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ABSTRACT

Artificial intelligence (AI) shows great potential in assisting radiologists to im-
prove the efficiency and accuracy of medical image interpretation and diagnosis.
However, a versatile AI model requires large-scale data and comprehensive anno-
tations, which are often impractical in medical settings. Recent studies leverage
radiology reports as a naturally high-quality supervision for medical images, us-
ing contrastive language-image pre-training (CLIP) to develop language-informed
models for radiological image interpretation. Nonetheless, these approaches typi-
cally contrast entire images with reports, neglecting the local associations between
imaging regions and report sentences, which may undermine model performance
and interoperability. In this paper, we propose a fine-grained vision-language
model (fVLM) for anatomy-level CT image interpretation. Specifically, we ex-
plicitly match anatomical regions of CT images with corresponding descriptions
in radiology reports and perform contrastive pre-training for each anatomy in-
dividually. Fine-grained alignment, however, faces considerable false-negative
challenges, mainly from the abundance of anatomy-level healthy samples and
similarly diseased abnormalities, leading to ambiguous patient-level pairings. To
tackle this issue, we propose identifying false negatives of both normal and ab-
normal samples and calibrating contrastive learning from patient-level to disease-
aware pairing. We curated the largest CT dataset to date, comprising imaging and
report data from 69,086 patients, and conducted a comprehensive evaluation of
54 major and important disease (including several most deadly cancers) diagnosis
tasks across 15 main anatomies. Experimental results demonstrate the substan-
tial potential of fVLM in versatile medical image interpretation. In the zero-shot
classification task, we achieved an average AUC of 81.3% on 54 diagnosis tasks,
surpassing CLIP and supervised methods by 12.9% and 8.0%, respectively. Ad-
ditionally, on the publicly available CT-RATE and Rad-ChestCT benchmarks, our
fVLM outperformed the current state-of-the-art methods with absolute AUC gains
of 7.4% and 4.8%, respectively.

1 INTRODUCTION

Medical image interpretation is a critically important yet exceptionally burdensome task in clinical
workflows, particularly when dealing with 3D imaging scans Udare et al. (2022). Radiologists are
required to examine hundreds of slices across dozens of anatomies meticulously Blankemeier et al.
(2024). As a result, there is a growing demand for versatile and reliable AI to assist in the auto-
mated interpretation of medical images for a wide range of diagnostic needs. Supervised learning is
a prominent strategy for automating this process, demonstrating remarkable success in natural scene
images, such as ImageNet Deng et al. (2009). In the medical domain, specific disease category infor-
mation must be precisely defined in advance, necessitating extensive annotations from specialized
annotators Isensee et al. (2021); Wang et al. (2023); Zhang et al. (2023a); Guo et al. (2024). Unlike
natural images, medical images encompass a complex variety of conditions, making it challeng-
ing to fulfill all clinical diagnostic requirements through a predefined one-hot label space Liu et al.
(2023c). Furthermore, the labor-intensive annotation constitutes an additional burden on doctors
outside of their regular duties. These challenges make it particularly difficult to apply supervised
learning methodologies effectively within the medical field.
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Figure 1: Comparative analysis of vanilla VLM (CLIP) and our fine-grained VLM (fVLM). (a,b)
A representative CT slice and its corresponding radiological report. (c,d) Visual activation maps
generated by CLIP and fVLM respectively, illustrating regions of interest for pancreatitis diagnosis.
(e) Quantitative comparison of AUC scores across 54 disease diagnosis tasks in 15 anatomies.

Recently, Vision Language Models (VLMs) Zhang et al. (2022); Tiu et al. (2022); Lin et al. (2023);
Wu et al. (2023); Blankemeier et al. (2024) have gained considerable attention, presenting a promis-
ing alternative to supervised learning paradigms. The fundamental concept involves supervising
model training directly through diagnostic reports, thus eliminating the need for specific disease cat-
egory labels Cao et al. (2024). Radiology reports are highly condensed recordings of the diagnostic
process, meticulously documenting the evaluations conducted by at least one experienced radiolo-
gist. During this evaluation, they can reference patient history and clinical information, resulting in
a text-based annotation. Current VLMs predominantly employ global contrastive learning, wherein
embeddings of entire images and reports from the same patient are brought closer together, while
those from different patients are pushed apart Bai et al. (2024); Hamamci et al. (2024). However,
this global contrast is inherently coarse-grained, overlooking local similarities or disparities between
anatomical regions and report sentences. Pulling certain anatomical regions closer to unrelated text
or vice versa may result in misleading alignment, making it challenging to align complex medical
images and reports within a unified representation space. As illustrated in Fig. 1 (c), the attention
map of the CLIP Radford et al. (2021), a vanilla coarse-grained VLM, is visualized when execut-
ing certain diagnostic tasks. The result demonstrates that such a global alignment mechanism can
readily induce the model to focus on the regions that are not relevant to the diagnosis, potentially
compromising its performance and interpretability.

In this paper, we propose a fine-grained vision-language model (fVLM) for automated CT image
interpretation. This model moves beyond the traditional global image-text contrastive learning
pipeline, enabling anatomy-level fine-grained alignment between CT scans and reports. Our moti-
vation arises from the fact that diagnostic reports typically document clinically significant abnormal
findings in various organs or body structures in the CT images per anatomy level, thus establishing
an intrinsic fine-grained vision-language correspondence between any text-described finding and its
image location. Specifically, we perform anatomical-level decomposition and matching for both
the images and reports, followed by fine-grained alignment of the matched visual embeddings and
the corresponding report embeddings of the same anatomy. This explicit matching alleviates the
misalignment issues associated with global contrastive learning and enhances the interpretability of
VLMs, as illustrated in Fig. 1 (d). Moreover, fine-grained alignment encounters significant chal-
lenges related to false negatives, primarily arising from the prevalence of anatomy-level healthy
samples and similar abnormalities across different diseases, which could result in ambiguous pair-
ings at the patient level. We introduce a simple yet effective method to identify and manage the mas-
sive false negatives from both normal and abnormal samples, and advocate for a shift in contrastive
learning from a broad patient-level pairing to a more nuanced disease-aware pairing approach.

Due to privacy concerns and the scarcity of quality medical data, the limited availability of vision-
language data has been one of the most significant bottlenecks for medical VLMs. To overcome this
limitation, we have curated the largest CT dataset to date, named MedVL-CT69K, which includes
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272,124 CT scans from 69,086 unique patients and their corresponding diagnostic reports. On this
extensive dataset, our fVLM has demonstrated outstanding zero-shot diagnostic capabilities, achiev-
ing an average AUC of 81.3% across 54 disease diagnosis tasks, surpassing the competing CLIP
model by 12.9% (see Fig. 1 (e)) and the supervised baseline by 8.0%. Moreover, on the publicly
available CT-RATE and Rad-ChestCT datasets, our fVLM outperforms the state-of-the-art approach
by 7.4% and 4.8% absolute AUC value gains, respectively. Beyond diagnostic tasks, the model also
exhibits remarkable proficiency in downstream report-generation tasks. Our key contributions are
summarized as follows:

1. We propose a scalable and annotation-free vision-language model, fVLM, for CT image in-
terpretation, which demonstrates strong scaling capabilities to meet a wide range of clinical
diagnostic needs.

