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Abstract
As deep learning continues to be driven by ever-
larger datasets, understanding which examples are
most important for generalization has become a
critical question. While progress in data selection
continues, emerging applications require study-
ing this problem in dynamic contexts. To bridge
this gap, we pose the Incremental Data Selection
(IDS) problem, where examples arrive as a con-
tinuous stream, and need to be selected without
access to the full data source. In this setting, the
learner must incrementally build a training dataset
of predefined size while simultaneously learning
the underlying task. We find that in IDS, the im-
pact of a new sample on the model state depends
fundamentally on both its geometric relationship
in the feature space and its prediction error. Lever-
aging this insight, we propose PEAKS (Prediction
Error Anchored by Kernel Similarity), an efficient
data selection method tailored for IDS. Our com-
prehensive evaluations demonstrate that PEAKS
consistently outperforms existing selection strate-
gies. Furthermore, PEAKS yields increasingly
better performance returns than random selection
as training data size grows on real-world datasets.

1. Introduction
Deep neural networks (DNNs) have achieved remarkable
success in recent years, fueled in large part by the availabil-
ity of massive datasets (Zhai et al., 2022; Touvron et al.,
2023; Liu et al., 2024). However, scaling up training data
incurs substantial costs: data collection, increased computa-
tional requirements, and environmental impact from energy
consumption (Yang et al., 2023). Thus, there is a growing
need to improve the data efficiency of DNNs to ensure their
development remains accessible and sustainable.
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Figure 1. Illustration of PEAKS: The solid line denotes the deci-
sion boundary. Empty markers represent current training samples,
and the star indicates the mean embedding of the circular class.
During the selection step, among the three potential candidates for
inclusion in the training dataset, the green circle is selected due
to its high prediction error (Err) and strong similarity (Sim) to the
mean embedding. The model is subsequently updated using the
newly selected sample along with prior examples. This iterative
process is repeated until a total of k new examples are collected.

This pressing need for data efficiency has sparked renewed
interest in coreset selection, a well-studied problem in tra-
ditional machine learning that is now finding applications
in deep learning. A common approach is static coreset
selection, which identifies a representative subset of the
training data in one shot using a trained model (Guo et al.,
2022). However, this approach assumes an example’s value
remains fixed regardless of the training trajectory and model
state—an assumption that holds for traditional algorithms
(e.g., SVMs) but not for DNNs. Adaptive methods ad-
dress this limitation by dynamically reselecting coresets
throughout training (Yang et al., 2023; Killamsetty et al.,
2021b). Yet both approaches require complete datasets to
be available upfront and need to process the entire dataset
for selection, making the selection process itself impractical
as datasets grow to millions or billions of examples.

Online batch selection methods offer a more practical ap-
proach by evaluating examples in each training batch and
selectively using only the most informative examples for
updates (Nguyen et al., 2024; Wang et al., 2024). However,
when data cannot be collected and shuffled beforehand, this
local focus becomes problematic. Real-world data is in-
herently heterogeneous, with varying quality levels across
sources and potential for sudden distribution shifts (Goyal
et al., 2024; Delange et al., 2021). In such cases, batches
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may consist entirely of low-quality samples or reflect tem-
porary distribution changes, making selections and training
updates based solely on the local batch context unreliable.

As deep learning applications continue to grow, they often
operate in a dynamic and restrictive context that require
studying data selection in new scenarios. Consider on-
device learning and personalization, where devices continu-
ously receive user data that cannot be shuffled beforehand,
is highly redundant, but needs to be filtered under resource
constraints to capture high-value signals for model improve-
ment (Moon et al., 2024). Similarly, computer vision ap-
plications relying on web-scraped data must contend with
streams of images of varying quality, from high-resolution
to noisy or irrelevant ones (Li et al., 2017). In such settings,
while identifying promising samples is crucial, the greater
challenge lies in retaining them effectively—valuable data
should not be discarded after an update, as models typically
require multiple exposures to learn effectively, with one-
time updates potentially causing disruptive changes (e.g.,
large biased updates) or being overwritten in subsequent
training (Toneva et al., 2019). Instead, we argue that these
samples should be retained and repeatedly integrated into
training, where their collective interactions over multiple
passes help develop more effective representations.

To address these challenges, we propose Incremental Data
Selection (IDS), a novel and pragmatic problem setting for
data-efficient learning. In IDS, data arrives as a continuous
stream, requiring the learner to make incremental selection
decisions while training. The streaming nature of IDS ties
the utility of each example to the model’s evolving state, as
selection choices must build upon and refine the current rep-
resentation space. Unlike adaptive or online methods where
selections are often temporary, IDS retains chosen examples
in the training set. These samples are then mixed with newly
arriving data during subsequent updates, providing stable
representation learning (see Figure 2). Furthermore, this
permanent selection mechanism incrementally constructs
a coreset of previously seen examples up to a predefined
size, enabling systematic study of how training data size
influences overall performance.

In the next section, we formalize the IDS problem and re-
view related work. Section 3 studies IDS by examining how
new samples affect the network’s predictions and its inter-
nal representations, providing insights into the relationship
between sample utility and model state. Building on these
insights, Section 4 presents PEAKS, an efficient algorithm
for IDS. Finally, we validate our approach through compre-
hensive experiments on four datasets, ranging from clean
to noisy and imbalanced, to reflect real-world complexity.
Our evaluation primarily focuses on fine-tuning pre-trained
models with a limited data budget for complex image classi-
fication tasks, where the value of principled data selection

becomes particularly evident. While our method shows its
greatest impact in fine-tuning scenarios, it also provides
consistent benefits when training from scratch.

2. Problem Formulation and Related Work
We study data selection for classification; however, the prob-
lem formulations and mathematical analysis presented in
the next section are applicable to regression as well. To
study incremental data selection in a principled way, this
work proposes a version of IDS that captures the essential
aspects of sequentially selecting data with a fixed budget.
The setting considers a data source Dsource of unknown size.
Access to Dsource is limited to incremental sampling, where
labeled examples (x, y) ∼ Dsource are observed one at a
time. The goal is to select k examples to train f(x; θ), such
that it learns the underlying task and performs well on a
clean testing set. Following standard deep learning training
practices, IDS has three phases (see Figure 2):

1) Initialization: The process begins by randomly sampling
m examples from Dsource (m≪ k) to form the initial train-
ing set T0. The initial model (with or without pretraining)
trains on T0 until convergence, resulting in f(x; θ0). In this
step, f(x; θ0) learns basic task-relevant features before data
selection begins. Next, T0 grows by selecting new samples.

2) Data Selection: This phase alternates between example
selection and model update. Consider selection step t:

Example Selection: A potential example (xp, yp) is sam-
pled from Dsource \ Tt. The decision to keep this sample
is made using an acquisition function A(xp, yp, fθt ; θA),
where θA is the parameters of this function, which is up-
dated after each selection (e.g., a selection threshold). This
process is repeated until δ new examples are selected.

Model and Dataset Update: After collecting δ examples,
Snew = {(xi, yi)}δi=1, a training batch of size b is formed by
combining these new examples with b− δ older examples
sampled uniformly at random1 from Tt. The model is then
updated using this batch, and the training set is updated as
Tt+1 = Tt∪Snew. This process is repeated until |Tt+1| = k,
forming the final set Tend for the next phase.

