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Abstract

The primary axes of interest in image-generating diffusion models are image
quality, the amount of variation in the results, and how well the results align with
a given condition, e.g., a class label or a text prompt. The popular classifier-free
guidance approach uses an unconditional model to guide a conditional model,
leading to simultaneously better prompt alignment and higher-quality images at
the cost of reduced variation. These effects seem inherently entangled, and thus
hard to control. We make the surprising observation that it is possible to obtain
disentangled control over image quality without compromising the amount of
variation by guiding generation using a smaller, less-trained version of the model
itself rather than an unconditional model. This leads to significant improvements in
ImageNet generation, setting record FIDs of 1.01 for 64×64 and 1.25 for 512×512,
using publicly available networks. Furthermore, the method is also applicable to
unconditional diffusion models, drastically improving their quality.

1 Introduction

Denoising diffusion models [14, 42, 43, 44, 45] generate synthetic images by reversing a stochastic
corruption process. Essentially, an image is revealed from pure noise by denoising it little by little
in successive steps. A neural network that implements the denoiser (equivalently [49], the score
function [17]) is a central design element, and various architectures have been proposed (e.g., [1, 6, 8,
16, 18, 21, 34]). Equally important are the details of the multi-step denoising process that corresponds
mathematically to solving an ordinary [31, 43] or a stochastic [45] differential equation, for which
many different parameterizations, solvers, and step schedules have been evaluated [19, 20, 26, 39, 53].
To control the output image, the denoiser is typically conditioned on a class label, an embedding of a
text prompt, or some other form of conditioning input [32, 37, 41, 52].

The training objective of a diffusion model aims to cover the entire (conditional) data distribution. This
causes problems in low-probability regions: The model gets heavily penalized for not representing
them, but it does not have enough data to learn to generate good images corresponding to them.
Classifier-free guidance (CFG) [15] has become the standard method for “lowering the sampling
temperature”, i.e., focusing the generation on well-learned high-probability regions. By training a
denoiser network to operate in both conditional and unconditional setting, the sampling process can
be steered away from the unconditional result — in effect, the unconditional generation task specifies
a result to avoid. This results in better prompt alignment and improved image quality, where the
former effect is due to CFG implicitly raising the conditional part of the probability density to a
power greater than one [9].

However, CFG has drawbacks that limit its usage as a general low-temperature sampling method.
First, it is applicable only for conditional generation, as the guidance signal is based on the difference
between conditional and unconditional denoising results. Second, because the unconditional and
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conditional denoisers are trained to solve a different task, the sampling trajectory can overshoot the
desired conditional distribution, which leads to skewed and often overly simplified image compo-
sitions [24]. Finally, the prompt alignment and quality improvement effects cannot be controlled
separately, and it remains unclear how exactly they relate to each other.

In this paper, we provide new insights into why CFG improves image quality and show how this
effect can be separated out into a novel method that we call autoguidance. Our method does not suffer
from the task discrepancy problem because we use an inferior version of the main model itself as the
guiding model, with unchanged conditioning. This guiding model can be obtained by simply limiting,
e.g., model capacity and/or training time. We validate the effectiveness of autoguidance in various
synthetic test cases as well as in practical image synthesis in class-conditional and text-conditional
settings. In addition, our method enables guidance for unconditional synthesis. In quantitative tests,
the generated image distributions are improved considerably when measured using FID [12] and
FDDINOv2 [47] metrics, setting new records in ImageNet-512 and ImageNet-64 generation.

Our implementation and pre-trained models are available at https://github.com/NVlabs/edm2

2 Background

Denoising diffusion. Denoising diffusion generates samples from a distribution pdata(x) by it-
eratively denoising a sample of pure white noise, such that a noise-free random data sample is
gradually revealed [14]. The idea is to consider heat diffusion of pdata(x) into a sequence of in-
creasingly smoothed densities p(x;σ) = pdata(x) ∗ N (x;0, σ2I). For a large enough σmax, we have
p(x;σmax) ≈ N (x;0, σ2

maxI), from which we can trivially sample by drawing normally distributed
white noise. The resulting sample is then evolved backward towards low noise levels by a probability
flow ODE [20, 43, 45]

dxσ = −σ∇xσ
log p(xσ;σ) dσ (1)

that maintains the property xσ ∼ p(xσ;σ
)

for every σ ∈ [0, σmax]. Upon reaching σ = 0, we obtain
x0 ∼ p(x0; 0) = pdata(x0) as desired.

In practice, the ODE is solved numerically by stepping along the trajectory defined by Equation 1.
This requires evaluating the so-called score function [17] ∇x log p(x;σ) for a given sample x and
noise level σ at each step. Rather surprisingly, we can approximate this vector using a neural network
Dθ(x;σ) parameterized by weights θ trained for the denoising task

θ = argminθ Ey∼pdata,σ∼ptrain,n∼N (0,σ2I)∥Dθ(y + n;σ)− y∥22, (2)

where ptrain controls the noise level distribution during training. Given Dθ, we can estimate
∇x log p(x;σ) ≈ (Dθ(x;σ) − x)/σ2, up to approximation errors due to, e.g., finite capacity or
training time [20, 49]. As such, we are free to interpret the network as predicting either a denoised
sample or a score vector, whichever is more convenient for the analysis at hand. Many reparameteri-
zations and practical ODE solvers are possible, as enumerated by Karras et al. [20]. We follow their
recommendations, including the schedule σ(t) = t that lets us parameterize the ODE directly via
noise level σ instead of a separate time variable t.

In most applications, each data sample x is associated with a label c, representing, e.g., a class index
or a text prompt. At generation time, we control the outcome by choosing a label c and seeking
a sample from the conditional distribution p(x|c;σ) with σ = 0. In practice, this is achieved by
training a denoiser network Dθ(x;σ, c) that accepts c as an additional conditioning input.

Classifier-free guidance. For complex visual datasets, the generated images often fail to reproduce
the clarity of the training images due to approximation errors made by finite-capacity networks. A
broadly used trick called classifier-free guidance (CFG) [15] pushes the samples towards higher
likelihood of the class label, sacrificing variety for “more canonical” images that the network appears
to be better capable of handling.

