
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dynamic Gradient Influencing for Viral Marketing Using Graph
Neural Networks
Anonymous Author(s)

∗

Abstract
The problem of maximizing the adoption of a product through viral

marketing in social networks is of extreme importance and has been

studied heavily through postulated network models. We present a

novel data-driven formulation of the problem.We use Graph Neural

Networks (GNNs) to model the adoption of products by utilizing

both topological and attribute information. The resulting Dynamic
Viral Marketing (DVM) problem seeks to find the minimum bud-

get and minimal set of dynamic topological and attribute changes

in order to attain a specified adoption goal. We show that DVM

is NP-Hard and is related to the existing influence maximization

problem. Motivated by this connection, we develop the idea of Dy-

namic Gradient Influencing (DGI) that uses gradient ranking to find

optimal perturbations and targets low-budget and high influence

non-adopters in discrete steps. We use an efficient strategy for com-

puting node budgets and develop the “Meta-Influence” heuristic for

assessing a node’s downstream influence. We evaluate DGI against

multiple baselines and demonstrate gains on average of 24% on

budget and 37% on AUC on real-world attributed networks. Our

code will be made publicly available.
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1 Introduction
Viral marketing is a highly significant strategy used to maximize the

adoption of products [7, 25], through diffusion in a social network

of users [22]. Prior work is based mainly on postulated network
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propagation models of viral phenomena that focus on static topolo-

gies and ignore node attributes [14]. Furthermore, while finding

the influential seed set has been extensively studied, the problem of

making “dynamic” topological and attribute perturbations to maxi-

mize spread from adopters to non-adopters has not been addressed.

Instead of designed/postulated network propoagation models,

we adopt data-driven models, specifically non-linear Graph Neural

Networks (GNNs) [6, 15] to learn a propagation model directly

from attributed network data, and then use it to forecast future

states of the spread after the network is perturbed. We train a

GNN model on the initial state of the attributed network to learn

a data-driven mapping from user attributes and neighborhood to

its adoption label. Thereafter, the GNN parameters are fixed and

the decision boundary of the GNN is used to identify adopters

and non-adopters after the network is perturbed. This self-labeling
technique allows us to study the effect of perturbations on user

adoption by alleviating the issue of data scarcity regarding users

with unseen combinations of attribute and neighborhoods.

In order to model the effect of perturbations, we propose a real-

istic model that can be used to strategically accelerate spread from

adopters to non-adopters. The attributed networks we consider are

unweighted, undirected graphs with binary node attributes and

labels, where states of both attributes and labels correspond to the

adoption of marketable products. Accordingly, at any given time, (a)

new edges can be added only between adopters and non-adopters,

as in referral marketing [2], and (b) adopters can further adopt

similar products or products by flipping corresponding attributes

from 0 to 1, as in joint or co-marketing [12].

The resulting Dynamic Viral Marketing (DVM) problem seeks

to find the minimum budget and minimal dynamic perturbation set

to attain a spread goal. We show that DVM is NP-Hard and relate

it to the Influence Maximization (IM) problem [14]. Similar to IM

under the linear threshold model, nodes in DVM flip when the sum

of incoming influence edge weights exceeds the node’s adoption

threshold. Despite the similarity, the two problems are different as

incoming influence edge weights and node thresholds in DVM are

dynamic and governed by the underlying GNN propagation model.

Motivated by the connection of IM to DVM, we develop the

Dynamic Gradient Influencing (DGI) framework to solve the DVM

problem. DGI unrolls in discrete steps; each step involves flipping a

non-adopter node that has the lowest budget and maximum down-

stream influence. We use gradient-guided node flipping to find

the required dynamic perturbations. We develop an efficient node

flipping budget computation approach using bisection search to

maintain node budgets at each step. To estimate a node’s down-

stream influence, we develop the gradient based “Meta Influence”

heuristic and the corresponding “Meta Attribute Flips” to increase

the potency of edge perturbations.

Our contributions are as follows:
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• We propose the novel Dynamic Viral Marketing (DVM)

problem to find the minimum budget and a minimal dy-

namic perturbation set to attain a spread goal, where a

non-linear GNN acts as the propagation model and per-

turbations are restricted by referral and co-marketing con-

straints. We show that DVM is NP-Hard and is connected

to the influence maximization (IM) problem.

• We develop the Dynamic Gradient Influencing (DGI) frame-

work that targets low budget and high influence non-adopters.

DGI consists of (a) an efficient budget computation ap-

proach, (b) a novel Meta Influence heuristic and Meta At-

tribute Flips to increase node influence.

• We comprehensively evaluate DGI on three real-world at-

tributed networks and demonstrate gains on average of

24% on budget and 37% on AUC over multiple baselines.

Further, we extensively analyze the cascade patterns and

intermediary adopter nodes discovered by DGI.

2 Related Work
Models for Network Diffusion. The modeling of the diffusion of

innovations in a network through the process of social contagion

is a long studied topic [16]. Granovetter [10] developed a threshold

based model of collective behaviour where individuals are influ-

enced by the proportion of others who come to a particular deci-

sion. Morris [22] studied a coordination game of direct benefits from

aligning choices with neighbors in a social network. In epidemiol-

ogy, the spread of biological disease is studied using probabilistic

transmission models of Susceptible, Infected and Recovered (SIR)

individuals [24]. The use of the network value of customers for

marketing was first explored in [7, 25]. Consequently, Influence

Maximization (IM), the problem of finding the most influential seed

set for viral marketing has been studied extensively [9, 14, 30].

Dynamic Viral Marketing lies within the broad class of spreading

network processes and we show how it is connected to IM.

Graph Neural Networks. Graph Neural Networks (GNN) are mes-

sage passing neural networks that operate on attributed networks

and have shown great success in problems such as node classifi-

cation, link prediction, recommendation systems, and community

detection. Various GNN architectures have been proposed since

their first inception—Graph Convolutional Networks [15], Graph-

SAGE [11], Graph Attention Networks [28], Simplifying Graph

Convolutional Networks [31]. We refer the reader to [32] for an

extensive survey of graph neural networks. We use GNNs as the

underlying propagation model for Dynamic Viral Marketing.

Gradient-based Network Optimization. Gradient-based network

optimization is used in many combinatorial network optimization

problems. In the context of adversarial attacks on GNNs, perturba-

tions are made using gradient optimization on the input network

strucure to reduce the accuracy of a GNN classifier [5, 33, 35]. Global

attacks with dynamic budget adjustment for Topology PGD [33]

are considered by [34]. In [20], reinforcement learning policies are

optimized to solve Maximum Coverage, Vertex Cover, and Influ-

ence Maximization problems on networks. In [18], graph neural

networks are optimized to create graph embeddings and predict

influence of nodes for solving Influence Maximization. We use

gradient-based network optimization within the DGI framework.