3) Final Training: In final phase, the model is fine-tuned
on the final training set Tend. This ensures the model learns
all selected examples, including the most recent additions.

The objective of IDS is to maximize test accuracy through
an acquisition function. The framework involves two hyper-
parameters: k (data budget) and δ (selection increment). We
set δ to ensure half of the total training updates (u2 ) occur
during data selection. For example, with k = 1000 and
u = 200, we set δ = 10. This approach performs consis-

1Alternative sampling mechanism is discussed in Section D.3
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Figure 2. Incremental data selection consists of three phases. First, the model is trained on m randomly selected examples. During the
main data selection phase, new examples are iteratively selected from the data source using the acquisition function A. The model is
updated each time δ new examples are collected. Once the data budget k is reached, the model is fine-tuned on all the selected examples.

tently well and simplifies experimentation by making k the
only free variable. See Section B.7 for practical considera-
tions for efficiently scaling IDS in large-scale experiments.

2.1. Related Work

Static and Adaptive Coreset Selection: Coreset selection
aims to identify a subset of the training data that allows a
model to achieve performance comparable to training on the
full dataset. This is typically approached in one of two ways.
The static method selects a subset at once after training a
model on the full dataset, then trains a new model from
scratch on the reduced dataset (Paul et al., 2021; Sorscher
et al., 2022; Meding et al., 2022; Coleman et al., 2020; Min-
dermann et al., 2022; Xia et al., 2024b; Zheng et al., 2023;
Yang et al., 2024). A key limitation of static methods is their
assumption that the importance of samples is independent
of the model’s state, as selection is performed in isolation
from the training. In contrast, adaptive methods periodically
reselect subsets from the full dataset during training to re-
main their effectiveness (Mirzasoleiman et al., 2020; Yang
et al., 2023; Killamsetty et al., 2021b;a). However, both
approaches require processing the entire dataset multiple
times—either during the training phase or through repeated
reselection—resulting in significant computational costs.
Furthermore, these approaches become inapplicable when
the full dataset is not available upfront.

Online Batch Selection: These methods evaluate examples
at the batch level, selecting only a subset of each batch for
model updates (Jiang et al., 2019; Katharopoulos & Fleuret,
2018). This approach has proven particularly effective for
LLM training, where it offers a practical way to reduce
computational costs when batches contain a diverse mix of
high- and low-value samples (Nguyen et al., 2024; Wang
et al., 2024). However, when data cannot be collected and
shuffled beforehand, batches may not be representative of
the broader dataset distribution. In such cases, individual
batches might consist primarily of low-quality or redundant
samples, or reflect short-term distribution shifts, rendering
local batch-level selection suboptimal.

Furthermore, these methods typically make temporary se-
lection decisions, either discarding samples after a single
update (Wang et al., 2024) in single-pass learning or allow-

ing previously selected samples to be rejected in subsequent
epochs (Jiang et al., 2019). This presents two limitations.
First, in single-pass scenarios, discarding samples after one
update may be suboptimal, as many models and tasks re-
quire multiple exposures to learn training examples. Second,
in multi-epoch settings, despite aiming to reduce per-epoch
computation, these methods typically process most of the
dataset across epochs through continuous rotation and recon-
sideration of selected samples. In contrast, IDS constructs a
training set of predefined size while enabling repeated usage
of selected examples. This allows for systematic study of
the relationships between dataset size, sample repetition,
and model performance—a topic of growing interest given
empirically observed neural scaling laws (Sorscher et al.,
2022; Muennighoff et al., 2024; Zhai et al., 2022).

Our work also connects to several related research directions.
The streaming nature of data selection shares similarities
with streaming active learning, while the potential for noisy
and imbalanced data in Dsource relates to robust and long-
tailed learning. Although our current analysis assumes a
fixed distribution for Dsource to focus primarily on data effi-
ciency, the scenario naturally extends to continual learning
when the input distribution evolves over time. We provide
discussions of these relationships in Section C.

3. Analyzing Impact of New Data on Model
In IDS, after the initialization phase, the model will have
converged and acquired decent zero-shot performance. In
line with two recent work (Dong et al., 2024; Xia et al.,
2024a), we assume the network function at this point is
close to the optimal parameter space, and thus the model’s
behavior between consecutive updates can be approximated
via first-order Taylor expansion, operating in the kernel
regime2. To effectively select examples in the IDS setting,
we need to understand how incorporating a potential exam-
ple (xp, yp) into training impacts the model’s predictions
on validation samples, and therefore able to assess its value
for future learning. Here, y ∈ RC is the one-hot-encoded la-
bel. The model is defined as f(x; θt) at training time t, and

2These assumptions require a larger initial set T0 when training
from scratch, compared to fine-tuning a pre-trained model.
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the predicted class probabilities are given by σ(f(x; θt)),
where σ represents the softmax operator, and σ(f(x; θt))[i]
denotes the probability for class i.

Let ∆fv = f(xv, θt+1) − f(xv, θt) ∈ RC denote the
change in model output for a validation sample after one
SGD update using example xp. Using first-order Taylor
expansion and gradient descent with learning rate η:

∆fv = −η∇θf(xv; θt)
T∇θf(xp, θt) · (σ(f(xp, θt))− yp)

(1)
The first term,∇θf(xv; θt)

T∇θf(xp, θt), is the Neural Tan-
gent Kernel K(xv, xp) ∈ RC×C , which characterizes how
training on input xp induces changes in the model’s predic-
tions for input xv through parameter updates (Jacot et al.,
2018). The second term, (σ(f(xp, θt))−yp), is the gradient
of the cross-entropy loss with respect to model outputs. To
understand how updating on example xp affects specific
logits, we examine ∆fv[i] with the kernel entries:

∆fv[i] =

C∑
j=1

K(xv, xp)[i, j](yp[j]−σ(f(xp, θt))[j]) (2)

Here, ∆fv[i] represents the change in the i-th logit of the
validation example, which depends on both the kernel inter-
action K(xv, xp)[i, j] and the logit gradient for each class j.
The latter measures how much the model’s predicted proba-
bility distribution deviates from the class distribution, which
we refer to as the prediction error. Putting together, the
change in logit i depends on logit gradients for all classes
weighted by their kernel couplingK(xv, xp)[i, j], thus influ-
enced by both the geometric relationship between examples
in parameter space and the model’s prediction error.

When selecting beneficial training examples, a natural objec-
tive is to maximize logit increases for correct classes while
encouraging logit decreases for incorrect classes. This moti-
vates our scoring function for example xp:

∆(xp, xv) = ∆fv[cv]−
∑
i ̸=cv

∆fv[i] (3)

where cv := yv. Through eq. (2), we can see that the high
scoring examples should satisfy two criteria: they should
have significant prediction errors (indicating potential for
improvement), and gradient patterns that align with valida-
tion examples. The prediction error term identifies examples
where the model needs improvement, while kernel coupling
term naturally emphasizes examples that are geometrically
related in the model’s parameter space. Our derivation pro-
vides a principled way to analyze how training on a new
example influences the model’s predictions.

