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Abstract

We offer a rescoring method for grammatical er-
ror correction which is based on two-stage pro-
cedure: the first stage model extracts local edits
and the second classiifies them as correct or
false. We show how to use an encoder-decoder
or sequence labeling approach as the first stage
of our model. We achieve state-of-the-art qual-
ity on BEA 2019 English dataset even with a
weak BERT-GEC basic model. When using a
state-of-the-art GECToR edit generator and the
combined scorer, our model beats GECToR on
BEA 2019 by 2—3%. Our model also beats pre-
vious state-of-the-art on Russian, despite using
smaller models and less data than the previous
approaches.

1 Introduction

Grammatical error correction (GEC) is a task of
converting the source to text to its clean version
with no orthographic, punctuation, lexical or other
errors. As any sequence-to-sequence task, it is
often solved using machine translation methods
mostly using Transformer architecture(Vaswani
et al., 2017) or its variants. One of the few success-
ful exceptions is the GECToR model (Omelianchuk
et al., 2020), which reduces GEC to sequence la-
beling, however, it exists only for English. In
sequence-to-sequence models decoding is usually
done using beam search, which has two serious
drawbacks. The first is exposure bias: the model
was never exposed to its errors in training time
which complicates the recovery from errors dur-
ing decoding. The second is left-to-right nature of
decoding: the model can make a wrong decision
not observing the future context. This does not
hold for a reranker model, since it explores entire
corrected sequences and thus may utilize richer
context. Reranking might also be helpful when the
correct edit is not ranked as topmost one, but still
appears it the n-top list of hypotheses. Due to these
reasons, reranking was heavily used in machine

translation both in statistical (Och et al., 2004) and
neural (Yee et al., 2019) era.

In contrast to machine translation, sequence edit-
ing in GEC can be decomposed to elementary edits
such as modifying a single word or a consecutive
group of words. In this paper we propose to score
elementary edits produced by the basic model and
classify them as positive or negative on the second
stage of the pipeline. Than the calculated probabil-
ities can be either used directly or combined with
the scores from the first stage. Since the additional
ranking stage utilizes not only the topmost hypoth-
esis but the k-best list, it may help to recover from
errors made by the basic model and increase both
precision and recall.

We show that even the scoring model alone
achieves state-of-the-art performance on BEA2019
dataset for two variants of the first stage model. Its
combination with GECToR model outperforms the
models of same size by about 2 points F0.5 score.
We also beat current SOTA on Russian with two
variants of the basic edit generator.

2 Edit generation

As proposed in Alikaniotis and Raheja (2019),
probably the simplest approach to grammatical er-
ror correction is to generate possible edits using
a rule-based model and then extract those that in-
crease the sentence probability by a sufficient mar-
gin. The straightforward way to estimate sentence
probability is to use a Transformer language model,
such as GPT(Radford et al., 2019) or BERT (Devlin
et al., 2019). This approach requires no training
data, only a development set for tuning the hyper-
parameters. As a reverse side of its simplicity, this
algorithm has two main limitations:

* Recall is limited to errors that can be specified
by the rules.

* The probability estimators are imperfect, espe-
cially when the edit changes sequence length.



Therefore the main idea of our paper is to replace
the scorer by a more powerful trainable model. An-
other key detail is that we apply the scorer not to
the full corrections, but to the elementary edits.
Namely, given the erroneous sentence *The boy
fall on floor and its correction The boy fell on the
floor, our model should return True for sentences
The boy fell on floor and The boy fall on the floor
and False for other elementary corrections, for ex-
ample, *The boy falls on the floor.

So, our model includes three main stages, de-
scribed subsequently:

1. Extracting elementary edits from the basic
model.

2. Classifying these edits as positive or negative.

3. Applying the positively classified edits to the
source sentence.

The first part in described in this section and the
remaining two in Section 3. A schematic descrip-
tion of our algorithm is given in Figure 1

2.1 Rule-based edit generator

We start with describing edits extraction based on
linguistically motivated rule-based model. It may
be considered as our reimplementation of Alikanio-
tis and Raheja (2019). Our edit generation module
takes as input the dependency tree of a sentence
and applies rule-based edits corresponding to the
most frequent errors, such as missing or incorrect
determiners, commas and prepositions or wrong
choice of word form. The exact list of applied rules
is given in Appendix A.1.

These operations produce a fairly large num-
ber of possible corrections. To reduce com-
putational burden we apply two-stage filtering.
First, for every hypothesis u we calculate the
gain log p(ury1|wy...wr) — log p(wrgr|wy...wy),
where 7 is the length of longest common prefix of
u and source sequence w!. We choose best K 4.;
deletions, Kj,s insertions and K, replacement
edits according to this score. Then for the selected
hypotheses we calculate their full log-probability
and pick K best variants provided their score ex-
ceeds p(w) — 6°.

2.2 Sequence-to-sequence edit generator

To generate edits using a sequence-to-sequence ba-
sic model we run standard beam search, align all
"This scoring is performed in one pass of left-to-right LM.