3 Preliminaries
Consider a graph 𝐺 = (𝐴,𝑋 ), with the associated adjacency matrix

𝐴 ∈ {0, 1}𝑛×𝑛 and node attribute matrix𝑋 ∈ {0, 1}𝑛×𝑑 respectively,

and node labels 𝑌 ∈ {0, 1}𝑛 . We refer to the associated node-ids

as V = {1, . . . , 𝑛}. We denote the node feature 𝑥𝑣 ∈ {0, 1}𝑑 , and
the node label 𝑦𝑣 ∈ {0, 1}. The set of adopters and non-adopters is

denoted as 𝑆 and 𝐷 respectively. For convenience, we denote the

sub-matrix of 𝐴 defining node connectivity from a set of nodes 𝑆 to

a set of nodes 𝐷 as 𝐴𝑆,𝐷 , the sub-matrix of 𝑋 containing features

for a set of nodes 𝑆 as 𝑋𝑆 , and the vectors of ones and zeros as 1
and 0 respectively. We denote the weights on edge and feature per-

turbations as 𝑃𝐴 and 𝑃𝑋 respectively. The gradient scores on edge

and feature perturbations are denoted by 𝑃𝐴 and 𝑃𝑋 respectively.

For a dynamically changing network, the superscript 𝑡 is used to

indicate the variable at time 𝑡 ; we drop the superscript if it is clear

from the context.

We consider the large family of graph neural networks [11, 15]

to construct layerwise hidden representations and finally output

classifier logit scores 𝑍 ∈ R𝑛×2
. For an L-layer GNN,

𝐻𝑙 = 𝜎 (𝐴𝑊𝑙𝐻𝑙−1
),

𝐻0 = 𝑋, 𝑍 = 𝐻𝐿

where𝑊𝑙 refers to the learnable GNN parameters at layer l, 𝜎 is a

nonlinear activation function, and𝐴 is the GNN propagation matrix.

For Graph Convolutional Networks (GCN) [15], 𝐴 = Δ̄−
1

2𝐴Δ̄−
1

2 ,

where 𝐴 = 𝐴 + 𝐼 and Δ̄ is the associated degree matrix. For Graph-

SAGE [11] with mean pooling, 𝐴 = Δ̄−1𝐴. The predicted labels

𝑦′𝑣 ∈ {0, 1} for each node 𝑣 ∈ V are given by the class with the max-

imum logit score. In the typical semi-supervised learning scheme

for node classification, referred to as transductive learning, the

GNN parameters𝑊 are learned by minimizing the cross-entropy

classification loss,

L𝑡𝑟 (𝑣) = − log𝜎 (𝑧𝑣)𝑦𝑣 (1)

where 𝑧𝑣 denotes logit scores for node 𝑣 and 𝜎 the softmax function.

4 Dynamic Viral Marketing Problem
In this section, we present the problem of viral marketing [7, 25]

in the context of dynamic changes for accelerating the adoption of

products by customers. Specifically, we consider a dynamic mar-

keting scenario with the following salient properties:

(1) Referral marketing: Companies incentivize peoplewho arere

already using their product to refer it to others; adopters

make new connections in the network to non-adopters.

(2) Co-marketing: Companies partner with other companies or

jointly market a group of products; people who adopt the

target product likely adopt similar products and vice versa.

Formally, consider𝐺𝑡 = (𝐴𝑡 , 𝑋 𝑡 , 𝑌 𝑡 ), a series of undirected and un-

weighted dynamic attributed networks, observed at discrete time

steps 𝑡 = 1, . . . ,𝑇 , where 𝐴𝑡
represents the adjacency matrix defin-

ing node connectivity, 𝑋 𝑡
represents a binary node feature matrix

containing adoption labels for related products, and 𝑌 𝑡
represents

the binary adoption labels for the target product. We assume that

2
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(a) Initial State (b) Referral induced flip (c) Co-marketing induced flip

Figure 1: Overview of the Dynamic Viral Marketing (DVM) problem. At each time step, adopters and non-adopters in an
attributed user network are specified using a GNN classifier. Referral and co-marketing perturbations accelerate spreading
from adopters to non-adopters. DVM seeks to find the minimum budget and dynamic perturbation set to attain a spread goal.

the adoption labels are given by 𝑌 𝑡 = 𝑓 (𝐴𝑡 , 𝑋 𝑡 , 𝑌 0), where 𝑓 () is a
general propagation model that governs the diffusion of the initial

labels 𝑌 0
using the network structure and attributes at time 𝑡 . The

sets of adopters and non-adopters at time 𝑡 are denoted by 𝑆𝑡 and

𝐷𝑡
respectively,

𝑆𝑡 =
∑︁
𝑣

1[𝑦𝑡𝑣 = 1], , 𝐷𝑡 =
∑︁
𝑣

1[𝑦𝑡𝑣 = 0] (2)

The final spread, 𝜎 () is given by the number of adopters in the

network at time 𝑇 ,

𝜎 (𝐺𝑇 ) = |𝑆𝑇 | (3)

Due to the representation learning ability of graph neural net-

works (GNNs) [6, 15, 17, 29] through the propagation of feature

and label information, we use them as our propagation model 𝑓 ().
Specifically, a GNN 𝑓𝜃 is trained on the initial network 𝐺0

and

its parameters 𝜃 are then fixed. The GNN uses both structure and

feature information to yield a decision boundary between adopters

and non-adopters; the marketing objective is to flip nodes from

non-adopters to adopters. Thereafter, we use self-labeling at time 𝑡 :

the predictions from the GNN on the network𝐺𝑡
yield the adoption

states 𝑌 𝑡
. Therefore, in this framework, both our seed nodes, 𝑌 0

,

and our propagation model, 𝑓 (), are data-driven.
The dynamic transitions of the network from 𝐺𝑡−1 to 𝐺𝑡 are

constrained as follows:

• Referral marketing: Edge insertions can be made only be-

tween 𝑆𝑡−1
and 𝐷𝑡−1

at time 𝑡 − 1; total cost of structural

changes is |𝐴𝑡 −𝐴𝑡−1 |.
• Co-marketing: Features of nodes in 𝑆𝑡−1

can flip from 0 to 1

at time 𝑡 − 1; total cost of attribute changes is |𝑋 𝑡 − 𝑋 𝑡−1 |.

As all the changes are made incrementally, the total cost incurred

is given by |𝐴𝑇 −𝐴0 | + |𝑋𝑇 − 𝑋 0 |.

Dynamic Viral Marketing (DVM). : We now state the DVM op-

timization problem of finding the minimum budget, 𝜇 (), and a

minimal set of changes to reach a spread 𝜙 ,

arg-min

𝐴1,...,𝐴𝑇 ,𝑋 1,...,𝑋𝑇

𝜎 (𝐺𝑇 ) ≥ 𝜙 (4)

𝜇 (𝜙,𝐺0) = |𝐴𝑇 −𝐴0 | + |𝑋𝑇 − 𝑋 0 | (5)

Fig. 1 depicts the DVM problem schematically. Note that while

the total budget is a function of the final adjacency and feature

matrices, to solve the DVM problem a sequence of structural and
attribute changes under the referral and co-marketing contraints

are required. Furthermore, while we use a uniform cost model on

edge and attribute perturbations, the problem can be extended to

bespoke settings by using edge-specific and attribute-specific costs.

