist of AMTL is to align the gradient matrix by conducting an

SVD to the original gradient matrix and rescaling the singular values to match the smallest singular
value. The pseudocode for the MODRL fine-tuning algorithm proposed in this work to align the
language model is given in Algorithm 1.
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Algorithm 1: Multi-Objective Deep Reinforcement Learning (MODRL) Pseudocode
Require: π0: original policy; K: number of objectives; ω: task importance (all objectives are

deemed equal importance in this work); η: learning rate;
1 Let πϕ = π0;
2 foreach epoch do
3 foreach minibatch do
4 foreach k = 1, 2, ...,K do
5 Compute loss Lk (ϕ);
6 Compute gradient gk = ∇ϕLk (ϕ);
7 end
8 Get the gradient matrix G = {g1, ..., gK}; // playing objective-specific

gradient vectors as columns in G
9 Compute task space Gram matrix M ← GTG;

10 Get eigen-values and eigen-vectors (λ,V )← eigen (M); // eigen-decomposition
such that M = V ΛV T where Λ = diag(λ)

11 Σ−1 ← diag
(√

1
λ1
, ...,

√
1

λK

)
;

12 Balance transformation B ←
√
λnV Σ−1V T ;

13 Get new aligned gradient matrix Ĝ = GB; Updated gradient∇ϕ = Ĝω;
14 Update policy parameter ϕ = ϕ− η∇ϕ;
15 end
16 end
17 Return policy πϕ;
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A.4 Fragments-SMILES Hybrid Tokenization Strategy Figures

Figure 5: TDC MolGen task dataset (Huang et al., 2021) fragment frequencies.

Figure 6: Fragment-SMILES hybrid tokenization strategy.
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A.5 Pretraining Diagrams

Figure 7: MLM training process for one molecule.
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Figure 8: Contrastive learning training process for one molecule.
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A.6 Pretraining Results

Table 5: Pretraining results using the 2-Frequency token dictionary on a 4-million molecule dataset
from TDC (Huang et al., 2021).

Epoch Testing LossTesting AccuracyCompute Time
Epoch 1: MLM 1.02 0.72 ~8 hrs
Epoch 2: MLM 0.93 0.75 ~8 hrs

Epoch 3: Contrastive Learning 0.37 0.90 ~20 hrs
Epoch 4: MLM 0.87 0.78 ~8 hrs

Epoch 5: Contrastive Learning 1.70 0.91 ~20 hrs
Epoch 6: MLM 0.87 0.79 ~7 hrs

Table 6: Pretraining results using the 100-Frequency token dictionary on a 4-million molecule dataset
from TDC (Huang et al., 2021).

Epoch Testing LossTesting AccuracyCompute Time
Epoch 1: MLM 0.90 0.70 ~3 hrs
Epoch 2: MLM 0.83 0.72 ~3 hrs

Epoch 3: Contrastive Learning 0.29 0.89 ~14 hrs
Epoch 4: MLM 0.80 0.73 ~3 hrs

Epoch 5: Contrastive Learning 0.26 0.90 ~15 hrs
Epoch 6: MLM 0.77 0.74 ~3 hrs

Table 7: Pretraining results using the 1000-Frequency token dictionary on a 4-million molecule
dataset from TDC (Huang et al., 2021).

Epoch Testing LossTesting AccuracyCompute Time
Epoch 1: MLM 0.88 0.70 ~3 hrs
Epoch 2: MLM 0.81 0.72 ~3 hrs

Epoch 3: Contrastive Learning 0.24 0.90 ~15 hrs
Epoch 4: MLM 0.78 0.73 ~3 hrs

Epoch 5: Contrastive Learning 0.22 0.91 ~15 hrs
Epoch 6: MLM 0.76 0.74 ~3 hrs
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A.7 Property-Wise Density Plots For the Comparative and Scalability Studies

Figure 9: Property-wise comparisons between the lead molecules (blue) and the molecules optimized
in final epoch by SMORE-DRL (red), DeepFMPOv3D (Bolcato, Heid, and Boström, 2022) (green),
DeepFMPO (Ståhl et al., 2019) (yellow), and MolDQN (Zhou et al., 2019) (purple). All objectives
are to be minimized and the targeted maximums are indicated by the black dashed line.

Figure 10: Property-wise comparisons between the lead molecules (blue) and the molecules optimized
in final epoch by SMORE-DRL (red), SMORE-DRL without AMTL (green), and SMORE-DRL with
a reward emphasis on BAS (yellow). All objectives are to be minimized and the targeted maximums
are indicated by the black dashed line.

Figure 11: Generalization results – property-wise comparisons between the test lead molecules (blue)
and the molecules optimized by SMORE-DRL (red). All objectives are to be minimized and the
targeted maximums are indicated by the black dashed line.
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A.8 Visualizations of SMORE-DRL’s Molecular Optimization During Scalability
Experiments

Lead
Optimized

Figure 12: Binding visualization of a lead molecule (FC(F)(F)c1ccc(C=Cc2nc(COc3ccc
(CCCCn4ccnn4)cc3)co2)cc1, ClogP = 6.05, SAS = 2.73, BAS = -4.7) and SMORE-DRL’s
optimized version (NC(=O)NC(=O)c1cccc(-c2cccc(NC(=O)NNC(=O)Nc3ccccc3C(N)=O)c2)c1,
ClogP = 2.11, SAS = 2.31, BAS = -9.0) from the scalability experiments.
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Figure 13: Lead molecules optimized by SMORE-DRL from the scalability experiments.
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A.9 Visualizations of SMORE-DRL’s Molecular Optimization During Generalization
Experiments

Lead Optimized

Figure 14: Binding visualization of a lead molecule (C=C1C(OC(C)=O)CC2C(COC(=O)CC(C)C)=
COC(OC(=O)CC(C)C)C12, ClogP = 3.52, SAS = 4.33, BAS = -3.8) and SMORE-DRL’s optimized
version (C=C1CCC2C(C(=O)NCCc3cccc4cccnc34)=COC(C(N)=O)C12, ClogP = 2.24, SAS = 3.88,
BAS = -8.2) from the generalization experiments.
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Figure 15: Lead molecules optimized by SMORE-DRL from the generalization experiments.
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