In a general setting, guidance in a diffusion model involves two denoiser networks D0(x;σ, c) and
D1(x;σ, c). The guiding effect is achieved by extrapolating between the two denoising results by a
factor w:

Dw(x;σ, c) = wD1(x;σ, c) + (1− w)D0(x;σ, c). (3)
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Trivially, setting w = 0 or w = 1 recovers the output of D0 and D1, respectively, while choosing
w > 1 over-emphasizes the output of D1. Recalling the equivalence of denoisers and scores [49], we
can write

Dw(x;σ, c) ≈ x+ σ2∇x log

(
p0(x|c;σ)

[
p1(x|c;σ)
p0(x|c;σ)

]w)
︸ ︷︷ ︸

∝: pw(x|c;σ)

. (4)

Thus, guidance grants us access to the score of the density pw(x|c;σ) implied in the parentheses.
This score can be further written as [9, 15]

∇x log pw(x|c;σ) = ∇x log p1(x|c;σ) + (w − 1)∇x log
p1(x|c;σ)
p0(x|c;σ)

. (5)

Substituting this expression into the ODE of Equation 1, this yields the standard evolution for
generating images from p1, plus a perturbation that increases (for w > 1) the ratio of p1 and p0 as
evaluated at the sample. The latter can be interpreted as increasing the likelihood that a hypothetical
classifier would attribute for the sample having come from density p1 rather than p0.

In CFG, we train an auxiliary unconditional denoiser Dθ(x;σ) to denoise the distribution p(x;σ)
marginalized over c, and use this as D0. In practice, this is typically [15] done using the same
network Dθ with an empty conditioning label, setting D0 := Dθ(x;σ, ∅) and D1 := Dθ(x;σ, c).
By Bayes’ rule, the extrapolated score vector becomes ∇x log p(x|c;σ) + (w − 1)∇x log p(c|x;σ).
During sampling, this guides the image to more strongly align with the specified class c.

It would be tempting to conclude that solving the diffusion ODE with the score function of Equation 5
produces samples from the data distribution specified by pw(x|c; 0). Unfortunately this is not the
case, because pw(x|c;σ) does not represent a valid heat diffusion of pw(x|c; 0). Therefore, solving
the ODE does not, in fact, follow the density. Instead, the samples are blindly pushed towards
higher values of the implied density at each noise level during sampling. This can lead to distorted
sampling trajectories, greatly exaggerated truncation, and mode dropping in the results [24], as well
as over-saturation of colors [41]. Nonetheless, the improvement in image quality is often remarkable,
and high guidance values are commonly used despite the drawbacks (e.g., [13, 35, 37, 41]).

3 Why does CFG improve image quality?

We begin by identifying the mechanism by which CFG improves image quality instead of only
affecting prompt alignment. To illustrate why unguided diffusion models often produce unsatisfactory
images, and how CFG remedies the problem, we study a 2D toy example where a small-scale denoiser
network is trained to perform conditional diffusion in a synthetic dataset (Figure 1). The dataset
is designed to exhibit low local dimensionality (i.e., highly anisotropic and narrow support) and
hierarchical emergence of local detail upon noise removal. These are both properties that can be
expected from the actual manifold of realistic images [4, 36]. For details of the setup, see Appendix C.

Score matching leads to outliers. Compared to sampling directly from the underlying distribution
(Figure 1a), the unguided diffusion in Figure 1b produces a large number of extremely unlikely
samples outside the bulk of the distribution. In the image generation setting, these would correspond
to unrealistic and broken images.

We argue that the outliers stem from the limited capability of the score network combined with the
score matching objective. It is well known that maximum likelihood (ML) estimation leads to a “con-
servative” fit of the data distribution [2] in the sense that the model attempts to cover all training sam-
ples. This is because the underlying Kullback–Leibler divergence incurs extreme penalties if the model
severely underestimates the likelihood of any training sample. While score matching is generally not
equal to ML estimation, they are closely related [14, 28, 45] and appear to exhibit broadly similar
behavior. For example, it is known that for a multivariate Gaussian model, the optimal score matching
fit coincides with the ML estimate [17]. Figures 2a and 2b show the learned score field and implied
density in our toy example for two models of different capacity at an intermediate noise level. The
stronger model envelops the data more tightly, while the weaker model’s density is more spread out.

From the perspective of image generation, a tendency to cover the entire training data becomes a
problem: The model ends up producing strange and unlikely images from the data distribution’s
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(a) Ground truth (b) No guidance (c) Classifier-free
guidance

(d) Naive truncation (e) Autoguidance
(ours)

Figure 1: A fractal-like 2D distribution with two classes indicated with gray and orange regions.
Approximately 99% of the probability mass is inside the shown contours. (a) Ground truth samples
drawn directly from the orange class distribution. (b) Conditional sampling using a small denoising
diffusion model generates outliers. (c) Classifier-free guidance (w = 4) eliminates outliers but
reduces diversity by over-emphasizing the class. (d) Naive truncation via lengthening the score
vectors. (e) Our method concentrates samples on high-probability regions without reducing diversity.

(a) p1(x|c;σmid) (b) p0(x;σmid) (c) Ratio p1/p0 (d) No guidance (e) CFG with w = 4

Figure 2: Closeup of the region highlighted in Figure 1c. (a) The implied learned density p1(x|c;σmid)
(green) at an intermediate noise level σmid and its score vectors (log-gradients), plotted at represen-
tative sample points. The learned density approximates the underlying ground truth p(x|c;σmid)
(orange) but fails to replicate its sharper details. (b) The weaker unconditional model learns a further
spread-out density p0(x;σmid) (red) with a looser fit to the data. (c) Guidance moves the points
according to the gradient of the (log) ratio of the two learned densities (blue). As the higher-quality
model is more sharply concentrated at the data, this field tends inward towards the data distribution.
The corresponding gradient is simply the difference of respective gradients in (a) and (b), illustrated at
selected points. (d) Sampling trajectories taken by standard unguided diffusion following the learned
score ∇x log p1(x|c;σ), from noise level σmid to 0. The contours (orange) represent the ground truth
noise-free density. (e) Guidance introduces an additional force shown in (c), causing the points to
concentrate at the core of the data density during sampling.

extremities that are not learnt accurately but included just to avoid the high loss penalties. Furthermore,
during training, the network has only seen real noisy images as inputs, and during sampling it may
not be prepared to deal with the unlikely samples it is handed down from the higher noise levels.

