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Abstract

We offer a rescoring method for grammatical er-001
ror correction which is based on two-stage pro-002
cedure: the first stage model extracts local edits003
and the second classiifies them as correct or004
false. We show how to use an encoder-decoder005
or sequence labeling approach as the first stage006
of our model. We achieve state-of-the-art qual-007
ity on BEA 2019 English dataset even with a008
weak BERT-GEC basic model. When using a009
state-of-the-art GECToR edit generator and the010
combined scorer, our model beats GECToR on011
BEA 2019 by 2−3%. Our model also beats pre-012
vious state-of-the-art on Russian, despite using013
smaller models and less data than the previous014
approaches.015

1 Introduction016

Grammatical error correction (GEC) is a task of017

converting the source to text to its clean version018

with no orthographic, punctuation, lexical or other019

errors. As any sequence-to-sequence task, it is020

often solved using machine translation methods021

mostly using Transformer architecture(Vaswani022

et al., 2017) or its variants. One of the few success-023

ful exceptions is the GECToR model (Omelianchuk024

et al., 2020), which reduces GEC to sequence la-025

beling, however, it exists only for English. In026

sequence-to-sequence models decoding is usually027

done using beam search, which has two serious028

drawbacks. The first is exposure bias: the model029

was never exposed to its errors in training time030

which complicates the recovery from errors dur-031

ing decoding. The second is left-to-right nature of032

decoding: the model can make a wrong decision033

not observing the future context. This does not034

hold for a reranker model, since it explores entire035

corrected sequences and thus may utilize richer036

context. Reranking might also be helpful when the037

correct edit is not ranked as topmost one, but still038

appears it the n-top list of hypotheses. Due to these039

reasons, reranking was heavily used in machine040

translation both in statistical (Och et al., 2004) and 041

neural (Yee et al., 2019) era. 042

In contrast to machine translation, sequence edit- 043

ing in GEC can be decomposed to elementary edits 044

such as modifying a single word or a consecutive 045

group of words. In this paper we propose to score 046

elementary edits produced by the basic model and 047

classify them as positive or negative on the second 048

stage of the pipeline. Than the calculated probabil- 049

ities can be either used directly or combined with 050

the scores from the first stage. Since the additional 051

ranking stage utilizes not only the topmost hypoth- 052

esis but the k-best list, it may help to recover from 053

errors made by the basic model and increase both 054

precision and recall. 055

We show that even the scoring model alone 056

achieves state-of-the-art performance on BEA2019 057

dataset for two variants of the first stage model. Its 058

combination with GECToR model outperforms the 059

models of same size by about 2 points F0.5 score. 060

We also beat current SOTA on Russian with two 061

variants of the basic edit generator. 062

2 Edit generation 063

As proposed in Alikaniotis and Raheja (2019), 064

probably the simplest approach to grammatical er- 065

ror correction is to generate possible edits using 066

a rule-based model and then extract those that in- 067

crease the sentence probability by a sufficient mar- 068

gin. The straightforward way to estimate sentence 069

probability is to use a Transformer language model, 070

such as GPT(Radford et al., 2019) or BERT (Devlin 071

et al., 2019). This approach requires no training 072

data, only a development set for tuning the hyper- 073

parameters. As a reverse side of its simplicity, this 074

algorithm has two main limitations: 075

• Recall is limited to errors that can be specified 076

by the rules. 077

• The probability estimators are imperfect, espe- 078

cially when the edit changes sequence length. 079
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Therefore the main idea of our paper is to replace080

the scorer by a more powerful trainable model. An-081

other key detail is that we apply the scorer not to082

the full corrections, but to the elementary edits.083

Namely, given the erroneous sentence *The boy084

fall on floor and its correction The boy fell on the085

floor, our model should return True for sentences086

The boy fell on floor and The boy fall on the floor087

and False for other elementary corrections, for ex-088

ample, *The boy falls on the floor.089

So, our model includes three main stages, de-090

scribed subsequently:091

1. Extracting elementary edits from the basic092

model.093

2. Classifying these edits as positive or negative.094

3. Applying the positively classified edits to the095

source sentence.096

The first part in described in this section and the097

remaining two in Section 3. A schematic descrip-098

tion of our algorithm is given in Figure 1099

2.1 Rule-based edit generator100

We start with describing edits extraction based on101

linguistically motivated rule-based model. It may102

be considered as our reimplementation of Alikanio-103

tis and Raheja (2019). Our edit generation module104

takes as input the dependency tree of a sentence105

and applies rule-based edits corresponding to the106

most frequent errors, such as missing or incorrect107

determiners, commas and prepositions or wrong108

choice of word form. The exact list of applied rules109

is given in Appendix A.1.110

These operations produce a fairly large num-111

ber of possible corrections. To reduce com-112

putational burden we apply two-stage filtering.113

First, for every hypothesis u we calculate the114

gain log p(uπ+1|w1...wπ)− log p(wπ+1|w1...wπ),115

where π is the length of longest common prefix of116

u and source sequence w1. We choose best Kdel117

deletions, Kins insertions and Ksub replacement118

edits according to this score. Then for the selected119

hypotheses we calculate their full log-probability120

and pick K best variants provided their score ex-121

ceeds p(w)− θ2.122

2.2 Sequence-to-sequence edit generator123

To generate edits using a sequence-to-sequence ba-124

sic model we run standard beam search, align all125

1This scoring is performed in one pass of left-to-right LM.
2We set Kdel = 10,Kins = 10,Ksub = 30,K =

15, θ = 3.0.