3.1. Simplification for Tractable Algorithm

Computing ∆fv[i] requires calculating the Jacobians of all
logits with respect to the network parameters. With modern

DNNs containing millions of parameters and hundreds of
output classes, this quickly becomes intractable. Therefore,
we consider the following simplification.

Last Layer Training: We assume updates are limited to
the classification layer L(x) = Wϕ(x), where W ∈ Rd×C

and ϕ(x) is the penultimate layer representation (L(x) re-
lates to the network function: f(x;W ) = L(ϕ(x; θ1:l−1))).
This approximation is justified by empirical findings that
later layers undergo more significant changes during train-
ing while early layers remain relatively stable (Yosinski
et al., 2014), whether using a pretrained model or after suffi-
cient initial training. We focus on how training on (xp, yp)
affects validation samples of the same class (i.e., where
cv = yp). Under last-layer training, K(xv, xp) factorizes
as ϕ(xv)

Tϕ(xp) when i = j, and is zero elsewhere. The
kernel simplifies to:

K(xv, xp)[i, j] =

{
ϕ(xv)

Tϕ(xp), if i = j

0, if i ̸= j
(4)

With this, our objective ∆(xp, xv) becomes:

(ϕ(xv)
Tϕ(xp))(1− σ(f(xp, θt))[yp])+ (5)

(ϕ(xv)
Tϕ(xp))

∑
i̸=yp

σ(f(xp, θt))[i] (6)

which approximates the net positive effect of training on xp

for validating example xv . This simplifies to:

∆(xp, xv) = E(xp)(ϕ(xv)
Tϕ(xp)) (7)

where E(xp) captures the model’s prediction error:

E(xp) = (1−σ(f(xp, θt))[yp])+
∑
i ̸=yp

σ(f(xp, θt))[i] (8)

Therefore, taking the expectation over all validation exam-
ples of class yp:

Exv∼D
yp
v
[∆(xp, xv)] = E(xp)

〈
ϕ(xp),

1

|Dyp
v |

∑
xv∈D

yp
v

ϕ(xv)

〉
(9)

This shows that xp improves predictions based on its error
E(xp) and similarity to the class mean embedding. Interest-
ingly, these terms compete: maximizing E(xp) aligns with
the EL2N score in (Paul et al., 2021), while the feature prod-
uct term captures how close xp’s features are to the class
prototype (mean embedding) (Sorscher et al., 2022). Our
method suggests using the product of these scores rather
than considering them independently.

3.2. Eliminating the Need for a Validation Set

Our scoring function ED
yp
v
[∆(xp, xv)] requires validation

examples to compute class mean embeddings. However,
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the weight vector W[:,yp] already serves as a learned pro-
totype for class yp, approximating the true class prototype
after initial training on randomly selected data. Therefore,
the logit f(x, θt)[yp] = WT

[:,yp]
ϕ(x) measures feature align-

ment with this prototype.

Using this geometric interpretation for the weight vectors,
we can approximate our score using xp’s features and logits:

ED
yp
v
[∆(xp, xv)] ≈ E(xp)

〈
ϕ(xp),W[:,yp]

〉
(10)

= E(xp)f(xp, θt)[yp] (11)

4. PEAKS for Incremental Data Selection
While traditional coreset selection require access to the full
dataset, the scoring function from our theoretical analysis
offers a readily usable way to evaluate examples incremen-
tally. Based on this insight, we propose PEAKS (Prediction
Error Anchored by Kernel Similarity), which leverages the-
oretical insights from Section 3 that establish a sample’s
utility depends on both geometric relationships and errors.
We introduce two variants: PEAKS-V, which requires a vali-
dation set and involves periodic computation of class means
(eq. (9)), and PEAKS, which eliminates this requirement
(eq. (11)). Our experiments primarily focus on PEAKS,
which provides an efficient solution for IDS (see Figure 1).

4.1. Data Selection with PEAKS and PEAKS-V

Consider a potential example (xp, yp) presented at selection
step t. As discussed in Section 3, ED

yp
v
[∆(xp, xv)] esti-

mates how much a sample improves predictions for class
yp. However, this score is inherently class-dependent, and
comparing it directly across classes can be misleading. For
instance, a change of ∆ in the activation of an output neuron
might significantly improve predictions for one class while
having minimal impact for another class. Since the IDS sce-
nario does not allow comparison across a pool of examples
with different classes, we propose a simple solution: weight-
ing ED

yp
v
[∆(xp, xv)] by 1

cyp (t)
, where cyp(t) represents the

number of samples already selected from class yp at time t.
Thus, for a sample, we define the score s(xp, yp) as:

s(xp, yp) =
1

cyp
(t)

ED
yp
v
[∆(xp, xv)] (12)

ED
yp
v
[∆(xp, xv)] is calculated via eq. (11) or (9) for

PEAKS and PEAKS-V, respectively. This adjustment avoids
extremely imbalanced selection and provides consistent ben-
efits on balanced and imbalanced datasets (see Section D.4).

4.2. Score-based Dynamic Selection Criterion

Selection decisions require a dynamic threshold that adapts
to evolving score distributions during model training3. To

3The evolution of selection scores is analyzed in Section D.1.

achieve this, we maintain a cache C of scores from recently
seen examples and make decisions based on percentile rank-
ings. For a sample (xp, yp) with score s(xp, yp), we com-
pute its percentile rank within C. Given a selection ratio p%,
the acquisition function A(xp, yp, fθi ; C) is:

Percentile(s(xp, yp), C) ≥ 100− p (13)

Otherwise, the sample is discarded. Every τ updates, the
recent score cache C is cleared. For PEAKS-V, we also
recompute class mean embeddings. This dynamic selection
criterion is adapted for all score-based methods in our ex-
periments, where each method defines its own acquisition
function A(xp, yp, fθ; C) with two hyperparameters: the se-
lection rate p% and the refresh period τ . The complete IDS
procedure is formalized in Algorithm 1.

5. Experimental Results
Our experiments spans four datasets: CIFAR100, Food101
(Bossard et al., 2014), Food101-N (Lee et al., 2018), and
WebVision (Li et al., 2017), chosen to assess IDS across
varying data quality. CIFAR100 and Food101 serve as bal-
anced, relatively clean datasets, while Food101-N (a distinct
dataset from Food-101 collected from different sources) in-
troduces class imbalance and label noise. WebVision repre-
sents a large-scale real-world scenario. Dataset details and
selection criteria are discussed Section B.5.

We compare PEAKS against seven baselines. Three vari-
ants utilize penultimate layer embeddings—Easy (Welling,
2009), Hard (Sorscher et al., 2022), and Moderate (Xia et al.,
2023)—selecting examples based on their cosine similarity
(highest, lowest, and intermediate, respectively) to class
mean embeddings. These are computed either via validation
set or approximated using output layer weights as described
in Section 3.2. The remaining baselines include EL2N (er-
ror magnitude), GraNd (gradient norm) (Paul et al., 2021),
uncertainty-based selection (prediction confidence) (Guo
et al., 2022), and uniform random selection. The rationale
behind baseline selection and details are presented in B.6.

