
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dynamic Gradient Influencing for Viral Marketing Using Graph
Neural Networks
Anonymous Author(s)

∗

Abstract
The problem of maximizing the adoption of a product through viral

marketing in social networks is of extreme importance and has been

studied heavily through postulated network models. We present a

novel data-driven formulation of the problem.We use Graph Neural

Networks (GNNs) to model the adoption of products by utilizing

both topological and attribute information. The resulting Dynamic
Viral Marketing (DVM) problem seeks to find the minimum bud-

get and minimal set of dynamic topological and attribute changes

in order to attain a specified adoption goal. We show that DVM

is NP-Hard and is related to the existing influence maximization

problem. Motivated by this connection, we develop the idea of Dy-

namic Gradient Influencing (DGI) that uses gradient ranking to find

optimal perturbations and targets low-budget and high influence

non-adopters in discrete steps. We use an efficient strategy for com-

puting node budgets and develop the “Meta-Influence” heuristic for

assessing a node’s downstream influence. We evaluate DGI against

multiple baselines and demonstrate gains on average of 24% on

budget and 37% on AUC on real-world attributed networks. Our

code will be made publicly available.

CCS Concepts
• Do Not Use This Code→ Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for

Your Paper.

Keywords
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:
Anonymous Author(s). 2018. Dynamic Gradient Influencing for Viral Mar-

keting Using Graph Neural Networks. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation emai (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 12 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 Introduction
Viral marketing is a highly significant strategy used to maximize the

adoption of products [7, 25], through diffusion in a social network

of users [22]. Prior work is based mainly on postulated network

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

propagation models of viral phenomena that focus on static topolo-

gies and ignore node attributes [14]. Furthermore, while finding

the influential seed set has been extensively studied, the problem of

making “dynamic” topological and attribute perturbations to maxi-

mize spread from adopters to non-adopters has not been addressed.

Instead of designed/postulated network propoagation models,

we adopt data-driven models, specifically non-linear Graph Neural

Networks (GNNs) [6, 15] to learn a propagation model directly

from attributed network data, and then use it to forecast future

states of the spread after the network is perturbed. We train a

GNN model on the initial state of the attributed network to learn

a data-driven mapping from user attributes and neighborhood to

its adoption label. Thereafter, the GNN parameters are fixed and

the decision boundary of the GNN is used to identify adopters

and non-adopters after the network is perturbed. This self-labeling
technique allows us to study the effect of perturbations on user

adoption by alleviating the issue of data scarcity regarding users

with unseen combinations of attribute and neighborhoods.

In order to model the effect of perturbations, we propose a real-

istic model that can be used to strategically accelerate spread from

adopters to non-adopters. The attributed networks we consider are

unweighted, undirected graphs with binary node attributes and

labels, where states of both attributes and labels correspond to the

adoption of marketable products. Accordingly, at any given time, (a)

new edges can be added only between adopters and non-adopters,

as in referral marketing [2], and (b) adopters can further adopt

similar products or products by flipping corresponding attributes

from 0 to 1, as in joint or co-marketing [12].

The resulting Dynamic Viral Marketing (DVM) problem seeks

to find the minimum budget and minimal dynamic perturbation set

to attain a spread goal. We show that DVM is NP-Hard and relate

it to the Influence Maximization (IM) problem [14]. Similar to IM

under the linear threshold model, nodes in DVM flip when the sum

of incoming influence edge weights exceeds the node’s adoption

threshold. Despite the similarity, the two problems are different as

incoming influence edge weights and node thresholds in DVM are

dynamic and governed by the underlying GNN propagation model.

Motivated by the connection of IM to DVM, we develop the

Dynamic Gradient Influencing (DGI) framework to solve the DVM

problem. DGI unrolls in discrete steps; each step involves flipping a

non-adopter node that has the lowest budget and maximum down-

stream influence. We use gradient-guided node flipping to find

the required dynamic perturbations. We develop an efficient node

flipping budget computation approach using bisection search to

maintain node budgets at each step. To estimate a node’s down-

stream influence, we develop the gradient based “Meta Influence”

heuristic and the corresponding “Meta Attribute Flips” to increase

the potency of edge perturbations.

Our contributions are as follows:

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• We propose the novel Dynamic Viral Marketing (DVM)

problem to find the minimum budget and a minimal dy-

namic perturbation set to attain a spread goal, where a

non-linear GNN acts as the propagation model and per-

turbations are restricted by referral and co-marketing con-

straints. We show that DVM is NP-Hard and is connected

to the influence maximization (IM) problem.

• We develop the Dynamic Gradient Influencing (DGI) frame-

work that targets low budget and high influence non-adopters.

DGI consists of (a) an efficient budget computation ap-

proach, (b) a novel Meta Influence heuristic and Meta At-

tribute Flips to increase node influence.

• We comprehensively evaluate DGI on three real-world at-

tributed networks and demonstrate gains on average of

24% on budget and 37% on AUC over multiple baselines.

Further, we extensively analyze the cascade patterns and

intermediary adopter nodes discovered by DGI.

2 Related Work
Models for Network Diffusion. The modeling of the diffusion of

innovations in a network through the process of social contagion

is a long studied topic [16]. Granovetter [10] developed a threshold

based model of collective behaviour where individuals are influ-

enced by the proportion of others who come to a particular deci-

sion. Morris [22] studied a coordination game of direct benefits from

aligning choices with neighbors in a social network. In epidemiol-

ogy, the spread of biological disease is studied using probabilistic

transmission models of Susceptible, Infected and Recovered (SIR)

individuals [24]. The use of the network value of customers for

marketing was first explored in [7, 25]. Consequently, Influence

Maximization (IM), the problem of finding the most influential seed

set for viral marketing has been studied extensively [9, 14, 30].

Dynamic Viral Marketing lies within the broad class of spreading

network processes and we show how it is connected to IM.

Graph Neural Networks. Graph Neural Networks (GNN) are mes-

sage passing neural networks that operate on attributed networks

and have shown great success in problems such as node classifi-

cation, link prediction, recommendation systems, and community

detection. Various GNN architectures have been proposed since

their first inception—Graph Convolutional Networks [15], Graph-

SAGE [11], Graph Attention Networks [28], Simplifying Graph

Convolutional Networks [31]. We refer the reader to [32] for an

extensive survey of graph neural networks. We use GNNs as the

underlying propagation model for Dynamic Viral Marketing.

Gradient-based Network Optimization. Gradient-based network

optimization is used in many combinatorial network optimization

problems. In the context of adversarial attacks on GNNs, perturba-

tions are made using gradient optimization on the input network

strucure to reduce the accuracy of a GNN classifier [5, 33, 35]. Global

attacks with dynamic budget adjustment for Topology PGD [33]

are considered by [34]. In [20], reinforcement learning policies are

optimized to solve Maximum Coverage, Vertex Cover, and Influ-

ence Maximization problems on networks. In [18], graph neural

networks are optimized to create graph embeddings and predict

influence of nodes for solving Influence Maximization. We use

gradient-based network optimization within the DGI framework.

3 Preliminaries
Consider a graph 𝐺 = (𝐴,𝑋), with the associated adjacency matrix

𝐴 ∈ {0, 1}𝑛×𝑛 and node attribute matrix𝑋 ∈ {0, 1}𝑛×𝑑 respectively,

and node labels 𝑌 ∈ {0, 1}𝑛 . We refer to the associated node-ids

as V = {1, . . . , 𝑛}. We denote the node feature 𝑥𝑣 ∈ {0, 1}𝑑 , and
the node label 𝑦𝑣 ∈ {0, 1}. The set of adopters and non-adopters is

denoted as 𝑆 and 𝐷 respectively. For convenience, we denote the

sub-matrix of 𝐴 defining node connectivity from a set of nodes 𝑆 to

a set of nodes 𝐷 as 𝐴𝑆,𝐷 , the sub-matrix of 𝑋 containing features

for a set of nodes 𝑆 as 𝑋𝑆 , and the vectors of ones and zeros as 1
and 0 respectively. We denote the weights on edge and feature per-

turbations as 𝑃𝐴 and 𝑃𝑋 respectively. The gradient scores on edge

and feature perturbations are denoted by 𝑃𝐴 and 𝑃𝑋 respectively.