NP-Hardness of DVM decision problem: Consider an instance of

the NP-hard Knapsack problem, defined by a maximum value 𝑉 , a

maximumweight𝑊 , and a set of𝑛 items𝑋 = {(𝑣1,𝑤1), . . . , (𝑣𝑛,𝑤𝑛)}
where 𝑣𝑖 and𝑤𝑖 denote the 𝑖

𝑡ℎ
item’s value and weight respectively.

The decision problem is whether there exists a subset of items

𝑍 ⊂ 𝑋 with total weight

∑
𝑖∈𝑍 𝑤𝑖 ≤𝑊 and total value

∑
𝑖∈𝑍 𝑣𝑖 ≥ 𝑉 .

We show that this problem reduces to the decision problem of DVM.

Given an arbitrary instance of the Knapsack problem, consider

a weighted star network with target node 𝑡 at the center which is

connected to 𝑛 source nodes. Each node has a single feature, whose

value at node 𝑡 is 0 and at node 𝑖 is 𝑥𝑖 = 1 − 𝑤𝑖 . The weight on

the edge between node 𝑖 and 𝑡 is set to 𝑎𝑖 = 𝑣𝑖 . The initial label on

node 𝑡 is 0 and the initial label on the other nodes is 1. The cost of

3
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Figure 2: Overview of the Dynamic Gradient Influencing (DGI) framework. DGI picks candidate nodes to flip using Node
Flipping Budget Compute, which involves gradient sorting along with bisection search, hashing and affected set estimation.
The gradient-based Meta Influence Heuristic is used to tiebreak among least budget candidate nodes, as well as thresholding
for Meta Attribute Flips that enhance node potency. Red lines and circles indicate candidate perturbations.

changing the feature at a node from a value of 1−𝑤𝑖 to 1 is𝑤𝑖 . The

GNN classifier parameters are tuned such that the prediction on

node 𝑡 flips from 0 to 1 when the weighted sum of its neighborhood

of 𝑛 nodes with feature value 𝑥𝑖 = 1 is at least 𝑉 (spread 𝜙 = 1).

The Knapsack problem is solvable iff

∑
𝑖∈[𝑛] 𝑎𝑖1[𝑥𝑖 = 1] ≥ 𝑉 and∑

𝑖∈[𝑛] 𝑤𝑖1[𝑥𝑖 = 1] ≤ 𝑊 . Thus, if the DVM problem can find

feature flips costing at most𝑊 at 𝑡 ’s neighbors whose edge weights

sum to at least 𝑉 then the Knapsack problem is solvable. □

4.1 Relating DVM to Influence Maximization
We draw an interesting connection between DVM and the related

problem of influence maximization (IM) [14]. Consider the linear

threshold propagation model [10], where nodes 𝑖 ∈ [𝑛] randomly

choose a threshold 𝜃𝑖 ∈ [0, 1] and incoming influence edge weights

𝐼𝑖, 𝑗 such that ∀𝑖,∑𝑗 𝐼𝑖, 𝑗 ≤ 1. The propagation unfolds in discrete

time steps- if the set of active nodes at any given step is 𝑆 , then an

inactive node becomes active if the following constraint is satisfied:∑︁
𝑗∈𝑆

𝐼𝑖, 𝑗 ≥ 𝜃𝑖 . (6)

While the objective in IM is to find a set of seed nodes for maximiz-

ing spread, we instead search for a sequence of dynamical changes

to maximize spread. Despite the difference, given the set of adopters

𝑆𝑡−1
at step 𝑡 − 1, the criterion for a node to flip in DVM has a

similar form as Eq. 6. Suppose that the L-layer GNN 𝑓𝜃 has the

associated L-step random walk propagation matrix 𝑀 . Then the

following theorem holds,

Theorem 1. Let the vector 𝜀𝑡
𝑗
= 𝑥𝑡

𝑗
− 𝑥𝑡−1

𝑗
denote the change in

the feature of node 𝑗 from time 𝑡 − 1 to 𝑡 . Further, let the matrix
𝜉 = 𝑀𝑡 −𝑀𝑡−1 denote the change in the L-step random walk matrix
𝑀 from time 𝑡 − 1 to 𝑡 . Then the dynamic threshold and influence
edge weights for node 𝑖 to flip at time 𝑡 according to the criterion in

Eq. 6 are given by:

𝜃𝑡𝑖 = 𝑧𝑡−1

𝑖,0 − 𝑧
𝑡−1

𝑖,1 (7)

𝐼𝑡𝑖, 𝑗 = 𝑀𝑡𝛼𝑇 𝜀𝑡𝑗 + 𝜉
𝑡
𝑖, 𝑗𝛼

𝑇 𝑥𝑡−1
(8)

where 𝛼 is a vector which depends on the parameters 𝜃 of the GNN.

The proof can be found in Sec A. Intuitively, the dynamic node

threshold depends on its logit margin, and the dynamic influence

edge weights depend on both the feature change 𝜀 𝑗 and the random

walk propagation change 𝜉𝑖, 𝑗 . Theorem 1 suggests that budget

should be spent on changes which contribute most to the incoming

influence weights and push the node just beyond its threshold.

5 Dynamic Gradient Influencing Framework
Motivated by the criterion for node flipping in Thm. 1, that the sum

of the dynamic influence edge weights must exceed the dynamic

node threshold, we develop the Dynamic Gradient Influencing (DGI)

framework to solve the DVM problem. DGI uses Gradient-Guided

Node Flipping (c.f. Sec. 5.1), to flip a particular candidate node in

each step. At each step 𝑡 , the candidate node to flip, 𝑣𝑡 , is given by:

arg-max

𝑣∈𝑁
𝐼𝑡 (𝑣), where 𝑁 = arg-min

𝑤∈𝐷
𝐵𝑡 (𝑤) (9)

where 𝐵𝑡 (𝑤) denotes the budget required to flip node𝑤 , and 𝐼𝑡 (𝑣)
denotes the Meta Influence of node 𝑣 . In other words, we choose the

node with the least budget to flip and the highest Meta Influence.

Using our novel Node Flipping Budget Computation algorithm (c.f.

Sec. 5.2) candidate nodes are picked in order of lowest budget first.

Further, we develop a novel Meta Influence heuristic (c.f. Sec. 5.3)

for tiebreaking between equal budget candidates and thresholding

for Meta Attribute Flips. We use Meta Attribute Flips to enhance

a flipped node’s downstream edge influence. Sec. F details DGI’s
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asymptotic running time complexity. The complete DGI pipeline is

depicted in Fig. 2, and the algorithm can be found in Sec. C.

5.1 Gradient-Guided Node Flipping
In DGI, the core functionality for flipping nodes is accomplished

through gradients on the restricted set of perturbations arising from

the referral and co-marketing constraints of DVM. Specifically, the

only changes that can happen to the adjacency matrix𝐴 and feature

matrix𝑋 are restricted to the submatrices𝐴𝑆,𝐷 and𝑋𝑆 respectively.

