
A workbook time machine for spreadsheet creation benchmarks

Anonymous ACL submission

Abstract001

We introduce the workbook time machine for002
automatically creating benchmarks that evalu-003
ate the ability of language models to create004
(sequences of) calculated objects (formulas,005
charts, pivot tables, and conditional formatting)006
in spreadsheets. We generate and select 262007
problems on public workbooks that require a008
different number of intermediate steps (like for-009
mula → chart) and generate different instruc-010
tions of increasing abstractness. We evaluate011
existing spreadsheet manipulation agents and012
baselines on these two different dimensions, as013
well as their ability to generate different types014
of objects. Our evaluation shows that straight015
code generation outperforms agents on simple016
problems and problems with detailed instruc-017
tions, and that the API used to control spread-018
sheets pose a significant limitation, trading off019
easy-of-use (Python) for completeness (VBA).020

1 Introduction021

Creating and manipulating complex spreadsheets is022

challenging for users, but it is even more challeng-023

ing for large language models: SpreadsheetBench024

[5] and SheetCopilotBench [4] report 20% and 55%025

success rates on their respectively proposed bench-026

marks using the best performing strategy. Human027

subjects scored 71% on SpreadsheetBench.028

Unfortunately, these benchmarks do not paint a029

realistic picture of real-world spreadsheet creation030

tasks, either considering the creation of derived031

objects like charts and pivot tables but only in sim-032

ple workbooks (SheetCopilotBench) or consider-033

ing more realistic workbooks from users but only034

considering data entry and manipulation (Spread-035

sheetAgent).036

In this paper, we introduce the workbook time037

machine for automatically generating benchmarks038

for creating derived objects in spreadsheets. Given039

a spreadsheet, we go back in time and remove de-040

rived objects that users have created (like charts041

and formulas) and associated metadata (like a de- 042

scription of the formula). We then go forward in 043

time and generate instructions in natural language 044

of what task to achieve. 045

Example 1 Figure 1 shows part of a spreadsheet 046

with three derived artifact that make up two se- 047

quences: formula → conditional formatting and 048

formula → chart. In the backwards pass, we re- 049

move the derived artifacts to obtain the initial 050

spreadsheet. In the forward pass, we generate 051

an instruction for one such sequence of two steps 052

(“plot BMI versus age”). 053

This flexible process yields benchmarks that (1) 054

we can evaluate based on the removed final artifact, 055

(2) vary in complexity by considering fewer or 056

more steps, (3) vary in complexity by generating 057

descriptions with less or more details. 058

We evaluate existing spreadsheet agents on our 059

benchmark and show that (1) simple baselines work 060

well with elaborate instructions and agents work 061

better with high-level instructions, (2) the choice of 062

API trades off ease-of-use (Python) for complete- 063

ness (VBA). 064

We make the following contributions: 065

• We introduce the workbook time machine for 066

generating sequences of spreadsheet actions 067

that achieve real-world tasks, as well as in- 068

structions that describe these tasks. 069

• We compare existing inference-based spread- 070

sheet agents on the generated benchmarks and 071

analyze their performance. 072

• We release the generated benchmark and 073

evaluation to encourage further research on 074

spreadsheet manipulation. 075

2 Related Works 076

Table 1 summarizes properties of existing bench- 077

marks and our WTM benchmark. 078

1

Forward: generate 💬
("plot bmi versus age")

Backward:
remove formula,

chart and CF.

Figure 1: Example of creating a benchmark (in gray)
with the workbook time machine, which removes objects
from a workbook and then generates an instruction that
describes the removed objects.

3 Workbook Time Machine079

The workbook time machine performs two steps: a080

backward step in which objects are removed, and a081

forward step in which instructions are generated.082

3.1 Backward083

In the backward step, we iteratively remove derived084

artifacts that are not required by any other derived085

artifacts. The artifacts considered are formulas,086

conditional formatting, charts, and pivot tables.087

We require the following special considerations:088

• Adjacent formulas with the same formula tem-089

plate after anonymizing cell references are090

grouped and considered as a single formula.091

• When removing a column in a defined table092

(created using Insert → Table) those cells are093

deleted and all cells to the right of the table094

are shifted to their original position.095

Cleaning formula descriptors A common occur-096

rence are cells that describe a surrounding formula,097

for example, a “total” cell next to =SUM(). These098

descriptors leak information about how to solve the099

task. We use two subsequent LLM cleaning steps,100

where we ask the model to identify cells that do101

not refer to any relevant information.102

Table 1: Comparison of properties of the input (I), work-
book (W) and output (O) of SheetCopilotBench (SCB)
[4], InstructExcel (IE) [6], SheetRM (SRM) [2], Spread-
sheetBench (SB) [5] and our WTM benchmark. ∗ Paper
mentions yes, not found in practice in the dataset.

