A workbook time machine for spreadsheet creation benchmarks

Anonymous ACL submission

Abstract

We introduce the workbook time machine for
automatically creating benchmarks that evalu-
ate the ability of language models to create
(sequences of) calculated objects (formulas,
charts, pivot tables, and conditional formatting)
in spreadsheets. We generate and select 262
problems on public workbooks that require a
different number of intermediate steps (like for-
mula — chart) and generate different instruc-
tions of increasing abstractness. We evaluate
existing spreadsheet manipulation agents and
baselines on these two different dimensions, as
well as their ability to generate different types
of objects. Our evaluation shows that straight
code generation outperforms agents on simple
problems and problems with detailed instruc-
tions, and that the API used to control spread-
sheets pose a significant limitation, trading off
easy-of-use (Python) for completeness (VBA).

1 Introduction

Creating and manipulating complex spreadsheets is
challenging for users, but it is even more challeng-
ing for large language models: SpreadsheetBench
[5] and SheetCopilotBench [4] report 20% and 55%
success rates on their respectively proposed bench-
marks using the best performing strategy. Human
subjects scored 71% on SpreadsheetBench.

Unfortunately, these benchmarks do not paint a
realistic picture of real-world spreadsheet creation
tasks, either considering the creation of derived
objects like charts and pivot tables but only in sim-
ple workbooks (SheetCopilotBench) or consider-
ing more realistic workbooks from users but only
considering data entry and manipulation (Spread-
sheetAgent).

In this paper, we introduce the workbook time
machine for automatically generating benchmarks
for creating derived objects in spreadsheets. Given
a spreadsheet, we go back in time and remove de-
rived objects that users have created (like charts

and formulas) and associated metadata (like a de-
scription of the formula). We then go forward in
time and generate instructions in natural language
of what task to achieve.

Example 1 Figure 1 shows part of a spreadsheet
with three derived artifact that make up two se-
quences: formula — conditional formatting and
formula — chart. In the backwards pass, we re-
move the derived artifacts to obtain the initial
spreadsheet. In the forward pass, we generate
an instruction for one such sequence of two steps
(“plot BMI versus age”).

This flexible process yields benchmarks that (1)
we can evaluate based on the removed final artifact,
(2) vary in complexity by considering fewer or
more steps, (3) vary in complexity by generating
descriptions with less or more details.

We evaluate existing spreadsheet agents on our
benchmark and show that (1) simple baselines work
well with elaborate instructions and agents work
better with high-level instructions, (2) the choice of
API trades off ease-of-use (Python) for complete-
ness (VBA).

We make the following contributions:

* We introduce the workbook time machine for
generating sequences of spreadsheet actions
that achieve real-world tasks, as well as in-
structions that describe these tasks.

* We compare existing inference-based spread-
sheet agents on the generated benchmarks and
analyze their performance.

* We release the generated benchmark and
evaluation to encourage further research on
spreadsheet manipulation.

2 Related Works

Table 1 summarizes properties of existing bench-
marks and our WTM benchmark.

Age -] Ht.(cm)-| Wt. (kg) - BMI -
22 170 75 25.95
25 175 73 23.84
30 160 60f—>» 23.44
25 180 80| 24.69
45 165 75 27.55
35 170 68 23.53

30
° []
=25 ...
20
0 Age 50

Backward: Forward: generate (-
remove formula, ("plot bmi versus age")
chart and CF.

Age -

Ht. (cm) -

Wt (kg) -

22
25

25
45
35

170
175
160
180
165
170

79
73
60]
80]
79
68

Figure 1: Example of creating a benchmark (in gray)
with the workbook time machine, which removes objects
from a workbook and then generates an instruction that
describes the removed objects.

3 Workbook Time Machine

The workbook time machine performs two steps: a
backward step in which objects are removed, and a
forward step in which instructions are generated.

3.1 Backward

In the backward step, we iteratively remove derived
artifacts that are not required by any other derived
artifacts. The artifacts considered are formulas,
conditional formatting, charts, and pivot tables.
We require the following special considerations:

* Adjacent formulas with the same formula tem-
plate after anonymizing cell references are
grouped and considered as a single formula.