CFG eliminates outliers. The effect of applying classifier-free guidance during generation is
demonstrated in Figure 1c. As expected, the samples avoid the class boundary (i.e., there are no
samples in the vicinity of the gray area), and entire branches of the distribution are dropped. We
also observe a second phenomenon, where the samples have been pulled in towards the core of the
manifold, and away from the low-probability intermediate regions. Seeing that this eliminates the
unlikely outlier samples, we attribute the image quality improvement to it. However, mere boosting
of the class likelihood does not explain this increased concentration.

We argue that this phenomenon stems from a quality difference between the conditional and uncondi-
tional denoiser networks. The denoiser D0 faces a more difficult task of the two: It has to generate
from all classes at once, whereas D1 can focus on a single class for any specific sample. Given the
more difficult task, and typically only a small slice of the training budget, the network D0 attains
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a worse fit to the data.1 This difference in accuracy is apparent in respective plots of the learned
densities in Figures 2a and 2b.

From our interpretation in Section 2, it follows that CFG is not only boosting the likelihood of
the sample having come from the class c, but also that of having come from the higher-quality
implied distribution. Recall that guidance boils down to an additional force (Equation 5) that pulls the
samples towards higher values of log [p1(x|c;σ)/p0(x|c;σ)]. Plotting this ratio for our toy example
in Figure 2c, along with corresponding gradients that guidance contributes to the ODE vector field,
we see that the ratio generally decreases with distance from the manifold due to the denominator
p0 representing a more spread-out distribution, and hence falling off slower than the numerator p1.
Consequently, the gradients point inward towards the data manifold. Each contour of the density
ratio corresponds to a specific likelihood that a hypothetical classifier would assign on a sample
being drawn from p1 instead of p0. Because the contours roughly follow the local orientation and
branching of the data manifold, pushing samples deeper into the “good side” concentrates them at the
manifold.2

Discussion. We can expect the two models to suffer from inability to fit at similar places, but to
a different degree. The predictions of the denoisers will disagree more decisively in these regions.
As such, CFG can be seen as a form of adaptive truncation that identifies when a sample is likely to
be under-fit and pushes it towards the general direction of better samples. Figures 2d and 2e show
the effect over the course of generation: The truncation “overshoots” the correction and produces a
narrower distribution than the ground truth, but in practice this does not appear to have an adverse
effect on the images.

In contrast, a naive attempt at achieving this kind of truncation — inspired by, e.g., the truncation
trick in GANs [3, 29] or lowering temperature in generative language models — would counteract
the smoothing by uniformly lengthening the score vectors by a factor w > 1. This is illustrated in
Figure 1d, where the samples are indeed concentrated in high-probability regions, but in an isotropic
fashion that leaves the outer branches empty. In practice, images generated this way tend to show
reduced variation, oversimplified details, and monotone texture.

4 Our method

We propose to isolate the image quality improvement effect by directly guiding a high-quality
model D1 with a poor model D0 trained on the same task, conditioning, and data distribution, but
suffering from certain additional degradations, such as low capacity and/or under-training. We call
this procedure autoguidance, as the model is guided with an inferior version of itself.

In the context of our 2D toy example, this turns out to work surprisingly well. Figure 1e demonstrates
the effect of using a smaller D0 with fewer training iterations. As desired, the samples are pulled
close to the distribution without systematically dropping any part of it.

To analyze why this technique works, recall that under limited model capacity, score matching tends
to over-emphasize low-probability (i.e., implausible and under-trained) regions of the data distribution.
Exactly where and how the problems appear depend on various factors such as network architecture,
dataset, training details, etc., and we cannot expect to identify and characterize the specific issues a
priori. However, we can expect a weaker version of the same model to make broadly similar errors
in the same regions, only stronger. Autoguidance seeks to identify and reduce the errors made by
the stronger model by measuring its difference to the weaker model’s prediction, and boosting it.
When the two models agree, the perturbation is insignificant, but when they disagree, the difference
indicates the general direction towards better samples.

As such, we can expect autoguidance to work if the two models suffer from degradations that are
compatible with each other. Since any D1 can be expected to suffer from, e.g., lack of capacity and

1The visual quality difference is obvious if we simply inspect the unconditional images generated by
current large-scale models. Furthermore, the unconditional case tends to work so poorly that the corresponding
quantitative numbers are hardly ever reported. The EDM2-S model [21] trained with ImageNet-512, for example,
yields a FID of 2.56 in the class-conditional setting and 11.67 in the unconditional setting.

2Discriminator guidance [22] trains an explicit classifier to discriminate between the generated samples and
noisy training samples at each noise level and uses its log-gradient to guide the sampling. Our analysis is not
applicable in this situation; in CFG the task is implicit and the distinction is between p1 and p0.
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lack of training — at least to some degree — it makes sense to choose D0 so that it further exacerbates
these aspects.

In practice, models that are trained separately or for a different number of iterations differ not
only in accuracy of fit, but also in terms of random initialization, shuffling of the training data,
etc. For guidance to be successful, the quality gap should be large enough to make the systematic
spreading-out of the density outweigh these random effects.

Study on synthetic degradations. To validate our hypothesis that the two models must suffer from
the same kind of degradations, we perform a controlled experiment using synthetic corruptions applied
to a well-trained real-world image diffusion model. We create the main and guiding networks, D1

and D0, by applying different degrees of a synthetic corruption to the base model. This construction
allows us to use the untouched base model as grounding when measuring the FID effect of the various
combinations of corruptions applied to D1 and D0. We find that as long as the degradations are
compatible, autoguidance largely undoes the damage caused by the corruptions:

• Base model: As the base model, we use EDM2-S trained on ImageNet-512 without dropout
(FID = 2.56).