SCB IE SRM SB WTM

I # 221 4850 201 912 262
levels 1 1 1 1 5

W

real? ✓ ✓ ✘ ✓ ✓
+ sheets? ✓ ✓ ✘ ✓ ✓
+ tables? ✘ ✓ ✘ ✓ ✓
+ info? ✘ ✓ ✘ ✘ ✓

O

formulas ✓ ✓ ✓ ✓ ✓
charts ✓ ✓ ✓ ✘∗ ✓
PT ✓ ✓ ✘∗ ✘∗ ✓
CF ✓ ✓ ✓ ✓ ✓
cell manip. ✓ ✓ ✓ ✓ ✘
comb. ✓ ✘ ✓ ✓ ✓

Cleaning workbooks To keep the spreadsheets 103

reasonably sized and focus on the ability to solve 104

the task, workbooks and defined tables that are not 105

used in any derived artifact are removed. 106

3.2 Forward 107

In the forward step, we generate natural language 108

instructions that describe the objects that should 109

be added to the workbook. For each intermediate 110

object from the original workbook, we generate five 111

instructions with decreasing detail using an LLM 112

(OpenAI gpt-4o). The context to generate these 113

instructions contains a Markdown representation of 114

the before and after states, as well as the address of 115

the relevant range. An example of five instructions 116

for the same problem is shown in Table 2. 117

3.3 Dataset statistics 118

We use the workbook time machine on two public 119

corpora (FUSE [1] and Enron [3]) and one private 120

set of publicly available workbooks collected from 121

the web. Figure 2 shows information about the 122

workbooks, artifacts, and user trajectories that our 123

dataset consists of. 124

4 Experiment Setup 125

We evaluate baselines and existing approaches on 126

our dataset. 127

• SheetCopilot [4] is a specialized agent that 128

uses xlwings to interact with the spreadsheet. 129

• SheetAgent [2] is a specialized agent that uses 130

openpyxl to interact with the spreadsheet. 131

2

Table 2: Different levels of instructions with increasing levels of abstractness.

1 In Sheet1, calculate the BMI for each individual by using the formula BMI = 10000 * Wt. (kg) / (Ht. (cm) * Ht. (cm))
and place the results in column D, starting from D2 to D7. Ensure that the header ‘BMI’ is added in cell D1. Then, create
a scatter chart with a line marker subtype, using ‘Age’ from A2:A7 as the x-axis and the calculated ‘BMI’ from D2:D7
as the y-axis. Title the chart ‘Age’ and label the axes as ‘Age’ and ‘BMI’.

2 In Sheet1, compute the BMI for each row using the formula 10000 * Wt. (kg) / (Ht. (cm) * Ht. (cm)) and add the results
in column D, with ‘BMI’ as the header. Then, create a scatter chart with ‘Age’ as the x-axis and ‘BMI’ as the y-axis, and
title it ‘Age’.

3 Calculate BMI for each person in Sheet1 using their height and weight, and place the results in column D. Add a header
‘BMI’ in D1. Create a scatter chart with ‘Age’ as the x-axis and the calculated ‘BMI’ as the y-axis, titled ‘Age’.

4 Add a BMI column in Sheet1 using height and weight data, and create a scatter chart with Age and BMI.
5 Create a scatter chart in Sheet1 using Age and BMI data.

2 5 7 10 12
Number of Trajectories

0

5

10

15

20

Fr
eq

ue
nc

y

(a) Distribution of number of trajecto-
ries for each workbook

Formulas

42.1%
Pivot

Tables 7.9%

Charts

36.8%
Conditional
Formatting

13.2%

(b) Composition of various artifacts

1 3 5 7 9 11
0

25

Fr
eq

ue
nc

y Formulas

1 2
0

5
Pivot Table

1 2 3 4 5 6 7 8
0

50

Fr
eq

ue
nc

y Chart

1 3 5 7 9 11
0

20
Conditional Formatting

(c) Variation in trajectory length for
each artifact type

Figure 2: Statistics on distribution within the dataset.