Therefore, we define:

𝐴𝑡
𝑆,𝐷 = 𝐴𝑡−1

𝑆,𝐷 + 𝑃
𝑡
𝐴 ◦ (11

𝑇 −𝐴𝑡−1

𝑆,𝐷 ), 𝐴
𝑡
𝐷,𝑆 = (𝐴𝑡

𝑆,𝐷 )
𝑇

(10)

𝑋 𝑡
𝑆 = 𝑋 𝑡−1

𝑆 + 𝑃𝑡𝑋 ◦ (11
𝑇 − 𝑋 𝑡−1

𝑆 ) (11)

where 𝑃𝑡
𝐴
and 𝑃𝑡

𝑋
represent the weights on the edge and feature

perturbations, 𝑆 = 𝑆𝑡−1
and𝐷 = 𝐷𝑡−1

, and ◦ denotes the Hadamard

product. We initialize 𝑃𝑡
𝐴
= 00𝑇 and 𝑃𝑡

𝑋
= 00𝑇 .

While it is an NP-Hard combinatorial optimization problem to

find the minimal perturbation that flips a node, given that the adja-

cency and feature matrices are both discrete, first-order gradients

work well enough in practice to find the required perturbations

[5, 33]. We consider the negative cross-entropy loss as our flip loss

for the chosen candidate node 𝑣 ∈ 𝐷 :

𝐿𝑡
𝑓 𝑙𝑖𝑝
(𝑣) = log𝜎 (𝑧𝑡−1

𝑣 )0 . (12)

Note that 𝑦𝑣 = 0 for non-adopters and 𝑦𝑣 = 1 for adopters. We

then compute non-negative gradient scores on edge perturbation

weights, 𝑃𝑡
𝐴
, and feature perturbation weights, 𝑃𝑡

𝑋
, with respect to

the flip loss:

𝑃𝑡𝐴 = max

([
𝜕𝐿𝑡

𝑓 𝑙𝑖𝑝
(𝑣)

𝜕𝑃𝑡
𝐴

]
, 0

)
, 𝑃𝑡𝑋 = max

([
𝜕𝐿𝑡

𝑓 𝑙𝑖𝑝
(𝑣)

𝜕𝑃𝑡
𝑋

]
, 0

)
. (13)

We only compute the gradients once for all the perturbations.

While it is possible to recompute gradients after every perturba-

tion [5], we find that this is not that necessary to find the minimal

set of perturbations. Moreover, as shown later, by merging and sort-

ing the perturbations using the gradients, we can find the minimal

perturbation set and minimum budget efficiently. Finally, suppose

the minimum budget required to convert 𝑣 is 𝐵(𝑣), then we find

the top-B(v) indices in the union of edge and feature perturbations:

𝑃𝑡 = sort(merge(𝑃𝑡𝐴, 𝑃
𝑡
𝑋 )) (14)

𝑖𝑡𝐴, 𝑖
𝑡
𝑋 = argtop-k𝑘=𝐵 (𝑣) 𝑃 . (15)

Using the index sets 𝑖𝑡
𝐴
and 𝑖𝑡

𝑋
we can make the updates to the

network to convert 𝑣 :

[𝐴𝑡
𝑆,𝐷 ]𝑖𝑡𝐴 ← 1, 𝐴𝑡

𝐷,𝑆 ← (𝐴
𝑡
𝑆,𝐷 )

𝑇
(16)

[𝑋 𝑡
𝑆 ]𝑖𝑡𝑋 ← 1. (17)

5.2 Node Flipping Budget Computation
The budget needed to flip a node 𝑣 depends on both the logit mar-

gin in Eq. 7 and the node’s degree deg(𝑣) [8, 23]. In the adversarial

attack framework, the practice is to set the node budget equal to

its degree for local attacks [23], or choose a loss function which

orders gradients in order of nodes closer to the decision boundary

for global attacks [8]. However, due to the budget minimizing ob-

jective of DVM, we need to compute the budget precisely and pick

candidate nodes that need the least budget.

Therefore, to compute the minimum budget 𝐵𝑡 (𝑣) that converts
node 𝑣 , we use the bisection method [1, 26]. For each node, we

compute the sorted gradients, 𝑃 in Eq. 15 once and run bisection

search over these gradients to find the minimal set of perturbations

required to convert 𝑣 . We initialize the lower and upper bound for

search as 0 and deg(𝑣), the degree of 𝑣 , respectively. Thereafter, the
upper bound is doubled until it is sufficient to convert 𝑣 . We set the

maximum upper bound equal to the maximum node degree of the

network. After fixing the upper bound, bisection search repeatedly

halves the search interval by checking feasibility of conversion at

the midpoint of the interval and converges logarithmically.

We observe that other nodes also flip due to the same structure

or attribute changes made for flipping a candidate node. Therefore,

to choose the best candidate, we update the budget:

𝐵𝑡 (𝑣) ← 𝐵𝑡 (𝑣) + (|𝑆𝑡−1 | − |𝑆𝑡𝑣 |) (18)

where 𝑆𝑡𝑣 is the set of adopters at time 𝑡 if node 𝑣 is selected as the

candidate node to flip. Thus, 𝐵𝑡 (𝑣) represents both the node flipping
budget and the "collateral damage" to other nodes from flipping

it. Therefore, if a node with more budget causes high collateral

damage it is preferable to a node with a lesser actual budget.

Since budgets need to be recomputed for all non-adopters at

every step, we make the algorithm faster by hashing node budgets

and only recomputing budgets for nodes whose budget has changed.

The recompute set 𝑅𝑡 is defined as the set of nodes whose logit

scores changed in the previous time step:

𝑅𝑡 = {𝑣 |𝑣 ∈ 𝐷𝑡 , 𝑧𝑡𝑣 ≠ 𝑧𝑡−1

𝑣 }. (19)

For nodes whose logit scores are unchanged the actual budget

might still change slightly, but for the purposes of picking the best

candidate node we ignore these small changes. The entire algorithm

for budget computation can be found in the the Sec. B.

5.3 Meta Influence Using Meta Attribute Flips
Due to the dynamic sequence of changes involved in spreading

product adoption in DVM, first-order gradients in Eq. 13 are insuf-

ficient to capture the long-range effects of a perturbation. While

the flipping budget is minimized at each step, we need to charac-

terize nodes that have high influence so that adoptions can cascade

sequentially. Therefore, we develop the Meta Influence heuristic

to model long-range effects and estimate downstream influence.

Meta Influence uses Meta Attribute Flips which are feature pertur-

bations that increase the potency of outgoing edge perturbations

at an adopter node. Consequently, the Meta Influence is defined

as the normalized gradient score on an adopter’s outgoing edge

perturbations post Meta Attribute Flips.