* When removing a column in a defined table
(created using Insert — Table) those cells are
deleted and all cells to the right of the table
are shifted to their original position.

Cleaning formula descriptors A common occur-
rence are cells that describe a surrounding formula,
for example, a “total” cell next to =SUM(). These
descriptors leak information about how to solve the
task. We use two subsequent LLLM cleaning steps,
where we ask the model to identify cells that do
not refer to any relevant information.

Table 1: Comparison of properties of the input (I), work-
book (W) and output (O) of SheetCopilotBench (SCB)
[4], InstructExcel (IE) [6], SheetRM (SRM) [2], Spread-
sheetBench (SB) [5] and our WTM benchmark. * Paper
mentions yes, not found in practice in the dataset.

SCB 1IE SRM SB

221 4850 201
levels 1 1 1

WTM

— \O
—_
[\S)

[V S
[N
3]

real?

+ sheets?
+ tables?
+ info?

formulas
charts

PT

CF

cell manip.
comb.

*

*
*

SRRRSS [x xS
LA NN RN NN
CRAXSS [xxxx
NNAX X[XN
A AN NN RN NN

Cleaning workbooks To keep the spreadsheets
reasonably sized and focus on the ability to solve
the task, workbooks and defined tables that are not
used in any derived artifact are removed.

3.2 Forward

In the forward step, we generate natural language
instructions that describe the objects that should
be added to the workbook. For each intermediate
object from the original workbook, we generate five
instructions with decreasing detail using an LLM
(OpenAl gpt-40). The context to generate these
instructions contains a Markdown representation of
the before and after states, as well as the address of
the relevant range. An example of five instructions
for the same problem is shown in Table 2.

3.3 Dataset statistics

We use the workbook time machine on two public
corpora (FUSE [1] and Enron [3]) and one private
set of publicly available workbooks collected from
the web. Figure 2 shows information about the
workbooks, artifacts, and user trajectories that our
dataset consists of.

4 Experiment Setup

We evaluate baselines and existing approaches on
our dataset.

» SheetCopilot [4] is a specialized agent that
uses x1lwings to interact with the spreadsheet.

» SheetAgent [2] is a specialized agent that uses
openpyxl to interact with the spreadsheet.

Table 2: Different levels of instructions with increasing levels of abstractness.

1 In Sheetl, calculate the BMI for each individual by using the formula BMI = 10000 * Wt. (kg) / (Ht. (cm) * Ht. (cm))
and place the results in column D, starting from D2 to D7. Ensure that the header ‘BMI’ is added in cell D1. Then, create
a scatter chart with a line marker subtype, using ‘Age’ from A2:A7 as the x-axis and the calculated ‘BMI’ from D2:D7
as the y-axis. Title the chart ‘Age’ and label the axes as ‘Age’” and ‘BMI".

2 In Sheetl, compute the BMI for each row using the formula 10000 * Wt. (kg) / (Ht. (cm) * Ht. (cm)) and add the results
in column D, with ‘BMI’ as the header. Then, create a scatter chart with ‘Age’ as the x-axis and ‘BMI’ as the y-axis, and

title it ‘Age’.

3 Calculate BMI for each person in Sheetl using their height and weight, and place the results in column D. Add a header
‘BMI’ in D1. Create a scatter chart with ‘Age’ as the x-axis and the calculated ‘BMI’ as the y-axis, titled ‘Age’.
4 Add a BMI column in Sheet] using height and weight data, and create a scatter chart with Age and BMI.

5 Create a scatter chart in Sheetl using Age and BMI data.

Pivot
Tables

Frequency
>

7.9%

[

0
2 5 7 10 12
Number of Trajectories

36.8%

Charts
(a) Distribution of number of trajecto-

ries for each workbook

42.1%

(b) Composition of various artifacts

Formulas . Formulas Pivot Table
2 5
225
£ o Hﬂﬂﬂﬂﬂﬁ 0 e—"
135791 1 2
. Chart Conditional Formatting
13.2% g0 20
Conditional E
Formatting 2 0 e, o Lz,
123456738 1357911

(c) Variation in trajectory length for
each artifact type

Figure 2: Statistics on distribution within the dataset.