We set Kgei = 10, Kins = 10, Koup = 30, K =
15,0 = 3.0.

the produced hypotheses with the source sentence
and extract non-trivial parts of such alignments.
The score of edit e equals log p(u|w)—log p(v|w),
where u denotes the most probable hypothesis
containing e and v is the most probable hypoth-
esis that changes nothing in the span of e. If
there is no such hypothesis, we set the score to
log p(ulw) — log p(v|w) + 1, where v is the last
hypothesis in the beam. We experimented with re-
stricting beam search only to hypotheses with one
elementary edit and diverse beam search, however,
that makes the implementation more complicated
without any performance gains.

2.3 Sequence labeling generator

In contrast to other methods, the recent GECToR
model (Omelianchuk et al., 2020) reduces grammar
error correction to sequence tagging. We give an
example of such reduction in Table 1 and refer the
reader to Sections 3 and 5 of the original paper to
better understand their approach. GECToR oper-
ations naturally correspond to elementary edits in
our terminology. For each position 7 we extract all
the tags t such that

logp(t; = t) > log p(t; = KEEP) — 0,

where 0 is the predefined margin. For example, if
on the first step of the example in Table 1 we have
p(ts = VBD) = 0.5, p(ts = VBZ) = 0.3, p(t3 =
KEEP) = 0.1, then the VBZ transformation fall
— falls will also be extracted. Again, we keep
top K edits according to the difference between
logarithmic probabilities of the edit and the the
default “do nothing* operation (the KEEP tag).

For all the extraction methods we label as pos-
itive all edits that appear in the .m2 description
of the dataset or may be partitioned to such ed-
its. We also add the “do nothing” edit that returns
the source sentence. It is treated as positive if the
sentence is already correct.

3 Model description

3.1 Edits classification

Given numerous successes of Transformer models
in NLP, we decide to use Roberta(Liu et al., 2019)
for edit classification. It takes as input the sequence

X = (BOS)SOURCE(SEP)EDITED_SOURCE(EOS)

and outputs the probability of the edited source to
be a plausible correction. Consider the sequence



Source Edit generator Model score Stage 1 Stage 2 Stage 3 ~ Stage 4 Target
The boy fall on floor| (0, 1, boys) 0.53 ? ? ? X The boy fell on the floor
(1,2, falls) 0.7 ? X X X
(1,2, fell) 0.83 ? v v v
(3,3, the) 0.9 v v v v
(—1,—1, None) 0.57 ? ? ? (terminate)

Figure 1: The pipeline of our algorithm. On each decoding stage, the most probable (in red) remaining action is
selected. It also eliminates other edits with intersecting spans (in blue). In the end all the selected operations are

applied in parallel.
Iter. | Source Edits Result
1 CLS Boy fall the floor APPEND_The LOWER VBD KEEP KEEP The boy fell the floor
2 | cLS The boy fell the floor | KEEP KEEP KEEP APPEND_on KEEP KEEP | The boy fell on the floor

Table 1: An example of GECToR labeling and corresponding sentence edits.

X =BOSx1...21, SEP

Ty ...27, 5 EOS and let z;...x; and 2;... 2% 5
be the source and the target of the edit, respectively.
Then our classification model M can be decom-
posed as

M (x) = g(f(READOUT(ENCODER(X)))),
where

* ENCODER is the Transformer encoder that
produces the embedding® sequence h =
hgoshi ... hphsephy ... shEos-

* READOUT is the readout function that con-
verts a sequence of embeddings to the vector-
ization of the whole input. We use the first
embedding of the target span and consider
other variants during ablation in Appendix E.

 fis a multilayer perceptron and g is the final
classification layer with sigmoid activation.

3.2 Decoding

After classifying the edit we cannot simply apply
all edits classified as positive as they may conflict
each other (e.g., the edits fall — fell and fall —
falls for the sentence The boy fall on the floor). The
conflicts may also happen between adjacent edits
(boy — boys and fall — falls) thus we consider
as contradicting any two edits whose source spans
either intersect or are adjacent and non-empty. We
test two decoding strategies:

1. (offline, faster) Pick the edits whose probabil-
ity is greater than the maximum of predefined
threshold and “do nothing” edit score. Keep

3Through all the paper ‘embeddings‘ means the decoder
output for current subtoken.

those that do not contradict any edits with
higher scores.

2. (online, giving higher scores) If the most prob-
able edit is “do nothing” or its probability is
below threshold, stop. Otherwise select the
most probable edit, apply it to the current in-
put sentence and remove all the edits with
intersecting spans. Repeat this until reaching
the maximal number of iterations.

The optimal threshold is model-dependent, we op-
timize it on development set.

4 Data and experiments

4.1 Data

We apply our model to English data using the
BEA 2019 Shared Task data (Bryant et al., 2019).
We use the same training data as in the previous
works: Write&Improve and LOCNESS corpus
(Bryant et al., 2019), First Certificate of English
(FCE) (Yannakoudakis et al., 2011), National Uni-
versity of Singapore Corpus of Learner English
(NUCLE) (Dahlmeier et al., 2013), Lang-8 Corpus
of Learner English(Tajiri et al., 2012) and synthetic
data(Awasthi et al., 2019). We test our models on
BEA 2019 development and test sets and CoNLL
2014(Ng et al., 2014) test data.

For additional experiments we also use cLang8
(Rothe et al., 2021) — the cleaned and extended
version of Lang8 corpus. The characteristics of
datasets are given in Table 2.