For a dynamically changing network, the superscript 𝑡 is used to

indicate the variable at time 𝑡 ; we drop the superscript if it is clear

from the context.

We consider the large family of graph neural networks [11, 15]

to construct layerwise hidden representations and finally output

classifier logit scores 𝑍 ∈ R𝑛×2
. For an L-layer GNN,

𝐻𝑙 = 𝜎 (𝐴𝑊𝑙𝐻𝑙−1
),

𝐻0 = 𝑋, 𝑍 = 𝐻𝐿

where𝑊𝑙 refers to the learnable GNN parameters at layer l, 𝜎 is a

nonlinear activation function, and𝐴 is the GNN propagation matrix.

For Graph Convolutional Networks (GCN) [15], 𝐴 = Δ̄−
1

2𝐴Δ̄−
1

2 ,

where 𝐴 = 𝐴 + 𝐼 and Δ̄ is the associated degree matrix. For Graph-

SAGE [11] with mean pooling, 𝐴 = Δ̄−1𝐴. The predicted labels

𝑦′𝑣 ∈ {0, 1} for each node 𝑣 ∈ V are given by the class with the max-

imum logit score. In the typical semi-supervised learning scheme

for node classification, referred to as transductive learning, the

GNN parameters𝑊 are learned by minimizing the cross-entropy

classification loss,

L𝑡𝑟 (𝑣) = − log𝜎 (𝑧𝑣)𝑦𝑣 (1)

where 𝑧𝑣 denotes logit scores for node 𝑣 and 𝜎 the softmax function.

4 Dynamic Viral Marketing Problem
In this section, we present the problem of viral marketing [7, 25]

in the context of dynamic changes for accelerating the adoption of

products by customers. Specifically, we consider a dynamic mar-

keting scenario with the following salient properties:

(1) Referral marketing: Companies incentivize peoplewho arere

already using their product to refer it to others; adopters

make new connections in the network to non-adopters.

(2) Co-marketing: Companies partner with other companies or

jointly market a group of products; people who adopt the

target product likely adopt similar products and vice versa.

Formally, consider𝐺𝑡 = (𝐴𝑡 , 𝑋 𝑡 , 𝑌 𝑡), a series of undirected and un-

weighted dynamic attributed networks, observed at discrete time

steps 𝑡 = 1, . . . ,𝑇 , where 𝐴𝑡
represents the adjacency matrix defin-

ing node connectivity, 𝑋 𝑡
represents a binary node feature matrix

containing adoption labels for related products, and 𝑌 𝑡
represents

the binary adoption labels for the target product. We assume that

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) Initial State (b) Referral induced flip (c) Co-marketing induced flip

Figure 1: Overview of the Dynamic Viral Marketing (DVM) problem. At each time step, adopters and non-adopters in an
attributed user network are specified using a GNN classifier. Referral and co-marketing perturbations accelerate spreading
from adopters to non-adopters. DVM seeks to find the minimum budget and dynamic perturbation set to attain a spread goal.

the adoption labels are given by 𝑌 𝑡 = 𝑓 (𝐴𝑡 , 𝑋 𝑡 , 𝑌 0), where 𝑓 () is a
general propagation model that governs the diffusion of the initial

labels 𝑌 0
using the network structure and attributes at time 𝑡 . The

sets of adopters and non-adopters at time 𝑡 are denoted by 𝑆𝑡 and

𝐷𝑡
respectively,

𝑆𝑡 =
∑︁
𝑣

1[𝑦𝑡𝑣 = 1], , 𝐷𝑡 =
∑︁
𝑣

1[𝑦𝑡𝑣 = 0] (2)

The final spread, 𝜎 () is given by the number of adopters in the

network at time 𝑇 ,

𝜎 (𝐺𝑇) = |𝑆𝑇 | (3)

Due to the representation learning ability of graph neural net-

works (GNNs) [6, 15, 17, 29] through the propagation of feature

and label information, we use them as our propagation model 𝑓 ().
Specifically, a GNN 𝑓𝜃 is trained on the initial network 𝐺0

and

its parameters 𝜃 are then fixed. The GNN uses both structure and

feature information to yield a decision boundary between adopters

and non-adopters; the marketing objective is to flip nodes from

non-adopters to adopters. Thereafter, we use self-labeling at time 𝑡 :

the predictions from the GNN on the network𝐺𝑡
yield the adoption

states 𝑌 𝑡
. Therefore, in this framework, both our seed nodes, 𝑌 0

,

and our propagation model, 𝑓 (), are data-driven.
The dynamic transitions of the network from 𝐺𝑡−1 to 𝐺𝑡 are

constrained as follows:

• Referral marketing: Edge insertions can be made only be-

tween 𝑆𝑡−1
and 𝐷𝑡−1

at time 𝑡 − 1; total cost of structural

changes is |𝐴𝑡 −𝐴𝑡−1 |.
• Co-marketing: Features of nodes in 𝑆𝑡−1

can flip from 0 to 1

at time 𝑡 − 1; total cost of attribute changes is |𝑋 𝑡 − 𝑋 𝑡−1 |.

As all the changes are made incrementally, the total cost incurred

is given by |𝐴𝑇 −𝐴0 | + |𝑋𝑇 − 𝑋 0 |.

Dynamic Viral Marketing (DVM). : We now state the DVM op-

timization problem of finding the minimum budget, 𝜇 (), and a

minimal set of changes to reach a spread 𝜙 ,

arg-min

𝐴1,...,𝐴𝑇 ,𝑋 1,...,𝑋𝑇

𝜎 (𝐺𝑇) ≥ 𝜙 (4)

𝜇 (𝜙,𝐺0) = |𝐴𝑇 −𝐴0 | + |𝑋𝑇 − 𝑋 0 | (5)

Fig. 1 depicts the DVM problem schematically. Note that while

the total budget is a function of the final adjacency and feature

matrices, to solve the DVM problem a sequence of structural and
attribute changes under the referral and co-marketing contraints

are required. Furthermore, while we use a uniform cost model on

edge and attribute perturbations, the problem can be extended to

bespoke settings by using edge-specific and attribute-specific costs.

NP-Hardness of DVM decision problem: Consider an instance of

the NP-hard Knapsack problem, defined by a maximum value 𝑉 , a

maximumweight𝑊 , and a set of𝑛 items𝑋 = {(𝑣1,𝑤1), . . . , (𝑣𝑛,𝑤𝑛)}
where 𝑣𝑖 and𝑤𝑖 denote the 𝑖

𝑡ℎ
item’s value and weight respectively.

The decision problem is whether there exists a subset of items

𝑍 ⊂ 𝑋 with total weight

∑
𝑖∈𝑍 𝑤𝑖 ≤𝑊 and total value

∑
𝑖∈𝑍 𝑣𝑖 ≥ 𝑉 .

We show that this problem reduces to the decision problem of DVM.