the produced hypotheses with the source sentence 126

and extract non-trivial parts of such alignments. 127

The score of edit e equals log p(u|w)−log p(v|w), 128

where u denotes the most probable hypothesis 129

containing e and v is the most probable hypoth- 130

esis that changes nothing in the span of e. If 131

there is no such hypothesis, we set the score to 132

log p(u|w)− log p(v|w) + 1, where v is the last 133

hypothesis in the beam. We experimented with re- 134

stricting beam search only to hypotheses with one 135

elementary edit and diverse beam search, however, 136

that makes the implementation more complicated 137

without any performance gains. 138

2.3 Sequence labeling generator 139

In contrast to other methods, the recent GECToR
model (Omelianchuk et al., 2020) reduces grammar
error correction to sequence tagging. We give an
example of such reduction in Table 1 and refer the
reader to Sections 3 and 5 of the original paper to
better understand their approach. GECToR oper-
ations naturally correspond to elementary edits in
our terminology. For each position i we extract all
the tags t such that

log p(ti = t) ≥ log p(ti = KEEP)− θ,

where θ is the predefined margin. For example, if 140

on the first step of the example in Table 1 we have 141

p(t3 = VBD) = 0.5, p(t3 = VBZ) = 0.3, p(t3 = 142

KEEP) = 0.1, then the VBZ transformation fall 143

→ falls will also be extracted. Again, we keep 144

top K edits according to the difference between 145

logarithmic probabilities of the edit and the the 146

default “do nothing“ operation (the KEEP tag). 147

For all the extraction methods we label as pos- 148

itive all edits that appear in the .m2 description 149

of the dataset or may be partitioned to such ed- 150

its. We also add the “do nothing” edit that returns 151

the source sentence. It is treated as positive if the 152

sentence is already correct. 153

3 Model description 154

3.1 Edits classification 155

Given numerous successes of Transformer models
in NLP, we decide to use Roberta(Liu et al., 2019)
for edit classification. It takes as input the sequence

x = ⟨BOS⟩SOURCE⟨SEP⟩EDITED_SOURCE⟨EOS⟩

and outputs the probability of the edited source to
be a plausible correction. Consider the sequence
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Source Edit generator Model score Stage 1 Stage 2 Stage 3 Stage 4 Target
The boy fall on floor (0, 1, boys) 0.53 ? ? ? × The boy fell on the floor

(1, 2, falls) 0.7 ? × × ×
(1, 2, fell) 0.83 ? ✓ ✓ ✓
(3, 3, the) 0.9 ✓ ✓ ✓ ✓

(−1,−1,None) 0.57 ? ? ? ✓ (terminate)

Figure 1: The pipeline of our algorithm. On each decoding stage, the most probable (in red) remaining action is
selected. It also eliminates other edits with intersecting spans (in blue). In the end all the selected operations are
applied in parallel.

Iter. Source Edits Result
1 CLS Boy fall the floor APPEND_The LOWER VBD KEEP KEEP The boy fell the floor
2 CLS The boy fell the floor KEEP KEEP KEEP APPEND_on KEEP KEEP The boy fell on the floor

Table 1: An example of GECToR labeling and corresponding sentence edits.

x = BOS x1 . . . xL SEP

x′1 . . . x
′
L+δ EOS and let xi . . . xj and x′i . . . x

′
j+δ

be the source and the target of the edit, respectively.
Then our classification model M can be decom-
posed as

M(x) = g(f(READOUT(ENCODER(x)))),

where156

• ENCODER is the Transformer encoder that157

produces the embedding3 sequence h =158

hBOSh1 . . . hLhSEPh
′
1 . . . h

′
L+δhEOS.159

• READOUT is the readout function that con-160

verts a sequence of embeddings to the vector-161

ization of the whole input. We use the first162

embedding of the target span and consider163

other variants during ablation in Appendix E.164

• f is a multilayer perceptron and g is the final165

classification layer with sigmoid activation.166

3.2 Decoding167

After classifying the edit we cannot simply apply168

all edits classified as positive as they may conflict169

each other (e.g., the edits fall → fell and fall →170

falls for the sentence The boy fall on the floor). The171

conflicts may also happen between adjacent edits172

(boy → boys and fall → falls) thus we consider173

as contradicting any two edits whose source spans174

either intersect or are adjacent and non-empty. We175

test two decoding strategies:176

1. (offline, faster) Pick the edits whose probabil-177

ity is greater than the maximum of predefined178

threshold and “do nothing” edit score. Keep179

3Through all the paper ‘embeddings‘ means the decoder
output for current subtoken.

those that do not contradict any edits with 180

higher scores. 181

2. (online, giving higher scores) If the most prob- 182

able edit is “do nothing” or its probability is 183

below threshold, stop. Otherwise select the 184

most probable edit, apply it to the current in- 185

put sentence and remove all the edits with 186

intersecting spans. Repeat this until reaching 187

the maximal number of iterations. 188

The optimal threshold is model-dependent, we op- 189

timize it on development set. 190

4 Data and experiments 191

4.1 Data 192

We apply our model to English data using the 193

BEA 2019 Shared Task data (Bryant et al., 2019). 194

We use the same training data as in the previous 195

works: Write&Improve and LOCNESS corpus 196

(Bryant et al., 2019), First Certificate of English 197

(FCE) (Yannakoudakis et al., 2011), National Uni- 198

versity of Singapore Corpus of Learner English 199

(NUCLE) (Dahlmeier et al., 2013), Lang-8 Corpus 200

of Learner English(Tajiri et al., 2012) and synthetic 201

data(Awasthi et al., 2019). We test our models on 202

BEA 2019 development and test sets and CoNLL 203

2014(Ng et al., 2014) test data. 204

For additional experiments we also use cLang8 205

(Rothe et al., 2021) – the cleaned and extended 206

version of Lang8 corpus. The characteristics of 207

datasets are given in Table 2. 208

4.2 Model architecture and training 209

We initialize the transformer using the weights of 210

pretrained roberta-base. We take the encoding of 211
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Dataset Size Usage
W&I+LOCNESS 34308 Train, finetune
FCE 28350 Train
NUCLE 57151 Train
Lang8 1037561 Train
PIE synthetic 9000000 Pretrain
BEA 2019 dev 4384 Development
BEA 2019 test 4477 Test
CoNLL14 1312 Test
cLang8 2372119 Train