• Dropout: We construct D1 by applying 5% dropout to the base model in a post-hoc fashion
(FID = 4.98), and D0 by applying 10% dropout to the base model (FID = 15.00). Applying
autoguidance, we reach the best result (FID = 2.55) with w = 2.25, matching the base
model’s FID.

• Input noise: We construct D1 by modifying the base model to add noise to the input images
so that their noise level is increased by 10% (FID = 3.96). The σ conditioning input of the
denoiser is adjusted accordingly. The guiding model D0 is constructed similarly, but with a
noise level increase of 20% (FID = 9.73). Applying autoguidance, we reach the best result
(FID = 2.56) with w = 2.00, again matching the base model’s FID.

• Mismatched degradations: If we corrupt D1 by dropout and D0 by input noise, or vice
versa, guidance does not improve the results at all; in these cases, the best FID is obtained
by setting w = 1, i.e., by disabling guidance and using the less corrupted D1 exclusively.

While this experiment corroborates our main hypothesis, we do not suggest that guiding with these
synthetic degradations would be useful in practice. A realistic diffusion model will not suffer from
these particular degradations, so creating a guiding model by introducing them would not yield
consistent truncation towards the data manifold.

5 Results

Our primary evaluation is carried out using ImageNet (ILSVRC2012) [7] at two resolutions: 512×512
and 64×64. For ImageNet-512 we use latent diffusion [38], while ImageNet-64 works directly on
RGB pixels. We take the current state-of-the-art diffusion model EDM2 [21] as our baseline.3 We
use the EDM2-S and EDM2-XXL models with default sampling parameters: 32 deterministic steps
with a 2nd order Heun sampler [20]. For most setups, a pre-trained model is publicly available, and in
the remaining cases we train the models ourselves using the official implementation (Appendix B).

We use two degradations for the guiding model: shorter training time and reduced capacity compared
to the main model. We obtain the best results by having both of these enabled. With EDM2-S, for
example, we use an XS-sized guiding model that receives 1/16th of the training iterations of the
main model. We ablate the relative importance of the degradations as well as the sensitivity to these
specific choices in Section 5.1. As the EDM2 networks are known to be sensitive to the guidance
weight and EMA length [21], we search the optimal values for each case using a grid search.

Table 1 shows that our method improves FID [12] and FDDINOv2 [47] considerably. Using the small
model (EDM2-S) in ImageNet-512, our autoguidance improves FID from 2.56 to 1.34. This beats
the 1.68 achieved by the concurrently proposed CFG + Guidance Interval [24], and is the best result
reported for this dataset regardless of the model size. Using the largest model (EDM2-XXL) further
improves the record to 1.25. The FDDINOv2 records are similarly improved, with the large model

3https://github.com/NVlabs/edm2

6

https://github.com/NVlabs/edm2


Method FID w EMAm EMAg FDDINOv2 w EMAm EMAg

51
2×

51
2

EDM2-S [21] 2.56 – 0.130 – 68.64 – 0.190 –
+ Classifier-free guidance [21] 2.23 1.40 0.025 0.025 52.32 1.90 0.085 0.085

+ Guidance interval [24] 1.68 2.10 0.025 0.025 46.25 3.20 0.085 0.085
+ Autoguidance (XS, T/16) Ours 1.34 2.10 0.070 0.125 36.67 2.45 0.120 0.165

− Same EMA for both 1.53 1.95 0.050 0.050 40.81 2.25 0.115 0.115
− Reduce training only 1.51 2.20 0.090 0.130 42.27 2.55 0.130 0.170
− Reduce capacity only 2.13 1.80 0.120 0.160 59.89 1.90 0.140 0.085

EDM2-XXL [21] 1.91 – 0.070 – 42.84 – 0.150 –
+ Classifier-free guidance [21] 1.81 1.20 0.015 0.015 33.09 1.70 0.015 0.015

+ Guidance interval [24] 1.40 2.00 0.015 0.015 29.16 2.90 0.015 0.015
+ Autoguidance (M, T/3.5) Ours 1.25 2.05 0.075 0.155 24.18 2.30 0.130 0.205
EDM2-S, unconditional 11.67 – 0.145 – 209.53 – 0.170 –
+ Autoguidance (XS, T/16) Ours 3.86 2.85 0.070 0.110 90.39 2.90 0.090 0.125

64
×

64

RIN [18] 1.23 – 0.033 – – – – –
EDM2-S [21] 1.58 – 0.075 – 58.52 – 0.160 –
+ Classifier-free guidance 1.48 1.15 0.030 0.030 41.84 1.85 0.040 0.040
+ Autoguidance (XS, T/8) Ours 1.01 1.70 0.045 0.110 31.85 2.20 0.105 0.175

Table 1: Results on ImageNet-512 and ImageNet-64. The parameters of autoguidance refer to the
capacity and amount training received by the guiding model. The latter is given relative to the number
of training images shown to the main model (T ). The columns EMAm and EMAg indicate the length
parameter of the post-hoc EMA technique [21] for the main and guiding model, respectively.

w=1.0 1.5 2.0 2.5 3.0

1.5

2.0

2.5

3.0

3.5

FID

1.40 1.34

1.47

T/32 T/16⋆ T/8

(a) Guidance weight & training

w=1.0 1.5 2.0 2.5 3.0

1.5

2.0

2.5

3.0

3.5

FID

1.41 1.34

1.51

XXS XS⋆ S

(b) Guidance weight & capacity

EMA = 0.05 0.10 0.15

1.5

2.0

2.5

3.0

3.5

FID

1.34 1.34

EMAm EMAg

(c) EMA length parameters

Figure 3: Sensitivity w.r.t. autoguidance parameters, using EDM2-S on ImageNet-512. The shaded
regions indicate the min/max FID over 3 evaluations. (a) Sweep over guidance weight w while
keeping all other parameters unchanged. The curves correspond to how much the guiding model was
trained relative to the number of images shown to the main model. (b) Sweep over guidance weight
for different guiding model capacities. (c) Sweep over the two EMA length parameters for our best
configuration, denoted with ⋆ in (a) and (b).

lowering the record from 29.16 to 24.18. In ImageNet-64, the improvement is even larger; in this
dataset, we set the new record FID and FDDINOv2 of 1.01 and 31.85, respectively.