Given an arbitrary instance of the Knapsack problem, consider

a weighted star network with target node 𝑡 at the center which is

connected to 𝑛 source nodes. Each node has a single feature, whose

value at node 𝑡 is 0 and at node 𝑖 is 𝑥𝑖 = 1 − 𝑤𝑖 . The weight on

the edge between node 𝑖 and 𝑡 is set to 𝑎𝑖 = 𝑣𝑖 . The initial label on

node 𝑡 is 0 and the initial label on the other nodes is 1. The cost of

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Overview of the Dynamic Gradient Influencing (DGI) framework. DGI picks candidate nodes to flip using Node
Flipping Budget Compute, which involves gradient sorting along with bisection search, hashing and affected set estimation.
The gradient-based Meta Influence Heuristic is used to tiebreak among least budget candidate nodes, as well as thresholding
for Meta Attribute Flips that enhance node potency. Red lines and circles indicate candidate perturbations.

changing the feature at a node from a value of 1−𝑤𝑖 to 1 is𝑤𝑖 . The

GNN classifier parameters are tuned such that the prediction on

node 𝑡 flips from 0 to 1 when the weighted sum of its neighborhood

of 𝑛 nodes with feature value 𝑥𝑖 = 1 is at least 𝑉 (spread 𝜙 = 1).

The Knapsack problem is solvable iff

∑
𝑖∈[𝑛] 𝑎𝑖1[𝑥𝑖 = 1] ≥ 𝑉 and∑

𝑖∈[𝑛] 𝑤𝑖1[𝑥𝑖 = 1] ≤ 𝑊 . Thus, if the DVM problem can find

feature flips costing at most𝑊 at 𝑡 ’s neighbors whose edge weights

sum to at least 𝑉 then the Knapsack problem is solvable. □

4.1 Relating DVM to Influence Maximization
We draw an interesting connection between DVM and the related

problem of influence maximization (IM) [14]. Consider the linear

threshold propagation model [10], where nodes 𝑖 ∈ [𝑛] randomly

choose a threshold 𝜃𝑖 ∈ [0, 1] and incoming influence edge weights

𝐼𝑖, 𝑗 such that ∀𝑖,∑𝑗 𝐼𝑖, 𝑗 ≤ 1. The propagation unfolds in discrete

time steps- if the set of active nodes at any given step is 𝑆 , then an

inactive node becomes active if the following constraint is satisfied:∑︁
𝑗∈𝑆

𝐼𝑖, 𝑗 ≥ 𝜃𝑖 . (6)

While the objective in IM is to find a set of seed nodes for maximiz-

ing spread, we instead search for a sequence of dynamical changes

to maximize spread. Despite the difference, given the set of adopters

𝑆𝑡−1
at step 𝑡 − 1, the criterion for a node to flip in DVM has a

similar form as Eq. 6. Suppose that the L-layer GNN 𝑓𝜃 has the

associated L-step random walk propagation matrix 𝑀 . Then the

following theorem holds,

Theorem 1. Let the vector 𝜀𝑡
𝑗
= 𝑥𝑡

𝑗
− 𝑥𝑡−1

𝑗
denote the change in

the feature of node 𝑗 from time 𝑡 − 1 to 𝑡 . Further, let the matrix
𝜉 = 𝑀𝑡 −𝑀𝑡−1 denote the change in the L-step random walk matrix
𝑀 from time 𝑡 − 1 to 𝑡 . Then the dynamic threshold and influence
edge weights for node 𝑖 to flip at time 𝑡 according to the criterion in

Eq. 6 are given by:

𝜃𝑡𝑖 = 𝑧𝑡−1

𝑖,0 − 𝑧
𝑡−1

𝑖,1 (7)

𝐼𝑡𝑖, 𝑗 = 𝑀𝑡𝛼𝑇 𝜀𝑡𝑗 + 𝜉
𝑡
𝑖, 𝑗𝛼

𝑇 𝑥𝑡−1
(8)

where 𝛼 is a vector which depends on the parameters 𝜃 of the GNN.

The proof can be found in Sec A. Intuitively, the dynamic node

threshold depends on its logit margin, and the dynamic influence

edge weights depend on both the feature change 𝜀 𝑗 and the random

walk propagation change 𝜉𝑖, 𝑗 . Theorem 1 suggests that budget

should be spent on changes which contribute most to the incoming

influence weights and push the node just beyond its threshold.

5 Dynamic Gradient Influencing Framework
Motivated by the criterion for node flipping in Thm. 1, that the sum

of the dynamic influence edge weights must exceed the dynamic

node threshold, we develop the Dynamic Gradient Influencing (DGI)

framework to solve the DVM problem. DGI uses Gradient-Guided

Node Flipping (c.f. Sec. 5.1), to flip a particular candidate node in

each step. At each step 𝑡 , the candidate node to flip, 𝑣𝑡 , is given by:

arg-max

𝑣∈𝑁
𝐼𝑡 (𝑣), where 𝑁 = arg-min

𝑤∈𝐷
𝐵𝑡 (𝑤) (9)

where 𝐵𝑡 (𝑤) denotes the budget required to flip node𝑤 , and 𝐼𝑡 (𝑣)
denotes the Meta Influence of node 𝑣 . In other words, we choose the

node with the least budget to flip and the highest Meta Influence.

Using our novel Node Flipping Budget Computation algorithm (c.f.

Sec. 5.2) candidate nodes are picked in order of lowest budget first.

Further, we develop a novel Meta Influence heuristic (c.f. Sec. 5.3)

for tiebreaking between equal budget candidates and thresholding

for Meta Attribute Flips. We use Meta Attribute Flips to enhance

a flipped node’s downstream edge influence. Sec. F details DGI’s

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

asymptotic running time complexity. The complete DGI pipeline is

depicted in Fig. 2, and the algorithm can be found in Sec. C.

5.1 Gradient-Guided Node Flipping
In DGI, the core functionality for flipping nodes is accomplished

through gradients on the restricted set of perturbations arising from

the referral and co-marketing constraints of DVM. Specifically, the

only changes that can happen to the adjacency matrix𝐴 and feature

matrix𝑋 are restricted to the submatrices𝐴𝑆,𝐷 and𝑋𝑆 respectively.

Therefore, we define:

𝐴𝑡
𝑆,𝐷 = 𝐴𝑡−1

𝑆,𝐷 + 𝑃
𝑡
𝐴 ◦ (11

𝑇 −𝐴𝑡−1

𝑆,𝐷), 𝐴
𝑡
𝐷,𝑆 = (𝐴𝑡

𝑆,𝐷)
𝑇

(10)

𝑋 𝑡
𝑆 = 𝑋 𝑡−1

𝑆 + 𝑃𝑡𝑋 ◦ (11
𝑇 − 𝑋 𝑡−1

𝑆) (11)

where 𝑃𝑡
𝐴
and 𝑃𝑡

𝑋
represent the weights on the edge and feature

perturbations, 𝑆 = 𝑆𝑡−1
and𝐷 = 𝐷𝑡−1

, and ◦ denotes the Hadamard

product. We initialize 𝑃𝑡
𝐴
= 00𝑇 and 𝑃𝑡

𝑋
= 00𝑇 .

While it is an NP-Hard combinatorial optimization problem to

find the minimal perturbation that flips a node, given that the adja-

cency and feature matrices are both discrete, first-order gradients

work well enough in practice to find the required perturbations

[5, 33]. We consider the negative cross-entropy loss as our flip loss

for the chosen candidate node 𝑣 ∈ 𝐷 :

𝐿𝑡
𝑓 𝑙𝑖𝑝
(𝑣) = log𝜎 (𝑧𝑡−1

𝑣)0 . (12)

Note that 𝑦𝑣 = 0 for non-adopters and 𝑦𝑣 = 1 for adopters. We

then compute non-negative gradient scores on edge perturbation

weights, 𝑃𝑡
𝐴
, and feature perturbation weights, 𝑃𝑡

𝑋
, with respect to

the flip loss:

𝑃𝑡𝐴 = max

([
𝜕𝐿𝑡

𝑓 𝑙𝑖𝑝
(𝑣)

𝜕𝑃𝑡
𝐴

]
, 0

)
, 𝑃𝑡𝑋 = max

([
𝜕𝐿𝑡

𝑓 𝑙𝑖𝑝
(𝑣)

𝜕𝑃𝑡
𝑋

]
, 0

)
. (13)

We only compute the gradients once for all the perturbations.