We set the selection rate p% to 20 across all experiments,
while τ is configured to ensure 10 cache refresh operations
occur during the data selection phase, unless otherwise spec-
ified. While PEAKS algorithm’s derivation assumes training
only the classification layer to derive an efficient selection
method, our experiments train the entire architecture. Addi-
tional experimental details are provided in their respective
subsections and comprehensively documented in Section B.

5.1. Training from Scratch Results

We first perform IDS by training a ResNet-18 from scratch.
In this setting, a larger initial training set size m is necessary
to ensure the model achieves sufficient performance for

5



meaningful selection decisions, as both PEAKS and other
baseline methods rely on model outputs being sufficiently
informative to assess sample utility. Experiment details are
provided in Section B.1.

Figure 3. ResNet-18 without pretraining. Accuracy across three
seeds. |m|: 7.5k (CIFAR100), 10k (Food101), 20k (Food101-N).

Figure 3 presents results across three datasets with varying
data quality and complexity. PEAKS consistently outper-
forms random selection and other baselines, with one ex-
ception on CIFAR100 at the 30k data budget. However, the
performance gains from data selection methods including
PEAKS are modest, more so on the lower data size end and
on the well-curated CIFAR100. This observation reveals
once again that random selection serves as a surprisingly
strong baseline for data selection on simpler datasets (Guo
et al., 2022). Our result could also potentially be explained
by the analytic theory of data pruning developed by Sorscher
et al. (2022), which postulates that although in theory ag-
gressive data pruning with high quality pruning metric can
lead to bigger improvement compared to random pruning,
in practice achieving such reliable metrics becomes chal-
lenging, especially with limited data. Furthermore, with a
highly unreliable scoring function, beating random selection
with small data budget might even be impossible.

This creates a fundamental tension: while aggressive prun-
ing is desirable for selecting even more efficient data subset,
stringent data budgets undermine pruning effectiveness, as
training with less data would render the score unreliable.
This paradox poses a limitation on all baseline methods that
depend on model performance. We address this challenge
by utilizing a pretrained model for our subsequent experi-
ments with more aggressive pruning schemes, specifically a
ViT-B/16 pretrained on ImageNet-1k using DINO (Caron
et al., 2021) – see Section B.2 for details. The pretrained
foundation provides a reliable feature space, enabling higher
quality data selection decisions even with aggressive prun-
ing rates. This approach not only resolves the technical
paradox but also aligns with contemporary practice, where
pretrained models are increasingly ubiquitous and training

from scratch is becoming less common. Thus, studying
data selection in the context of fine-tuning with limited data
offers both practical relevance and an ideal setting for un-
derstanding the full potential of data selection strategies.

5.2. Results With Pretraining

With Validation Set: Table 1 presents results where a
portion of the test set is held out as validation data. This val-
idation set enables us to establish performance upper bounds
for data selection. Specifically, for Food101, Food101-N,
and WebVision, the validation examples are human-curated,
representing clear, artifact-free images with correct labels.
We evaluate two upper bound baselines: Static, which trains
on the entire validation set using epoch-based training, and
Incremental, which performs IDS selecting only from the
validation examples. These upper bounds are not computed
for CIFAR100, as its test set is of similar quality to its train-
ing set. For WebVision, upper bounds are only available
for the smallest data budget due to limited test set size. We
utilize these validation sets to compute class prototypes for
PEAKS-V and the three embedding-based methods.

The results show that PEAKS-V significantly outperforms
all embedding baselines that are based on distance, demon-
strating that such distance to class prototype alone is in-
sufficient for data selection in the transfer learning setting.
The integration of prediction error weighting in PEAKS pro-
vides substantial improvements. However, the performance
gap between PEAKS and the upper bounds, particularly
noticeable in Food-101N and WebVision, indicates room
for improvement on complex real-world datasets. Moreover,
we observe a considerable gap between static and incremen-
tal upper bounds in WebVision, which may indicate that the
model’s convergence on earlier selected samples hinders
learning from newer examples. These findings suggest that
IDS for complex datasets might benefit from more sophisti-
cated regularization techniques or methods to improve the
plasticity of gradient descent (Dohare et al., 2021).

Without Validation Set: Next, we evaluate our efficient
PEAKS variant against baselines that do not require valida-
tion data. We also consider the best-performing embedding
method (Moderate) from previous experiments, but use read-
out weights rather than validation set to measure distances.
Comparing Tables 1 and 2, we observe that PEAKS shows
some performance degradation compared to PEAKS-V. This
gap is most noticeable when samples per class are very lim-
ited (e.g.,×1), where output layer weights cannot accurately
approximate class means. Despite this, PEAKS outperforms
all baselines in most cases.

Notably, GraNd achieves the best performance in CIFAR100
experiments. This comes with significantly higher compu-
tational cost due to its per-example gradient computation
requirement. This success can be explained by CIFAR100’s
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Table 1. Test accuracy using validation set. Results averaged across
5 seeds. ×1, ×2, and ×4 refer to dataset sizes of 2.5k, 5k, and
10k examples for CIFAR100, Food101, and Food101-N, and 25k,
50k, and 100k examples for WebVision, respectively.

With Validation Set CIFAR100 Food101 Food101-N WebVision

Upper-Std (×1) N/A 55.6 55.6 59.5
Upper-Inc (×1) N/A 55.2 55.2 50.6
Random (×1) 57.0 49.6 37.0 36.2
Easy Emd (×1). 48.6 44.3 39.2 33.6
Moderate Emb. (×1) 56.7 50.1 39.0 38.8
Hard Emb. (×1) 55.7 40.6 22.2 21.7
PEAKS-V (×1) 61.0 53.3 45.4 45.9

Upper-Std (×2) N/A 66.5 66.5 N/A
Upper-Inc (×2) N/A 63.8 63.8 N/A
Random (×2) 71.1 60.4 46.9 44.0
Easy Emd. (×2) 55.0 49.9 46.7 35.1
Moderate Emb. (×2) 68.9 61.9 50.5 47.5
Hard Emb. (×2) 71.8 49.1 20.6 18.7
PEAKS-V (×2) 75.5 64.2 56.1 54.4

Upper-Std (×4) N/A 74.3 74.3 N/A
Upper-Inc (×4) N/A 72.4 72.4 N/A
Random (×4) 81.1 69.7 55.0 50.0
Easy Emd. (×4) 65.5 56.4 52.9 38.9
Moderate Emb. (×4) 77.7 70.5 60.8 53.3
Hard Emb. (×4) 82.1 61.5 21.4 16.0
PEAKS-V (×4) 84.3 73.1 63.5 59.9

clean nature, as gradient provides a reliable signal in such
cases. However, this advantage diminishes on more complex
datasets containing outliers and label noise. Furthermore,
consistent with recent findings (Xia et al., 2023), selecting
examples with intermediate distances to class means (Mod-
erate Emb.) provides reliable baseline across all real-world
datasets. Overall, while PEAKS achieves its best results
with validation data, it maintains superior performance even
in scenarios where validation data is unavailable, demon-
strating its robustness and practical utility.