A particular strength of autoguidance is that it can be applied to unconditional models as well. While
conditional ImageNet generation may be getting close to saturation, the unconditional results remain
surprisingly poor. EDM2-S achieves a FID of 11.67 in the unconditional setting, indicating that
practically none of the generated images are of presentable quality. Enabling autoguidance lowers
the FID substantially to 3.86, and the improvement in FDDINOv2 is similarly significant.

5.1 Ablations

Table 1 further shows that it is beneficial to allow independent EMA lengths for the main and guiding
models. When both are forced to use the same EMA, FID worsens from 1.34 to 1.53 in ImageNet-512
(EDM2-S). We also measure the effect of each degradation (reduced training time, capacity) in
isolation. If we set the guiding model to the same capacity as the main model and only train it for a
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Figure 4: Example results for the Tree frog, Palace, Mushroom, Castle classes of ImageNet-512 using
EDM2-S. Guidance weight increases to the right; rows are classifier-free guidance and our method.

shorter time, FID worsens to 1.51. If we instead train the reduced-capacity guiding model for as long
as the main model, FID suffers a lot more, to 2.13. We can thus conclude that both degradations are
beneficial and orthogonal, but a majority of the improvement comes from reduced training of the
guiding model. Notably, all these ablations still outperform standard CFG in terms of FID.

Figure 3 probes the sensitivity to various hyperparameters. Our best result is obtained by training the
guiding model 1/16th as much as the main model, in terms of images shown during training. Further
halving the training budget is almost equally good, while doubling the amount of training starts to
slowly compromise the results. The results are quite insensitive to the choice of the guidance weight.
In terms of the capacity of the guiding model, one step smaller (XS for EDM2-S) gave the best result.
Two steps smaller (XXS) was also better than no capacity reduction (S), but started to show excessive
sensitivity to the guidance weight. The results are also sensitive to the EMA length, similarly to the
original EDM2. Post-hoc EMA [21] allows us to search the optimal parameters at a feasible cost.

We also explored several other degradations for the guiding model but did not find them to be
beneficial. First, we tried reducing the amount of training data used for the guiding model, but this
did not seem to improve the results over the baseline. Second, applying guidance interval [24] on
top of our method reduced its benefits to some extent, suggesting that autoguidance is helpful at all
noise levels. Third, deriving the guiding model from the main model using synthetic degradations did
not work at all, providing further evidence that the guiding model needs to exhibit the same kinds of
degradations that the main model suffers from. Fourth, we found that if the main model had been
quantized, e.g., to improve inference speed, quantizing it to an even lower precision did not yield a
useful guiding model.

One limitation of autoguidance is the need to train a separate guiding model. That said, the additional
training cost can be quite modest when using a smaller model and shorter training time for the
guiding model. For example, the EDM2-M model trains approximately 2.7× as fast as EDM2-XXL
per iteration, and we train it for 1/3.5 of iterations, so the additional cost is around +11%. For the
EDM2-S/XS pair used in most of our experiments, the added training cost is only +3.6%.
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Interpolation between CFG and our method

Figure 5: Results for DeepFloyd IF [46] using the prompt “A blue jay standing on a large basket of
rainbow macarons”. The rows correspond to guidance weights w ∈ {1, 2, 3, 4}. The leftmost column
shows results for CFG and the rightmost for autoguidance (XL-sized model guided by M-sized one).
The middle columns correspond to blending between the two. See Appendix A for more examples.

5.2 Qualitative results

Figure 4 shows examples of generated images for ImageNet-512. Both CFG and our method tend
to improve the perceptual quality of images, guiding the results towards clearer realizations as the
guidance weight increases. However, CFG seems to have a tendency to head towards a more limited
number of canonical images [24] per class, while our method produces a wider gamut of image
compositions. An example is the atypical image of a Palace at w = 1, which CFG converts to a
somewhat idealized depiction as w increases. Sometimes the unguided sample contains incompatible
elements of multiple possible images, such as the Castle image, which includes a rough sketch of
two or three castles of unrelated styles. In this instance, CFG apparently struggles to decide what to
do, whereas our method first builds the large red element into a castle, and with increased guidance
focuses on the red foreground object. A higher number of possible output images is consistent with a
lower FID, implying better coverage of the training data.

In order to study our method in the context of large-scale image generators, we apply it to DeepFloyd
IF [46]. We choose this baseline because multiple differently-sized models are publicly available.
Ideally we could have also used an earlier snapshot as the guiding model, but those were not available.
DeepFloyd IF generates images as a cascade of three diffusion models: a base model and two super-
resolution stages. We apply our method to the base model only, while the subsequent stages always
use CFG. Figure 5 demonstrates the effect of CFG, our method, and their various combinations. To
combine autoguidance with CFG, we extend Equation 3 to cover multiple guiding models as proposed
by Liu et al. [27] and distribute the total guidance weight among them using linear interpolation (see
Appendix B.2 for details). While CFG improves the image quality significantly, it also simplifies
the style and layout of the image towards a canonical depiction. Our method similarly improves the
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image quality, but it better preserves the image’s style and visual complexity. We hope that using
both guiding methods simultaneously will serve as a new, useful artistic control.

6 Discussion and Future work

We have shown that classifier-free guidance entangles several phenomena together, and that a different
perspective together with simple practical changes opens up an entire new design space. In addition
to removing the superfluous connection to conditioning, this enables significantly better results.

Potential directions for future work include formally proving the conditions that allow autoguidance to
be beneficial, and deriving good rules of thumb for selecting the best guiding model. Our suggestion —
an early snapshot of a smaller model — is easy to satisfy in principle, but these are not available for
current large-scale image generators in practice. Such generators are also often trained in successive
stages where the training data may change at some point, causing potential distribution shifts between
snapshots that would violate our assumptions.