While it is possible to recompute gradients after every perturba-

tion [5], we find that this is not that necessary to find the minimal

set of perturbations. Moreover, as shown later, by merging and sort-

ing the perturbations using the gradients, we can find the minimal

perturbation set and minimum budget efficiently. Finally, suppose

the minimum budget required to convert 𝑣 is 𝐵(𝑣), then we find

the top-B(v) indices in the union of edge and feature perturbations:

𝑃𝑡 = sort(merge(𝑃𝑡𝐴, 𝑃
𝑡
𝑋)) (14)

𝑖𝑡𝐴, 𝑖
𝑡
𝑋 = argtop-k𝑘=𝐵 (𝑣) 𝑃 . (15)

Using the index sets 𝑖𝑡
𝐴
and 𝑖𝑡

𝑋
we can make the updates to the

network to convert 𝑣 :

[𝐴𝑡
𝑆,𝐷]𝑖𝑡𝐴 ← 1, 𝐴𝑡

𝐷,𝑆 ← (𝐴
𝑡
𝑆,𝐷)

𝑇
(16)

[𝑋 𝑡
𝑆]𝑖𝑡𝑋 ← 1. (17)

5.2 Node Flipping Budget Computation
The budget needed to flip a node 𝑣 depends on both the logit mar-

gin in Eq. 7 and the node’s degree deg(𝑣) [8, 23]. In the adversarial

attack framework, the practice is to set the node budget equal to

its degree for local attacks [23], or choose a loss function which

orders gradients in order of nodes closer to the decision boundary

for global attacks [8]. However, due to the budget minimizing ob-

jective of DVM, we need to compute the budget precisely and pick

candidate nodes that need the least budget.

Therefore, to compute the minimum budget 𝐵𝑡 (𝑣) that converts
node 𝑣 , we use the bisection method [1, 26]. For each node, we

compute the sorted gradients, 𝑃 in Eq. 15 once and run bisection

search over these gradients to find the minimal set of perturbations

required to convert 𝑣 . We initialize the lower and upper bound for

search as 0 and deg(𝑣), the degree of 𝑣 , respectively. Thereafter, the
upper bound is doubled until it is sufficient to convert 𝑣 . We set the

maximum upper bound equal to the maximum node degree of the

network. After fixing the upper bound, bisection search repeatedly

halves the search interval by checking feasibility of conversion at

the midpoint of the interval and converges logarithmically.

We observe that other nodes also flip due to the same structure

or attribute changes made for flipping a candidate node. Therefore,

to choose the best candidate, we update the budget:

𝐵𝑡 (𝑣) ← 𝐵𝑡 (𝑣) + (|𝑆𝑡−1 | − |𝑆𝑡𝑣 |) (18)

where 𝑆𝑡𝑣 is the set of adopters at time 𝑡 if node 𝑣 is selected as the

candidate node to flip. Thus, 𝐵𝑡 (𝑣) represents both the node flipping
budget and the "collateral damage" to other nodes from flipping

it. Therefore, if a node with more budget causes high collateral

damage it is preferable to a node with a lesser actual budget.

Since budgets need to be recomputed for all non-adopters at

every step, we make the algorithm faster by hashing node budgets

and only recomputing budgets for nodes whose budget has changed.

The recompute set 𝑅𝑡 is defined as the set of nodes whose logit

scores changed in the previous time step:

𝑅𝑡 = {𝑣 |𝑣 ∈ 𝐷𝑡 , 𝑧𝑡𝑣 ≠ 𝑧𝑡−1

𝑣 }. (19)

For nodes whose logit scores are unchanged the actual budget

might still change slightly, but for the purposes of picking the best

candidate node we ignore these small changes. The entire algorithm

for budget computation can be found in the the Sec. B.

5.3 Meta Influence Using Meta Attribute Flips
Due to the dynamic sequence of changes involved in spreading

product adoption in DVM, first-order gradients in Eq. 13 are insuf-

ficient to capture the long-range effects of a perturbation. While

the flipping budget is minimized at each step, we need to charac-

terize nodes that have high influence so that adoptions can cascade

sequentially. Therefore, we develop the Meta Influence heuristic

to model long-range effects and estimate downstream influence.

Meta Influence uses Meta Attribute Flips which are feature pertur-

bations that increase the potency of outgoing edge perturbations

at an adopter node. Consequently, the Meta Influence is defined

as the normalized gradient score on an adopter’s outgoing edge

perturbations post Meta Attribute Flips.

For Meta Attribute Flips, we again restrict feature perturbations,

this time only to the features of node 𝑣 , and define corresponding

feature perturbation weights 𝑃𝑋 :

𝑥𝑡
′
𝑣 = 𝑥𝑡𝑣 + 𝑃𝑋 ◦ (1 − 𝑥𝑡𝑣) (20)

where 𝑡 ′ indicates an auxilliary time step and we initialize 𝑃𝑋 =

0. To capture the effect of Meta Attribute Flips, we consider the

following influence loss which is the sum on all non-adopters nodes

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

of a CW-type loss [3] that uses the logit margin, and compute

gradient scores 𝑃𝑋 :

𝐿𝑡
′

𝑖𝑛𝑓 𝑙
(𝑣) =

∑︁
𝑤∈𝐷
(𝑧𝑡𝑤,1 − 𝑧

𝑡
𝑤,0) (21)

𝑃𝑡
′

𝑋 = max
©«

𝜕𝐿𝑡

′

𝑖𝑛𝑓 𝑙
(𝑣)

𝜕𝑃𝑡
′

𝑋

 , 0ª®¬ . (22)

Thereafter, we update the features 𝑥𝑣 using Meta Attribute Flips,

which are the top-k ranked perturbations in 𝑃𝑡
′

𝑋
, for the purposes

of computing Meta Influence:

𝑖𝑡
′
𝑋 = argtop-k 𝑃𝑡

′
𝑋 , [𝑥𝑡

′
𝑣]𝑖𝑡 ′

𝑋

← 1 (23)

where 𝑘 is a hyper-parameter controlling the number of Meta At-

tribute Flips. From Thm. 1, Meta Attribute Flips find feature changes

that align with the GNN’s classifier weights and increase the dy-

namic outgoing edge influence to other nodes in Eq. 8. Further, they

also help to increase the margin from the GNN decision boundary

and thus increase the node’s potency.

For finding the Meta Influence, we restrict the outgoing edge

perturbations 𝑃𝐴 from node 𝑣 to the non-adopters 𝐷 , and define

corresponding edge perturbation weights 𝑃𝐴:

𝐴𝑡 ′′
𝑣,𝐷 = 𝐴𝑡 ′

𝑣,𝐷 + 𝑃
𝑡 ′′
𝐴 ◦ (1 −𝐴

𝑡 ′
𝑣,𝐷) (24)

where 𝑡 ′′ indicates another auxilliary time step after 𝑡 ′ and 𝑃𝑡
′′

𝐴
= 0.