Table 2: Training data for English GEC experiments.

the leftmost word in the target span as sequence rep-212

resentation and process it by a 1-layer perceptron213

with output dimension 768 and ReLU activation.214

The output of this perceptron is passed to the final215

linear layer with sigmoid activation. We implement216

our models using PyTorch and use HuggingFace217

roberta-base implementation4.218

We follow the training procedure described in219

(Omelianchuk et al., 2020). Namely, after pretrain-220

ing on synthetic data only we perform the main221

training on full BEA 2019 train set which is the222

concatenation of W&I+LOCNESS, FCE, NUCLE223

and Lang8 and afterwards finetune the model on224

W&I+LOCNESS. When using cLang8 instead of225

Lang8 we do not apply pretraining.226

The model is trained using total batch size of227

3500 subtokens to fit into 32GB GPU memory. All228

the examples for a single sentence are placed to229

the same batch. Since the number of proposed230

negative edits is much larger than the number of231

positive ones, we independently average the loss for232

positive and negative examples inside each batch.233

We optimize the model with AdamW optimizer234

using default hyperparameters.235

4.3 Edit generation236

We test three models of edits generation: the first237

is a rule-based baseline, BERT-GEC(Kaneko et al.,238

2020) is a sequence-to-sequence model5 and GEC-239

ToR is a sequence labeling model of state-of-the-240

art quality. We apply beam search (Subsection 2.2)241

with BERT-GEC6 and the extension described in242

4Our code is available on https://www.dropbox.
com/s/ubcblvy63ynsfs7/edit_scorer.tar.gz

5It is the only seq2seq model with weights available online.
6https://github.com/kanekomasahiro/

bert-gec

Subsection 2.3 with GECToR7. In all the variants 243

we extract at most 15 hypotheses such that their 244

score is greater than −3.08. Recalls are given in 245

Table 3. 246

Dataset Rule-based BERT-GEC GECToR
BEA 2019 dev 45.8 55.5 54.9
W&I train 46.7 61.0 66.3
FCE 40.4 60.7 56.6
NUCLE 39.6 48.3 45.0
Lang8 33.0 50.2 43.3
BEA dev F0,5 < 40 48.8 54.1

Table 3: Recall of different edit extraction methods for
English. W&I is W&I+LOCNESS.

We observe that BERT-GEC and GECToR has 247

similar recall on BEA data, while on other datasets 248

BERT-GEC coverage is better despite its lower 249

quality. The coverage of rule-based model is low 250

because it cannot handle free rewriting in principle. 251

4.4 Main results 252

In this section we perform two experiments: in 253

the first we select the best data selection based on 254

results only after main training (without pretrain- 255

ing on synthetic data) without taking the scores of 256

the basic model into account. In the second we 257

compare the best performing model trained in full 258

mode described in Subsection 4.2. Following the 259

standard practice, we compare the models by F0.5 260

score using ERRANT (Bryant et al., 2019) for BEA 261

development set and M2Scorer (Dahlmeier et al., 262

2013) for other datasets. 263

Results in Table 4 show that BERT-GEC and 264

GECToR model hace comparable performance, 265

while the rule-based model is behind them due 266

to poor recall. 267

In our second experiment we evaluate the mod- 268

els trained on full data in two settings: using the 269

scorer probabilities only (‘no base model‘ row) and 270

combining them with the score of the edit genera- 271

tor9. Precisely, we set the hypothesis score equal 272

to log pscorer(e) + α · scoregen(e), where α is 273

7We use the roberta-base GECToR model,
which is available from https://github.com/
grammarly/gector. Our edit generator code
is available on https://www.dropbox.com/s/
ncxcjyhbw3q845d/gector.tar.gz

8The threshold was tuned on development set.
9We do not provide the combined scores for BERT-GEC

model as they do not show much improvement over the scorer
due to basic model weakness.

4

https://www.dropbox.com/s/ubcblvy63ynsfs7/edit_scorer.tar.gz
https://www.dropbox.com/s/ubcblvy63ynsfs7/edit_scorer.tar.gz
https://github.com/kanekomasahiro/bert-gec
https://github.com/kanekomasahiro/bert-gec
https://github.com/grammarly/gector
https://github.com/grammarly/gector
https://www.dropbox.com/s/ncxcjyhbw3q845d/gector.tar.gz
https://www.dropbox.com/s/ncxcjyhbw3q845d/gector.tar.gz


Edit generation model Precision Recall F0.5
Rule-based 59.8 22.7 45.1
+finetuning 63.3 28.1 50.6

BERT-GEC 65.9 23.7 48.6
+finetuning 62.1 33.9 53.2

GECToR 59.5 27.9 48.5
+finetuning 60.4 34.1 52.5

Table 4: Comparison of different edit generation
schemes on BEA 2019 data. All the models are trained
on full BEA 2019 train set and evaluated on the BEA
2019 development data. +finetuning rows refer to fur-
ther finetuning on W&I-LOCNESS training data. The
best results for each metric are in bold.