Recently, several studies [5, 10, 40, 50, 24] have reduced the downsides of CFG by making the guid-
ance weight noise level-dependent. A key benefit from these schedules appears to be the suppression
of CFG at high noise levels, where its image quality benefit is overshadowed by the undesirable
reduction in variation that is caused by large differences in the content of the differently conditioned
distributions. In contrast, autoguidance is not expected to suffer from this problem at high noise levels,
as both models target the same distribution. So far we have compared autoguidance only with the
interval method [24], which we did not find beneficial in combination. A further study on the various
possible combinations, in terms of quantitative performance as well as artistic control, is a natural
next step. It could also be interesting to further isolate the origin of the improvement using alternative
metrics, such as precision and recall [25], Human Preference Score [51], or PickScore [23].
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Appendices
A Additional results
Figure 6 shows additional results using DeepFloyd IF, similar to Figure 5.

Interpolation between CFG and our method
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“A pirate ship sailing through clouds instead of the ocean”
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“A fairytale castle floating in the sky, tethered by ancient vines”

Figure 6: Additional results for DeepFloyd IF [46]. The rows correspond to guidance weights
w ∈ {1, 2, 3, 4}. CFG and our method (XL-sized model guided by M-sized one) on the leftmost and
rightmost column, respectively. The middle columns correspond to blending between the two.
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Figure 7: Sweep over guidance weight w using EDM2-S on ImageNet-512. The optimal EMA
length was searched separately for the three methods and two metrics (FID and FDDINOv2).
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Figure 8: Resulting variation for CFG and our method in Tree frog, Minibus, Mushroom classes of
ImageNet-512 using EDM2-S (FDDINOv2-optimized). In this image, we have exaggerated the amount
of guidance (w = 4) to make its effect on variation more clearly visible. This causes excessive
saturation and other image artifacts, but clearly shows that CFG steers towards canonical templates,
while our method preserves much greater variation.

Figure 7 plots FID and FDDINOv2 as functions of guidance weight, showing that autoguidance is less
sensitive to the exact choice of w than CFG. Figure 8 shows example grids that demonstrate that
autoguidance retains much higher variation than CFG. Figure 9 provides additional visualizations
from our toy example, showing how the implied densities evolve during inference with CFG and
autoguidance.

B Implementation details

We performed our main experiments on top of the publicly available EDM2 [21] codebase4 using
NVIDIA A100 GPUs, Python 3.11.7, PyTorch 2.2.0, CUDA 11.8, and CuDNN 8.9.7. Since our
method only involves using a different guiding model during sampling, we were able to perform all

4https://github.com/NVlabs/edm2
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Figure 9: Progression of implied learned densities during sampling over various σ in a setup similar
to Figure 2. Contours of the corresponding ground truth distributions are also shown. (a) Main
model density p1(x|c;σ). (b) Unconditional guiding model density p0(x;σ) in CFG. (c) Conditional
guiding model density p0(x|c;σ) in autoguidance. (d) With CFG, guidance towards higher ratio
p1/p0 pushes samples towards top right, especially at high σ (top rows). (e) With autoguidance, this
anomalous effect does not occur and samples cover the entire class c.
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measurements using the existing command-line scripts. We only had to modify one line of code in
the sampling loop to pass in the class label to the guiding network in addition to the main network.
Algorithm 1 demonstrates the steps needed to reproduce one of our results from Table 1; the rest can
be reproduced by repeating the same steps with different models and hyperparameters as indicated
in the table. For the four cases where a pre-trained model was unavailable, we trained the models
ourselves as detailed in Algorithm 2.

B.1 Hyperparameter search

We optimized the autoguidance parameters for each configuration in Table 1 and Figure 3 using
automated grid search. We performed the search separately for FID and FDDINOv2 across the space of
five parameters:

• Model capacity: All available model capacities (EDM2-XXS, EDM2-XS, etc.) up to and
including the capacity of the main model.

• Training time: Number of training images in powers of two. We found that the sweet spot
was always within the range {226, 227, 228, 229}— there was no need to go for lower or
higher values.

• Guidance weight: All values within [1.00, 3.50] at regular intervals of 0.05.
• EMA lengths: All values within [0.010, 0.250] at regular intervals of 0.005. We treated the

EMA length of the main model and the guiding model as two separate parameters.

In order to reduce the computational workload, we pruned the search space by considering only a
local neighborhood of parameters around the best FID or FDDINOv2 found thus far. Whenever the
result improved, we placed a new local grid around the corresponding parameters, resulting in gradual
convergence towards the global optimum. Once we reached the optimum, we further re-evaluated the
nearby parameter choices two more times to account for the effect of random noise. As such, each
result reported in Table 1 and Figure 3 represents the best of three evaluations. The typical range of
random variation is indicated by the shaded regions in Figure 3.

In total, the grid search resulted in roughly 30,000 metric evaluations across all of our configurations.
In each metric evaluation, the main cost comes from generating 50,000 random images, which takes
around 30–60 minutes using eight A100 GPUs and consumes approximately 2–5 kWh of energy,
depending on model size. The overall energy consumption of our entire project was thus in the
ballpark of 60–150 MWh.

B.2 DeepFloyd IF experiments

In order to apply CFG and autoguidance simultaneously, we extend Equation 3 to cover multiple
guiding models as proposed by Liu et al. [27]. In this case, we have three models: the main model
Dm, an unconditional model Du, and a reduced-capacity conditional model Dc. The guided denoising
result is then defined as

Dw(x;σ, c) := Dm(x;σ, c) +
∑

i∈{u,c}

(wi − 1)
(
Dm(x;σ, c)−Di(x;σ, c)

)
, (6)

where wu and wc correspond to the guidance weights for CFG and autoguidance, respectively. To inter-
polate between the two methods, we further define wu := (1−α)(w−1)+1 and wc := α(w − 1) + 1,
where w indicates the desired total amount of guidance and α ∈ [0, 1] is a linear interpolation factor.