2. We address the vision-language misalignment issues of VLMs by employing a fine-grained
anatomy-level contrastive learning framework.

3. We introduce a dual false negative reduction module to alleviate the adverse effects of false
negatives in both normal and abnormal samples.

4. Extensive experiments on a large-scale in-house dataset as well as two public benchmarks
demonstrate the advantages of fVLM over the state-of-the-art counterparts.

2 RELATED WORK

2.1 MEDICAL VISION-LANGUAGE PRE-TRAINING

Existing medical vision-language pre-training (Med-VLP) methods primarily focus on 2D images
depicting a single body part, notably chest X-rays (CXR). Most of them learn transferable represen-
tations by aligning the medical scans and corresponding reports with contrastive loss Zhang et al.
(2022); Boecking et al. (2022); Tiu et al. (2022); Huang et al. (2023); Zhou et al. (2023); Zhang
et al. (2023b); Lin et al. (2023); Liu et al. (2023b); Bannur et al. (2023); Cheng et al. (2023); Liu
et al. (2023a); Lin et al. (2023); Sun et al. (2024); Lu et al. (2024); Christensen et al. (2024). In
particular, MedKLIP Wu et al. (2023) and KAD Zhang et al. (2023c) utilize medical domain knowl-
edge to enhance the textual information extraction, thereby improving the contextual understanding
of radiology reports. Imitate Liu et al. (2023b) derives multi-level visual features from CXR im-
ages and separately aligns these features with descriptive and conclusive text in hierarchical medical
reports. Given the paucity of paired image-text data in the medical domain, several studies have
investigated data-efficient Med-VLP. Notably, MedCLIP Wang et al. (2022b) and PTUnifier Chen
et al. (2023) use unpaired CXR images and reports for multimodal pre-training. Pairaug Xie et al.
(2024) designs a pairwise augmentation approach that scales up the training data by manipulat-
ing existing image-report pairs or generating entirely new cases. Beyond inspecting a single body
part, recent studies have expanded the scope of VLP to encompass broader anatomical structures
within high-detail 3D CT images Cao et al. (2024); Hamamci et al. (2024); Bai et al. (2024); Lin
et al. (2024); Blankemeier et al. (2024), enabling more comprehensive diagnostic support in clinical
practice. Specifically, BIUD Cao et al. (2024) and CT-CLIP Hamamci et al. (2024) align chest CT
volumes and radiology reports. Merlin Blankemeier et al. (2024) focuses on abdomen scenarios and
incorporates structured electronic health record (EHR) data as additional supervision.

While existing Med-VLP studies have demonstrated decent performance, they predominantly em-
ploy a global alignment scheme that contrasts entire images and reports Zhang et al. (2022); Tiu
et al. (2022), overlooking the local similarities or disparities between image patches and report
pieces. This oversight can result in a misalignment problem Müller et al. (2022), constraining the
model to a coarse-grained understanding and limiting its capacity to capture fine-grained, clinically
relevant details.

2.2 FINE-GRAINED ALIGNMENT IN MED-VLP

To address the misalignment challenge, GLoRIA Huang et al. (2021), LoVT Müller et al. (2022)
and MGCA Wang et al. (2022a) integrate global contrastive learning with a local alignment tech-
nique. They leverage a cross-attention mechanism to implicitly learn fine-grained correspondences
between image regions and report sentences within each sample. However, while this implicit local
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Figure 2: Illustration of CT anatomy parsing (left) and diagnostic report decomposition (right).

alignment has demonstrated effectiveness for 2D CXR data, we argue that its applicability to 3D CT
volumes may be limited due to the dramatically higher data complexity. Specifically, compared to
2D CXR images that involve only a few anatomical anatomies Li et al. (2024b), 3D CT scans typ-
ically encompass hundreds of anatomical structures and provide detailed, volumetric views of the
human body Wasserthal et al. (2023). This increased imaging complexity enables a deeper analysis
of intricate medical conditions while concurrently yielding more extensive and nuanced radiology
reports that delineate wide-ranging anatomical features and clinical findings Udare et al. (2022);
Blankemeier et al. (2024). Given these distinctions, the endeavor to learn local alignments implic-
itly, which is already prone to be sensitive to hyper-parameters and difficult to train Müller et al.
(2022), becomes exceedingly intractable in CT scenarios.

3 METHOD

3.1 DATA PRE-PROCESSING

Anatomy parsing. We utilize Totalsegmentator to generate detailed anatomical structure masks for
104 regions within CT scans Wasserthal et al. (2023), encompassing organs, bones, muscles, and
vessels, as illustrated in Fig. 2. Subsequently, we group these 104 regions into 36 major anatomies
to align with the granularity of descriptions in clinical reports, as detailed in Appendix Tab. 6. This
grouping is necessary because CT diagnosis reports often lack precise localization of the lesion ar-
eas Li et al. (2024a). For instance, the lung is segmented into five distinct lobes in Totalsegmentator
Wasserthal et al. (2023), while a report might merely state “lung inflammation” without specifying
which lobe is affected. This ambiguity presents a significant challenge in precisely extracting corre-
sponding diagnostic descriptions for each lobe from the report. Furthermore, even when the lesion
locations are reported in some cases, the probability of anomalies occurring at a specific fine-grained
anatomical site (i.e., right middle lobe) is considerably low, leading to an overwhelming imbalance
between normal and abnormal samples for that anatomical structure. As a result, most mini-batches
may consist entirely of normal samples, which may skew the training process and impair the model’s
diagnostic capability. Overall, anatomical grouping entails a trade-off among analytical granularity,
image-text consistency, and data balance.