the tuned parameter10. In addition to the models274

trained on the same data as GECToR, we also eval-275

uate here the version of our model trained on larger276

cLang8 corpora (Rothe et al., 2021).277

As shown in Table 5, our basic model slightly278

outperforms SOTA GECToR model on BEA 2019279

dev and test. Combining its scores with GECToR280

edit scores, we improve the performance by addi-281

tional 1.5− 2%. If we do not restrict the training282

data, on BEA 2019 test our model looses only to283

T5-XXL model, which is almost 2 orders of mag-284

nitude larger (11B parameters instead of 200M of285

roberta-base). On CoNLL-2014 test set our models286

also show state-of-the-art performance, definitely287

loosing only to models that has larger size (Sun288

et al., 2021) and/or were pretrained with signifi-289

cantly more synthetic data.290

5 Additional experiments291

5.1 Model parameters and objectives292

Since other approaches to reranking often use rank-293

ing loss, we experiment with adding the margin loss294

between correct and false edits (‘+soft‘) or between295

pairs of the form ‘correct edit‘-‘no edit‘ and ‘no296

edit‘-‘incorrect edit‘ (‘+contrast‘). We also tested297

representing the hypothesis with mean embedding298

of the output span, not its first token (‘mean‘), and299

using the CLS token representation (‘CLS‘). We300

also verified the effect of replacing Roberta-base301

10In all the experiments optimal value was α = 0.1.
11Our evaluation.
12Uses cLang8 training data.
13Model ensemble.
14Uses more than 9M synthetic data samples.
15Uses larger language models than roberta-base .

with either Electra(Clark et al., 2020) or Roberta- 302

large(Liu et al., 2019). 303

Results in Table 6 show that additional losses 304

help on small dataset but have negative impact on 305

the full one. Taking the target span vector as edit 306

representation is crucial, however, using mean vec- 307

tor of target span does not improve performance. 308

Electra16 and Roberta-large models significantly 309

improve over the baseline, however, their effect is 310

much smaller on full training dataset. 311

5.2 Decoding ablation 312

In this part of the paper we investigate how decod- 313

ing procedure described in Subsection 3.2 affects 314

the model performance. In the first experiment 315

we vary the decoding algorithm and the decision 316

threshold. In Table 7 we provide the scores for 317

the model trained with GECToR edit generation 318

on full training data before and after finetuning on 319

W&I-LOCNESS training data. Another notable 320

pattern is that before finetuning the best F0.5-score 321

is achieved at threshold 0.6−0.7, while afterwards 322

the optimal threshold is 0.8 − 0.9. These values 323

are stable across datasets, so setting the threshold 324

to 0.7 before finetuning and to 0.9 after it is nearly 325

optimal, thus threshold tuning is unnecessary. 326

In Table 8 we also analyze how the quality of 327

the model depends on the maximal number of edits 328

allowed. We observe that recall and F0.5 score 329

are improved up to 8 edits per example. The differ- 330

ence between offline and online algorithms is about 331

0.5− 0.7 F0.5 score. It follows the experience of 332

(Omelianchuk et al., 2020), where iterative rewrit- 333

ing (the analogue of our online decoding) improved 334

performance even more significantly. 335

5.3 Joining generators 336

A natural question about our method is whether it is 337

merely a technique that exploits the data more effec- 338

tively or a general model capable to classify edits 339

as plausible or implausible. We address this ques- 340

tion by defining a ‘joint‘ edit generator that simply 341

returns the union of BERT-GEC and GECToR edits. 342

We apply to this data the classifiers trained with 343

only edit type (either GECToR or BERT-GEC). 344

Both the models are pretrained on synthetic data 345

and trained on full BEA2019 train set in standard 346

setting. Then we finetune the models on W&I- 347

LOCNESS either using the same edit generator as 348

16Electra is pretrained on discriminating between real and
fake words in context, so its pretraining objective is very
similar to the downstream task we solve.
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Model BEA 2019 dev BEA 2019 test CoNLL 2014
P R F0.5 P R F0.5 P R F0.5

BERT-GEC edits, no base model 62.1 33.9 53.2 80.0 49.1 71.0 70.2 38.0 60.0
GECToR edits, no base model 60.4 34.1 52.5 76.1 52.4 69.8 73.6 34.9 60.2

BERT-GEC edits, pretraining, no base model 68.4 30.4 55.1 82.4 51.1 73.4 71.2 39.4 61.3
GECToR edits, pretraining, no base model 69 .1 30.9 55.4 82.2 49.7 72.7 72.9 39.1 62.1
GECToR edits, pretraining, combined 68.4 34.5 57 .2 82 .4 54.5 74 .7 79 .1 38.3 65.2
GECToR, roberta(Omelianchuk et al., 2020)6 62.3 35.6 54.2 77.1 55.3 71.4 72.8 40 .9 63.0
GECToR, XLNet(Omelianchuk et al., 2020) 66.0 33.8 55.5 79.2 53.9 72.4 77.5 40.2 65.3
GECToR+BIFI(Yasunaga et al., 2021) NA NA NA 79.4 55.0 72.9 78.0 40.6 65 .8

GECToR edits, cLang8, no base model11 70.2 32.9 57.2 82.8 52.4 74.2 72.6 39.5 63.9
GECToR edits, cLang8, combined11 69.3 35.5 58.2 82.5 55.1 75.1 79.6 36.2 66.0
(Kiyono et al., 2019)12,13 NA NA NA 74.7 56.7 70.2 73.3 44.2 64.7
(Sun et al., 2021)13,14 NA NA NA NA NA NA 71.0 52.8 66.4
T5-XXL, cLang8 (Rothe et al., 2021)13,14 NA NA NA NA NA 75.9 NA NA 68.9

Table 5: Results of different GEC models on three GEC datasets. The first block includes the models trained on
BEA train data only, the second one contains the ones that additionally use 9M synthetic samples from (Awasthi
et al., 2019), while the last block includes the models that either use ensembles12, larger Transformer models14,
cLang8 training dataset11 or more synthetic data13. Bold denotes overall best results and italic stands for best
results among models of roberta-base size.