* The single-round setting used to evalu-
ate SpreadsheetBench (SB) which uses
openpyxl to interact with spreadsheets [5].

* A VBA baseline that SheetCopilot was com-
pared against. Besides providing only known
tables, as done by SheetCopilot where all data
starts in cell A1, we additionally provide all
cell values in a Markdown format, trading off
cost for performance.

All evaluations are carried out against OpenAl
gpt-4o at temperature 0.

4.1 Metrics

We present a heuristic evaluation that verifies if
the intended artifact was generated. For charts, we
verify the type and the data that it points to. For
pivot tables, we verify the data used and the values
(accepting differences in order). For conditional
formatting, we verify if the right cells are colored
(but ignore the color itself). For formulas, we verify
if the newly added cell range matches by value
(execution match).

5 Results and Analysis

We analyze the performance for increasing abstract-
ness of the instruction, increasing the number of
steps in the user trajectory, and the performance on
creating different artifacts.

5.1 Abstractness of instruction

Table 3 shows the success rate for increasing the
level of abstractness of the instruction. The VBA
baseline consistently outperforms the specialized
approaches, even without the full sheet informa-
tion. This is due to (1) these approaches overfitting
on complex problems that require multiple steps,
and (2) these approaches not being able to prop-
erly generate charts and pivot tables because of
openpyxl1 limitations. This is further highlighted
in Sections 5.2 and 5.3, respectively.

We further break down the failure cases into pro-
viding a wrong solution or providing no solution
at all. VBA is harder to generate than openpyxl,
which causes a different distribution of failure
modes. The iterative refinement step of SheetCopi-
lot causes very few instances where no candidate
solution is provided. Adding full sheet context al-
lows the model to write better VBA, because it has
access to all range information.

5.2 Number of steps

Table 4 shows the performance for increasing the
number of steps in each user trajectory for instruc-
tions level 1 and 5. Problems with fewer steps tend
to require chart or pivot table generation, which the
agentic systems using openpyxl struggle to gener-
ate due to API limitations. When the instruction
is more abstract, simple baseline stops performing

Table 3: Performance for different approaches on differ-
ent levels of instructions.

Table 5: Pass rate per complexity for each object type
across utterance levels 1 and 5.

Instruction level Artifact type
Model 1 2 3 4 5 Model Formulas Charts PT CF
Success Level 1

VBA 64.50 55.73 4695 4237 41.22 VBA baseline 40.50 87.88 100.00 74.29

+MD 71.37 6221 64.89 51.51 4237 +MD 55.37 90.91 57.14 74.29
SheetCopilot 51.91 37.79 35.11 30.53 32.82 SheetCopilot 60.33 35.35 7143 65.71
SheetAgent 38.17 2824 29.77 18.70 22.52 SheetAgent 61.16 0.00 0.00 74.29
SB 3435 2634 2290 24.05 28.24 SB 52.89 0.00 0.00 74.29

Wrong solution Level 5

VBA 2099 2519 3130 29.77 40.84 VBA baseline 29.75 58.59 57.14 28.57

+ MD 2290 27.86 27.10 38.17 45.80 + MD 33.06 59.60 28.57 28.57
SheetCopilot 45.80 60.31 60.69 69.08 66.41 SheetCopilot 30.58 33.33 28.57 40.00
SheetAgent 53.05 57.63 5725 74.05 6794 SheetAgent 38.84 2.02 1429 2571
SB 4771 4924 51.15 50.38 49.24 SB 50.41 1.01 28.57 28.57

No solution

VBA 1451 19.08 21.75 27.86 17.94 6 C lusi

+MD 573 993 801 1032 1183 onclusion
SheetCopilot 2.29 1.90 4.20 0.39 0.77 . .
SheetAgent 878 14.13 12.98 7.25 9.54 We propose the workbook time machine that gen-
SB 17.34 2443 2595 2557 2252 erates benchmarks of spreadsheet object creation

well, but the agent is able to break down the task
into different steps and execute on them.

Table 4: Pass rate per complexity against number of
steps for the trajectories for utterance levels 1 and 5.