4.2 Model architecture and training

We initialize the transformer using the weights of
pretrained roberta-base. We take the encoding of




Dataset Size Usage
W&I+LOCNESS | 34308 Train, finetune
FCE 28350 Train

NUCLE 57151 Train

Lang8 1037561 | Train

PIE synthetic 9000000 | Pretrain

BEA 2019 dev 4384 Development
BEA 2019 test 4477 Test
CoNLL14 1312 Test

cLang8 2372119 | Train

Table 2: Training data for English GEC experiments.

the leftmost word in the target span as sequence rep-
resentation and process it by a 1-layer perceptron
with output dimension 768 and ReLU activation.
The output of this perceptron is passed to the final
linear layer with sigmoid activation. We implement
our models using PyTorch and use HuggingFace

roberta-base implementation®.

We follow the training procedure described in
(Omelianchuk et al., 2020). Namely, after pretrain-
ing on synthetic data only we perform the main
training on full BEA 2019 train set which is the
concatenation of W&I+LOCNESS, FCE, NUCLE
and Lang8 and afterwards finetune the model on
W&I+LOCNESS. When using cLang8 instead of
Lang8 we do not apply pretraining.

The model is trained using total batch size of
3500 subtokens to fit into 32GB GPU memory. All
the examples for a single sentence are placed to
the same batch. Since the number of proposed
negative edits is much larger than the number of
positive ones, we independently average the loss for
positive and negative examples inside each batch.
We optimize the model with AdamW optimizer
using default hyperparameters.

4.3 Edit generation

We test three models of edits generation: the first
is a rule-based baseline, BERT-GEC(Kaneko et al.,
2020) is a sequence-to-sequence model®> and GEC-
ToR is a sequence labeling model of state-of-the-
art quality. We apply beam search (Subsection 2.2)
with BERT-GEC? and the extension described in

*Our code is available on https://www.dropbox.
com/s/ubcblvy63ynsfs7/edit_scorer.tar.gz

STt is the only seq2seq model with weights available online.

®https://github.com/kanekomasahiro/
bert-gec

Subsection 2.3 with GECToR”. In all the variants
we extract at most 15 hypotheses such that their

score is greater than —3.08. Recalls are given in
Table 3.

Dataset Rule-based BERT-GEC GECToR
BEA 2019 dev| 45.8 55.5 54.9
WE&I train 46.7 61.0 66.3
FCE 40.4 60.7 56.6
NUCLE 39.6 48.3 45.0
Lang8 33.0 50.2 43.3
BEA dev F0,5 < 40 48.8 54.1

Table 3: Recall of different edit extraction methods for
English. W&I is W&I+LOCNESS.

We observe that BERT-GEC and GECToR has
similar recall on BEA data, while on other datasets
BERT-GEC coverage is better despite its lower
quality. The coverage of rule-based model is low
because it cannot handle free rewriting in principle.

4.4 Main results

In this section we perform two experiments: in
the first we select the best data selection based on
results only after main training (without pretrain-
ing on synthetic data) without taking the scores of
the basic model into account. In the second we
compare the best performing model trained in full
mode described in Subsection 4.2. Following the
standard practice, we compare the models by F0.5
score using ERRANT (Bryant et al., 2019) for BEA
development set and M2Scorer (Dahlmeier et al.,
2013) for other datasets.

Results in Table 4 show that BERT-GEC and
GECToR model hace comparable performance,
while the rule-based model is behind them due
to poor recall.

In our second experiment we evaluate the mod-
els trained on full data in two settings: using the
scorer probabilities only (‘no base model‘ row) and
combining them with the score of the edit genera-
tor’. Precisely, we set the hypothesis score equal
to log pscorer(e) + « - scoregen(e), where a is

"We use the roberta-base GECToR  model,
which is available from https://github.com/
grammarly/gector. Our edit generator code
is available on https://www.dropbox.com/s/
ncxcjyhbw3g845d/gector.tar.gz

8The threshold was tuned on development set.

“We do not provide the combined scores for BERT-GEC
model as they do not show much improvement over the scorer
due to basic model weakness.
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https://github.com/grammarly/gector
https://github.com/grammarly/gector
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Edit generation model | Precision Recall FO0.5
Rule-based 59.8 227 451
+finetuning 63.3 28.1  50.6
BERT-GEC 65.9 23.7 48.6
+finetuning 62.1 33.9 53.2
GECToR 59.5 279  48.5
+finetuning 60.4 34.1 525

Table 4: Comparison of different edit generation
schemes on BEA 2019 data. All the models are trained
on full BEA 2019 train set and evaluated on the BEA
2019 development data. +finetuning rows refer to fur-
ther finetuning on W&I-LOCNESS training data. The
best results for each metric are in bold.

the tuned parameter'?. In addition to the models
trained on the same data as GECToR, we also eval-
uate here the version of our model trained on larger
cLang8 corpora (Rothe et al., 2021).

As shown in Table 5, our basic model slightly
outperforms SOTA GECToR model on BEA 2019
dev and test. Combining its scores with GECToR
edit scores, we improve the performance by addi-
tional 1.5 — 2%. If we do not restrict the training
data, on BEA 2019 test our model looses only to
T5-XXL model, which is almost 2 orders of mag-
nitude larger (11 B parameters instead of 200M of
roberta-base). On CoNLL-2014 test set our models
also show state-of-the-art performance, definitely
loosing only to models that has larger size (Sun
et al., 2021) and/or were pretrained with signifi-
cantly more synthetic data.