Model W&I+FCE BEA 2019 train+finetune
P R F0.5 P R F0.5

Basic 55.5 26.7 46.1(+0.0) 60.4 34.1 52.5(+0.0)

+soft 55.2 30.8 47.6(+1.5) 58.2 35.3 51.6(−0.9)
+contrast 55.1 31.1 47.7(+1.6) 60.9 30.1 50.5(−2.0)

CLS 57.7 22.0 43.5(−2.6) NA NA NA
mean 58.0 27.0 47.2(+1.1) 61.6 31.6 51.8(−0.7)

Electra 60.2 30.1 50.2(+4.1) 60.4 34.1 52.5(+0.0)
Roberta-large 60.8 31.4 51.2(+5.0) 63.5 34.8 54.5(+2.0)

Table 6: Comparison of different architecture modifications on small(W&I+FCE, 60K sentences) and
large(BEA2019 train, 1.1M) datasets. The number in brackets is the F0.5 gain over the ‘Basic‘ model. See
Appendix E for a complete description.

Threshold Decoding Before finetuning After finetuning
P R F0.5 P R F0.5

0.5 Online 59.2 30.7 49.9 57.1 39.8 52.6

0.6 Online 60.5 29.8 50.2 58.6 38.9 53.2

0.7 Online 63.1 27.7 50.2 60.7 37.9 54.2

0.8 Online 68.8 22.7 48.9 63.1 35.9 54.8

0.9 Online 79.9 10.7 34.8 69.2 30.9 55.4

Table 7: Precision, recall and F0.5 score on BEA 2019 development set with different decision thresholds
with/without finetuning. Models are trained on synthetic data and BEA 2019 full train set and finetuned on
W&I-LOCNESS train set with GECToR edit generator.

in training or the joint one.349

Despite significant increase of edit coverage350

(‘joint‘ edit generator has recall 63% vs 55%351

of individual generators) the models show either352

marginal or even negative change in terms of over-353

all F0.5 score due to lower precision. Finetuning on 354

joint edits data also has little effect which implies 355

the complete training on joint edit set is required. 356

These results also show that GECToR model adapts 357

to edits of other type more easily than the BERT- 358
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1 2 3 4 5 6 7 8
Offline Precision 72.9 70.6 69.6 69.5 69.4 69.4 69.4 69.4

Recall 18.8 25.7 28.0 29.0 29.3 29.5 29.5 29.5
F0.5 score 46.2 52.4 53.7 54.3 54.5 54.6 54.6 54.6

Online Precision 72.9 71.0 70.1 69.4 69.2 69.1 69.0 69.0
Recall 18.8 25.9 30.4 28.8 29.9 30.5 30.9 31.0
F0.5 score 46.2 52.6 54.5 54.9 55.2 55.3 55.4 55.4
(F0.5 gain) (+0.00) (+0.2) (+0.8) (+0.6) (+0.7) (+0.7) (+0.8) (+0.8)

Table 8: Dependence of model performance from the maximal allowed number of edits. The last row is the
difference between online and offline decoding algorithms.

Train Scorer Same finetune and test Same finetune, joint test Joint finetune and test
P R F0.5 P R F0.5 P R F0.5

GECToR base model 69.1 30.9 55.4 67.6 33.0 55.9(+0.5) 64.8 35.5 55.7(+0.3)
combined 68.4 34.5 57.2 68.3 34.9 57.3(+0.1) 67.3 36.6 57.6(+0.4)

BERT-GEC base model 69.1 30.9 55.4 63.4 34.2 54.2(−1.2) 64.2 34.3 54.6(−0.8)

Table 9: Results of models trained on BEA 2019 full train data with BERT-GEC or GECToR edits when tested on
BEA 2019 development set with either the same or joint edit generator.

GEC one, showing that it has more perspectives for359

usage in real-world setting.360

5.4 Experiments on Russian361

To prove that our approach is not limited to En-362

glish, we test in on Russian. In contrast to English,363

it has more complex nominal morphology which364

extends the space of possible errors even for the365

rule-based generator. In case of Russian we have366

much less training data, its characteristics are given367

in Table 10. Synthetic data is generated using rule-368

based operations, such as comma / preposition in-369

sertion/deletion/replacement or changing the word370

to another form of the same lexeme17.371

We compare two edit generation models, the372

first is again the rule-based one17 and the second is373

simply the finetuned ruGPT-large18, their coverage374

statistics are given in Table 10. We train the scor-375

ers19 on the concatenation of synthetic data and376

RULEC-GEC train set and then finetune them on377

real data only. The results are given in Table 11.378

We observe that reranking the edits of finetuned379

ruGPT-large slightly outperforms the edit genera-380

tor itself. The combined model beats this baseline381

by a margin of 1.7%. We also note that previous382

SOTA models had larger size and were trained with383

17The full list of operations is given in Appendix A.2
18https://huggingface.co/sberbank-ai/

ruGPT3large_based_on_gpt2
19Since there is no Roberta-base for Russian, we

use Roberta-large https://huggingface.co/
sberbank-ai/ruRoberta-large.