• The single-round setting used to evalu-132

ate SpreadsheetBench (SB) which uses133

openpyxl to interact with spreadsheets [5].134

• A VBA baseline that SheetCopilot was com-135

pared against. Besides providing only known136

tables, as done by SheetCopilot where all data137

starts in cell A1, we additionally provide all138

cell values in a Markdown format, trading off139

cost for performance.140

All evaluations are carried out against OpenAI141

gpt-4o at temperature 0.142

4.1 Metrics143

We present a heuristic evaluation that verifies if144

the intended artifact was generated. For charts, we145

verify the type and the data that it points to. For146

pivot tables, we verify the data used and the values147

(accepting differences in order). For conditional148

formatting, we verify if the right cells are colored149

(but ignore the color itself). For formulas, we verify150

if the newly added cell range matches by value151

(execution match).152

5 Results and Analysis153

We analyze the performance for increasing abstract-154

ness of the instruction, increasing the number of155

steps in the user trajectory, and the performance on156

creating different artifacts.157

5.1 Abstractness of instruction 158

Table 3 shows the success rate for increasing the 159

level of abstractness of the instruction. The VBA 160

baseline consistently outperforms the specialized 161

approaches, even without the full sheet informa- 162

tion. This is due to (1) these approaches overfitting 163

on complex problems that require multiple steps, 164

and (2) these approaches not being able to prop- 165

erly generate charts and pivot tables because of 166

openpyxl limitations. This is further highlighted 167

in Sections 5.2 and 5.3, respectively. 168

We further break down the failure cases into pro- 169

viding a wrong solution or providing no solution 170

at all. VBA is harder to generate than openpyxl, 171

which causes a different distribution of failure 172

modes. The iterative refinement step of SheetCopi- 173

lot causes very few instances where no candidate 174

solution is provided. Adding full sheet context al- 175

lows the model to write better VBA, because it has 176

access to all range information. 177

5.2 Number of steps 178

Table 4 shows the performance for increasing the 179

number of steps in each user trajectory for instruc- 180

tions level 1 and 5. Problems with fewer steps tend 181

to require chart or pivot table generation, which the 182

agentic systems using openpyxl struggle to gener- 183

ate due to API limitations. When the instruction 184

is more abstract, simple baseline stops performing 185

3

Table 3: Performance for different approaches on differ-
ent levels of instructions.

Instruction level

Model 1 2 3 4 5

Success

VBA 64.50 55.73 46.95 42.37 41.22
+ MD 71.37 62.21 64.89 51.51 42.37

SheetCopilot 51.91 37.79 35.11 30.53 32.82
SheetAgent 38.17 28.24 29.77 18.70 22.52
SB 34.35 26.34 22.90 24.05 28.24

Wrong solution

VBA 20.99 25.19 31.30 29.77 40.84
+ MD 22.90 27.86 27.10 38.17 45.80

SheetCopilot 45.80 60.31 60.69 69.08 66.41
SheetAgent 53.05 57.63 57.25 74.05 67.94
SB 47.71 49.24 51.15 50.38 49.24

No solution

VBA 14.51 19.08 21.75 27.86 17.94
+ MD 5.73 9.93 8.01 10.32 11.83

SheetCopilot 2.29 1.90 4.20 0.39 0.77
SheetAgent 8.78 14.13 12.98 7.25 9.54
SB 17.34 24.43 25.95 25.57 22.52

well, but the agent is able to break down the task186

into different steps and execute on them.187

Table 4: Pass rate per complexity against number of
steps for the trajectories for utterance levels 1 and 5.

Steps

Model 1 2 3−4 5+

Level 1

VBA baseline 81.40 58.14 53.85 35.29
+ MD 89.15 65.12 46.15 50.98

SheetCopilot 43.41 79.07 61.54 43.14
SheetAgent 43.41 25.58 35.90 37.25
SB 40.31 20.93 35.90 29.41

Level 5

VBA baseline 66.67 27.91 20.51 3.92
+ MD 67.44 27.91 17.95 9.80

SheetCopilot 36.43 41.86 33.33 15.69
SheetAgent 18.60 16.28 33.33 29.41
SB 30.23 20.93 25.64 31.37

5.3 Artifact type188

Table 5 shows the performance for different types189

of objects. SheetAgent and SpreadsheetBench190

use openpyxl, which has no support for inserting191

charts and limited support for inserting pivot tables.192

Interestingly, SheetAgent and SpreadsheetBench193

overfit on detailed instructions (level 1) and do not194

leverage the provided context, causing them to fail195

on problems that require pointing to specific ranges196

of data.197

Table 5: Pass rate per complexity for each object type
across utterance levels 1 and 5.