5.3. Impact of Selection Ratio

In previous experiments, we used a fixed selection rate of
p = 20%. This hyperparameter significantly influences
the pace of the selection process for a fixed data budget k.
Higher values (p > 50%) make selection less discriminative
by allowing lower-scored examples to be selected, lead-
ing to greater overlap with random selection. Conversely,
lower values of p focus strictly on the highest-scored sam-
ples, making selection more focused but potentially limiting
diversity. If a selection method truly captures dataset char-
acteristics and their relation to previously selected samples
and the model state, we would expect it to perform bet-
ter with lower p and not benefit from the inclusion of low
scored examples. We examine how varying this parameter
affects performance across different methods on Food101
and Food101-N datasets, as shown in Figure 4.

The results show that none of the methods benefit from
stricter selection (p = 10%). In IDS, methods rely on the
model state for selection, which is shaped by previously se-

Table 2. Test accuracies averaged across 3 seeds without validation
set. Data budgets ×1, ×2 and ×4 are same with Table 1

Without Validation Set CIFAR100 Food101 Food101-N WebVision

Random (×1) 58.0 48.9 37.2 36.6
Moderate Emb. (×1) 57.6 50.8 39.7 39.0
EL2N (×1) 60.1 46.2 32.6 32.2
GraNd (×1) 63.3 48.3 34.9 35.7
Uncertainty (×1) 62.0 49.1 36.3 35.2
PEAKS (×1) 59.0 50.9 41.4 43.9

Random (×2) 70.2 59.6 46.5 44.1
Moderate Emb. (×2) 67.2 61.9 50.5 47.9
EL2N (×2) 74.2 56.6 38.0 37.5
GraNd (×2) 76.4 60.0 42.3 42.5
Uncertainty (×2) 75.9 61.1 45.7 40.6
PEAKS (×2) 72.3 62.6 52.6 53.1

Random (×4) 79.4 69.2 55.8 50.1
Moderate Emb. (×4) 74.9 70.5 62.0 54.8
EL2N (×4) 82.5 66.5 44.7 41.5
GraNd (×4) 83.4 69.9 50.0 48.8
Uncertainty (×4) 82.6 71.5 55.7 45.6
PEAKS (×4) 82.7 72.9 62.2 59.0

lected samples, but making optimal decisions incrementally
without access to the entire data source makes it challeng-
ing to capture true data distributions. Moreover, since the
scoring functions are approximations of the true utility, a
larger selection fraction helps compensate for this uncer-
tainty by accepting more samples that could be valuable.
PEAKS maintains superior performance across most selec-
tion rates, achieving its peak performance at p = 30%. As
p approaches 100%, all methods converge to similar accu-
racy levels, resembling random sampling. Notable, EL2N
improves with higher selection rates. This can be explained
by EL2N’s focus on high-error examples when selection is
strict, which may often correspond to noisy or atypical sam-
ples. As the selection rate increases, it naturally incorporates
more diverse examples, leading to better performance.

Figure 4. Performance comparison using a fixed budget of 10k
samples from Food101 and Food101-N datasets with varying se-
lection rates (p%). Results averaged across three seeds.
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5.4. Overlap in Selection

We next compare which samples are selected by differ-
ent strategies. Since examples are sampled as (xp, yp) ∼
Dsource\Tt, and Tt varies across methods, the order in which
samples appear differs, even with fixed random seeds. Fur-
thermore, randomness in the sampling process means not all
samples are guaranteed to be encountered. To alleviate these
variations, our analysis focuses on selecting 30% of samples
from CIFAR-100 (15k) and Food-101 (∼23k). This larger
data budget, compared to earlier experiments (Section 5.2),
increases the likelihood of most samples being encountered
at least once. Under these conditions, approximately 85%
of all samples are seen by each method, with a high overlap
(∼90%) in the samples encountered across methods (see
Section B.3 for details). Figure 5 illustrates the Jaccard
similarity between the final training sets Tend selected.

PEAKS shows partial overlap (0.36–0.40) with EL2N, in-
dicating that kernel similarity plays a significant role in
guiding selection, too, rather than prediction error alone.
Our analysis of Food101 samples selected exclusively by
PEAKS (see Section D.2 in Appendix) suggests PEAKS
may favor examples near decision boundaries between simi-
lar classes, while EL2N tends to select poorly framed or mis-
labeled samples. Interestingly, EL2N and PEAKS achieve
the same accuracy (rounded to a single decimal point) on
CIFAR100. Similarly, EL2N and Moderate exhibit com-
parable performance on Food101, despite having very low
overlap in selection (0.18). These findings underscore an
important aspect of data selection: multiple distinct subsets
can serve as qualitatively equivalent training sets. Once a
sample is selected and influences the model state, it inher-
ently changes the utility of the remaining samples, leading
to different but likely equally effective selection paths.

Figure 5. Jaccard similarity (intersection over union) between se-
lected samples across different methods. Accuracies rounded to a
single decimal point are shown in parentheses (single seed).

5.5. Scaling Against Random Selection

Finally, we evaluate PEAKS against random selection across
a broader range of data budgets, focusing on Food101-N
and WebVision due to their larger sizes. Figure 6 shows
that the advantage of PEAKS over random selection be-

comes more significant as the dataset size increases. This is
particularly evident in WebVision, where random selection
requires approximately 4× more data to achieve similar per-
formance levels. For instance, PEAKS with 50k and 100k
samples achieves comparable accuracy to random selection
using 200k and 400k samples, respectively. Similarly, on
Food101-N, random selection consistently needs double
the data to achieve comparable performance. These results
demonstrate that effective data selection strategies can sub-
stantially reduce data requirements for DNNs, offering a
practical path toward more efficient and sustainable training.

Figure 6. Accuracy vs. training dataset size for Food-101N and
WebVision, averaged across 3 seeds (shaded areas show std.)

6. Conclusion
We introduced the Incremental Data Selection (IDS) prob-
lem, addressing data selection for DNNs in a dynamic con-
text where examples arrive as a continuous stream and must
be selected without access to the full data source. IDS
bridges the gap between the traditional coreset selection
procedure and the practical needs of DNNs. Our analysis
revealed fundamental relationships between newly arriving
data samples and their potential for model improvement.
These insights led to the development of PEAKS, an effi-
cient data selection method tailored for IDS. Most notably,
on WebVision, a large-scale real-world dataset, PEAKS
achieves comparable performance while requiring only one-
fourth of the data needed by random selection. Our results
suggest that principled data selection strategies can substan-
tially reduce data requirements for modern DNNs while
maintaining model performance.
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A. IDS Algorithm

Algorithm 1 Incremental Data Selection
1: Input: Initial set T0, data budget k, selection rate p, refresh period τ , Acquisition function A(xp, yp, fθ; C)
2: Train initial model f0 on T0

3: Initialize C ← ∅, t← 0, Snew ← ∅
4: while |Tt| < k do
5: nselected ← 0
6: while nselected < δ and |Tt|+ nselected < k do
7: Sample (xp, yp) from Dsource
8: if A(xp, yp, ft; C) accepts then
9: Snew ← Snew ∪ {(xp, yp)}

10: nselected ← nselected + 1
11: end if
12: end while
13: batch← Snew∪ Random(Tt, b− δ)
14: Update model ft+1 using batch
15: t← t+ 1
16: Tt ← Tt−1 ∪ Snew
17: Snew ← ∅
18: if t mod τ = 0 then
19: C ← ∅
20: end if
21: end while
22: Fine-tune final model on Tend = Tt

B. Experiment Details
B.1. Details of Training from Scratch Experiments

We conducted our initial experiments using a ResNet-18 architecture trained from scratch on CIFAR100, Food101, and
Food101-N datasets. For CIFAR100, following standard practice for low-resolution images, we modified the network
architecture by replacing the initial 7×7 convolution layer (stride 2) and 3×3 max pooling layer (stride 2) with a single 3×3
convolution layer (stride 1).