Report decomposition. As depicted in Fig. 2, we decompose raw CT diagnostic reports accord-
ing to the grouped anatomies. To reduce the complexity, we employ a divide-and-conquer strategy,
executing the decomposition process for the findings and impression sections of each report in-
dependently, followed by an integration of extracted anatomy-level descriptions. Our approach is
delineated in the following three steps. First, we design a prompt (see Appendix Fig. 6) and employ
the LLM, Qwen 2.5 Bai et al. (2023), to identify all anatomies mentioned in both sections. Notably,
we found that when one section lacks explicit references to some anatomies but instead mentions
their anatomical sub-structures or uses medical terminology as referents, the LLM may fail to recog-
nize these anatomies due to insufficient domain knowledge. To mitigate these potential omissions,
we employ a complementary string-matching strategy. For instance, the inclusion of terms such
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Figure 3: Framework of fVLM. (a) Visual encoding. We input a CT volume Ii into the image
encoder and extract corresponding visual tokens for each anatomy. We then append an anatomy-
specific query token to the extracted visual tokens of each anatomy. These query tokens are sub-
sequently updated through self-attention, constituting the visual representations of their respective
anatomies. N is the number of anatomies. (b) Textual encoding. We decompose the paired re-
port Ri into anatomy-wise descriptions and feed them separately into the text decoder to obtain
anatomy-specific textual representation. (c) Fine-grained VLP. We perform local alignment for each
individual anatomy across different CT scans. Lj denotes the contrastive loss computed for the j-th
anatomy.

as “jejunum”, “ileum”, or “duodenum” in the section will prompt the recognition of “small intes-
tine”. Second, we use the LLM to extract anatomy-specific descriptions from both sections, with
the prompt detailed in Appendix Fig. 7. Lastly, a simple post-processing is performed to integrate
the anatomy-level descriptions extracted from these two sections. Specifically, for each anatomy
mentioned in both sections, we concatenate the extracted findings content with its corresponding
impression description. In instances where the anatomy appears in only one section, we supplement
the absent component with a “null” string before concatenation. If one anatomy is not mentioned in
either section, we default its description to “{anatomy} shows no significant abnormalities.” based
on established clinical practice.

3.2 FINE-GRAINED CONTRASTIVE PRE-TRAINING

Our approach is grounded in the CLIP architecture Radford et al. (2021), which aligns visual and
linguistic modalities through contrastive learning of positive and negative pairs. Following Bai et al.
(2024); Cao et al. (2024); Lu et al. (2024), we adopt vision transformer (ViT) Dosovitskiy et al.
(2020) and BERT Devlin et al. (2018) as the image and text encoder, respectively. Given a CT
volume Ii ∈ R1×D×H×W , where D, H and W represent the inter-slice, spatial height and width
dimensions respectively, the vision encoder transforms the input into a compact visual embedding
Fi ∈ Rc×d×h×w. For each anatomy, we utilize its segmentation mask Mi,j ∈ {0, 1}D×H×W , where
0 represents the background and 1 denotes the foreground, to guide the construction of anatomy-
specific visual representations. Specifically, we begin by partitioning Mi,j into non-overlapping
patches of size D

d × H
h × W

w . Each patch spatially corresponds to a visual token in Fi. Then,
we locate the patches that contain foreground elements of Mi,j and extract their associated tokens
as the visual descriptors of the j-th anatomy. Next, we append a learnable anatomy-wise query
token to these extracted tokens and update it via a self-attention layer. Finally, the updated query
token is fed into a linear projection layer followed by L2-normalization to generate anatomy-wise
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visual representation Vi,j . Given the irregular sizes of CT images between patients, we employ
RandomCrop to facilitate the construction of mini-batches. It is important to note that anatomies
truncated by the cropping operation will be overlooked to maintain the integrity of anatomical visual
content during contrastive alignment. The absence of this visual information could include critical
diagnostic cues, potentially resulting in alignment failures.

Given the image’s associated report Ri, we decompose it into discrete descriptions Ri,j for each
anatomy, as detailed in Sec. 3.1. Then, we employ the text encoder to transform Ri,j into
anatomy-specific textual embeddings Ti,j . For a mini-batch of images {I1, · · · , IB} and reports
{Ri, · · · , RB}, we calculate the softmax-normalized image-to-text and text-to-image similarity as:

pi2t
i,j,k =

e⟨Vi,j ,Tk,j⟩/τ∑Nj

k′=1 e
⟨Vi,j ,Tk′,j⟩/τ

, pt2i
i,j,k =

e⟨Ti,j ,Vk,j⟩/τ∑Nj

k′=1 e
⟨Ti,j ,Vk′,j⟩/τ

(1)

where j denotes anatomy index, Nj is the number of structurally complete samples for the j-th
anatomy after RandomCrop, ⟨a, b⟩ refers to the cosine similarity between vectors a and b, τ is a
learnable temperature parameter. The total loss is computed as:

Litc =
1

2

 T∑
j=1

1

Nj

Nj∑
i=1

(
H(yi2t

i,j , p
i2t
i,j ) + H(yt2i

i,j , p
t2i
i,j )

) (2)

in which T is the number of anatomy categories, and H is cross-entropy loss. yi2t
i,j and yt2i

i,j denote
ground-truth one-hot similarity, where negative pairs have a probability of 0 and the positive pair
has a probability of 1.

3.3 REDUCING FALSE NEGATIVES IN IMAGE-REPORT PAIRS

The core of contrastive-based VLP lies in instance-level pairing, which brings together the vision
and language modalities of the same instance while distancing different instances. However, there
are often complex semantic relationships between different instances (patients) in medical contexts
Hamamci et al. (2024). For example, patients diagnosed as normal are semantically consistent and
abnormal samples with the same pathologies also exhibit high semantic similarities. These seman-
tically similar samples constitute false negatives when they co-occur within the same mini-batch
during contrastive pre-training, and inadvertently increasing their distances could degrade the diag-
nostic accuracy of medical VLMs. To address this issue, we propose a dual false negative reduction
(FNR) approach that goes beyond instance-level pairing and pursues a more comprehensive under-
standing of the semantic landscape in medical imaging.

When performing global contrastive learning between entire images and reports Hamamci et al.
(2024), a patient sample is diagnosed as normal only if all scanned anatomies are free of abnormal-
ities. Under this definition, the proportion of normal samples is notably low (e.g., 0.2% in MedVL-
CT69K). However, in our fine-grained framework, the number of normal cases increases substan-
tially (refer to Appendix Fig. 8) due to the more granular definition of normality at the anatomy level:
although a CT examination reveals abnormalities in specific anatomical structures, those unaffected
anatomies can still be considered normal based on established clinical protocols. This substantial
increase in normal samples leads to a proliferation of false negatives in our fine-grained contrastive
learning framework. Moreover, in contrast to the relatively fixed template-style descriptions for en-
tirely normal images Cao et al. (2024), we observe considerable variability in the descriptions for
normal cases of each anatomy. As a result, how to identify and cope with these massive normal sam-
ples poses a critical challenge in unlocking the full potential of our method. We address this issue by
leveraging the inherently hierarchical structure of CT reports Hamamci et al. (2024); Blankemeier
et al. (2024). Specifically, the findings section of a report outlines all observations derived from
the image, including the appearance of anatomical structures, any abnormalities such as masses or
lesions, and the conditions of various anatomical components. Meanwhile, the impression section
consolidates the abnormal observations into a concise summary, offering standard diagnostic con-
clusions and highlighting potential diseases. Based on this prior, we empirically annotate anatomies
not mentioned in the impression section as normal. We then correct yi2t