5 Additional experiments

5.1 Model parameters and objectives

Since other approaches to reranking often use rank-
ing loss, we experiment with adding the margin loss
between correct and false edits (‘+soft‘) or between
pairs of the form ‘correct edit‘-‘no edit* and ‘no
edit‘-‘incorrect edit® (‘“+contrast‘). We also tested
representing the hypothesis with mean embedding
of the output span, not its first token (‘mean‘), and
using the CLS token representation (‘CLS). We
also verified the effect of replacing Roberta-base

'%In all the experiments optimal value was o = 0.1.
" Qur evaluation.

"2Uses cLangs training data.

¥Model ensemble.

14Uses more than 9M synthetic data samples.
15Uses larger language models than roberta-base .

with either Electra(Clark et al., 2020) or Roberta-
large(Liu et al., 2019).

Results in Table 6 show that additional losses
help on small dataset but have negative impact on
the full one. Taking the target span vector as edit
representation is crucial, however, using mean vec-
tor of target span does not improve performance.
Electra!® and Roberta-large models significantly
improve over the baseline, however, their effect is
much smaller on full training dataset.

5.2 Decoding ablation

In this part of the paper we investigate how decod-
ing procedure described in Subsection 3.2 affects
the model performance. In the first experiment
we vary the decoding algorithm and the decision
threshold. In Table 7 we provide the scores for
the model trained with GECToR edit generation
on full training data before and after finetuning on
W&I-LOCNESS training data. Another notable
pattern is that before finetuning the best F0.5-score
is achieved at threshold 0.6 — 0.7, while afterwards
the optimal threshold is 0.8 — 0.9. These values
are stable across datasets, so setting the threshold
to 0.7 before finetuning and to 0.9 after it is nearly
optimal, thus threshold tuning is unnecessary.

In Table 8 we also analyze how the quality of
the model depends on the maximal number of edits
allowed. We observe that recall and F0.5 score
are improved up to 8 edits per example. The differ-
ence between offline and online algorithms is about
0.5 — 0.7 FO.5 score. It follows the experience of
(Omelianchuk et al., 2020), where iterative rewrit-
ing (the analogue of our online decoding) improved
performance even more significantly.

5.3 Joining generators

A natural question about our method is whether it is
merely a technique that exploits the data more effec-
tively or a general model capable to classify edits
as plausible or implausible. We address this ques-
tion by defining a ‘joint* edit generator that simply
returns the union of BERT-GEC and GECToR edits.
We apply to this data the classifiers trained with
only edit type (either GECToR or BERT-GEC).
Both the models are pretrained on synthetic data
and trained on full BEA2019 train set in standard
setting. Then we finetune the models on W&I-
LOCNESS either using the same edit generator as

!$Electra is pretrained on discriminating between real and
fake words in context, so its pretraining objective is very
similar to the downstream task we solve.



Model BEA 2019 dev BEA 2019 test CoNLL 2014

P R FO0.5 P R FO0.5 P R FO0.5
BERT-GEC edits, no base model 62.1 339 532 | 80.0 491 71.0 | 70.2 38.0 60.0
GECTOoR edits, no base model 604 341 525 | 76.1 524 69.8 | 73.6 349 60.2
BERT-GEC edits, pretraining, no base model | 68.4 30.4 55.1 | 824 51.1 734 | 71.2 394 613
GECToR edits, pretraining, no base model 69.1 309 554 | 82.2 49.7 727 | 729 39.1 621
GECToR edits, pretraining, combined 68.4 345 57.2|82.4 545 7,7 | 79.1 383 652
GECTOoR, roberta(Omelianchuk et al., 2020)° | 62.3 35.6 54.2 | 77.1 553 714 | 728 40.9 63.0
GECToR, XLNet(Omelianchuk et al., 2020) | 66.0 33.8 55.5 | 79.2 53.9 724 | 77.5 40.2 65.3
GECToR+BIFI(Yasunaga et al., 2021) NA NA NA | 794 550 729 | 78.0 40.6 65.8
GECTOoR edits, cLang8, no base model'! 70.2 329 572 | 828 524 742 | 726 395 63.9
GECTOoR edits, cLang8, combined'! 69.3 355 582 | 8.5 551 751|796 36.2 66.0
(Kiyono et al., 2019)!2:13 NA NA NA | 747 56.7 702 | 73.3 442 64.7
(Sun et al., 2021)!3:14 NA NA NA | NA NA NA | 710 528 66.4
T5-XXL, cLang8 (Rothe et al., 2021)!3:14 NA NA NA | NA NA 759| NA NA 689

Table 5: Results of different GEC models on three GEC datasets. The first block includes the models trained on
BEA train data only, the second one contains the ones that additionally use 9M synthetic samples from (Awasthi
et al., 2019), while the last block includes the models that either use ensembles!?, larger Transformer models'#,
cLang8 training dataset'! or more synthetic data'®. Bold denotes overall best results and italic stands for best

results among models of roberta-base size.