DeepFloyd IF [46] uses a three-stage cascade: a base model followed by two super-resolution stages.
We apply our method only to the base model, while the super-resolution stages always use CFG
with their default weights (4 and 9). We use their Stochastic DDPM sampler with default settings:
100, 75, 50 steps for the base model and subsequent super-resolution stages, respectively. Dynamic
thresholding [41] is used for all stages.

C Details of the 2D toy example

In this section, we describe the construction of the 2D toy dataset used in the analysis of Section 3, as
well as the associated model architecture, training setup, and sampling parameters. We will make all
related code publicly available.
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Algorithm 1 Reproducing our FID result for the “Autoguidance (XS, T/16)” row in Table 1.

1 # Download EDM2 source code.

2 git clone https://github.com/NVlabs/edm2.git

3 cd edm2

4 git checkout 32ecad3

5

6 # Patch the sampler so that class labels are passed in to the guiding network.

7 sed -i ’s/gnet(x, t)/gnet(x, t, labels)/g’ generate_images.py

8

9 # Download the necessary EDM2 models.

10 rclone copy --progress --http-url https://nvlabs-fi-cdn.nvidia.com/edm2 \

11 :http:raw-snapshots/edm2-img512-s/ raw-snapshots/edm2-img512-s/

12 rclone copy --progress --http-url https://nvlabs-fi-cdn.nvidia.com/edm2 \

13 :http:raw-snapshots/edm2-img512-xs/ raw-snapshots/edm2-img512-xs/

14

15 # Reconstruct the corresponding post-hoc EMA models.

16 python reconstruct_phema.py --indir=raw-snapshots/edm2-img512-s --outdir=autoguidance/phema \

17 --outprefix=img512-s --outkimg=2147483 --outstd=0.070

18 python reconstruct_phema.py --indir=raw-snapshots/edm2-img512-xs --outdir=autoguidance/phema \

19 --outprefix=img512-xs --outkimg=134217 --outstd=0.125

20

21 # Generate 50,000 images using 8 GPUs.

22 torchrun --standalone --nproc_per_node=8 generate_images.py --seeds=0-49999 --subdirs \

23 --outdir=autoguidance/images/img512-s --net=autoguidance/phema/img512-s-2147483-0.070.pkl \

24 --gnet=autoguidance/phema/img512-xs-0134217-0.125.pkl --guidance=2.10

25

26 # Calculate FID.

27 python calculate_metrics.py calc --images=autoguidance/images/img512-s \

28 --ref=https://nvlabs-fi-cdn.nvidia.com/edm2/dataset-refs/img512.pkl

Dataset. For each of the two classes c, we model the fractal-like data distribution as a mixture of
Gaussians Mc =

(
{ϕi}, {µi}, {Σi}

)
, where ϕi, µi, and Σi represent the weight, mean, and 2×2

covariance matrix of each component i, respectively. This lets us calculate the ground truth scores and
probability densities analytically and, consequently, to visualize them without making any additional
assumptions. The probability density for a given class is given by

pdata(x|c) =
∑

i∈Mc

ϕi N (x;µi,Σi), where (7)

N (x;µ,Σ) =
1√

(2π)2 det(Σ)
exp

(
− 1

2
(x− µ)⊤Σ−1(x− µ)

)
. (8)

Applying heat diffusion to pdata(x|c), we obtain a sequence of increasingly smoothed densities
p(x|c;σ) parameterized by noise level σ:

p(x|c;σ) =
∑

i∈Mc

ϕi N
(
x;µi,Σ

∗
i,σ

)
, where Σ∗

i,σ = Σi + σ2I. (9)

The score function of p(x|c;σ) is then given by

∇x log p(x|c;σ) =

∑
i∈Mc

ϕi N
(
x;µi,Σ

∗
i,σ

) (
Σ∗

i,σ

)−1(
µi − x

)∑
i∈Mc

ϕi N
(
x;µi,Σ∗

i,σ

) . (10)

We construct Mc to represent a thin tree-like structure by starting with one main “branch” and
recursively subdividing it into smaller ones. Each branch is represented by 8 anisotropic Gaus-
sian components and the subdivision is performed 6 times, decaying ϕ after each subdivision and
slightly randomizing the lengths and orientations of the two resulting sub-branches. This yields
127×8 = 1016 components per class and 1016×2 = 2032 components in total. We define the
coordinate system so that the mean and standard deviation of pdata, marginalized over c, are equal to 0
and σdata = 0.5 along each axis, respectively, matching the recommendations by Karras et al. [20].
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Algorithm 2 Training the additional EDM2 models needed in Section 5.

1 # Unconditional EDM2-S with ImageNet-512, used as a main model in Table 1.

2 torchrun --nnodes=4 --nproc_per_node=8 train_edm2.py \

3 --outdir=autoguidance/train/img512-s-uncond --data=datasets/img512-sd.zip --cond=0 \

4 --preset=edm2-img512-s --duration=2048Mi

5

6 # Unconditional EDM2-XS with ImageNet-64, used as a guiding model in Table 1.

7 torchrun --nnodes=4 --nproc_per_node=8 train_edm2.py \

8 --outdir=autoguidance/train/img64-xs-uncond --data=datasets/img64.zip --cond=0 \

9 --preset=edm2-img64-s --channels=128 --lr=0.0120 --duration=2048Mi

10

11 # Conditional EDM2-XS with ImageNet-64, used as a guiding model in Table 1.

12 torchrun --nnodes=4 --nproc_per_node=8 train_edm2.py \

13 --outdir=autoguidance/train/img64-xs --data=datasets/img64.zip --cond=1 \

14 --preset=edm2-img64-s --channels=128 --lr=0.0120 --duration=512Mi

15

16 # Conditional EDM2-XXS with ImageNet-512, used as a guiding model in Figure 3b.