i,j,k and yt2i
i,j,k to 1 if the i-th

and k-th patients are both normal in terms of the j-th anatomy. Moreover, to stabilize model training,
we normalize yi2t

i,j and yi2t
i,j so that their sums equal 1.
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Figure 4: Illustration of the proposed dual false negative reduction approach. Vi,12 and Ti,12 repre-
sent pancreas-specific visual and textual features from the i-th sample, respectively. On one hand,
we identify those samples not mentioned in the impression section of reports as normal and cor-
rect the corresponding labels for these semantically consistent samples to 1 in the label matrix. On
the other hand, we further incorporate the estimated image-text similarities into the label matrix,
aiming to capture potential semantic relationships between different samples and thereby enhance
the model’s semantic comprehension. Notably, to mitigate error accumulation in this process, we
propose a co-teaching strategy, wherein two fVLMs are trained alternately and the image-text simi-
larities employed by one model are estimated from the other.

Furthermore, due to the narrowed abnormality space from the entire body to specific anatomical
regions, the abnormal samples in our fine-grained framework typically exhibit higher semantic sim-
ilarity compared to those in global contrastive learning methods. For instance, although two patients
exhibit significant overall differences, their pancreas may manifest the same pathology as described
as follows: R1,12: “The pancreas is swollen, with patchy fluid accumulation visible around it. Acute
pancreatitis is considered” and R2,12: “The pancreas is enlarged, and fluid density shadows are
visible around it. Acute pancreatitis with peripancreatic fluid collection is suggested.” Here, the sub-
script 12 denotes the index of the pancreas in all involved anatomies. In this scenario, pushing away
the visual features V1,12 from the textual features T2,12 is unreasonable and potentially compromises
the model’s capability in pancreatitis diagnosis. To accommodate this heightened inter-sample sim-
ilarity, we propose a bootstrapping strategy that utilizes the similarity scores pi2t and pt2i predicted
by the model itself to dynamically correct the target label during contrastive pre-training. However,
these predicted similarity scores may be biased. Further incorporating them into model training
could cause error accumulation and ultimately result in significant performance degradation. To
tackle this, we propose a co-teaching training framework that alternately trains two fVLMs, where
the image-text similarity scores predicted by one model are used to correct the contrastive learning
target of the other model:

yi2t = αyi2t + (1− α)pi2t′, yi2t′ = αyi2t′ + (1− α)pi2t

yt2i = αyt2i + (1− α)pt2i′, yt2i′ = αyt2i′ + (1− α)pt2i
(3)

Here α ∈ [0, 1] is a free parameter and we empirically set it to 0.5 in this work. pi2t′ and pt2i′

are predicted image-to-text and text-to-image similarities from another model. To reduce the risk of
concurrent errors arising from both models for the same image-text pair, we enhance their diversity
by employing different model initialization, data iteration sequences and augmentations. Fig. 4
exemplifies the calculation of the final labels.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. In this study, we curate MedVL-CT69K, a large-scale CT dataset comprising 272,124
CT scans from 69,086 unique patients and their associated reports. Each patient consists of a non-
contrast CT scan and contrast-enhanced CT scans, which include one or more of the following
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Table 1: Zero-shot performance comparison on the MedVL-CT69K dataset. The best and second-
best zero-shot results are highlighted in bold and underlined.

Method AUC ACC Spec Sens F1 Prec

Supervised
Baseline 73.3 69.1 76.2 62.0 79.4 17.6

CT-VocabFine 76.7 72.2 76.1 68.2 81.6 20.3
CT-LiPro 76.5 70.9 76.8 65.1 81.3 19.3

Zero-shot

CLIP Radford et al. (2021) 68.4 66.7 68.0 65.5 76.0 18.0
LOVT Müller et al. (2022) 69.4 65.4 60.1 70.8 70.9 15.2
MGCA Wang et al. (2022a) 70.1 66.4 64.5 68.3 73.9 16.0

Imitate Liu et al. (2023b) 70.6 67.9 66.6 69.2 75.4 17.9
ASG Li et al. (2024a) 70.1 67.7 67.4 68.0 75.9 18.8

CT-GLIP Lin et al. (2024) 69.3 66.9 63.1 70.6 74.2 18.1
BIUD Cao et al. (2024) 71.4 69.2 69.0 69.3 76.6 18.7

Merlin Blankemeier et al. (2024) 71.9 69.5 69.7 69.2 77.0 18.1
Ours 81.3 76.2 76.5 75.8 82.2 21.1

phases: arterial, venous, and delayed. We randomly split the dataset into training, validation and test
sets of 64,476, 1,151, and 3,459 patients, respectively. The validation and test sets are annotated with
36 and 54 diseases by expert radiologists. A detailed distribution of these diseases is provided in
Appendix Tab. 9 and Tab. 10. Additionally, we conduct experiments on two benchmarks, CT-RATE
Hamamci et al. (2024) and Rad-ChestCT Draelos et al. (2021). Following Hamamci et al. (2024),
we train fVLM on the training set of CT-RATE and use its test set and the whole Rad-ChestCT
dataset for internal and external evaluations, respectively. To the best of our knowledge, CT-RATE
is the only publicly available CT dataset that includes complete radiology reports to date. The details
regarding these two datasets can be found in Hamamci et al. (2024) and Draelos et al. (2021).

Evaluation metrics. We compare the performance of different pre-training methods on zero-shot
abnormality detection and downstream report-generation tasks. For the zero-shot experiments, fol-
lowing Hamamci et al. (2024), we adopt the area under the ROC curve (AUC), balanced accuracy
(ACC), specificity (Spec), sensibility (Spec), precision (Prec) and weighted F1-score as the metrics.
For the report-generation task, we employ both diagnostic metrics and natural language genera-
tion metrics for model evaluation. To facilitate the calculation of diagnostic metrics, we develop a
high-performing text classifier to identify abnormalities in generated radiology reports. A detailed
exposition of the classifier’s training and evaluation is provided in Appendix A.1.

Implementation details are available in Appendix A.2.