Model W&I+FCE BEA 2019 train+finetune
P R  F0.5 P R  FO0.5

Basic 55.5  26.7 46.1(40.0) | 60.4 34.1 52.5(40.0)

+soft 55.2  30.8 47.6(+1.5) | 58.2 35.3 51.6(—0.9)

+contrast 55.1 31.1 47.7(+1.6) | 60.9 30.1 50.5(—2.0)

CLS 57.7 22.0 43.5(—2.6) | NA NA NA

mean 58.0 27.0 47.2(+1.1) | 61.6 31.6 51.8(—0.7)

Electra 60.2 30.1 50.2(+4.1) | 60.4 34.1 52.5(40.0)

Roberta-large | 60.8 31.4 51.2(+5.0) | 63.5 34.8 54.5(42.0)

Table 6: Comparison of different architecture modifications on small(W&I+FCE, 60K sentences) and

large(BEA2019 train, 1.1M) datasets.

Appendix E for a complete description.

Threshold | Decoding | Before finetuning After finetuning
P R FO5| P R  F0.5
0.5 Online 59.2 30.7 499 | 57.1 39.8 52.6
0.6 Online 60.5 29.8 50.2 | 58.6 38.9 53.2
0.7 Online 63.1 27.7 50.2 | 60.7 379 54.2
0.8 Online 68.8 22.7 489 | 63.1 359 54.8
0.9 Online 79.9 10.7 348 |69.2 309 554

The number in brackets is the FO.5 gain over the ‘Basic’ model. See

Table 7: Precision, recall and F0.5 score on BEA 2019 development set with different decision thresholds
with/without finetuning. Models are trained on synthetic data and BEA 2019 full train set and finetuned on
W&I-LOCNESS train set with GECToR edit generator.

in training or the joint one.

Despite significant increase of edit coverage
(‘joint® edit generator has recall 63% vs 55%
of individual generators) the models show either
marginal or even negative change in terms of over-

all FO.5 score due to lower precision. Finetuning on
joint edits data also has little effect which implies
the complete training on joint edit set is required.
These results also show that GECToR model adapts
to edits of other type more easily than the BERT-




1 2 3 4 5 6 8
Offline | Precision 72.9 70.6 69.6 69.5 694 694 694 694
Recall 18.8 25,7 28.0 29.0 293 295 295 295
FO.5 score | 46.2 524 53.7 543 54.5 5H54.6 54.6 54.6
Online [Precision 72.9 71.0 70.1 694 69.2 69.1 69.0 69.0
Recall 18.8 259 304 288 299 30.5 309 31.0
FO.5score | 46.2 526 54.5 54.9 552 553 554 554
(FO.5 gain)|(40.00) (40.2) (4+0.8) (4+0.6) (+0.7) (+0.7) (+0.8) (+0.8)

Table 8: Dependence of model performance from the maximal allowed number of edits. The last row is the

difference between online and offline decoding algorithms.

Train Scorer Same finetune and test | Same finetune, joint test Joint finetune and test
P R  FO0.5 P R  FO0.5 P R F0.5
GECToR | base model | 69.1 30.9 55.4 67.6 33.0 55.9(+0.5) | 64.8 35.5 55.7(+0.3)
combined | 68.4 34.5 57.2 68.3 34.9 57.3(+0.1) | 67.3 36.6 57.6(+0.4)
BERT-GEC | base model | 69.1 30.9 554 63.4 342 54.2(—1.2) | 64.2 34.3 54.6(—0.8)

Table 9: Results of models trained on BEA 2019 full train data with BERT-GEC or GECToR edits when tested on

BEA 2019 development set with either the same or joint edit generator.

GEC one, showing that it has more perspectives for
usage in real-world setting.

5.4 Experiments on Russian

To prove that our approach is not limited to En-
glish, we test in on Russian. In contrast to English,
it has more complex nominal morphology which
extends the space of possible errors even for the
rule-based generator. In case of Russian we have
much less training data, its characteristics are given
in Table 10. Synthetic data is generated using rule-
based operations, such as comma / preposition in-
sertion/deletion/replacement or changing the word
to another form of the same lexeme!”.

We compare two edit generation models, the
first is again the rule-based one!” and the second is
simply the finetuned ruGPT-large'®, their coverage
statistics are given in Table 10. We train the scor-
ers'® on the concatenation of synthetic data and
RULEC-GEC train set and then finetune them on
real data only. The results are given in Table 11.

We observe that reranking the edits of finetuned
ruGPT-large slightly outperforms the edit genera-
tor itself. The combined model beats this baseline
by a margin of 1.7%. We also note that previous
SOTA models had larger size and were trained with

"The full list of operations is given in Appendix A.2

Bhttps://huggingface.co/sberbank-ai/
ruGPT3large_based_on_gpt2

YSince there is no Roberta-base for Russian, we
use Roberta-large https://huggingface.co/
sberbank-ai/ruRoberta-large.

significantly more synthetic data. Contrastive to
English experiments, scoring the rule-based edits
provides even better scores than the model-based
ones. We explain this by two reasons: first, the dif-
ference between rule-based and model-based edits
coverage is smaller for Russian than for English,
second, the RULEC-GEC dataset is of much lower
quality with a lot of errors uncorrected. Thus it
does not contain enough complex edits that cannot
be captured by the rules and for which the benefits
of model-based generator are more clear.