17 torchrun --nnodes=4 --nproc_per_node=8 train_edm2.py \

18 --outdir=autoguidance/train/img512-xxs --data=datasets/img512-sd.zip --cond=1 \

19 --preset=edm2-img512-xs --channels=64 --lr=0.0170 --duration=512Mi

Models. We implement the denoiser models D0 and D1 as simple multi-layer perceptrons, utilizing
the magnitude-preserving design principles from EDM2 [21]. To be able to visualize the implied
probability densities in Figure 2, we design the model interface so that for a given noisy sample,
each model outputs a single scalar representing the logarithm of the corresponding unnormalized
probability density, as opposed to directly outputting the denoised sample or the score vector.
Concretely, let us denote the output of a given model by Gθ(x;σ, c). The corresponding normalized
probability density is then given by

pθ(x|c;σ) = exp
(
Gθ(x;σ, c)

)/∫
exp

(
Gθ(x;σ, c)

)
dx. (11)

By virtue of defining Gθ this way, we can derive the score vector, and by extension, the denoised
sample, from Gθ through automatic differentiation:

∇x log pθ(x|c;σ) = ∇xGθ(x;σ, c) (12)

Dθ(x;σ, c) = x+ σ2∇xGθ(x;σ, c). (13)

Besides Equation 12, we also tried out the alternative formulations where the model outputs the score
vector or the denoised sample directly. The results produced by all these variants were qualitatively
more or less identical; we chose to go with the formulation above purely for convenience.

To connect the above definition of Gθ to the raw network layers, we apply preconditioning using
the same general principles as in EDM [20]. Denoting the function represented by the raw network
layers as Fθ, we define Gθ as

Gθ(x;σ, c) = −1

2
∥x∗∥22 −

gθ
σn

n∑
i=1

Fθ,i

(
x∗;

1

4
log σ, c

)2

, where x∗ =
x√

σ2 + σ2
data

(14)

and the sum is taken over the n output features of Fθ. We scale the output of Fθ by a learned scaling
factor gθ that we initialize to zero.

The goal of Equation 14 is to satisfy the following three requirements:

• The input of Fθ should have zero mean and unit magnitude. This is achieved through the
division by

√
σ2 + σ2

data.
• After initialization, Gθ should represent the best possible first-order approximation of the

correct solution. This is achieved through the − 1
2 ∥x

∗∥22 term, as well as the fact that gθ = 0
after initialization.

• After training,
√
gθ ·Fθ should have approximately unit magnitude. This is achieved through

the division by σn.
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In practice, we use an MLP with one input layer and four hidden layers, interspersed with SiLU [11]
activation functions and implemented using the magnitude-preserving primitives from EDM2 [21].
The input is a 5-dimensional vector

[
x∗
x;x

∗
y;

1
4 log σ; c; 1

]
, where c = 1 for the orange class, −1 for

the gray class, and 0 for the unconditional case. The output of each hidden layer has n features,
where n = 64 for D1 and 32 for D0.

Training. Given that we have the exact score function of the ground truth distribution readily
available (Equation 9), we train the models using exact score matching [17] for simplicity and
increased robustness. For a given class c, we thus define the loss function as

L(θ; c) = Eσ∼ptrain,x∼p(x|c;σ) σ
2
∥∥∇x log pθ(x|c;σ)−∇x log p(x|c;σ)

∥∥2
2
, (15)

where σ ∼ ptrain is realized as log(σ) ∼ N (Pmean, Pstd) [20]. As an alternative to exact score
matching, we also experimented with the more commonly used denoising score matching, but did not
observe any noticeable differences in model behavior or training dynamics.

We train D1 for 4096 iterations and D0 for 512 iterations using a batch size of 4096 samples. In
terms of hyperparameters, we set Pmean= −2.3 and Pstd= 1.5 and use αref/

√
max(t/tref, 1) learning

rate decay schedule with αref = 0.01 and tref = 512 iterations, along with a power function EMA
profile [21] with σrel= 0.010. Overall, the setup is robust with respect to the hyperparameters; the
phenomena illustrated in Figures 1 and 2 remain unchanged across a wide range of parameter choices.

Sampling. We use the standard EDM sampler [20] with N = 32 Heun steps (NFE = 63),
σmin= 0.002, σmax= 5, and ρ = 7. We chose the values of N and σmax to be much higher than
what is actually needed for this dataset in order to avoid potential discretization errors from affecting
our conclusions. In Figure 1, we set w = 4 for CFG and w = 3 for autoguidance, and multiply the
score vectors (Equation 12) by 1.40 for naive truncation. In Figure 2, we set w = 4 and σmid= 0.03.

D Broader societal impact

Generative modeling, including images and videos, has significant misuse potential. It can trigger
negative consequences within the society in several ways. The primary concerns include various
types of disinformation, but also the potential to amplify sterotypes and unwanted biases [30]. Our
improvements to the sample quality can make the results even more believable, even when used for
disinformation. That said, we do not unlock any novel uses of the technology.

E Licenses

• EDM2 models [21]: Creative Commons BY-NC-SA 4.0 license
• DeepFloyd IF models [46]: Modified MIT license
• Stable Diffusion VAE model [38]: CreativeML Open RAIL++-M license
• InceptionV3 model [48]: Apache 2.0 license
• DINOv2 model [33]: Apache 2.0 license
• ImageNet dataset [7]: Custom non-commercial license

19



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both the quantitative and qualitative claims are substantiated by our results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Primarily covered in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]
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Justification: Our equations build on previously known results, and highlight their practical
aspects through mostly readily verifiable algebraic manipulations. We do not explicitly
present all details of the derivations, and assume that the previous results are sufficiently
rigorously proven in the respective literature.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix B describes how publicly available code can be used to reproduce
our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Appendix B describes how publicly available code can be used to reproduce
our results. The models that are not already publicly available, as well as the implementation
of the 2D toy example, will be made available prior to the conference.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 5 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Shaded regions in Figure 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics, and do not find concerns beyond those
relating to the general topic of generative modeling of images.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: While our works falls into a high-risk category, the nature of our work (basically
reusing pre-trained models) is such that we are not really in a position to introduce new
safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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