4.2 ZERO-SHOT ABNORMALITY DETECTION

Through the extensive MedVL-CT69K dataset, we compare the zero-shot abnormality detection
performance of different methods on 54 diseases across 15 anatomies. The results are presented in
Tab. 1. It can be seen that our method outperforms all counterparts by a large margin. Specifically, it
suppresses CLIP Radford et al. (2021) by 12.9 points on AUC and 9.5 points on ACC. Furthermore,
compared to the second-best competitor, Merlin Blankemeier et al. (2024), our method achieves
absolute gains of 9.4 points on AUC and 6.7 points on ACC. Notably, we observe that LOVT Müller
et al. (2022) and MGCA Wang et al. (2022a) exhibit marginal performance improvements over
CLIP, which underscores the significant limitations of implicit local alignment methodologies in CT
imaging scenarios. We enumerate the detection performance of our model for each abnormality in
Appendix Tab. 11.

Tab. 3 exhibits the performance comparison with the current state-of-the-art method (i.e., CT-CLIP)
on the CT-RATE and Rad-ChestCT benchmarks. In the zero-shot setting, our method demonstrates
significant improvements over CT-CLIP, achieving absolute AUC gains of 7.4% and 4.8% in the
internal and external evaluations, respectively. Notably, the zero-shot performance of our model
even outperforms the outcomes of CT-VocabFine and CT-LiPro that are both derived from CT-CLIP
through supervised fine-tuning. To be specific, in the internal test set, our approach exceeds CT-
VocabFine and CT-LiPro by 2.3 and 3.7 points on F1-score. In the external test set, it surpasses
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Table 2: Performance comparison on the downstream report-generation task using the MedVL-
CT69K dataset. ‘IN’ means initialization with ImageNet supervised weights, while all other meth-
ods are trained with our dataset. ‘SP’ denotes the supervised baseline model.

Encoder Init ACC GREEN BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Frozen

IN 51.3 34.0 47.4 32.2 25.5 21.2 28.1 44.3 10.6
SP 55.8 25.9 48.3 26.3 18.0 12.8 30.8 40.6 6.6

MAE 50.7 21.6 49.0 27.1 18.6 13.1 30.5 41.6 6.1
CLIP 57.3 33.4 49.7 28.8 20.7 15.5 31.0 42.2 9.6
BIUD 58.4 33.7 47.1 30.4 23.4 18.9 29.1 44.2 13.9
Merlin 58.8 34.2 49.5 31.4 23.9 19.0 30.0 43.8 14.3
Ours 61.5 37.2 50.7 32.2 24.5 19.6 31.3 45.1 14.9

Fine-
tuning

IN 58.0 33.4 49.4 29.8 21.9 16.9 30.4 43.6 10.0
SP 60.6 35.5 49.9 30.7 22.9 17.9 30.6 43.4 11.7

MAE 54.4 29.4 49.0 27.1 18.6 15.1 30.5 42.5 8.8
CLIP 62.0 37.6 49.9 31.9 24.3 19.5 30.7 44.7 14.3
BIUD 62.6 38.8 50.2 31.7 24.0 19.0 30.9 44.7 13.8
Merlin 63.0 39.2 50.7 33.3 25.8 20.9 31.1 46.0 17.2
Ours 64.5 40.2 52.2 34.5 26.8 21.9 31.6 46.4 17.1

Table 3: Performance comparison on the CT-RATE and Rad-ChestCT benchmarks. Here, CT-CLIP
refers to the CLIP model trained on the CT-RATE dataset, as named in the original paper. The best
and second-best zero-shot results are highlighted in bold and underlined.

Dataset Metric Supervised Zero-shot
Baseline CT-VocabFine CT-LiPro CT-CLIP BIUD Merlin Ours

Internal
validation

(CT-RATE)

AUC 60.3 75.0 75.1 70.4 71.3 72.8 77.8
ACC 58.1 69.2 67.6 65.1 68.1 67.2 71.8
F1 63.2 72.8 71.4 69.1 71.6 70.9 75.1

Prec 24.0 34.2 33.1 30.6 33.8 33.7 37.9
Spec - - - - 68.6 66.8 71.7
Sens - - - - 67.3 70.1 72.8

External
validation

(Rad-ChestCT)

AUC 54.1 64.9 64.7 63.2 62.9 64.4 68.0
ACC 53.9 62.2 62.5 59.9 60.6 61.9 64.7
F1 58.7 66.5 66.8 64.8 65.2 66.3 68.8

Prec 28.7 35.9 35.3 33.9 33.7 34.8 37.4
Spec - - - - 60.2 61.7 64.6
Sens - - - - 59.6 61.0 64.6

these two models by 2.3 and 2.0 points on F1-score. We provide the decomposed anatomy-wise de-
scriptions of the CT-RATE dataset in the supplementary material, which will be released to catalyze
the advancement of fine-grained CT imaging analysis within the research community.

To further assess the clinical utility of our method, we conduct a reader study to compare our method
with three board-certified radiologists. Please refer to Appendix A.3 for detailed results and discus-
sions.

4.3 RADIOLOGY REPORT GENERATION

To assess the transfer abilities of VLMs, we conduct experiments on the downstream task of ra-
diology report generation using the MedVL-CT69K dataset. For these experiments, we integrate
each pre-trained image encoder with a BERT-base text decoder for whole report generation. The
generation process is optimized using the language modeling loss Devlin et al. (2018).

Tab. 2 presents the experimental results in both frozen and fine-tuning protocols, where the frozen
protocol keeps the pre-trained image encoder fixed, while the fine-tuning protocol allows the en-
tire model to be updated during training. It demonstrates that vision-language pre-trained models
outperform those with purely visual pre-training, underscoring the benefits of aligning visual and
textual features into a unified representation space for the report generation task. Notably, in the
frozen regime, our method significantly outperforms CLIP by 4.2 points on ACC and 3.8 points on
GREEN Ostmeier et al. (2024). While the performance gap attenuates in the fine-tuning protocol,
our method still surpasses CLIP by a clear margin, achieving a 2.5-point improvement on ACC and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Effect of our proposed modules. CLIP
serves as the baseline.

FGA FNCN CoT AUC ACC
70.9 69.3

✓ 76.0 74.0
✓ ✓ 78.7 75.3
✓ ✓ 77.5 74.6
✓ ✓ ✓ 79.8 75.9

Figure 5: Scaling laws of CLIP and our method.

and a 2.6-point improvement on GREEN. Although the results have demonstrated the superiority of
our approach, we argue that directly employing the fine-grained alignment model for whole report
generation may not unleash its full power due to the granularity mismatch issue. We will explore a
potentially more effective strategy of generating anatomy-wise diagnostic reports in our future work.

4.4 ANALYSIS OF OUR FRAMEWORK

Ablation study. We investigate the impact of three modules on the performance of fVLM on the val-
idation set of MedVL-CT69K, including fine-grained alignment (FGA), false negatives correction
between normals (FNCN) and co-teaching strategy (CoT). As shown in Tab. 4, each enhancement
component contributes to the improvement of the model’s performance. Notably, the FGA and
FNCN contribute the largest performance gains. The combination of them leads to an overall im-
provement of 7.8 points on AUC and 6.0 points on ACC. Furthermore, in Appendix A.4, we demon-
strate that applying CoT to correct contrastive learning labels yields superior results compared to
using either the training model or the momentum model.