6 Related work

The task of grammatical error correction has a
long history. The main paradigm of recent years is
to treat it as low-resource machine translation (Fe-
lice et al., 2014; Junczys-Dowmunt et al., 2018) us-
ing extensive pretraining on synthetic data (Grund-
kiewicz et al., 2019). Synthetic data is usually
generated using random replacement, deletion, in-
sertion, spelling errors and perturbations (Grund-
kiewicz et al., 2019; Kiyono et al., 2019; Néaplava
and Straka, 2019), other approaches include train-
ing on Wikipedia edits (Lichtarge et al., 2019) and
backtranslation (Kiyono et al., 2019). Another
trend is incorporating pretrained Transformer lan-
guage models either as a part of system architec-
ture (Kaneko et al., 2020) or for the initialization
of model weights (Omelianchuk et al., 2020). The
extreme case of the latter approach is the “brute
force” when one simply uses large encoder-decoder


https://huggingface.co/sberbank-ai/ruGPT3large_based_on_gpt2
https://huggingface.co/sberbank-ai/ruGPT3large_based_on_gpt2
https://huggingface.co/sberbank-ai/ruRoberta-large
https://huggingface.co/sberbank-ai/ruRoberta-large

Dataset Size Coverage
Sentences  Errors | Rule-based ruGPT-based
RULEC-GEC train (Rozovskaya and Roth, 2019) 4980 4383 54.4 81.5
RULEC-GEC dev (Rozovskaya and Roth, 2019) 2500 2182 55.95 59.3
RULEC-GEC test (Rozovskaya and Roth, 2019) 5000 5301 46.4 54.3
Synthetic data 213965 187122 78.0 95.8

Table 10: Data used for experiments on Russian GEC and coverage of edit generators on this data.

Model Training data P R  FO0.5
Transformer (Ndplava and Straka, 2019) | 10M synthetic + RULEC-GEC train + dev | 63.3 27.5 50.2
mT5-XXL (Rothe et al., 2021) mC4 synthetic + RULEC-GEC train NA NA 51.6
ruGPT-large finetune (strong baseline) 200K synthetic + RULEC-GEC train 65.7 274 51.3
rule-based edits 200K synthetic + RULEC-GEC train 69.4 259 519
ruGPT-large edits, no base model 200K synthetic + RULEC-GEC train 68.2 271 51.6
ruGPT-large edits, combined 200K synthetic + RULEC-GEC train 744 246 53.0

Table 11: Results for Russian on RULEC-GEC dataset. The upper block contains the baselines, current work results

are in the lower one.

Transformer that potentially is able to solve any
text-to-text task (Rothe et al., 2021).

Another paradigm in GEC is to reduce gram-
mar correction to sequence labeling (Omelianchuk
etal., 2020). However, it requires constructing a lin-
guistically meaningful set of tags that could be hard
to design for languages with complex morphology.
Our work mainly follows the third approach that
considers GEC as two-stage process including edit
generation as the first stage and their ranking or
classification as the second. Edits were usually gen-
erated by manually written rules and their scoring
was performed by linear classifiers (Rozovskaya
etal., 2014) or later by a pretrained language model
(Alikaniotis and Raheja, 2019). A recent work of
Yasunaga et al. (2021) generates edits using sepa-
rate sequence-to-sequence Transformer and then
filters them using a language model.

Our approach can be seen as a special case of
reranking. Feature-based reranking was common
in statistical machine translation before the advent
of neural networks(Och et al., 2004), in grammat-
ical error correction it is mostly performed by a
language model R2L scorer (Grundkiewicz et al.,
2019). However, recent studies on machine transla-
tion (Lee et al., 2021) and summarization (Liu and
Liu, 2021) benefit from transformer-based rescor-
ing. Our work is partially inspired by theirs, the
key difference is that we use classification loss in-
stead of ranking and rerank individual edits, not
complete sentences. As far as we know, the only
example of trainable reranking for grammatical er-

ror correction is Liu et al. (2021), but it uses a more
complex architecture and focuses more on error
detection than correction.

7 Conclusion

We have developed an edit classifier for grammat-
ical error correction that achieves state-of-the-art
performance even without using the edit generator
scores and improves over SOTA models of com-
parable size after combination with basic model.
Our scorer can be combined with different types of
architectures, both encoder-decoder and sequence
labelers, showing similar performance. The same
approach also beats state-of-the-art results on low-
resource grammatical error correction for Russian,
which is morphologically more complex than En-
glish.

We show that additional losses are not helpful
yet, however, using better and larger Transformer
models looks promising. Since our method works
independently of the edit generator, it may be ap-
plied in setups where one has to correct errors of
a particular type (e.g., verb tense), such as second
language learning. In the future work we plan to
address this question in more details and test the ap-
plicability of our approach on additional languages,
such as German or Czech. Last but not the least,
the main idea of ranking individual edits can be
applied not only to GEC, but to any task where
the concept of elementary edit has meaning, for
example, machine translation post-editing.
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A Rule-based transformations used for
edit generation

A.1 English

Rule-based edit generator includes the following
operations:

¢ Comma insertion and deletion.