Now consider the same influence loss in Eq. 21 on all non-adopters

at time 𝑡 ′′, and compute non-negative gradient scores 𝑃𝑡
′′

𝐴
:

𝑃𝑡
′′

𝐴 = max
©«

𝜕𝐿𝑡

′′

𝑖𝑛𝑓 𝑙
(𝑣)

𝜕𝑃𝑡
′′

𝐴

 , 0ª®¬ . (25)

Note that influence loss uses the discrete perturbed feature 𝑥𝑡
′
𝑣 ,

which is computed using first order gradients, therefore Meta Influ-

ence can capture second order gradient effects. Finally, we denote

the Meta Influence 𝐼𝑡 (𝑣) of a node 𝑣 as the normalized gradient

score in 𝑃𝑡
′′

𝐴
averaged over the number of non-adopters:

𝐼𝑡 (𝑣) =
1
𝑇 𝑃𝑡

′′
𝐴

|𝐷 | . (26)

During candidate node selection, Meta Influence is used for

tiebreaking between equal budget nodes (Eq. 9). Further, we thresh-

old on Meta Influence to perform Meta Attribute Flips at candidate

nodes after flipping:

𝑥𝑡𝑣 ←
{
𝑥𝑡
′
𝑣 if 𝐼𝑡 (𝑣) ≥ 𝛽

𝑥𝑡𝑣 otherwise

(27)

where 𝛽 is a hyper-parameter controlling the threshold. Using Meta

Influence, we can estimate which nodes will have high influence on

their outgoing edges after Meta Attribute Flips, and thus judiciously

allocate budget for Meta Attribute Flips. In Sec. 6.2, we validate that

nodes with high Meta Influence indeed contribute more outgoing

edge perturbations to non-adopters.

6 Experiments
We conducted experiments on real-world attributed network datasets

to answer the following research questions:

• RQ1: How does the proposed DGI compare with baseline

methods for DVM?

• RQ2: Does the proposed Meta Influence accelerate the

spread and capture the node’s actual dynamic influence?

• RQ3: What are the different kinds of cascade patterns cre-

ated by DGI?

• RQ4: What are the properties of intermediary and suscep-

tible nodes in cascades created by DGI?

Datasets: We utilize three real-world attributed datasets to eval-

uate DGI and baseline approaches. Epinions and Ciao [27] are

datasets collected from two popular product review sites, where

each user can specify their trust relation in addition to rating prod-

ucts. Flixster [13] is a dataset collected from a popular movie rating

website with an associated social graph. We create new small-scale

and large-scale splits for these datasets using the provided user net-

works and product ratings from [27, 34]. For small-scale split gener-

ation, we sort the nodes using their degrees and take the subgraph

corresponding to the lowest degree nodes. To generate features for

each user, we pick a binary value for each product/movie based on

whether they rated it or not. We choose the product/movie with

the least number of seeds as the optimization goal for DVM. The

analysis in the main paper is conducted on the small-scale splits and

their statistics are depicted in Table 1. Additional implementation

details and results on large-scale splits using Fast-DGI can be found

in the Sec. D.

Table 1: Dataset statistics. |S| denotes seed set size.

Dataset |V| |E | Avg, Max Deg. |S| #Features

Flixster 1045 1488 2.8, 153 5 839

Epinions 1054 1214 2.3, 25 5 2999

Ciao 1057 1190 2.3, 36 7 2999

Evaluation metric: The efficacy of the proposed dynamic DGI and

baselines is evaluated using the minimum budget needed to spread

to 𝐶 = 500 target nodes on the respective network. We use a fixed

number of targets to spread to make the results across different

datasets comparable. We also report the Area Under Curve (AUC)

of the budget-spread curve, which gives an aggregate estimate of

the budget required for different spread values. For the purpose of

calculating AUC we normalize the budget by (∑(𝐴)/2 + ∑(𝑋)),
i.e., the sum of the number of edges and turned on features. Lower

values of budget and AUC indicate better performance.

Variants: We consider three variants of DGI for evaluation and

analysis in our experiments:

• Base is DGI without Meta Attribute Flips. It uses Meta

Influence only for tiebreaking in Eq. 9.

• Fixed is DGI with fixedMeta Attribute Flips. It is equivalent

to using a threshold 𝛽 = 0 in Eq. 7.

• Dynamic is DGI with optimally chosen threshold 𝛽 .

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones. Dynamic
DGI consistently achieves the minimum budget.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

Degree 2551 6573 22076 21125 25162 45291

Margin 8136 7655 26109 18550 20814 41077

GradArgmax 1012 625 5893 859 2620 972

MiBTack 843 583 2828 866 5111 1035

Base 791 543 3342 1099 3525 856

Fixed 831 571 1985 1297 2221 1094

Dynamic 667 494 1893 803 2096 821

Baselines: We compare with the following approaches:

• Degree selects target nodes based on the low-degree first

heuristic. Until the target is flipped, Degree repeatedly

spends a unit budget by first randomly picking a seeder

node, then either adds a link from the seeder to the tar-

get if they aren’t conencted, else turns on a feature with

high-correlation to the label.

• Margin selects target nodes based on the low-margin first

heuristic, i.e., nodes that have a smaller margin to the deci-

sion boundary are picked first. Edits to the structure and

features are made in the same way as Degree.

• GradArgmax [5] is a gradient based white-box adversarial

attack on structure. Target nodes are selected in the order

of lower losses first. We adapt GradArgmax to make edits

to both structure and features.

• MiBTack [34] is anotherwhite-box adversarial attackwhich

dynamically adjusts node budgets for topology-based PGD

[33]. We adapt MiBTack to make edits to both structure and

features while selecting target nodes same as GradArgmax.

6.1 Performance Comparison (RQ1)
We compare DGI variants to baselines using budget and AUC at

𝐶 = 500 in Table 2 and Table 3 respectively. We report results with

both GCN [15] and GraphSAGE [11] as the propagation models.

DGI variants outperform the baselines in all the scenarios. Among

the variants, Dynamic does the best, followed by Base and then

Fixed. Fixed overspends budget on Meta Attribute Flips over Base

by using a threshold of 𝛽 = 0, and Dynamic spends the least budget

by optimally selecting nodes with highMeta Influence (for spending

additional budget) for Meta Attribute Flips. Further, we plot budget

spread curves on Flixster and Epinions in Fig. 3. Dynamic DGI

consistently achieves the minimum budget across all levels. To

understand time evolution of the spread for different variants, we

plot spread as a function of time in Fig. 4a. Due to the accelerating

effect of Meta Attribute Flips, Fixed spreads fastest, followed by the

economical Dynamic and the conservative Base approach.

6.2 Strategy of Meta Influence (RQ2)
To validate the effectiveness of Meta Influence and Meta Attribute

Flips, we plot the histogram of perturbations contributed by nodes

Table 3: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves. Dynamic DGI consis-
tently achieves the minimum AUC.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

Degree 19.48 150.50 215.33 328.15 349.48 631.66

Margin 173.70 177.71 366.43 284.77 287.11 595.69

GradArgmax 23.32 13.72 112.84 16.36 54.46 18.52

MiBTack 21.78 16.77 50.70 21.03 80.95 21.91

Base 19.06 11.68 56.82 19.23 46.59 14.46

Fixed 20.78 12.53 36.41 23.75 36.20 19.82

Dynamic 18.27 10.17 31.93 15.18 33.84 13.33

(a) Flixster (b) Epinions

Figure 3: Budget spent as a function of increasing spread
with GCN as the GNN propagation model. Dynamic requires
consistently lower budgets across all spreads.

with respect to their Meta Influence in Fig. 4b. For each dataset, we

normalize the Meta Influence to lie in the interval [0,1] and divide

uniformly into 10 sub-intervals. For each sub-interval, we count

the number of perturbations contributed by nodes whose Meta

Influence lies within it. We carry out the analysis on Fixed DGI, in

which Meta Attribute Flips are made at each node. We observe the

high correlation of Meta Influence to the number of contributed

perturbations across all the datasets. Note that the Meta Influence

is computed at the step when the node is flipped, but even then

it provides a good signal of how important that node will be later.