significantly more synthetic data. Contrastive to 384

English experiments, scoring the rule-based edits 385

provides even better scores than the model-based 386

ones. We explain this by two reasons: first, the dif- 387

ference between rule-based and model-based edits 388

coverage is smaller for Russian than for English, 389

second, the RULEC-GEC dataset is of much lower 390

quality with a lot of errors uncorrected. Thus it 391

does not contain enough complex edits that cannot 392

be captured by the rules and for which the benefits 393

of model-based generator are more clear. 394

6 Related work 395

The task of grammatical error correction has a 396

long history. The main paradigm of recent years is 397

to treat it as low-resource machine translation (Fe- 398

lice et al., 2014; Junczys-Dowmunt et al., 2018) us- 399

ing extensive pretraining on synthetic data (Grund- 400

kiewicz et al., 2019). Synthetic data is usually 401

generated using random replacement, deletion, in- 402

sertion, spelling errors and perturbations (Grund- 403

kiewicz et al., 2019; Kiyono et al., 2019; Náplava 404

and Straka, 2019), other approaches include train- 405

ing on Wikipedia edits (Lichtarge et al., 2019) and 406

backtranslation (Kiyono et al., 2019). Another 407

trend is incorporating pretrained Transformer lan- 408

guage models either as a part of system architec- 409

ture (Kaneko et al., 2020) or for the initialization 410

of model weights (Omelianchuk et al., 2020). The 411

extreme case of the latter approach is the “brute 412

force” when one simply uses large encoder-decoder 413
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Dataset Size Coverage
Sentences Errors Rule-based ruGPT-based

RULEC-GEC train (Rozovskaya and Roth, 2019) 4980 4383 54.4 81.5
RULEC-GEC dev (Rozovskaya and Roth, 2019) 2500 2182 55.5 59.3
RULEC-GEC test (Rozovskaya and Roth, 2019) 5000 5301 46.4 54.3

Synthetic data 213965 187122 78.0 95.8

Table 10: Data used for experiments on Russian GEC and coverage of edit generators on this data.

Model Training data P R F0.5
Transformer (Náplava and Straka, 2019) 10M synthetic + RULEC-GEC train + dev 63.3 27.5 50.2
mT5-XXL (Rothe et al., 2021) mC4 synthetic + RULEC-GEC train NA NA 51.6
ruGPT-large finetune (strong baseline) 200K synthetic + RULEC-GEC train 65.7 27.4 51.3

rule-based edits 200K synthetic + RULEC-GEC train 69.4 25.9 51.9
ruGPT-large edits, no base model 200K synthetic + RULEC-GEC train 68.2 27.1 51.6
ruGPT-large edits, combined 200K synthetic + RULEC-GEC train 74.4 24.6 53.0

Table 11: Results for Russian on RULEC-GEC dataset. The upper block contains the baselines, current work results
are in the lower one.

Transformer that potentially is able to solve any414

text-to-text task (Rothe et al., 2021).415

Another paradigm in GEC is to reduce gram-416

mar correction to sequence labeling (Omelianchuk417

et al., 2020). However, it requires constructing a lin-418

guistically meaningful set of tags that could be hard419

to design for languages with complex morphology.420

Our work mainly follows the third approach that421

considers GEC as two-stage process including edit422

generation as the first stage and their ranking or423

classification as the second. Edits were usually gen-424

erated by manually written rules and their scoring425

was performed by linear classifiers (Rozovskaya426

et al., 2014) or later by a pretrained language model427

(Alikaniotis and Raheja, 2019). A recent work of428

Yasunaga et al. (2021) generates edits using sepa-429

rate sequence-to-sequence Transformer and then430

filters them using a language model.431

Our approach can be seen as a special case of432

reranking. Feature-based reranking was common433

in statistical machine translation before the advent434

of neural networks(Och et al., 2004), in grammat-435

ical error correction it is mostly performed by a436

language model R2L scorer (Grundkiewicz et al.,437

2019). However, recent studies on machine transla-438

tion (Lee et al., 2021) and summarization (Liu and439

Liu, 2021) benefit from transformer-based rescor-440

ing. Our work is partially inspired by theirs, the441

key difference is that we use classification loss in-442

stead of ranking and rerank individual edits, not443

complete sentences. As far as we know, the only444

example of trainable reranking for grammatical er-445

ror correction is Liu et al. (2021), but it uses a more 446

complex architecture and focuses more on error 447

detection than correction. 448

7 Conclusion 449

We have developed an edit classifier for grammat- 450

ical error correction that achieves state-of-the-art 451

performance even without using the edit generator 452

scores and improves over SOTA models of com- 453

parable size after combination with basic model. 454

Our scorer can be combined with different types of 455

architectures, both encoder-decoder and sequence 456

labelers, showing similar performance. The same 457

approach also beats state-of-the-art results on low- 458

resource grammatical error correction for Russian, 459

which is morphologically more complex than En- 460

glish. 461

We show that additional losses are not helpful 462

yet, however, using better and larger Transformer 463

models looks promising. Since our method works 464

independently of the edit generator, it may be ap- 465

plied in setups where one has to correct errors of 466

a particular type (e.g., verb tense), such as second 467

language learning. In the future work we plan to 468

address this question in more details and test the ap- 469

plicability of our approach on additional languages, 470

such as German or Czech. Last but not the least, 471

the main idea of ranking individual edits can be 472

applied not only to GEC, but to any task where 473

the concept of elementary edit has meaning, for 474

example, machine translation post-editing. 475
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A Rule-based transformations used for683