* Preposition insertion, deletion and substitu-
tion. Insertion is allowed only before the first
token of a noun group.

¢ Determiner insertion, deletion and substitu-
tion. Insertion is allowed only before the first
token of a noun group.

¢ to insertion before infinitives.

* Spelling correction for OOV words using Hun-
spell?’.

* Substitution a word with all its inflected forms,
inflection is performed using Lemminflect®!.

* Capitalization switching.

* Replacement of comma by period and capital-
izing the subsequent word (I have a dog, it is
cute. — I have a dog. It is cute.).

The rules take as input sentence dependency
trees, parsing is done using Spacy??.

A.2 Russian

Rule-based edit generator for Russian includes the
following operations:

¢ Comma insertion and deletion.

* Preposition insertion, deletion and substitu-
tion. Insertion is allowed only before the first
token of a noun group.

* Conjunction substitution.

* Spelling correction for OOV words using Hun-
spell®.

* Joining of consecutive words using Hunspell
(e.g. ne bol’shoj ‘no+big‘ +— nebol’shoj
‘small*).

Phttps://github.com/MSeal/cython_
hunspell

lpnttps://github.com/bjascob/
LemmInflect/

22spacy.io

Bhttps://github.com/MSeal/cython_
hunspell
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e Substitution a word with all its inflected forms,
inflection is performed using PyMorphy?*.

* Joint noun group inflection (e.g. bol’shoj
dom ‘large house‘ — bol’shikh domov
‘large+GEN+PL houses+GEN’)

* Capitalization switching.
» Switching the order of consecutive words.

The rules take as input sentence dependency
trees, parsing is done using DeepPavlov>>.

B Data sources

English

e W&I-LOCNESS train, dev and test
https://www.cl.cam.ac.uk/
research/nl/bea2019st/data/

wit+locness_v2.1l.beal9.tar.gz.

* FCE https://www.cl.cam.ac.uk/
research/nl/bea2019st/data/
fce_v2.1.beal9.tar.gz.

* NUCLE https://sterling8.
d2.comp.nus.edu.sg/nucle_
download/nucle.php.

» Lang8 https://docs.
google.com/forms/d/e/

1IFATPpQLSf1RX3h5QYxegivijHN7SJ1940xZ4XNA4:

TRt 0cNpR2YbmNV-7Ag/viewform.

* CLang8 https://github.com/
google-research-datasets/
clang8.

e Conlll4 https://www.comp.

nus.edu.sg/~nlp/conllldst/
conlll4dst-test—-data.tar.gz.

* PIE synthetic data https://
drive.google.com/open?id=

1bl5reJ-XhPEfEaP jvO45M7w0yN-0XGOA.

Russian

* RULEC-GEC https://github.com/
arozovskaya/RULEC-GEC.

» Synthetic data: not available yet.
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Source Until the dawn all of them go out , so they sacred until they find a refuge .
Correct By dawn all of them had got out , so they sacred until they found a refuge .
Edit Target | Gain [ Label
Rule-based edit generator

(1, 2, the) — _ Until dawn all of them go out , so they sacred until they find a refuge . 1.33 | True
(11,11, _) — are Until the dawn all of them go out , so they are sacred until they find a refuge . 0.95 | False
(3,3,)—, Until the dawn , all of them go out, so they sacred until they find a refuge . 0.95 False

(11, 11, _) — were Until the dawn all of them go out , so they were sacred until they find a refuge . —1.73 | False
(-1,-1, ) — _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False

BERT-GEC edit generator
(11, 11, _) — are Until the dawn all of them go out, so they are sacred until they find a refuge . 0.06 | False
(1, 2, the) — _ Until dawn all of them go out , so they sacred until they find a refuge . —0.06 | True
(11, 11, _) — stay Until the dawn all of them go out, so they stay sacred until they find a refuge . —0.24 | False
(0, 2, Until the) — Before | Before dawn all of them go out, so they sacred until they find a refuge . —0.79 | False
(12, 12, _) — themselves Until the dawn all of them go out , so they sacred themselves until they find a refuge . | —2.95 | False
(0, 2, Until the) — Up until | Up until the dawn all of them go out , so they sacred until they find a refuge . —2.99 | False
(-1,-1, ) — _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 | False
GECToR edit generator

(0, 1, Until) — In In the dawn all of them go out , so they sacred until they find a refuge . 5.35 | False
(1, 2, the) — _ Until dawn all of them go out, so they sacred until they find a refuge . 4.59 True

(0, 1, Until) — _ The dawn all of them go out , so they sacred until they find a refuge . 4.01 False
(0, 1, Until) — As As the dawn all of them go out , so they sacred until they find a refuge . 2.86 | False
(12, 13, until) — _ Until the dawn all of them go out , so they sacred they find a refuge . 1.21 False
(15,16, a) — _ Until the dawn all of them go out, so they sacred until they find refuge . 1.01 False
(7,8, out) — _ Until the dawn all of them go , so they sacred until they find a refuge . 0.72 | False

(0, 1, Until) — By By the dawn all of them go out, so they sacred until they find a refuge . 0.71 True
3,3,) —, Until the dawn , all of them go out , so they sacred until they find a refuge . 0.65 False
(8,10, ,_s0) — . So Until the dawn all of them go out . So they sacred until they find a refuge . 0.48 | False
(6,7, go) — went Until the dawn all of them went out , so they sacred until they find a refuge . —0.55 | False
8,9, — _ Until the dawn all of them go out so they sacred until they find a refuge . —0.81 | False
(12,12, ) —, Until the dawn all of them go out , so they sacred , until they find a refuge . —1.18 | False
(14, 15, find) — found Until the dawn all of them go out , so they sacred until they found a refuge . —3.76 | True
-1,-1, ) — _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False

Table 12: Output of different edit generators for the sentence Until the dawn all of them go out , so they sacred until
they find a refuge . Gain column contains the first stage score.