Scaling law. In Fig. 5, we compute the data scaling law curves to assess how the performance
of CLIP and our method improves as the volume of training data increases. It can be seen that
our approach consistently outperforms CLIP across multiple data scales, exhibiting superior data
efficiency.

Visualization analysis. The visualization results and discussions can be found in Appendix A.5

5 CONCLUSION

In this paper, we have presented fVLM, a fine-grained vision-language pre-training method for CT
data. Our proposed methodology explicitly aligns discrete anatomical structures in CT scans with
their corresponding descriptions in diagnostic reports, thereby addressing the misalignment issue of
CLIP and its existing variants that contrast entire images and reports. Extensive experiments, includ-
ing quantitative abnormality detection and report generation tasks as well as qualitative visualization
analysis, demonstrate the superiority of fVLM.

Limitations and future work. The implementation of our fine-grained alignment methodology
necessitates localizing anatomical structures in CT images and decomposing diagnostic reports into
anatomy-wise sub-descriptions. This data processing step entails additional resource consumption
and time commitment. For future work, we plan to investigate anatomy-wise report generation to
fully unleash the potential of fVLM on this application.
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A APPENDIX

Figure 6: Prompt used to judge if an anatomy is mentioned in the “Findings” or “Impression” section
of a clinical report.

Figure 7: Prompt used to extract anatomy-specific description from the “Findings” or “Impression”
section of a clinical report. Notably, we do not obtain the descriptions for all anatomies in a single
query; rather, we strategically query the LLM for each anatomy individually. This approach signif-
icantly simplifies the complexity of description extraction and greatly enhances the quality of the
extracted descriptions.

A.1 DETAILS ABOUT THE TEXT CLASSIFIER

We utilize the annotated validation and test sets of MedVL-CT69K to develop a text classifier that
identifies 54 abnormalities in the generated radiology reports. To achieve this, we first merge these
two sets and then re-split them into new training and validation sets using a 2:1 ratio. Afterwards,
we train the classifier, which consists of a BERT-base encoder and a classification head, using the
reports and corresponding disease labels form the training set. A binary cross-entropy loss is used to
supervise the model training. Tab. 7 shows the precision, recall, and F1 scores of the text classifier
across 54 abnormalities on the validation set. Notably, the model achieves an impressive average F1
score of 0.95. This high performance substantiates its reliability as a tool for assessing the diagnostic
accuracy of report generation models.

A.2 IMPLEMENTATION DETAILS

For the abdominal MedVL-CT69K dataset, we reformat all CT scans so that the first axis points from
inferior to superior, the second from posterior to anterior, and the third from left to right. We then
resample the in-plane axial images to 1mm resolution and the out-of-plane slice thickness to 5mm
spacing using trilinear interpolation. We map the Hounsfield unit range -300:400 to the range 0:1,
clipping values that fall outside of this range. We use ViT-base Dosovitskiy et al. (2020), initialized
with MAE ImageNet-1K pre-trained weights He et al. (2022), as the image encoder. The patch size
is set to 16, 16, 32 along the axial, coronal, and sagittal axes, respectively. A pre-trained BERT-base
Devlin et al. (2018) model is used as the text encoder. We train fVLM with an Adam optimizer. The
learning rate linearly increases to 1e-4 in the first epoch and then decreases to 1e-6 with a cosine
decay scheduler. The model undergoes training for 20 epochs on 4 A100 GPUs, with a batch size
of 48. During model training, we apply RandomCrop and RandomFlip on the fly. The cropping
size is set to 96, 256, and 384 along the axial, coronal, and sagittal axes, respectively. Notably,
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Figure 8: Percentage of normal samples for each anatomy.

Figure 9: Performance comparison between our method and three radiologists. “n pos” denotes the
number of positive samples of each abnormality.

we observe that if a completely random cropping strategy is used, larger anatomies are more likely
to be incomplete after cropping and consequently excluded from the loss calculation. This would
introduce a data bias and potentially compromise the model’s performance. To address this issue,
we employ a uniform sampling strategy to randomly select an anatomy that must be completely
included in the cropped image region. For the chest CT-RATE dataset, we apply the same image
pre-processing as CT-CLIP Hamamci et al. (2024) to ensure a fair comparison with the competitors.
In our co-teaching approach, we iteratively train two fVLMs, alternating between them after each
iteration. We initiate a burn-in stage of 5 epochs to allow both models to establish a baseline level
of performance. After that, we leverage each model to generate soft labels for its counterpart.

A.3 READER STUDY

To further validate our method’s efficacy, we conduct a reader study to compare our approach with
three board-certified radiologists. For this experiment, we randomly select 100 patients from the
test set of MedVL-CT69K. Fig. 9 shows the results. Although our method has demonstrated sig-
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Table 5: Performance of fVLM when using dif-
ferent models to correct contrastive labels.

Baseline Model self Momentum CoT
AUC 78.7 73.3 78.8 79.8
ACC 75.3 71.4 75.5 75.9

Figure 10: Difference between training model
and label correction model.

Figure 11: Visual activation maps of our model in diagnosing multiple diseases.

nificant improvements over previous approaches, there remains a noticeable performance gap com-
pared to professional radiologists overall. However, for some diseases such as liver cirrhosis and
splenomegaly, our method achieves comparable diagnostic accuracy to radiologists.

A.4 FURTHER ABLATION ANALYSIS

In Tab. 5, we compare the performance of fVLM when employing different models to correct con-
trastive learning labels during pre-training. It can be seen that utilizing the training model itself for
label correction leads to a significant performance degradation, which could be attributed to the error
accumulation issue. Moreover, the proposed CoT strategy yields greater performance gains com-
pared to the momentum model. To explore this, we measure the difference between training model
and label correction model by calculating the Euclidean distance of their parameters, as illustrated
in Fig. 10. It can be observed that the momentum model, updated through exponential moving aver-
age, exhibit minimal discrepancy with the training model. This suggests they may produce similar
predictions, potentially leading to error accumulation in the label correction process. In contrast, the
iteratively trained models in our proposed CoT framework exhibit considerable distinctness, leading
to diverse predictions and reducing the risk of error accumulation.