edit generation684

A.1 English685

Rule-based edit generator includes the following686

operations:687

• Comma insertion and deletion.688

• Preposition insertion, deletion and substitu-689

tion. Insertion is allowed only before the first690

token of a noun group.691

• Determiner insertion, deletion and substitu-692

tion. Insertion is allowed only before the first693

token of a noun group.694

• to insertion before infinitives.695

• Spelling correction for OOV words using Hun-696

spell20.697

• Substitution a word with all its inflected forms,698

inflection is performed using Lemminflect21.699

• Capitalization switching.700

• Replacement of comma by period and capital-701

izing the subsequent word (I have a dog, it is702

cute. → I have a dog. It is cute.).703

The rules take as input sentence dependency704

trees, parsing is done using Spacy22.705

A.2 Russian706

Rule-based edit generator for Russian includes the707

following operations:708

• Comma insertion and deletion.709

• Preposition insertion, deletion and substitu-710

tion. Insertion is allowed only before the first711

token of a noun group.712

• Conjunction substitution.713

• Spelling correction for OOV words using Hun-714

spell23.715

• Joining of consecutive words using Hunspell716

(e.g. ne bol’shoj ‘no+big‘ 7→ nebol’shoj717

‘small‘).718

20https://github.com/MSeal/cython_
hunspell

21https://github.com/bjascob/
LemmInflect/

22spacy.io
23https://github.com/MSeal/cython_

hunspell

• Substitution a word with all its inflected forms, 719

inflection is performed using PyMorphy24. 720

• Joint noun group inflection (e.g. bol’shoj 721

dom ‘large house‘ 7→ bol’shikh domov 722

‘large+GEN+PL houses+GEN’) 723

• Capitalization switching. 724

• Switching the order of consecutive words. 725

The rules take as input sentence dependency 726

trees, parsing is done using DeepPavlov25. 727

B Data sources 728

English 729

• W&I-LOCNESS train, dev and test 730

https://www.cl.cam.ac.uk/ 731

research/nl/bea2019st/data/ 732

wi+locness_v2.1.bea19.tar.gz. 733

• FCE https://www.cl.cam.ac.uk/ 734

research/nl/bea2019st/data/ 735

fce_v2.1.bea19.tar.gz. 736

• NUCLE https://sterling8. 737

d2.comp.nus.edu.sg/nucle_ 738

download/nucle.php. 739

• Lang8 https://docs. 740

google.com/forms/d/e/ 741

1FAIpQLSflRX3h5QYxegivjHN7SJ194OxZ4XN_742

7Rt0cNpR2YbmNV-7Ag/viewform. 743

• CLang8 https://github.com/ 744

google-research-datasets/ 745

clang8. 746

• Conll14 https://www.comp. 747

nus.edu.sg/~nlp/conll14st/ 748

conll14st-test-data.tar.gz. 749

• PIE synthetic data https:// 750

drive.google.com/open?id= 751

1bl5reJ-XhPEfEaPjvO45M7w0yN-0XGOA. 752

Russian 753

• RULEC-GEC https://github.com/ 754

arozovskaya/RULEC-GEC. 755

• Synthetic data: not available yet. 756
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Source Until the dawn all of them go out , so they sacred until they find a refuge .
Correct By dawn all of them had got out , so they sacred until they found a refuge .

Edit Target Gain Label
Rule-based edit generator

(1, 2, the) → _ Until dawn all of them go out , so they sacred until they find a refuge . 1.33 True
(11, 11, _) → are Until the dawn all of them go out , so they are sacred until they find a refuge . 0.95 False

(3, 3, _) → , Until the dawn , all of them go out , so they sacred until they find a refuge . 0.95 False
(11, 11, _) → were Until the dawn all of them go out , so they were sacred until they find a refuge . −1.73 False

(-1, -1, _) → _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False
BERT-GEC edit generator

(11, 11, _) → are Until the dawn all of them go out , so they are sacred until they find a refuge . 0.06 False
(1, 2, the) → _ Until dawn all of them go out , so they sacred until they find a refuge . −0.06 True

(11, 11, _) → stay Until the dawn all of them go out , so they stay sacred until they find a refuge . −0.24 False
(0, 2, Until the) → Before Before dawn all of them go out , so they sacred until they find a refuge . −0.79 False
(12, 12, _) → themselves Until the dawn all of them go out , so they sacred themselves until they find a refuge . −2.95 False

(0, 2, Until the) → Up until Up until the dawn all of them go out , so they sacred until they find a refuge . −2.99 False
(-1, -1, _) → _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False

GECToR edit generator
(0, 1, Until) → In In the dawn all of them go out , so they sacred until they find a refuge . 5.35 False

(1, 2, the) → _ Until dawn all of them go out , so they sacred until they find a refuge . 4.59 True
(0, 1, Until) → _ The dawn all of them go out , so they sacred until they find a refuge . 4.01 False

(0, 1, Until) → As As the dawn all of them go out , so they sacred until they find a refuge . 2.86 False
(12, 13, until) → _ Until the dawn all of them go out , so they sacred they find a refuge . 1.21 False

(15, 16, a) → _ Until the dawn all of them go out , so they sacred until they find refuge . 1.01 False
(7, 8, out) → _ Until the dawn all of them go , so they sacred until they find a refuge . 0.72 False