Steps
Model 1 2 3—4 5+
Level 1
VBA baseline 81.40 58.14 53.85 35.29
+MD 89.15 65.12 46.15 50.98
SheetCopilot ~ 43.41 79.07 61.54 43.14
SheetAgent 43.41 2558 3590 37.25
SB 40.31 2093 3590 29.41
Level 5
VBA baseline 66.67 27.91 20.51 3.92
+MD 67.44 2791 17.95 9.80
SheetCopilot 3643 41.86 3333 15.69
SheetAgent 18.60 16.28 33.33 29.41
SB 30.23 2093 25.64 31.37

5.3 Artifact type

Table 5 shows the performance for different types
of objects. SheetAgent and SpreadsheetBench
use openpyx1, which has no support for inserting
charts and limited support for inserting pivot tables.
Interestingly, SheetAgent and SpreadsheetBench
overfit on detailed instructions (level 1) and do not
leverage the provided context, causing them to fail
on problems that require pointing to specific ranges
of data.

from final spreadsheets. We analyze the perfor-
mance of existing agents and baselines on the
benchmarks across three dimensions that we can
finely control: task complexity as number of steps,
the level of abstraction of the instruction, and the
type of object that needs to be generated. This
evaluation highlights limitations of spreadsheet ma-
nipulation agents: the choice of API and the level
of detail in the utterance.

7 Limitations

Our benchmark is limited to the creation of de-
rived objects and not their modification or deletion.
Derivable cell values that are stored without for-
mula, like the capital cities of countries, are not
considered. The formula descriptor removal step
can be adapted to consider these.

When removing formulas from ranges that are
not stored as tables, other cells are not moved,
which can cause some structural information to
leak. Our evaluation does not consider the exact
position of formulas, limiting the scope of the leak-
age to hints that any formula will be needed. This
can be further resolved by a manual cleanup pass
over the generated workbooks, which can then be
used to evaluate automated workbook cleaning.

The current version of the benchmark is re-
stricted to English utterances. The pipeline itself is
language-agnostic and can be adapted to generate
benchmarks across different languages.

References

(1]

(2]

3

[}

(4]

(3]

(6]

Titus Barik, Kevin Lubick, Justin Smith, John
Slankas, and Emerson Murphy-Hill. 2015. Fuse:
a reproducible, extendable, internet-scale corpus of
spreadsheets. In 2015 IEEE/ACM 12th Working Con-
ference on Mining Software Repositories, pages 486—
489. IEEE.

Yibin Chen, Yifu Yuan, Zeyu Zhang, Yan Zheng,
Jinyi Liu, Fei Ni, Jianye Hao, Hangyu Mao, and
Fuzheng Zhang. 2025. Sheetagent: towards a gen-
eralist agent for spreadsheet reasoning and manipu-
lation via large language models. In Proceedings of
the ACM on Web Conference 2025, pages 158—177.

Felienne Hermans and Emerson Murphy-Hill. 2015.
Enron’s spreadsheets and related emails: A dataset
and analysis. In 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering, vol-
ume 2, pages 7-16. IEEE.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and
ZHAO-XIANG ZHANG. 2023. Sheetcopilot: Bring-
ing software productivity to the next level through
large language models. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 4952—
4984. Curran Associates, Inc.

Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xi-
aokang Zhang, Xiaohan Zhang, Sijia Luo, Xi Wang,
and Jie Tang. 2024. Spreadsheetbench: Towards
challenging real world spreadsheet manipulation. Ad-
vances in Neural Information Processing Systems,

37:94871-94908.

Justin Payan, Swaroop Mishra, Mukul Singh, Carina
Negreanu, Christian Poelitz, Chitta Baral, Subhro
Roy, Rasika Chakravarthy, Benjamin Van Durme,
and Elnaz Nouri. 2023. Instructexcel: A bench-
mark for natural language instruction in excel. arXiv
preprint arXiv:2310.14495.

https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf

	Introduction
	Related Works
	Workbook Time Machine
	Backward
	Forward
	Dataset statistics

	Experiment Setup
	Metrics

	Results and Analysis
	Abstractness of instruction
	Number of steps
	Artifact type

	Conclusion
	Limitations