Training Configuration:

• Optimizer: AdamW with learning rate 0.001 and weight decay 0.01

• Total training steps: 30000

• Batch size: 128

• Data normalization: Per-channel mean and standard deviation using ImageNet-1k statistics

• Data augmentation: Random cropping and random horizontal flipping (p = 0.5)

• Learning rate schedule: Reduced by factor of 10 at the start of final training phase

While training for 30000 steps allows models to overfit the training dataset, we did not observe any adverse effects on
validation performance. We picked the optimizer, learning rate, and weight decay based on initial phase training performance
(same for all baselines, with randomly selected m examples).

Dataset Configurations:

• CIFAR-100: 15k and 30k samples
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• Food-101: 20k and 40k samples

• Food-101N: 40k and 80k samples

We selected these dataset sizes to represent two distinct scenarios: a minimal viable budget that enables successful training
from scratch (first number), and a doubled budget to study larger budget. In the literature, dataset size is commonly reported
as a fraction of the total dataset. However, our datasets vary drastically in terms of total samples. For example, 30% of
CIFAR100 means 15000 samples, while in Food101-N the same ratio means 90000 samples. Therefore, we focus on
absolute sample counts rather than fractions. Due to computational constraints, we could not conduct exhaustive experiments
across a wider range of dataset sizes. Training from scratch is particularly resource-intensive compared to fine-tuning
pre-trained models, which influenced our decision to focus on these specific dataset sizes. For similar computational reasons,
we excluded WebVision from our training-from-scratch experiments.

IDS-Specific Parameters:

• Selection increment (δ):

– 4 for CIFAR-100 and Food-101
– 8 for Food-101N (adjusted for larger dataset size)

• Cache Refresh Period (τ ): 400 steps

• Selection Rate (p): 20%

• Initial Dataset Size (m): CIFAR-100 7.5k, Food-101 10k, Food-101N: 20k. In other words, half of the low budget
scenario.

• Initial Training Steps: 10000

The cache refresh period τ proved robust across a wide range of values. However, if τ is set too high or cache refreshing is
not performed frequently enough, selection rates consistently drop as it becomes harder to collect new samples. This occurs
because selection scores (PEAKS, Moderate, EL2N, and Uncertainty) typically decrease as the model learns, and without
regular cache refreshes, high scores from early training prevent newer examples from being selected.

B.2. Details of Pretraining Experiments

Our primary focus was on data selection for fine-tuning pretrained models, reflecting their ubiquity in practice as training
from scratch becomes increasingly uncommon. For these experiments, we used a ViT-B/16 architecture pretrained using
DINO self-supervised learning on ImageNet-1k.

Training Configuration:

• Optimizer:

– WebVision: AdamW (lr=0.0001, weight decay=0.01)
– All other datasets: SGD with momentum (lr=0.001, weight decay=0.0001)

• Training steps:

– WebVision: 6000
– All other datasets: 2000

• Batch size: 128

• Data normalization: ImageNet-1k per-channel mean and standard deviation. We upscaled CIFAR100 images to
224× 224× 3.

• Data augmentation: None

• Learning rate schedule: None
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Notably, we omitted data augmentation and learning rate scheduling, which are less critical when fine-tuning pretrained
models compared to training from scratch. This simplification also enables clearer analysis of the relationship between
dataset size and model performance. Similar to the training-from-scratch case, we picked the optimizer, learning rate, and
weight decay based on initial phase training performance.

Dataset Configurations:

• CIFAR-100, Food-101, Food-101N: 2.5k, 5k, 10k samples

• WebVision: 25k, 50k, 100k samples

These sizes correspond to approximately 25, 50, and 100 samples per class in the training dataset.

IDS-Specific Parameters:

• Selection increment (δ):

– CIFAR-100, Food-101, Food-101N: 2, 4, and 8 for respective data budgets
– WebVision: 5, 14, and 30.
– These values ensure approximately half of the training steps occur during the data selection phase.

• Cache Refresh period (τ ):

– WebVision: 300
– Other datasets: 100
– Configured for roughly 10 refreshes during selection

• Selection rate (p): 20%

• Initial dataset size (m):

– WebVision: 10000
– Other datasets: 1000
– Approximately 10 samples × number of classes, though not necessarily class-balanced

• Initial training steps:

– WebVision: 1000
– Other datasets: 100

These hyperparameters were intentionally set to round values based on dataset characteristics without extensive optimization.
This approach avoids potential bias, as different selection methods may achieve optimal performance under different
configurations. Additionally, it provides a more realistic evaluation, as optimal parameter tuning may be impractical in
real-world scenarios where data sources can be unbounded.

The above configurations were consistent across all experiments with or without validation set. For experiments involving
validation sets, we made the following additional considerations:

Validation Set Configuration:

• Food-101 and Food-101N: Reserved clean, human-annotated samples from test set matching training budget (2.5k, 5k,
10k)

• WebVision: Fixed 25k validation set due to limited test set size (50k total)

• CIFAR-100: Reserved 2.5k, 5k, 10k from training set due to test set size limitations (10k) and similar distribution to
training data.

For validation set experiments, we used 5 random seeds (versus 3 for other experiments) to obtain more reliable generalization
estimates given the reduced test set size. The validation sets were used to compute class mean embeddings every τ steps for
embedding-based methods (Table 1).
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B.3. Details of Overlap in Selection

In Section 5.4, we analyze the overlap between samples selected by different methods using Jaccard Similarity (intersection
over union). It is important to note that Jaccard Similarity operates on sets and is therefore insensitive to ordering. For
instance, if two methods both select the same sample but assign it different importance rankings, the Jaccard Similarity
treats these equally as selections.

Our experimental setup follows the configurations detailed in Section B.2 for pretrained models, with one key modification:
we increased the selection increment δ to 16 to ensure sufficient examples could be selected within the allocated training
steps. The initial training dataset of size m = 1000 was excluded from Jaccard Similarity calculations as these samples
were randomly collected rather than chosen by selection methods.

To validate that methods encountered similar samples during the selection phase, we also computed the Jaccard Similarity of
seen samples (see Figure 7). This analysis confirmed that approximately 90% of samples seen by one method were also
encountered by others, ensuring a fair comparison of selection strategies despite the sequential nature of IDS.

Figure 7. Jaccard similarity between sets of samples encountered (seen) by different selection methods during training on CIFAR-100
(left) and Food-101 (right) when selecting 30% of the dataset. High values ( 0.87-0.90) across all method pairs indicate that methods
encounter largely overlapping sets of samples during selection, despite making different selection decisions.