For Meta Attribute Flips, we again restrict feature perturbations,

this time only to the features of node 𝑣 , and define corresponding

feature perturbation weights 𝑃𝑋 :

𝑥𝑡
′
𝑣 = 𝑥𝑡𝑣 + 𝑃𝑋 ◦ (1 − 𝑥𝑡𝑣) (20)

where 𝑡 ′ indicates an auxilliary time step and we initialize 𝑃𝑋 =

0. To capture the effect of Meta Attribute Flips, we consider the

following influence loss which is the sum on all non-adopters nodes
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of a CW-type loss [3] that uses the logit margin, and compute

gradient scores 𝑃𝑋 :

𝐿𝑡
′

𝑖𝑛𝑓 𝑙
(𝑣) =

∑︁
𝑤∈𝐷
(𝑧𝑡𝑤,1 − 𝑧

𝑡
𝑤,0) (21)

𝑃𝑡
′

𝑋 = max
©«

𝜕𝐿𝑡

′

𝑖𝑛𝑓 𝑙
(𝑣)

𝜕𝑃𝑡
′

𝑋

 , 0ª®¬ . (22)

Thereafter, we update the features 𝑥𝑣 using Meta Attribute Flips,

which are the top-k ranked perturbations in 𝑃𝑡
′

𝑋
, for the purposes

of computing Meta Influence:

𝑖𝑡
′
𝑋 = argtop-k 𝑃𝑡

′
𝑋 , [𝑥𝑡

′
𝑣 ]𝑖𝑡 ′

𝑋

← 1 (23)

where 𝑘 is a hyper-parameter controlling the number of Meta At-

tribute Flips. From Thm. 1, Meta Attribute Flips find feature changes

that align with the GNN’s classifier weights and increase the dy-

namic outgoing edge influence to other nodes in Eq. 8. Further, they

also help to increase the margin from the GNN decision boundary

and thus increase the node’s potency.

For finding the Meta Influence, we restrict the outgoing edge

perturbations 𝑃𝐴 from node 𝑣 to the non-adopters 𝐷 , and define

corresponding edge perturbation weights 𝑃𝐴:

𝐴𝑡 ′′
𝑣,𝐷 = 𝐴𝑡 ′

𝑣,𝐷 + 𝑃
𝑡 ′′
𝐴 ◦ (1 −𝐴

𝑡 ′
𝑣,𝐷 ) (24)

where 𝑡 ′′ indicates another auxilliary time step after 𝑡 ′ and 𝑃𝑡
′′

𝐴
= 0.

Now consider the same influence loss in Eq. 21 on all non-adopters

at time 𝑡 ′′, and compute non-negative gradient scores 𝑃𝑡
′′

𝐴
:

𝑃𝑡
′′

𝐴 = max
©«

𝜕𝐿𝑡

′′

𝑖𝑛𝑓 𝑙
(𝑣)

𝜕𝑃𝑡
′′

𝐴

 , 0ª®¬ . (25)

Note that influence loss uses the discrete perturbed feature 𝑥𝑡
′
𝑣 ,

which is computed using first order gradients, therefore Meta Influ-

ence can capture second order gradient effects. Finally, we denote

the Meta Influence 𝐼𝑡 (𝑣) of a node 𝑣 as the normalized gradient

score in 𝑃𝑡
′′

𝐴
averaged over the number of non-adopters:

𝐼𝑡 (𝑣) =
1
𝑇 𝑃𝑡

′′
𝐴

|𝐷 | . (26)

During candidate node selection, Meta Influence is used for

tiebreaking between equal budget nodes (Eq. 9). Further, we thresh-

old on Meta Influence to perform Meta Attribute Flips at candidate

nodes after flipping:

𝑥𝑡𝑣 ←
{
𝑥𝑡
′
𝑣 if 𝐼𝑡 (𝑣) ≥ 𝛽

𝑥𝑡𝑣 otherwise

(27)

where 𝛽 is a hyper-parameter controlling the threshold. Using Meta

Influence, we can estimate which nodes will have high influence on

their outgoing edges after Meta Attribute Flips, and thus judiciously

allocate budget for Meta Attribute Flips. In Sec. 6.2, we validate that

nodes with high Meta Influence indeed contribute more outgoing

edge perturbations to non-adopters.

6 Experiments
We conducted experiments on real-world attributed network datasets

to answer the following research questions:

• RQ1: How does the proposed DGI compare with baseline

methods for DVM?

• RQ2: Does the proposed Meta Influence accelerate the

spread and capture the node’s actual dynamic influence?

• RQ3: What are the different kinds of cascade patterns cre-

ated by DGI?

• RQ4: What are the properties of intermediary and suscep-

tible nodes in cascades created by DGI?

Datasets: We utilize three real-world attributed datasets to eval-

uate DGI and baseline approaches. Epinions and Ciao [27] are

datasets collected from two popular product review sites, where

each user can specify their trust relation in addition to rating prod-

ucts. Flixster [13] is a dataset collected from a popular movie rating

website with an associated social graph. We create new small-scale

and large-scale splits for these datasets using the provided user net-

works and product ratings from [27, 34]. For small-scale split gener-

ation, we sort the nodes using their degrees and take the subgraph

corresponding to the lowest degree nodes. To generate features for

each user, we pick a binary value for each product/movie based on

whether they rated it or not. We choose the product/movie with

the least number of seeds as the optimization goal for DVM. The

analysis in the main paper is conducted on the small-scale splits and

their statistics are depicted in Table 1. Additional implementation

details and results on large-scale splits using Fast-DGI can be found

in the Sec. D.

Table 1: Dataset statistics. |S| denotes seed set size.

Dataset |V| |E | Avg, Max Deg. |S| #Features

Flixster 1045 1488 2.8, 153 5 839

Epinions 1054 1214 2.3, 25 5 2999

Ciao 1057 1190 2.3, 36 7 2999

Evaluation metric: The efficacy of the proposed dynamic DGI and

baselines is evaluated using the minimum budget needed to spread

to 𝐶 = 500 target nodes on the respective network. We use a fixed

number of targets to spread to make the results across different

datasets comparable. We also report the Area Under Curve (AUC)

of the budget-spread curve, which gives an aggregate estimate of

the budget required for different spread values. For the purpose of

calculating AUC we normalize the budget by (∑(𝐴)/2 + ∑(𝑋 )),
i.e., the sum of the number of edges and turned on features. Lower

values of budget and AUC indicate better performance.

Variants: We consider three variants of DGI for evaluation and

analysis in our experiments:

• Base is DGI without Meta Attribute Flips. It uses Meta

Influence only for tiebreaking in Eq. 9.

• Fixed is DGI with fixedMeta Attribute Flips. It is equivalent

to using a threshold 𝛽 = 0 in Eq. 7.