This shows that the Meta Influence is a close approximation of the

actual node influence in terms of perturbations it makes. Further,

by thresholding on the Meta Influence, we are able to save budget

by not applying Meta Attribute Flips on low-influence nodes.

6.3 Cascades created by DGI (RQ3)
To understand cascades created by the DGI spread, in Fig. 5a, we

qualitatively visualize a subgraph spanned by the Dynamic DGI

edges on Flixster and color each node according to its cascade hop

distance from the initial seed set in this subgraph. We define the

cascade hop distance of a node from the seed set inductively:

ℎ𝑜𝑝 (𝑖) = 1 + max

𝑗∈𝑃𝑁 (𝑖)
ℎ𝑜𝑝 (𝑗) (28)

whereℎ𝑜𝑝 (𝑖) = 0 for nodes in the initial seed set, and 𝑃𝑁 (𝑖) denotes
perturbed neighbors of node 𝑖 at the step when it flips. Further, we

use node size to indicate the number of perturbations the node

contributes in the course of the multi-step spread. We clearly see

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Flixster Time Evolution (b) Meta Influence Strategy

Figure 4: (a) Spread achieved with increasing time steps for
Flixster with GCN backbone. Fixed and Dynamic spread
faster than Base due to acceleration from Meta Attribute
Flips. (b) Histogram of perturbations contributed by interme-
diary adopter nodes with increasing Meta Influence, where
scaling is used for mapping Meta Influence to [0,1]. Higher
Meta Influence adopter nodes contributemore perturbations.

a strong pattern of cascading flips, whereby a node flipped earlier

later flips many more and so on inductively. Therefore, the DGI

spread creates cascading flipping, similar to a chain of referrals in a

social network, where each referral is an entirely new edge. We also

see from the node sizes that a few nodes are dominant spreaders

while others contribute very little.

To understand the cascades created by DGI quantitatively, in

Fig. 5b we plot the number of non-adopter flips with increasing hop

distances for Flixster, Epinions and Ciao. Multi-hop cascade flips

account for a sizable number of the total flips, which indicates that

multi-hop path flips help in decreasing the budget required for the

spread. Further, the cascade hop length can be considerably large.

Particularly, for Flixster, we see nodes with cascade hop lengths

up to 30, indicating how the added perturbations can percolate the

adoption far from the seed set.

(a) (b)

Figure 5: (a): Visualization of cascading dynamics of DGI.
Node sizes and colors correspond to number of perturbations
and cascade hops respectively. Only edges added by DGI are
depicted. (b): Number of flipped nodes at different cascade
hops. DGI creates long and staggered cascades for DVM.

6.4 Properties of Intermediary spreaders (RQ4)
To understand the properties of intermediary spreader nodes, we

plot the histogram of perturbations contributed by intermediary

spreader nodes with respect to their degree and classification mar-

gin in Fig. 6a and Fig. 6b respectively. For each dataset, we count

the number of perturbations arising from nodes with the degree

and classification margin lying within the same sub-interval. The

degree and margin are considered at the moment the perturba-

tion is made to account for dynamic changes. Due to the degree

normalization in GNN message passing, low degree nodes have a

higher influence edge weight, and we observe that nodes with low

degree are highly correlated to higher number of perturbations. On

the other hand, high classification margin indicates high feature

and neighborhood alignment with the GNN classifier, therefore

making outgoing edge or feature perturbations more potent. Thus,

we see that perturbations are made exclusively at nodes with the

maximum possible margin.

(a) (b)

Figure 6: (a) Histogram of perturbations contributed by
intermediary spreader nodes with increasing degree. (b)
Histogram of perturbations contributed by intermediary
spreader nodes with increasing GCN classification margin.
Higher contributions are made by spreader nodes with low
degrees and high margins.

7 Concluding Remarks
We proposed the novel Dynamic Viral Marketing (DVM) problem

to find the minimum budget and minimal perturbation set to attain

a spread goal, where the propagation model is a non-linear GNN

and perturbations are restricted by referral and co-marketing con-

straints.We showed that DVM is NP-Hard and is related to influence

maximization. We developed the Dynamic Gradient Influencing

(DGI) framework, which targets non-adopters with low budget and

high influence. DGI uses gradient ranking to order perturbations

and utilizes an efficent budget computation approach, a novel Meta

Influence heuristic, and Meta Attribute Flips to increase a node’s

influence. We comprehensively evaluated DGI on three real world

attributed networks and demonstrated gains on average of 24% on

budget and 37% on AUC over multiple gradient and non-gradient

baselines. We validated the efficacy of budget computation and

the Meta Influence heuristic. We extensively analyzed the cascade

patterns through intermediary adopter nodes discovered by DGI.

This work opens up a new research direction, that of data-driven

models for network propagation as alternatives to designed/pos-

tulated models such as Linear Threshold [10]. The data-driven

models can incorporate attributes as well as long-range interac-

tions. This research also motivates a number of future research

questions including model-based reinforcement learning [21] using

such GNN models in unknown environments, and the development

of data-driven competitive strategies between groups each trying

to increase their spread.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press.

[2] Francis A Buttle. 1998. Word of mouth: understanding and managing referral

marketing. Journal of strategic marketing 6, 3 (1998), 241–254.

[3] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness

of neural networks. In 2017 ieee symposium on security and privacy (sp). Ieee,
39–57.

[4] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-Smoothing Problem for Graph Neural Networks from the

Topological View. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI. AAAI Press, 3438–3445. https://doi.org/10.1609/AAAI.V34I04.5747

[5] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.

2018. Adversarial attack on graph structured data. In International conference on
machine learning. PMLR, 1115–1124.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016).

[7] Pedro M. Domingos and Matthew Richardson. 2001. Mining the network value of

customers. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, San Francisco, CA, USA, August 26-29, 2001,
Doheon Lee, Mario Schkolnick, Foster J. Provost, and Ramakrishnan Srikant

(Eds.). ACM, 57–66. https://doi.org/10.1145/502512.502525

[8] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bo-

jchevski, and Stephan Günnemann. 2021. Robustness of graph neural networks

at scale. Advances in Neural Information Processing Systems 34 (2021), 7637–7649.
[9] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2011. A Data-Based

Approach to Social Influence Maximization. Proc. VLDB Endow. 5, 1 (2011), 73–84.
https://doi.org/10.14778/2047485.2047492

[10] Mark Granovetter. 1978. Threshold models of collective behavior. American
journal of sociology 83, 6 (1978), 1420–1443.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Ironclad Journal. 2024. Joint Marketing Agreements. https://ironcladapp.com/

journal/contracts/joint-marketing-agreement/. Accessed: 2024-08-29.

[13] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with

trust propagation for recommendation in social networks. In Proceedings of the
2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain,
September 26-30, 2010, Xavier Amatriain, Marc Torrens, Paul Resnick, and Markus

Zanker (Eds.). ACM, 135–142. https://doi.org/10.1145/1864708.1864736

[14] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2015. Maximizing the Spread

of Influence through a Social Network. Theory Comput. 11 (2015), 105–147.

https://doi.org/10.4086/TOC.2015.V011A004

[15] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[16] Jon Kleinberg. 2010. Networks, Crowds, and Markets. Cambridge University

Press.

[17] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=H1gL-

2A9Ym

[18] Sanjay Kumar, Abhishek Mallik, Anavi Khetarpal, and Bhawani Sankar Panda.

2022. Influence maximization in social networks using graph embedding and

graph neural network. Inf. Sci. 607 (2022), 1617–1636. https://doi.org/10.1016/J.