B.4. Details of Scaling Against Random Selection Experiments

For the scaling experiments presented in Section 5.5, we followed the experimental configuration described in Section B.2,
adjusting only the selection increment δ based on dataset size to ensure balanced data collection throughout the training
process.

For Food-101N, we started with δ = 1 for the 2k budget and doubled it for each subsequent budget doubling. For WebVision:

• 12.5k budget: δ = 5

• 25k-100k budgets: Same configuration as Section B.2

• 200k budget: δ = 60

• 400k budget: δ = 100

These adjustments ensure that data selection keeps pace with model training, avoiding both too rapid and too slow data
collection.

B.5. Choice of Datasets

Our experiments require datasets that enable a thorough assessment of IDS across varying data quality conditions while main-
taining reliable evaluation metrics. We selected four datasets—CIFAR100, Food101, Food101-N, and WebVision—based
on several criteria that align with our experimental objectives (see Table 3 for dataset statistics).
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Dataset
Num

Classes Train Size Test Size Train Label Balance
Train Data

Noise
CIFAR100 100 50k 10k Yes ∼0%
Food101 101 75k 25k Yes ∼8%
Food101-N 101 310k 25k Mild Imbalance ∼20%
WebVision 1000 2.4M 50k Strong Imbalance ∼20%

Table 3. Dataset statistics and characteristics used in our experiments.

The primary consideration in our dataset selection was the need to evaluate IDS across a spectrum of data quality scenarios.
CIFAR100 serves as our clean, well-curated baseline dataset, being both balanced and widely accepted in data selection
literature. Food101 represents a middle ground, containing approximately 8% label noise primarily manifesting as color
intensity variations and occasional labeling errors. Food101-N introduces more substantial quality variation with an
estimated 20% noise level, while WebVision provides a large-scale real-world scenario with naturally occurring noise
patterns.

Several crucial factors influenced our dataset selection: First, reliable evaluation necessitates clean and sufficiently large test
sets, particularly as we partition these for validation in PEAKS-V experiments and upper bound analysis. Both Food101-N
and WebVision satisfy this requirement by providing human-verified test sets of relatively large size.

Second, we explicitly avoided datasets closely related to ImageNet (such as Tiny ImageNet) to prevent potential bias, as
ImageNet serves as our pretraining source.

Third, the datasets needed to contain sufficient training examples to make the selection process meaningful. We excluded
several otherwise suitable datasets that contained not enough examples (e.g., less than 50k).

Finally, we prioritized well-established datasets to ensure reproducibility and contextual relevance. While Food101 and
WebVision are less commonly used in coreset selection literature, they are widely recognized in broader computer vision
and machine learning research, particularly in studies involving learning from noisy data and real-world distributions.

B.6. Choice of Baselines

We compare PEAKS against seven baseline methods that can be naturally adapted to the IDS setting. Our selection prioritizes
methods that can make independent decisions for each example without requiring access to a pool of candidates. The
baselines can be categorized into four groups based on their selection criteria:

Embedding-based Methods. We implement three variants that utilize penultimate layer embeddings:

• Easy Embedding: Selects examples with the highest cosine similarity to their class embedding (also known as
“Herding” in literature). The class embedding is computed either via validation set means or output layer weights,
depending on the context.

• Hard Embedding: Selects examples with the lowest cosine similarity to their class embedding, targeting the least
prototypical examples.

• Moderate Embedding: Selects examples with intermediate similarity scores. For a selection rate of p%, it chooses
examples whose distances fall between the (50− p

2 )th and (50 + p
2 )th percentiles in cache C.

Error-based Method. We include EL2N, which selects examples based on the L2 norm of the error vector (difference
between predicted probabilities and one-hot encoded labels).

Gradient-based Method. GraNd selects examples with larger gradient norm magnitudes. This method is computationally
most expensive as it requires computing per-example gradients through backpropagation.

Uncertainty-based Method. We implement the “least confidence” metric that selects examples based on 1 −
max(softmax(logits)). This is uniquely unsupervised, requiring no label information.
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Random Selection. This is uniform random sampling from Dsource.

Several popular data selection methods were not included in our evaluation due to incompatibility with the IDS setting:

• Methods requiring a pool of examples to approximate dataset-wide characteristics

• Approaches based on bilevel optimization or multiple model training

• Methods requiring auxiliary reference models

These exclusions stem from either computational constraints or fundamental incompatibility with the sequential nature of
IDS. Rather than potentially misrepresenting these methods by modifying them beyond their intended use, we focus on
baselines that naturally adapt to the incremental setting while maintaining reasonable computational requirements.

B.7. IDS Practical Considerations

When implementing IDS at scale, several practical considerations become important. First, processing individual examples
through forward passes is computationally inefficient, as it fails to leverage the parallelization capabilities of modern deep
learning frameworks and hardware. To address this, we process potential examples in batches during the selection phase.
While we compute model outputs for the entire batch in parallel, the selection process remains sequential: we evaluate
examples in order from the start of the batch using our acquisition function, select the first δ examples that meet our
criteria, and discard the remaining examples. This approach maintains the incremental nature of our selection process and
does not utilize any information across samples in the batch while allowing us to benefit from batched forward passes for
computational efficiency.

Second, instead of updating the training set Ti immediately after each selection, we maintain a buffer of recently selected
examples and integrate them into Ti during the cache C refresh operation every τ updates. This deferred update strategy
aligns better with typical data loader implementations, which often prefetch data for future updates. Our empirical evaluation
shows no significant performance degradation compared to immediate updates, while the implementation becomes more
efficient and robust.

Finally, we sample potential examples from Dsource \ Ti rather than directly from Dsource. This ensures that already
selected examples are not reconsidered, eliminating the need for explicit duplicate detection. We do not require any method
to detect exact duplicates as in practice this can be handled perfectly with simple data structures.

These tricks are consistently applied across all baseline methods in our experiments, ensuring fair comparisons. These
practical considerations enable efficient scaling of IDS while preserving its core theoretical properties and selection behavior.

C. Extended Related Work
Active Learning: In Active Learning (AL), a model queries an oracle to label the most informative examples from a large
unlabeled pool (Ren et al., 2021; Settles, 2009). Streaming AL scenarios (Cacciarelli & Kulahci, 2024), which evaluate
examples incrementally as they arrive, are most related to our work. However, key differences exist. AL aims to minimize
labeling costs, while IDS assumes labels are readily available, simplifying sample evaluation.

However, IDS introduces unique challenges. In AL, decisions about labeling a sample can often be deferred until more
information is gathered. In contrast, IDS requires immediate decisions. Also, while AL typically emphasizes minimizing
labeling costs and often involves resetting and retraining the model on the final dataset, IDS simultaneously trains the model
efficiently during the data selection process. Thus, while AL and IDS have complementary objectives, they operate under
distinct goals and constraints.

Robust, Long-Tailed, and Continual Learning: In IDS, the data source Dsource may be noisy and class-imbalanced. Robust
learning with noisy labels has been extensively studied (Song et al., 2022; Zhou, 2018). Similarly, Long-Tailed Learning
addresses scenarios where a subset of classes has disproportionately many samples, while most classes are underrepresented
(Zhang et al., 2023). Although these challenges are relevant to IDS, they are not its primary focus.