• Dynamic is DGI with optimally chosen threshold 𝛽 .
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Table 2: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones. Dynamic
DGI consistently achieves the minimum budget.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

Degree 2551 6573 22076 21125 25162 45291

Margin 8136 7655 26109 18550 20814 41077

GradArgmax 1012 625 5893 859 2620 972

MiBTack 843 583 2828 866 5111 1035

Base 791 543 3342 1099 3525 856

Fixed 831 571 1985 1297 2221 1094

Dynamic 667 494 1893 803 2096 821

Baselines: We compare with the following approaches:

• Degree selects target nodes based on the low-degree first

heuristic. Until the target is flipped, Degree repeatedly

spends a unit budget by first randomly picking a seeder

node, then either adds a link from the seeder to the tar-

get if they aren’t conencted, else turns on a feature with

high-correlation to the label.

• Margin selects target nodes based on the low-margin first

heuristic, i.e., nodes that have a smaller margin to the deci-

sion boundary are picked first. Edits to the structure and

features are made in the same way as Degree.

• GradArgmax [5] is a gradient based white-box adversarial

attack on structure. Target nodes are selected in the order

of lower losses first. We adapt GradArgmax to make edits

to both structure and features.

• MiBTack [34] is anotherwhite-box adversarial attackwhich

dynamically adjusts node budgets for topology-based PGD

[33]. We adapt MiBTack to make edits to both structure and

features while selecting target nodes same as GradArgmax.

6.1 Performance Comparison (RQ1)
We compare DGI variants to baselines using budget and AUC at

𝐶 = 500 in Table 2 and Table 3 respectively. We report results with

both GCN [15] and GraphSAGE [11] as the propagation models.

DGI variants outperform the baselines in all the scenarios. Among

the variants, Dynamic does the best, followed by Base and then

Fixed. Fixed overspends budget on Meta Attribute Flips over Base

by using a threshold of 𝛽 = 0, and Dynamic spends the least budget

by optimally selecting nodes with highMeta Influence (for spending

additional budget) for Meta Attribute Flips. Further, we plot budget

spread curves on Flixster and Epinions in Fig. 3. Dynamic DGI

consistently achieves the minimum budget across all levels. To

understand time evolution of the spread for different variants, we

plot spread as a function of time in Fig. 4a. Due to the accelerating

effect of Meta Attribute Flips, Fixed spreads fastest, followed by the

economical Dynamic and the conservative Base approach.

6.2 Strategy of Meta Influence (RQ2)
To validate the effectiveness of Meta Influence and Meta Attribute

Flips, we plot the histogram of perturbations contributed by nodes

Table 3: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves. Dynamic DGI consis-
tently achieves the minimum AUC.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

Degree 19.48 150.50 215.33 328.15 349.48 631.66

Margin 173.70 177.71 366.43 284.77 287.11 595.69

GradArgmax 23.32 13.72 112.84 16.36 54.46 18.52

MiBTack 21.78 16.77 50.70 21.03 80.95 21.91

Base 19.06 11.68 56.82 19.23 46.59 14.46

Fixed 20.78 12.53 36.41 23.75 36.20 19.82

Dynamic 18.27 10.17 31.93 15.18 33.84 13.33

(a) Flixster (b) Epinions

Figure 3: Budget spent as a function of increasing spread
with GCN as the GNN propagation model. Dynamic requires
consistently lower budgets across all spreads.

with respect to their Meta Influence in Fig. 4b. For each dataset, we

normalize the Meta Influence to lie in the interval [0,1] and divide

uniformly into 10 sub-intervals. For each sub-interval, we count

the number of perturbations contributed by nodes whose Meta

Influence lies within it. We carry out the analysis on Fixed DGI, in

which Meta Attribute Flips are made at each node. We observe the

high correlation of Meta Influence to the number of contributed

perturbations across all the datasets. Note that the Meta Influence

is computed at the step when the node is flipped, but even then

it provides a good signal of how important that node will be later.

This shows that the Meta Influence is a close approximation of the

actual node influence in terms of perturbations it makes. Further,

by thresholding on the Meta Influence, we are able to save budget

by not applying Meta Attribute Flips on low-influence nodes.

6.3 Cascades created by DGI (RQ3)
To understand cascades created by the DGI spread, in Fig. 5a, we

qualitatively visualize a subgraph spanned by the Dynamic DGI

edges on Flixster and color each node according to its cascade hop

distance from the initial seed set in this subgraph. We define the

cascade hop distance of a node from the seed set inductively:

ℎ𝑜𝑝 (𝑖) = 1 + max

𝑗∈𝑃𝑁 (𝑖 )
ℎ𝑜𝑝 ( 𝑗) (28)

whereℎ𝑜𝑝 (𝑖) = 0 for nodes in the initial seed set, and 𝑃𝑁 (𝑖) denotes
perturbed neighbors of node 𝑖 at the step when it flips. Further, we

use node size to indicate the number of perturbations the node

contributes in the course of the multi-step spread. We clearly see

7
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(a) Flixster Time Evolution (b) Meta Influence Strategy

Figure 4: (a) Spread achieved with increasing time steps for
Flixster with GCN backbone. Fixed and Dynamic spread
faster than Base due to acceleration from Meta Attribute
Flips. (b) Histogram of perturbations contributed by interme-
diary adopter nodes with increasing Meta Influence, where
scaling is used for mapping Meta Influence to [0,1]. Higher
Meta Influence adopter nodes contributemore perturbations.

a strong pattern of cascading flips, whereby a node flipped earlier

later flips many more and so on inductively. Therefore, the DGI

spread creates cascading flipping, similar to a chain of referrals in a

social network, where each referral is an entirely new edge. We also

see from the node sizes that a few nodes are dominant spreaders

while others contribute very little.

To understand the cascades created by DGI quantitatively, in

Fig. 5b we plot the number of non-adopter flips with increasing hop

distances for Flixster, Epinions and Ciao. Multi-hop cascade flips

account for a sizable number of the total flips, which indicates that

multi-hop path flips help in decreasing the budget required for the

spread. Further, the cascade hop length can be considerably large.

Particularly, for Flixster, we see nodes with cascade hop lengths

up to 30, indicating how the added perturbations can percolate the

adoption far from the seed set.

(a) (b)

Figure 5: (a): Visualization of cascading dynamics of DGI.
Node sizes and colors correspond to number of perturbations
and cascade hops respectively. Only edges added by DGI are
depicted. (b): Number of flipped nodes at different cascade
hops. DGI creates long and staggered cascades for DVM.

6.4 Properties of Intermediary spreaders (RQ4)
To understand the properties of intermediary spreader nodes, we

plot the histogram of perturbations contributed by intermediary

spreader nodes with respect to their degree and classification mar-

gin in Fig. 6a and Fig. 6b respectively. For each dataset, we count

the number of perturbations arising from nodes with the degree

and classification margin lying within the same sub-interval. The

degree and margin are considered at the moment the perturba-

tion is made to account for dynamic changes. Due to the degree

normalization in GNN message passing, low degree nodes have a

higher influence edge weight, and we observe that nodes with low

degree are highly correlated to higher number of perturbations. On

the other hand, high classification margin indicates high feature

and neighborhood alignment with the GNN classifier, therefore

making outgoing edge or feature perturbations more potent. Thus,

we see that perturbations are made exclusively at nodes with the

maximum possible margin.