A.5 VISUALIZATION

We qualitatively assess the alignment efficacy of our proposed method through visualization in
Fig. 11. The heatmaps illustrates the correlation between anatomy-specific visual tokens and the
textual embedding of abnormality. We observe high activation in specific affected areas for both
localized lesions (e.g., bladder stone) and diffuse abnormalities (e.g., fatty liver). The results demon-
strate the model’s capacity to precisely localize pathological changes across a spectrum of condi-
tions. Fig. 12 illustrates the distribution of visual embedding for a diverse array of abnormalities.
In contrast to CLIP, our method exhibits more compact embedding clusters among positive cases of
each abnormality. These findings demonstrate the improved semantic understanding and diagnostic
interpretability of our fVLM.
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Figure 12: T-SNE visualization of visual embeddings for various abnormalities. Each feature point
represents a sample of the corresponding anatomy.
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Table 6: Anatomy grouping.

Anatomical System Anatomy Grouped Anatomy

Organs

Face Face
Brain Brain

Esophagus Esophagus
Trachea Trachea

Lung upper lobe left

Lung
Lung lower lobe left

Lung upper lobe right
Lung middle lobe right
Lung lower lobe right

Heart myocardium

Heart
Heart atrium left

Heart atrium right
Heart ventricle left

Heart ventricle right
Adrenal gland right Adrenal glandAdrenal gland left

Kidney right KidneyKidney left
Stomach Stomach

Liver Liver
Gall bladder Gall bladder

Pancreas Pancreas
Spleen Spleen
Colon Colon

Small bowel Small bowelDuodenum
Urinary bladder Urinary bladder

Vessels

Aorta Aorta
Inferior vena cava Inferior vena cava

Portal vein and splenic vein Portal vein and splenic vein
Pulmonary artery Pulmonary artery

Iliac artery left Iliac arteryIliac artery right
Iliac vena left Iliac venaIliac vena right

Bones

Vertebrae L1-L4 Lumbar vertebrae
Vertebrae T1-T12 Thoracic vertebrae
Vertebrae C1-C7 Cervical vertebrae

Rib left 1-12 RibRib right 1-12
Humerus left HumerusHumerus right
Scapula left ScapulaScapula right

Clavicula left ClaviculaClavicula right
Femur left FemurFemur right

Hip left HipHip right
Sacrum Sacrum

Muscles

Gluteus maximus left

Gluteus

Gluteus maximus right
Gluteus medius left

Gluteus medius right
Gluteus minimus left

Gluteus minimus right
Iliopsoas left IliopsoasIliopsoas right

Autochthon left AutochthonAutochthon right
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Table 7: Performance of text classifier.

Anatomical organ Abnormality Precision Recall F1-score

Adrenal gland Thickening 1.00 0.97 0.99
Nodule 1.00 0.96 0.98

Bladder Diverticulum 0.97 0.94 0.96
Stones 1.00 1.00 1.00

Colon

Gas 0.84 0.79 0.81
Effusion 0.81 0.71 0.75

Obstruction 0.86 1.00 0.92
Diverticulum 0.97 1.00 0.98

Colorectal Cancer 0.97 0.95 0.96
Rectal Cancer 1.00 0.95 0.97
Appendicitis 1.00 1.00 1.00

Appendicolith 0.89 0.96 0.92

Esophagus Hiatal Hernia 0.74 1.00 0.85
Varicose Veins 1.00 1.00 1.00

Gallbladder
Cholecystitis 0.99 1.00 0.99

Gallstone 1.00 1.00 1.00
Adenomyomatosis 0.92 0.92 0.92

Heart Cardiomegaly 1.00 0.95 0.97
Pericardial Effusion 1.00 1.00 1.00

Kidney

Atrophy 0.97 0.88 0.92
Cyst 0.97 0.96 0.97

Hydronephrosis 0.88 1.00 0.94
Calculi 0.99 0.98 0.99

Liver

Steatosis 0.99 1.00 0.99
Glisson’s Capsule Effusion 0.85 0.89 0.87

Metastase 0.90 0.95 0.92
Intrahepatic Bile Duct Dilatation 0.96 0.97 0.97

Cancer 1.00 1.00 1.00
Cyst 0.99 0.99 0.99

Abscess 0.91 0.95 0.93
Cirrhosis 1.00 1.00 1.00

Lung

Atelectasis 0.96 0.98 0.97
Bronchiectasis 0.97 0.9 0.93
Emphysema 1.00 0.96 0.98
Pneumonia 0.98 0.96 0.97

Pleural effusion 0.98 1.00 0.99

Pancreas

Pancreatic cancer 1.00 0.89 0.94
Atrophy 1.00 0.82 0.90

Pancreatitis 1.00 1.00 1.00
Pancreatic duct dilatation 0.98 0.91 0.95

Steatosis 0.97 0.87 0.92

Portal vein Hypertension 1.00 0.91 0.95
Thrombosis 0.74 0.74 0.74

Small Intestine

Gas 0.89 0.93 0.91
Effusion 0.89 0.92 0.91

Obstruction 0.93 0.93 0.93
Diverticulum 0.97 1.00 0.98

Intussusception 0.93 0.90 0.92

Spleen
Hemangioma 1.00 0.97 0.87

Infarction 0.95 0.97 0.96
Splenomegaly 1.00 0.99 1.00

Stomach Gastric wall thickening 0.96 0.96 0.96
Stomach cancer 1.00 0.97 0.99

Sacrum Osteitis 0.97 1.00 0.99
Average 0.95 0.95 0.95
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Table 8: The distribution of 54 tested abnormalities in the train set. We employ the well-developed
text classifier to automatically extract abnormality labels from radiology reports for each sample.

Anatomy Anatomy count Abnormality Abnormality count

Adrenal gland 63915 Thickening 3037
Nodule 3687

Bladder 62182 Diverticulum 283
Stones 109

Colon 62054

Gas 2173
Effusion 975

Obstruction 436
Diverticulum 1623

Colorectal Cancer 817
Rectal Cancer 858
Appendicitis 1623

Appendicolith 1119

Esophagus 2636 Hiatal Hernia 184
Varicose Veins 609

Gallbladder 63407
Cholecystitis 3935

Gallstone 5500
Adenomyomatosis 1246

Heart 3701 Cardiomegaly 316
Pericardial Effusion 1067

Kidney 63618

Atrophy 921
Cyst 27019

Hydronephrosis 1140
Calculi 5356

Liver 63690

Steatosis 4872
Glisson’s Capsule Effusion 915

Metastase 2403
Intrahepatic Bile Duct Dilatation 6093

Cancer 888
Cyst 21710

Abscess 239
Cirrhosis 1772

Lung 6598

Atelectasis 1988
Bronchiectasis 781
Emphysema 190
Pneumonia 1463

Pleural effusion 4665

Pancreas 63627

Pancreatic cancer 933
Atrophy 942

Pancreatitis 1035
Pancreatic duct dilatation 2697

Steatosis 846

Portal vein 63855 Hypertension 1149
Thrombosis 760

Small Intestine 62419

Gas 2906
Effusion 2326

Obstruction 1174
Diverticulum 2352

Intussusception 168

Spleen 63749
Hemangioma 718

Infarction 374
Splenomegaly 1732

Stomach 63682 Gastric wall thickening 2871
Stomach cancer 1064

Sacrum 62055 Osteiti 246
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Table 9: The distribution of 36 annotated abnormalities in the validation set.