C Examples of elementary edits
D Model hyperparameters

In Table 13 we summarize the information required
to replicate the training procedure. The exact val-
ues may vary slightly. In all the experiments we did
finetuning for 5 epochs, but generally later check-
points demonstrated severe overfitting.

E Ablation studies

The choice of model architecture and training pa-
rameters may seem arbitrary. Therefore in this
section we study other possible variants of mod-

Parameter Value
Batch size 3500 tokens
Optimizer wAdam
Learning rate le—5
Weight decay 0.01
Warmup (base models) 0
Warmup (large models) 2000
Pretraining epochs 1
Lang8 training epochs 3
Finetuning epochs 2
Joint training epochs (Russian) 1
Finetuning epochs (Russian) 2

Table 13: Training hyperparameters.

ern architecture. The architecture used in main
experiments has the following key components:

1. The model is trained with cross-entropy classi-
fication loss without any additional objectives. 4

2. The loss is normalized separately for positive
and negative instances. 5

Xnttps://github.com/kmike/pymorphy2/
Bhttp://docs.deeppavlov.ai/en/0.14.1/

3. The encoding of the first token in the output

span is used as edit representation.

hidden layer.

Transformer encoder.

12

. The classification module contains a single

. Except for the classification module, no ad-
ditional layers are added on the top of main



https://github.com/kmike/pymorphy2/
http://docs.deeppavlov.ai/en/0.14.1/

6. Roberta-base is used as the encoder.
We test the following architecture modifications:

1. Adding an additional ranking objective. We
do it adding standard margin loss:

L(z",z7) =max (g(z~) — g(z™) +6,0),

L(zt,27)
(et ,2—)eP

L=Lcg+« Pl

Here g is the logit of positive class before
sigmoid, P is the set of contrastive pairs of
batch elements, 6 is a margin hyperparameter
and « is the additional loss weight 2°. We
investigate 3 variants of defining P:

e All pairs of positive and negative in-
stances (+soft),

* Only pairs of positive and negative in-
stances whose spans intersect(+hard),

e All pairs of the form (e™,eg) and
(e e™), where e, e and e are pos-
itive, negative and “do nothing” edits,
respectively(+contrast).

Removal of class normalization (no_norm).

3. Using the CLS token (cls), mean representa-
tion of output span (mean) and concatenation
of output and source span (origin) as edit en-
codings.

Adding one more hidden layer in the classifi-
cation block (‘2 layers®).

Adding an additional Transformer layer be-
tween all the edit representations for the same
sentence (+attention). That allows to poten-
tially use information from other hypotheses.

Use other Transformer variants, in particu-
lar Electra(Clark et al., 2020) and Roberta-
large(Liu et al., 2019).

We run all ablation experiments on the concate-
nation of W&I+LOCNESS train and FCE datasets
using GECToR edit generator, results are given in
Table 14. For all the models we select the best
performing checkpoint and threshold according to
the F0.5 score and perform online decoding. For
those models that improve over the basic one on
the small dataset, we run additional testing on full
BEA train data without finetuning.

We observe that additional losses that are helpful
in low-resource setting even decrease performance

We set o = 0.25,60 = 2.0.
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for larger data. The more promising approach is to
use either more suitable to text correction (Electra)
or larger (Roberta-large) language models. How-
ever, with more data the gap between them and the
roberta-base model also becomes smaller.



Model W&I+FCE BEA 2019 train+finetune
P R  FO0.5 P R  FO.5

Basic 555 267 46.1(+0.0) | 60.4 341 52.5(+0.0)

+hard 551 264 45.8(—03) | NA NA NA

+soft 552 30.8 47.6(+1.5) | 58.2 35.3 51.6(—0.9)

+contrast 55.1 31.1 47.7(+1.6) | 60.9 30.1 50.5(—2.0)

no_norm 55.8 274 462(+01) | NA NA NA

CLS 57.7 22.0 43.5(—2.6) | NA NA NA

+mean 58.0 27.0 47.2(+1.1) | 61.6 31.6 51.8(—0.7)

+origin 57.4 26.2 46.4(+0.3) | NA NA NA

2layers 55.6 27.7 46.3(+0.2) | NA NA NA

+attention 52.8 314 46.4(4+0.3) | NA NA NA

Electra 60.2 30.1 50.2(+4.1) | 60.4 34.1 52.5(10.0)

Roberta-large | 60.8 31.4 51.2(4+5.0) | 63.5 34.8 54.5(+2.0)

Table 14: Comparison of different architecture modifications, the number in brackets is the difference with the
‘Basic‘ model. See the list above for a complete description.
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