Artifact type

Model Formulas Charts PT CF

Level 1

VBA baseline 40.50 87.88 100.00 74.29
+ MD 55.37 90.91 57.14 74.29

SheetCopilot 60.33 35.35 71.43 65.71
SheetAgent 61.16 0.00 0.00 74.29
SB 52.89 0.00 0.00 74.29

Level 5

VBA baseline 29.75 58.59 57.14 28.57
+ MD 33.06 59.60 28.57 28.57

SheetCopilot 30.58 33.33 28.57 40.00
SheetAgent 38.84 2.02 14.29 25.71
SB 50.41 1.01 28.57 28.57

6 Conclusion 198

We propose the workbook time machine that gen- 199

erates benchmarks of spreadsheet object creation 200

from final spreadsheets. We analyze the perfor- 201

mance of existing agents and baselines on the 202

benchmarks across three dimensions that we can 203

finely control: task complexity as number of steps, 204

the level of abstraction of the instruction, and the 205

type of object that needs to be generated. This 206

evaluation highlights limitations of spreadsheet ma- 207

nipulation agents: the choice of API and the level 208

of detail in the utterance. 209

7 Limitations 210

Our benchmark is limited to the creation of de- 211

rived objects and not their modification or deletion. 212

Derivable cell values that are stored without for- 213

mula, like the capital cities of countries, are not 214

considered. The formula descriptor removal step 215

can be adapted to consider these. 216

When removing formulas from ranges that are 217

not stored as tables, other cells are not moved, 218

which can cause some structural information to 219

leak. Our evaluation does not consider the exact 220

position of formulas, limiting the scope of the leak- 221

age to hints that any formula will be needed. This 222

can be further resolved by a manual cleanup pass 223

over the generated workbooks, which can then be 224

used to evaluate automated workbook cleaning. 225

The current version of the benchmark is re- 226

stricted to English utterances. The pipeline itself is 227

language-agnostic and can be adapted to generate 228

benchmarks across different languages. 229

4

References230

[1] Titus Barik, Kevin Lubick, Justin Smith, John231
Slankas, and Emerson Murphy-Hill. 2015. Fuse:232
a reproducible, extendable, internet-scale corpus of233
spreadsheets. In 2015 IEEE/ACM 12th Working Con-234
ference on Mining Software Repositories, pages 486–235
489. IEEE.236

[2] Yibin Chen, Yifu Yuan, Zeyu Zhang, Yan Zheng,237
Jinyi Liu, Fei Ni, Jianye Hao, Hangyu Mao, and238
Fuzheng Zhang. 2025. Sheetagent: towards a gen-239
eralist agent for spreadsheet reasoning and manipu-240
lation via large language models. In Proceedings of241
the ACM on Web Conference 2025, pages 158–177.242

[3] Felienne Hermans and Emerson Murphy-Hill. 2015.243
Enron’s spreadsheets and related emails: A dataset244
and analysis. In 2015 IEEE/ACM 37th IEEE Inter-245
national Conference on Software Engineering, vol-246
ume 2, pages 7–16. IEEE.247

[4] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and248
ZHAO-XIANG ZHANG. 2023. Sheetcopilot: Bring-249
ing software productivity to the next level through250
large language models. In Advances in Neural Infor-251
mation Processing Systems, volume 36, pages 4952–252
4984. Curran Associates, Inc.253

[5] Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xi-254
aokang Zhang, Xiaohan Zhang, Sijia Luo, Xi Wang,255
and Jie Tang. 2024. Spreadsheetbench: Towards256
challenging real world spreadsheet manipulation. Ad-257
vances in Neural Information Processing Systems,258
37:94871–94908.259

[6] Justin Payan, Swaroop Mishra, Mukul Singh, Carina260
Negreanu, Christian Poelitz, Chitta Baral, Subhro261
Roy, Rasika Chakravarthy, Benjamin Van Durme,262
and Elnaz Nouri. 2023. Instructexcel: A bench-263
mark for natural language instruction in excel. arXiv264
preprint arXiv:2310.14495.265

5

https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ff30c4bf31db0119a6219e0d250e037-Paper-Conference.pdf

	Introduction
	Related Works
	Workbook Time Machine
	Backward
	Forward
	Dataset statistics

	Experiment Setup
	Metrics

	Results and Analysis
	Abstractness of instruction
	Number of steps
	Artifact type

	Conclusion
	Limitations