Anatomy Anatomy count Abnormality Abnormality count

Adrenal gland 1149 Thickening 62
Nodule 79

Colon 1127

Gas 29
Effusion 13

Obstruction 5
Colorectal Cancer 10

Rectal Cancer 16
Appendicitis 5

Gallbladder 1054
Cholecystitis 73

Gallstone 127
Adenomyomatosis 35

Kidney 1148

Atrophy 16
Cyst 492

Hydronephrosis 14
Calculi 104

Liver 1146

Steatosis 97
Glisson’s Capsule Effusion 20

Metastase 40
Intrahepatic Bile Duct Dilatation 132

Cancer 10
Cyst 381

Cirrhosis 30

Pancreas 1149

Pancreatic cancer 5
Atrophy 16

Pancreatitis 26
Pancreatic duct dilatation 49

Portal vein 1150 Hypertension 18
Thrombosis 10

Small Intestine 1131
Gas 34

Effusion 25
Obstruction 8

Spleen 1140
Hemangioma 12

Infarction 8
Splenomegaly 35

Stomach 1150 Gastric wall thickening 61
Stomach cancer 20
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Table 10: The distribution of 54 annotated abnormalities in the test set.

Anatomy Anatomy count Abnormality Abnormality count

Adrenal gland 3418 Thickening 96
Nodule 87

Bladder 3243 Diverticulum 21
Stones 28

Colon 3213

Gas 129
Effusion 50

Obstruction 17
Diverticulum 104

Colorectal Cancer 96
Rectal Cancer 73
Appendicitis 19

Appendicolith 74

Esophagus 105 Hiatal Hernia 10
Varicose Veins 78

Gallbladder 3134
Cholecystitis 246

Gallstone 355
Adenomyomatosis 60

Heart 234 Cardiomegaly 20
Pericardial Effusion 77

Kidney 3313

Atrophy 37
Cyst 1646

Hydronephrosis 87
Calculi 408

Liver 3281

Steatosis 263
Glisson’s Capsule Effusion 68

Metastase 122
Intrahepatic Bile Duct Dilatation 264

Cancer 61
Cyst 1264

Abscess 12
Cirrhosis 188

Lung 126

Atelectasis 70
Bronchiectasis 18
Emphysema 10
Pneumonia 72

Pleural effusion 94

Pancreas 3328

Pancreatic cancer 29
Atrophy 37

Pancreatitis 77
Pancreatic duct dilatation 94

Steatosis 45

Portal vein 3410 Hypertension 54
Thrombosis 55

Small Intestine 3248

Gas 188
Effusion 142

Obstruction 61
Diverticulum 113

Intussusception 10

Spleen 3352
Hemangioma 47

Infarction 22
Splenomegaly 353

Stomach 3373 Gastric wall thickening 206
Stomach cancer 117

Sacrum 3242 Osteiti 17
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Table 11: Detailed zero-shot performance of our method on each abnormality.

Anatomy Abnormality AUC ACC Spec Sens

Adrenal gland Thickening 64.6 62.1 64.8 59.4
Nodule 66.8 64.8 63.0 66.7

Bladder Diverticulum 85.9 77.8 74.6 81.0
Stones 82.0 75.7 80.0 71.4

Colon

Gas Accumulation 88.7 80.8 78.6 82.9
Effusion 87.6 80.4 78.7 82.0

Obstruction 99.5 98.6 97.2 100
Diverticulum 71.7 68.7 65.3 72.1

Colorectal Cancer 72.6 64.6 65.6 63.5
Rectal Cancer 85.4 77.0 82.8 71.2
Appendicitis 74.9 71.9 70.2 73.7

Appendicolith 65.7 63.1 62.6 63.5

Esophagus Hiatal Hernia 97.7 92.6 95.1 90
Varicose Veins 98.8 97.9 97.1 98.7

Gallbladder
Cholecystitis 67.3 62.7 61.1 64.2

Gallstone 64.6 61.8 58.3 65.4
Adenomyomatosis 62.6 61.0 57.0 65.0

Heart Cardiomegaly 95.1 88.7 87.3 90.0
Pericardial Effusion 76.5 74.4 64.4 84.4

Kidney

Atrophy 96.0 91.5 91.1 91.9
Cyst 68.6 63.1 64.3 61.8

Hydronephrosis 75.7 69.5 78.1 60.9
Calculi 57.9 56.6 56.4 56.9

Liver

Steatosis 93.3 85.1 84.6 85.6
Glisson’s Capsule Effusion 86.5 78.9 82.7 75.0

Metastase 78.8 71.6 70.3 73.0
Intrahepatic Bile Duct Dilatation 76.8 70.8 68.2 73.5

Cancer 84.9 79.1 77.8 80.3
Cyst 62.9 59.4 61.4 57.3

Abscess 81.8 79.5 75.7 83.3
Cirrhosis 94.7 88.5 87.5 89.4

Lung

Atelectasis 94.8 89.4 89.4 89.3
Bronchiectasis 81.6 74.1 76.0 72.2
Emphysema 75.0 69.3 68.6 70.0
Pneumonia 72.8 69.0 79.8 58.2

Pleural Effusion 86.7 81.3 80.5 82.0

Pancreas

Pancreatic Cancer 87.0 79.7 80.2 79.3
Atrophy 86.4 77.3 76.3 78.4

Pancreatitis 91.0 87.6 93.3 81.8
Pancreatic Duct Dilatation 77.2 70.9 75.8 66.0

Steatosis 84.9 75.7 78.1 73.3

Portal vein Hypertension 96.8 92.2 95.5 88.9
Thrombosis 96.6 91.8 90.8 92.7

Small Intestine

Gas Accumulation 84.1 77.2 84.7 69.7
Effusion 81.5 74.2 72.4 76.1

Obstruction 95.2 90.5 92.6 88.5
Diverticulum 73.0 67.1 65.1 69.0

Intussusception 76.5 72.4 78.0 66.7

Spleen
Hemangioma 63.8 60.6 59.5 61.7

Infarction 89.7 86.2 90.6 81.8
Splenomegaly 92.4 84.8 83.8 85.8

Stomach Gastric Wall Thickening 69.6 65.7 62.5 68.9
Gastric Cancer 78.7 72.0 73.1 70.9

Sacrum Osteiti 87.5 85.8 83.3 88.2
Average 81.3 76.2 76.5 75.8
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