(0, 1, Until) → By By the dawn all of them go out , so they sacred until they find a refuge . 0.71 True
(3, 3, _) → , Until the dawn , all of them go out , so they sacred until they find a refuge . 0.65 False

(8, 10, ,_so) → . So Until the dawn all of them go out . So they sacred until they find a refuge . 0.48 False
(6, 7, go) → went Until the dawn all of them went out , so they sacred until they find a refuge . −0.55 False

(8, 9, ‘,‘) → _ Until the dawn all of them go out so they sacred until they find a refuge . −0.81 False
(12, 12, _) → , Until the dawn all of them go out , so they sacred , until they find a refuge . −1.18 False

(14, 15, find) → found Until the dawn all of them go out , so they sacred until they found a refuge . −3.76 True
(-1, -1, _) → _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False

Table 12: Output of different edit generators for the sentence Until the dawn all of them go out , so they sacred until
they find a refuge . Gain column contains the first stage score.

C Examples of elementary edits757

D Model hyperparameters758

In Table 13 we summarize the information required759

to replicate the training procedure. The exact val-760

ues may vary slightly. In all the experiments we did761

finetuning for 5 epochs, but generally later check-762

points demonstrated severe overfitting.763

E Ablation studies764

The choice of model architecture and training pa-765

rameters may seem arbitrary. Therefore in this766

section we study other possible variants of mod-767

ern architecture. The architecture used in main768

experiments has the following key components:769

1. The model is trained with cross-entropy classi-770

fication loss without any additional objectives.771

2. The loss is normalized separately for positive772

and negative instances.773

24https://github.com/kmike/pymorphy2/
25http://docs.deeppavlov.ai/en/0.14.1/

Parameter Value
Batch size 3500 tokens
Optimizer wAdam
Learning rate 1e− 5
Weight decay 0.01
Warmup (base models) 0
Warmup (large models) 2000

Pretraining epochs 1
Lang8 training epochs 3
Finetuning epochs 2

Joint training epochs (Russian) 1
Finetuning epochs (Russian) 2

Table 13: Training hyperparameters.

3. The encoding of the first token in the output 774

span is used as edit representation. 775

4. The classification module contains a single 776

hidden layer. 777

5. Except for the classification module, no ad- 778

ditional layers are added on the top of main 779

Transformer encoder. 780
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6. Roberta-base is used as the encoder.781

We test the following architecture modifications:782

1. Adding an additional ranking objective. We
do it adding standard margin loss:

L(x+, x−) = max (g(x−)− g(x+) + θ, 0),

L= LCE + α

∑
(x+,x−)∈P

L(x+,x−)

|P | .

Here g is the logit of positive class before783

sigmoid, P is the set of contrastive pairs of784

batch elements, θ is a margin hyperparameter785

and α is the additional loss weight 26. We786

investigate 3 variants of defining P :787

• All pairs of positive and negative in-788

stances (+soft),789

• Only pairs of positive and negative in-790

stances whose spans intersect(+hard),791

• All pairs of the form (e+, e0) and792

(e0, e−), where e+, e− and e0 are pos-793

itive, negative and “do nothing” edits,794

respectively(+contrast).795

2. Removal of class normalization (no_norm).796

3. Using the CLS token (cls), mean representa-797

tion of output span (mean) and concatenation798

of output and source span (origin) as edit en-799

codings.800

4. Adding one more hidden layer in the classifi-801

cation block (‘2 layers‘).802

5. Adding an additional Transformer layer be-803

tween all the edit representations for the same804

sentence (+attention). That allows to poten-805

tially use information from other hypotheses.806

6. Use other Transformer variants, in particu-807

lar Electra(Clark et al., 2020) and Roberta-808

large(Liu et al., 2019).809

We run all ablation experiments on the concate-810

nation of W&I+LOCNESS train and FCE datasets811

using GECToR edit generator, results are given in812

Table 14. For all the models we select the best813

performing checkpoint and threshold according to814

the F0.5 score and perform online decoding. For815

those models that improve over the basic one on816

the small dataset, we run additional testing on full817

BEA train data without finetuning.818

We observe that additional losses that are helpful819

in low-resource setting even decrease performance820

26We set α = 0.25, θ = 2.0.

for larger data. The more promising approach is to 821

use either more suitable to text correction (Electra) 822

or larger (Roberta-large) language models. How- 823

ever, with more data the gap between them and the 824

roberta-base model also becomes smaller. 825
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Model W&I+FCE BEA 2019 train+finetune
P R F0.5 P R F0.5

Basic 55.5 26.7 46.1(+0.0) 60.4 34.1 52.5(+0.0)

+hard 55.1 26.4 45.8(−0.3) NA NA NA
+soft 55.2 30.8 47.6(+1.5) 58.2 35.3 51.6(−0.9)
+contrast 55.1 31.1 47.7(+1.6) 60.9 30.1 50.5(−2.0)

no_norm 55.8 27.4 46.2(+0.1) NA NA NA
CLS 57.7 22.0 43.5(−2.6) NA NA NA
+mean 58.0 27.0 47.2(+1.1) 61.6 31.6 51.8(−0.7)
+origin 57.4 26.2 46.4(+0.3) NA NA NA
2layers 55.6 27.7 46.3(+0.2) NA NA NA
+attention 52.8 31.4 46.4(+0.3) NA NA NA
Electra 60.2 30.1 50.2(+4.1) 60.4 34.1 52.5(+0.0)
Roberta-large 60.8 31.4 51.2(+5.0) 63.5 34.8 54.5(+2.0)

Table 14: Comparison of different architecture modifications, the number in brackets is the difference with the
‘Basic‘ model. See the list above for a complete description.
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