INS.2022.06.075

[19] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. 2020. Deeprobust: A pytorch library

for adversarial attacks and defenses. arXiv preprint arXiv:2005.06149 (2020).
[20] Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu,

and Ambuj K. Singh. 2020. GCOMB: Learning Budget-constrained Com-

binatorial Algorithms over Billion-sized Graphs. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and

Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/

e7532dbeff7ef901f2e70daacb3f452d-Abstract.html

[21] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. 2023.

Model-based reinforcement learning: A survey. Foundations and Trends® in
Machine Learning 16, 1 (2023), 1–118.

[22] Stephen Morris. 2000. Contagion. The Review of Economic Studies 67, 1 (2000),
57–78.

[23] Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bo-

jchevski. 2022. Are Defenses for Graph Neural Networks Robust? Advances in
Neural Information Processing Systems 35 (2022), 8954–8968.

[24] Mark Newman. 2018. Networks. Oxford university press.

[25] Matthew Richardson and Pedro M. Domingos. 2002. Mining knowledge-sharing

sites for viral marketing. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton,
Alberta, Canada. ACM, 61–70. https://doi.org/10.1145/775047.775057

[26] Pedro Tabacof and Eduardo Valle. 2016. Exploring the space of adversarial images.

In 2016 international joint conference on neural networks (IJCNN). IEEE, 426–433.
[27] Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: discerning multi-faceted

trust in a connected world. In Proceedings of the Fifth International Conference on
Web Search and Web Data Mining, WSDM 2012, Seattle, WA, USA, February 8-12,
2012, Eytan Adar, Jaime Teevan, Eugene Agichtein, and Yoelle Maarek (Eds.).

ACM, 93–102. https://doi.org/10.1145/2124295.2124309

[28] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https:

//openreview.net/forum?id=rJXMpikCZ

[29] Hongwei Wang and Jure Leskovec. 2020. Unifying Graph Convolutional Neural

Networks and Label Propagation. CoRR abs/2002.06755 (2020). arXiv:2002.06755

https://arxiv.org/abs/2002.06755

[30] Ying Wang and Yanhao Wang. 2023. Opinion-aware Influence Maximization

in Online Social Networks. In 6th International Conference on Data Science and
Information Technology, DSIT 2023, Shanghai, China, July 28-30, 2023. IEEE, 214–
221. https://doi.org/10.1109/DSIT60026.2023.00040

[31] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In

Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA (Proceedings of Machine Learning
Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,

6861–6871. http://proceedings.mlr.press/v97/wu19e.html

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24. https://doi.org/10.1109/

TNNLS.2020.2978386

[33] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,

and Xue Lin. 2019. Topology attack and defense for graph neural networks: an

optimization perspective. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence. 3961–3967.

[34] Mengmei Zhang, Xiao Wang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, and Jun-

ping Du. 2023. Minimum Topology Attacks for Graph Neural Networks. In

Proceedings of the ACM Web Conference 2023. 630–640.
[35] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on Graph

Neural Networks via Meta Learning. In International Conference on Learning
Representations (ICLR).

A Proof of Thm. 1
Proof. Consider a L-layer GNN without non-linearities. Then

the criterion to flip node 𝑖 at time 𝑡 can be expressed in terms of

the L-step random walk matrix𝑀 and the weights𝑊𝑙 ,∑︁
𝑗∈𝑁 (𝑖)

𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,1�̄� 𝑥𝑡𝑗 >

∑︁
𝑗∈𝑁 (𝑖)

𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,0�̄� 𝑥𝑡𝑗 (29)

where𝑤𝐿,1 and𝑤𝐿,0 represents the final layer classifier vectors

for the two classes, and �̄� =
∏𝐿−1

𝑖=1
𝑊𝑙 is the combined feature

transform of the first 𝐿 − 1 layers.

The criterion can be equivalently written as,∑︁
𝑗∈𝑁 (𝑖)

[𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,1�̄� (𝑥

𝑡
𝑗 − 𝑥

𝑡−1

𝑗) + (𝑀
𝑡
𝑖 𝑗 −𝑀

𝑡−1

𝑖 𝑗)𝑤
𝑇
𝐿,1�̄� 𝑥𝑡−1

𝑗

+𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,1�̄� 𝑥𝑡−1

𝑗] >∑︁
𝑗∈𝑁 (𝑖)

[𝑀𝑡
𝑖 𝑗𝑤

𝑇
𝐿,0�̄� (𝑥

𝑡
𝑗 − 𝑥

𝑡−1

𝑗) + (𝑀
𝑡
𝑖 𝑗 −𝑀

𝑡−1

𝑖 𝑗)𝑤
𝑇
𝐿,0�̄� 𝑥𝑡−1

𝑗

+𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,0�̄� 𝑥𝑡−1

𝑗] (30)

Rearranging terms,

9

https://doi.org/10.1609/AAAI.V34I04.5747
https://doi.org/10.1145/502512.502525
https://doi.org/10.14778/2047485.2047492
https://ironcladapp.com/journal/contracts/joint-marketing-agreement/
https://ironcladapp.com/journal/contracts/joint-marketing-agreement/
https://doi.org/10.1145/1864708.1864736
https://doi.org/10.4086/TOC.2015.V011A004
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://doi.org/10.1016/J.INS.2022.06.075
https://doi.org/10.1016/J.INS.2022.06.075
https://proceedings.neurips.cc/paper/2020/hash/e7532dbeff7ef901f2e70daacb3f452d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e7532dbeff7ef901f2e70daacb3f452d-Abstract.html
https://doi.org/10.1145/775047.775057
https://doi.org/10.1145/2124295.2124309
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/2002.06755
https://arxiv.org/abs/2002.06755
https://doi.org/10.1109/DSIT60026.2023.00040
http://proceedings.mlr.press/v97/wu19e.html
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

(a) (b)

Figure 7: Sensitivity of Dynamic DGI to the influence thresh-
old parameter 𝛽. The x-axis represents the quantile of the
threshold 𝛽 applied to the Meta Influence for each dataset. (a)
represents budget and (b) represents AUC of budget-spread
curve for a spread of 500.∑︁

𝑗∈𝑁 (𝑖)
[𝑀𝑡

𝑖 𝑗 (𝑤
𝑇
𝐿,1 −𝑤

𝑇
𝐿,0)�̄� (𝑥

𝑡
𝑗 − 𝑥

𝑡−1

𝑗)

+ (𝑀𝑡
𝑖 𝑗 −𝑀

𝑡−1

𝑖 𝑗) (𝑤
𝑇
𝐿,1 −𝑤

𝑇
𝐿,0)�̄� 𝑥𝑡−1

𝑗] >∑︁
𝑗∈𝑁 (𝑖)

𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,0�̄� 𝑥𝑡−1

𝑗 −
∑︁

𝑗∈𝑁 (𝑖)
𝑀𝑡−1

𝑖 𝑗 𝑤𝑇
𝐿,1�̄� 𝑥𝑡−1

𝑗 (31)

Denoting 𝛼 = �̄�𝑇 (𝑤𝐿,1 −𝑤𝐿,0), and observing that the right hand

side is the logit margin at time 𝑡 − 1, the above simplifies to,∑︁
𝑗∈𝑁 (𝑖)

[𝑀𝑡
𝑖 𝑗𝛼

𝑇 𝜖𝑡𝑗 + 𝜉
𝑡
𝑖, 𝑗𝛼

𝑇 𝑥𝑡−1] > 𝑧𝑡−1

𝑖,0 − 𝑧
𝑡−1

𝑖,1 (32)

□

B Algorithm for Computing Budget

Algorithm 1: Bisection search to find minimum budget.

Input: 𝐺 = (𝐴,𝑋), GNN 𝑓𝜃 , 𝑃 , Target node 𝑣 .