Continual Learning (CL) methods aim to train DNNs incrementally on evolving data distributions while preserving
previously learned knowledge (Wang et al., 2023; Delange et al., 2021). A common approach involves selecting samples
from past distributions and mixing them with new data to form training batches. CL’s replay approaches, which involve
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mixing samples from past distributions with new data during training, share similarities with IDS model update step. Thus,
IDS can naturally handle some degree of distribution shift. However, in this paper, we focus solely on data efficiency and
assume Dsource remains constant over time.

D. Additional Results
D.1. Why Do We Need Cache C Refresh?

To empirically demonstrate the necessity of cache refreshing discussed in Section 4.2, we analyze how selection scores
evolve during training. We focus on selecting 30% of samples from CIFAR-100 (15k) and Food-101 ( 23k), consistent
with our overlap analysis setting in Section 5.4. Since different methods operate on vastly different scales (e.g., Moderate
selection’s cosine distance is bounded [0,2] while GraNd can be arbitrarily large), we normalize each score by its maximum
value of rolling average for comparison.

Figure 8 illustrates the evolution of these normalized scores across training. Several key patterns emerge. All methods
show a general decreasing trend in their scores as the model learns, though at different rates. PEAKS exhibits the sharpest
decline, reflecting its strong dependence on prediction error which naturally decreases during training. Moderate selection
maintains relatively stable scores compared to other methods, though still showing a gradual decrease. This declining pattern
highlights why cache refreshing is crucial: without periodic resets, early high scores would dominate the cache’s high
percentile band, making it increasingly difficult to select new samples. While our chosen τ works well in practice, these
observations suggest that optimal refresh rates could potentially be method-specific, given their different temporal dynamics.

Figure 8. Evolution of normalized selection scores across training for different methods. Each line shows a rolling average (window
size=500) of selection scores, scaled relative to their maximum rolling mean to bound scores between 0 and 1. This normalization enables
comparison of temporal trends across methods despite their different scales.

D.2. What Does PEAKS Capture Additionally Compared to EL2N?

To better understand how PEAKS’ kernel similarity term influences selection decisions compared to pure error-based
methods like EL2N, we conducted a detailed analysis of their selections on Food-101. We chose this dataset for its visual
interpretability, as opposed to the low-resolution CIFAR-100 or the complex 1000-class WebVision dataset.

We analyzed selections during the middle 100 steps of the data selection phase when selecting 30% of Food-101 (∼23k
samples), consistent with our setting in Section 5.4. During this period, both methods encountered approximately 4000
examples. Due to the sequential nature of IDS, we focused on the 167 examples seen by both methods. Among these, 23
were exclusively selected by PEAKS and rejected by EL2N, while 24 showed the opposite pattern. Figure 9 visualizes the
top 10 highest-scoring examples from each group, annotated with ground-truth labels and top predicted classes.

PEAKS’ exclusive selections reveal an interesting pattern: they often represent examples that lie at the boundary between
visually similar classes. For instance, the model shows uncertainty between spaghetti carbonara and bolognese (image-1),
club sandwich and grilled cheese sandwich (image-2), or poutine and french fries (image-3). While this observation is
somewhat anecdotal, it suggests that PEAKS identifies examples that could help establish more robust decision boundaries
between similar classes. In contrast, EL2N’s exclusive selections tend to favor examples that are poorly framed, potentially
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mislabeled, or outliers. This difference highlights a limitation of using prediction error alone as a selection criterion for
real-world datasets, where high error might indicate problematic samples rather than informative examples.

Figure 9. Shown above are two separate 2×5 grids of images from the Food101 dataset encountered in the middle of the data selection
phase. The first figure highlights the top 10 images (by score) that were exclusively selected by PEAKS but not by EL2N, while the second
figure shows the top 10 images (by score) exclusively selected by EL2N but not by PEAKS. Each image is annotated with its ground-truth
label and the top three predicted classes (with their respective softmax probabilities). This comparison illustrates the differences in
selection criteria between the two methods.

D.3. Alternative Sampling Mechanism

During the data selection phase of IDS, each training batch combines δ newly selected examples with b − δ randomly
sampled examples from the existing training set, where b is the batch size. However, uniform random sampling of previous
examples leads to an uneven usage distribution: some early-selected samples are repeatedly chosen while others remain
underutilized. Figure 10 illustrates this phenomenon, showing significant variation in sample usage counts. While our final
fine-tuning phase ensures the model eventually learns from all selected examples, the uneven sample distribution during the
selection phase may bias the model’s learning. To address this, we implement a simple count-based sampling strategy. For
each example i, we track its usage count ci(t) and assign sampling probabilities inversely proportional to these counts:

pi(t) =
1/ci(t)∑n
j=1 1/cj(t)

(14)
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Table 4. Alternative sampling using counts. Test accuracies averaged across 3 seeds without
validation set. Data budgets ×1, ×2, and ×4 refer to dataset sizes of 2.5k, 5k, and 10k examples

Without Validation Set CIFAR100 Food101 Food101-N

PEAKS Alt. Sampling (×1) 60.0 51.5 42.0
PEAKS (×1) 59.0 50.9 41.4

PEAKS Alt. Sampling (×2) 73.8 63.0 52.8
PEAKS (×2) 72.3 62.6 52.6

PEAKS Alt. Sampling (×4) 83.5 73.1 61.9
PEAKS (×4) 82.7 72.9 62.2

This approach reduces the probability of selecting frequently used samples while promoting the use of underutilized ones.
As shown in Table 4, this simple modification improves accuracy in 8 out of 9 dataset and budget combinations tested with
PEAKS. These results suggest that the batch formation strategy plays an important role in IDS Future work could explore
more sophisticated batch formation functions B(Ti, fθt ; θB), where θB represents adaptive sampling parameters that evolve
with the model state and training dynamics.

Figure 10. Sample repetition during training (excluding fine-tuning phase) for WebVision and CIFAR100 under random sampling.

D.4. Ablation Study - Class Normalization Term for PEAKS

In PEAKS, we normalize the expected improvement score ED
yp
v
[∆(xp, xv)] by 1

cyp (t)
, where cyp(t) represents the number

of samples already selected from class yp at time t. This normalization accounts for varying score ranges across different
classes. Table 5 shows ablation results across three datasets (WebVision omitted due to computational constraints). The
results demonstrate that this term consistently improves performance of PEAK on both balanced and imbalanced datasets.
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Table 5. Impact of class normalization for PEAKS. Test accuracies averaged across 3 seeds
without validation set. Data budgets ×1, ×2, and ×4 refer to dataset sizes of 2.5k, 5k, and 10k
examples

Without Validation Set CIFAR100 Food101 Food101-N

PEAKS w/o cyp (×1) 57.8 49.8 39.2
PEAKS (×1) 59.0 50.9 41.4

PEAKS w/o cyp
(×2) 71.8 61.7 50.5

PEAKS (×2) 72.3 62.6 52.6

PEAKS (×4) 82.7 72.3 59.6
PEAKS (×4) 82.7 72.9 62.2
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