(a) (b)

Figure 6: (a) Histogram of perturbations contributed by
intermediary spreader nodes with increasing degree. (b)
Histogram of perturbations contributed by intermediary
spreader nodes with increasing GCN classification margin.
Higher contributions are made by spreader nodes with low
degrees and high margins.

7 Concluding Remarks
We proposed the novel Dynamic Viral Marketing (DVM) problem

to find the minimum budget and minimal perturbation set to attain

a spread goal, where the propagation model is a non-linear GNN

and perturbations are restricted by referral and co-marketing con-

straints.We showed that DVM is NP-Hard and is related to influence

maximization. We developed the Dynamic Gradient Influencing

(DGI) framework, which targets non-adopters with low budget and

high influence. DGI uses gradient ranking to order perturbations

and utilizes an efficent budget computation approach, a novel Meta

Influence heuristic, and Meta Attribute Flips to increase a node’s

influence. We comprehensively evaluated DGI on three real world

attributed networks and demonstrated gains on average of 24% on

budget and 37% on AUC over multiple gradient and non-gradient

baselines. We validated the efficacy of budget computation and

the Meta Influence heuristic. We extensively analyzed the cascade

patterns through intermediary adopter nodes discovered by DGI.

This work opens up a new research direction, that of data-driven

models for network propagation as alternatives to designed/pos-

tulated models such as Linear Threshold [10]. The data-driven

models can incorporate attributes as well as long-range interac-

tions. This research also motivates a number of future research

questions including model-based reinforcement learning [21] using

such GNN models in unknown environments, and the development

of data-driven competitive strategies between groups each trying

to increase their spread.
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A Proof of Thm. 1
Proof. Consider a L-layer GNN without non-linearities. Then

the criterion to flip node 𝑖 at time 𝑡 can be expressed in terms of

the L-step random walk matrix𝑀 and the weights𝑊𝑙 ,∑︁
𝑗∈𝑁 (𝑖 )

𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,1�̄� 𝑥𝑡𝑗 >

∑︁
𝑗∈𝑁 (𝑖 )

𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,0�̄� 𝑥𝑡𝑗 (29)

where𝑤𝐿,1 and𝑤𝐿,0 represents the final layer classifier vectors

for the two classes, and �̄� =
∏𝐿−1

𝑖=1
𝑊𝑙 is the combined feature

transform of the first 𝐿 − 1 layers.

The criterion can be equivalently written as,∑︁
𝑗∈𝑁 (𝑖 )

[𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,1�̄� (𝑥

𝑡
𝑗 − 𝑥

𝑡−1

𝑗 ) + (𝑀
𝑡
𝑖 𝑗 −𝑀

𝑡−1

𝑖 𝑗 )𝑤
𝑇
𝐿,1�̄� 𝑥𝑡−1

𝑗

+𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,1�̄� 𝑥𝑡−1

𝑗 ] >∑︁
𝑗∈𝑁 (𝑖 )

[𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,0�̄� (𝑥

𝑡
𝑗 − 𝑥

𝑡−1

𝑗 ) + (𝑀
𝑡
𝑖 𝑗 −𝑀

𝑡−1

𝑖 𝑗 )𝑤
𝑇
𝐿,0�̄� 𝑥𝑡−1

𝑗

+𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,0�̄� 𝑥𝑡−1

𝑗 ] (30)

Rearranging terms,
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Figure 7: Sensitivity of Dynamic DGI to the influence thresh-
old parameter 𝛽. The x-axis represents the quantile of the
threshold 𝛽 applied to the Meta Influence for each dataset. (a)
represents budget and (b) represents AUC of budget-spread
curve for a spread of 500.∑︁

𝑗∈𝑁 (𝑖 )
[𝑀𝑡

𝑖 𝑗 (𝑤
𝑇
𝐿,1 −𝑤

𝑇
𝐿,0)�̄� (𝑥

𝑡
𝑗 − 𝑥

𝑡−1

𝑗 )

+ (𝑀𝑡
𝑖 𝑗 −𝑀

𝑡−1

𝑖 𝑗 ) (𝑤
𝑇
𝐿,1 −𝑤

𝑇
𝐿,0)�̄� 𝑥𝑡−1

𝑗 ] >∑︁
𝑗∈𝑁 (𝑖 )

𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,0�̄� 𝑥𝑡−1

𝑗 −
∑︁

𝑗∈𝑁 (𝑖 )
𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,1�̄� 𝑥𝑡−1

𝑗 (31)

Denoting 𝛼 = �̄�𝑇 (𝑤𝐿,1 −𝑤𝐿,0), and observing that the right hand

side is the logit margin at time 𝑡 − 1, the above simplifies to,∑︁
𝑗∈𝑁 (𝑖 )

[𝑀𝑡
𝑖 𝑗𝛼

𝑇 𝜖𝑡𝑗 + 𝜉
𝑡
𝑖, 𝑗𝛼

𝑇 𝑥𝑡−1] > 𝑧𝑡−1

𝑖,0 − 𝑧
𝑡−1

𝑖,1 (32)

□

B Algorithm for Computing Budget

Algorithm 1: Bisection search to find minimum budget.

Input: 𝐺 = (𝐴,𝑋 ), GNN 𝑓𝜃 , 𝑃 , Target node 𝑣 .

Output: 𝐵(𝑣), minimum budget to flip 𝑣 .

1 Init bounds𝑈 = deg(𝑣) and 𝐿 = 0

2 do
3 𝑈 = 2𝑈

4 while 𝑣 is not flipped by top-U perturbations in 𝑃 ;

5 do
6 𝐶 = ⌊𝑈 +𝐿

2
⌋

7 if 𝑣 is not flipped by top-C perturbations in 𝑃 then
8 𝐿 = 𝐶

9 else
10 𝑈 = 𝐶

11 end
12 while 𝑈 − 𝐿 > 1;

return :𝑈

C DGI Algorithm
D Additional Results
D.1 Implementation details
For the propagation model, we use 2-layer GNN architectures, as

stacking multiple layers can lead to oversmoothing in GNNs [4].

Algorithm 2: DGI
Input: G=(A,X), GNN 𝑓𝜃 , Adopters 𝑆 , Non-Adopters 𝐷 , 𝑘, 𝛽

Output:Minimum budget required s.t. |𝑆 | = 500

1 Init budget B = 0

2 do
3 for 𝑣 ∈ 𝐷 do
4 Compute 𝑃 in Eq. 15

5 Call Algorithm 1 to compute 𝐵(𝑣)
6 end
7 Find 𝑁 , the set of minimum budget nodes

8 for 𝑣 ∈ 𝑁 do
9 Compute the Meta Influence 𝐼 (𝑣)

10 end
11 𝑣∗ ← max

𝑣∈𝑁
𝐼 (𝑣)

12 Perturb the network to flip 𝑣∗

13 if 𝐼 (𝑣∗) > 𝛽 then
14 Make 𝑘 Meta Attribute Flips at 𝑣∗

15 𝐵(𝑣∗) ← 𝐵(𝑣∗) + 𝑘
16 end
17 B ← B + 𝐵(𝑣∗)
18 𝑆, 𝐷 ← {𝑣 |𝑦′𝑣 = 1}, {𝑣 |𝑦′𝑣 = 0}
19 while |𝑆 | < 500;

return :B

Table 4: Dataset statistics. |S| denotes seed set size.

Dataset |V| |E | Avg, Max Deg. |S| Feats

Flixster 3000 29677 20, 1716 10 839

Epinions 15948 234438 29, 1443 11 2999

Ciao 6841 77404 22, 749 6 2999

Table 5: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

GradArgmax 459 241 489 425 1097 630

MiBTack 399 310 376 383 869 705

Base 466 92 332 318 1136 615

Fixed 222 106 623 615 737 576

Dynamic 195 87 287 291 501 509

Table 6: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

GradArgmax 2.36 1.23 0.27 0.24 1.18 0.82

MiBTack 1.87 1.45 0.16 0.17 0.98 0.90

Base 2.38 0.57 0.13 0.14 1.20 0.81

Fixed 1.17 0.61 0.29 0.28 0.85 0.77

Dynamic 1.08 0.48 0.11 0.12 0.71 0.70
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Table 7: Hyperparameter values used for Dynamic DGI on
various datasets and GNN backbones. 𝑘 denotes number of
Meta Attribute Flips and 𝛽 (quantile) denotes the quantile of
the threshold 𝛽 applied to the Meta Influence.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

𝑘 2 2 4 2 4 1

𝛽 (quantile) 0.75 0.94 0.65 0.98 0.30 0.90

Table 8: Ablation study for the effect of budget compute (BC),
tiebreaking (TB) using Meta Influence, and Meta Attribute
Flips (MAF).

BC TB MAF Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

1012 625 5893 859 2620 972

✓ 797 506 3235 831 4231 878

✓ ✓ 791 543 3342 1099 3525 856

✓ ✓ ✓ 667 494 1893 803 2096 821

Table 9: Ablation study for the effect of budget compute (BC),
tiebreaking (TB) using Meta Influence, and Meta Attribute
Flips (MAF).

BC TB MAF Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

23.32 13.72 112.84 16.36 54.46 18.52

✓ 19.44 10.54 54.01 15.44 66.02 14.66

✓ ✓ 19.06 11.68 56.82 19.23 46.59 14.46

✓ ✓ ✓ 18.27 10.17 31.93 15.18 33.84 13.33

(a) (b)

Figure 8: Sensitivity of Dynamic DGI to the parameter 𝑘 con-
trolling the number of Meta Attribute Flips. (a) represents
budget and (b) represents AUC of budget-spread curve for a
spread of 500.

We report results with both GCN [15] and GraphSAGE [11] as the

backbone propagationmodels.We set the hidden layer to size 64 and

use ReLU as the intermediate non-linear function. We train models

using cross entropy loss for 200 epochs, a patience of 50, learning

rate 1e-2 with cosine annealing and weight decay regularization

5e-4. We use all nodes and edges during training to attain the best

GNN decision boundary. All models achieve 100% accuracy on the

seed set along with a small number of false positives that are in

the vicinity of the seeds and are included in the initial seed set.

For the spread approaches, the hyperparameter 𝑘 for number of

Meta Attribute Flips is set to a value in [1, 2, 4, 8, 16] using grid

search with Fixed DGI. The threshold hyerparameter 𝛽 is set to a

value within [0, 1] of the maximum Meta Influence in Fixed DGI

using grid search with Dynamic DGI. The maximum upper bound

to convert a node is set to the maximum degree in the graph during

bisection search. If the spread approach is unable to increase the

size of the adopters for 40 steps, we halt and report failure. We use

spread approaches with GCN backbones for all our analysis, and

note that the SAGE backbone yields the same insights. DGI and

baselines are implemented using the DeepRobust library in Pytorch

[19] for adversarial attacks on GNNs. All GNN models and spread

approaches are trained and executed on a single NVIDIA RTX2080

GPU with 8GM RAM.

D.2 Results on large-scale data
The statistics for the larger scale datasets are presented in Table 4,

and the results are presented in Table 5 and Table 6 respectively. It

is interesting to note the distinction of the larger scale datasets from

the smaller scale datasets in that the former are more tree like and

the latter are more dense. This causes the propagation to happen

much faster in the dense networks and with lesser budgets, there-

fore it is an easier problem when the attributed network is larger

and more dense. This also matches our intuition that densely con-

nected networks allow for faster information spread. This suggests

that sparser networks require more effort for a network process

such as DVM to achieve an equivalent amount of spread.

E Ablation study
We study the effect of the different components of Dynamic DGI,

i.e, budget compute (BC), tiebreaking (TB) and Meta Attribute Flips

(MAF), in Table 8 and Table 9 respectively. We see that the different

components indeed cause an additive increase in the performance

of Dynamic DGI in all the scenarios, thus validating their utility.

F Complexity
In each step, for each target, DGI makes 1 backward pass to compute

gradients and then sorts the gradients in 𝑂 (𝐸 log𝐸) time, followed

by𝑂 (logΔ) forward passes in bisection search, where Δ is the max-

imum allowed budget, which we set as the maximum degree of the

graph. For the set of minimum budget nodes, the Meta Influence

makes two forward and two backward passes. The time taken for

a forward or backward pass in a 2-layer GNN on a GPU is O(1)
assuming small input, hidden, and output sizes. Thus, in the first

step of DGI, we make 𝑂 ( |𝐷 |) inner steps of gradient-guided node

flipping, budget computation, meta attribute flips and meta influ-

ence, which takes a total of 𝑂 ( |𝐷 | (𝐸 log𝐸 + logΔ)) time. In later

steps, due to budget hashing, we only recompute budgets for 𝑂 (1)
nodes, which takes𝑂 (𝐸 log𝐸 + logΔ). Assuming that every step of

DGI flips 𝑂 (1) non-adopter nodes, the total runtime complexity of

DGI to achieve a spread of 𝜙 can be determined as:

𝑂 (𝜙 (𝐸 log𝐸 + logΔ)) +𝑂 ( |𝐷 | (𝐸 log𝐸 + logΔ)) . (33)
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We also use a faster variant of DGI, Fast DGI, for large scale network

splits, where we recompute budgets after every
𝜙
10

steps, therefore

bringing down the time complexity to:

𝑂 (𝐸 log𝐸 + logΔ) +𝑂 ( |𝐷 | (𝐸 log𝐸 + logΔ)) . (34)

G Sensitivity Analysis
Table 7 reports the hyperparameters used in this work. The sen-

sitivity of Dynamic DGI to the hyperparameter 𝛽 for threshold is

presented in Fig. 7a and Fig. 7b respectively. Likewise, the sensitiv-

ity of Dynamic DGI to the hyperparameter 𝑘 for number of Meta

Attribute Flips is presented in Fig. 8a and Fig. 8b respectively. We

see that larger values of 𝛽 and smaller values of 𝑘 generally work

better.
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