Output: 𝐵(𝑣), minimum budget to flip 𝑣 .

1 Init bounds𝑈 = deg(𝑣) and 𝐿 = 0

2 do
3 𝑈 = 2𝑈

4 while 𝑣 is not flipped by top-U perturbations in 𝑃 ;

5 do
6 𝐶 = ⌊𝑈 +𝐿

2
⌋

7 if 𝑣 is not flipped by top-C perturbations in 𝑃 then
8 𝐿 = 𝐶

9 else
10 𝑈 = 𝐶

11 end
12 while 𝑈 − 𝐿 > 1;

return :𝑈

C DGI Algorithm
D Additional Results
D.1 Implementation details
For the propagation model, we use 2-layer GNN architectures, as

stacking multiple layers can lead to oversmoothing in GNNs [4].

Algorithm 2: DGI
Input: G=(A,X), GNN 𝑓𝜃 , Adopters 𝑆 , Non-Adopters 𝐷 , 𝑘, 𝛽

Output:Minimum budget required s.t. |𝑆 | = 500

1 Init budget B = 0

2 do
3 for 𝑣 ∈ 𝐷 do
4 Compute 𝑃 in Eq. 15

5 Call Algorithm 1 to compute 𝐵(𝑣)
6 end
7 Find 𝑁 , the set of minimum budget nodes

8 for 𝑣 ∈ 𝑁 do
9 Compute the Meta Influence 𝐼 (𝑣)

10 end
11 𝑣∗ ← max

𝑣∈𝑁
𝐼 (𝑣)

12 Perturb the network to flip 𝑣∗

13 if 𝐼 (𝑣∗) > 𝛽 then
14 Make 𝑘 Meta Attribute Flips at 𝑣∗

15 𝐵(𝑣∗) ← 𝐵(𝑣∗) + 𝑘
16 end
17 B ← B + 𝐵(𝑣∗)
18 𝑆, 𝐷 ← {𝑣 |𝑦′𝑣 = 1}, {𝑣 |𝑦′𝑣 = 0}
19 while |𝑆 | < 500;

return :B

Table 4: Dataset statistics. |S| denotes seed set size.

Dataset |V| |E | Avg, Max Deg. |S| Feats

Flixster 3000 29677 20, 1716 10 839

Epinions 15948 234438 29, 1443 11 2999

Ciao 6841 77404 22, 749 6 2999

Table 5: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

GradArgmax 459 241 489 425 1097 630

MiBTack 399 310 376 383 869 705

Base 466 92 332 318 1136 615

Fixed 222 106 623 615 737 576

Dynamic 195 87 287 291 501 509

Table 6: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

GradArgmax 2.36 1.23 0.27 0.24 1.18 0.82

MiBTack 1.87 1.45 0.16 0.17 0.98 0.90

Base 2.38 0.57 0.13 0.14 1.20 0.81

Fixed 1.17 0.61 0.29 0.28 0.85 0.77

Dynamic 1.08 0.48 0.11 0.12 0.71 0.70

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: Hyperparameter values used for Dynamic DGI on
various datasets and GNN backbones. 𝑘 denotes number of
Meta Attribute Flips and 𝛽 (quantile) denotes the quantile of
the threshold 𝛽 applied to the Meta Influence.

Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

𝑘 2 2 4 2 4 1

𝛽 (quantile) 0.75 0.94 0.65 0.98 0.30 0.90

Table 8: Ablation study for the effect of budget compute (BC),
tiebreaking (TB) using Meta Influence, and Meta Attribute
Flips (MAF).

BC TB MAF Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

1012 625 5893 859 2620 972

✓ 797 506 3235 831 4231 878

✓ ✓ 791 543 3342 1099 3525 856

✓ ✓ ✓ 667 494 1893 803 2096 821

Table 9: Ablation study for the effect of budget compute (BC),
tiebreaking (TB) using Meta Influence, and Meta Attribute
Flips (MAF).

BC TB MAF Flixster Epinions Ciao

GCN SAGE GCN SAGE GCN SAGE

23.32 13.72 112.84 16.36 54.46 18.52

✓ 19.44 10.54 54.01 15.44 66.02 14.66

✓ ✓ 19.06 11.68 56.82 19.23 46.59 14.46

✓ ✓ ✓ 18.27 10.17 31.93 15.18 33.84 13.33

(a) (b)

Figure 8: Sensitivity of Dynamic DGI to the parameter 𝑘 con-
trolling the number of Meta Attribute Flips. (a) represents
budget and (b) represents AUC of budget-spread curve for a
spread of 500.

We report results with both GCN [15] and GraphSAGE [11] as the

backbone propagationmodels.We set the hidden layer to size 64 and

use ReLU as the intermediate non-linear function. We train models

using cross entropy loss for 200 epochs, a patience of 50, learning

rate 1e-2 with cosine annealing and weight decay regularization

5e-4. We use all nodes and edges during training to attain the best

GNN decision boundary. All models achieve 100% accuracy on the

seed set along with a small number of false positives that are in

the vicinity of the seeds and are included in the initial seed set.

For the spread approaches, the hyperparameter 𝑘 for number of

Meta Attribute Flips is set to a value in [1, 2, 4, 8, 16] using grid

search with Fixed DGI. The threshold hyerparameter 𝛽 is set to a

value within [0, 1] of the maximum Meta Influence in Fixed DGI

using grid search with Dynamic DGI. The maximum upper bound

to convert a node is set to the maximum degree in the graph during

bisection search. If the spread approach is unable to increase the

size of the adopters for 40 steps, we halt and report failure. We use

spread approaches with GCN backbones for all our analysis, and

note that the SAGE backbone yields the same insights. DGI and

baselines are implemented using the DeepRobust library in Pytorch

[19] for adversarial attacks on GNNs. All GNN models and spread

approaches are trained and executed on a single NVIDIA RTX2080

GPU with 8GM RAM.

D.2 Results on large-scale data
The statistics for the larger scale datasets are presented in Table 4,

and the results are presented in Table 5 and Table 6 respectively. It

is interesting to note the distinction of the larger scale datasets from

the smaller scale datasets in that the former are more tree like and

the latter are more dense. This causes the propagation to happen

much faster in the dense networks and with lesser budgets, there-

fore it is an easier problem when the attributed network is larger

and more dense. This also matches our intuition that densely con-

nected networks allow for faster information spread. This suggests

that sparser networks require more effort for a network process

such as DVM to achieve an equivalent amount of spread.

E Ablation study
We study the effect of the different components of Dynamic DGI,

i.e, budget compute (BC), tiebreaking (TB) and Meta Attribute Flips

(MAF), in Table 8 and Table 9 respectively. We see that the different

components indeed cause an additive increase in the performance

of Dynamic DGI in all the scenarios, thus validating their utility.

F Complexity
In each step, for each target, DGI makes 1 backward pass to compute

gradients and then sorts the gradients in 𝑂 (𝐸 log𝐸) time, followed

by𝑂 (logΔ) forward passes in bisection search, where Δ is the max-

imum allowed budget, which we set as the maximum degree of the

graph. For the set of minimum budget nodes, the Meta Influence

makes two forward and two backward passes. The time taken for

a forward or backward pass in a 2-layer GNN on a GPU is O(1)
assuming small input, hidden, and output sizes. Thus, in the first

step of DGI, we make 𝑂 (|𝐷 |) inner steps of gradient-guided node

flipping, budget computation, meta attribute flips and meta influ-

ence, which takes a total of 𝑂 (|𝐷 | (𝐸 log𝐸 + logΔ)) time. In later

steps, due to budget hashing, we only recompute budgets for 𝑂 (1)
nodes, which takes𝑂 (𝐸 log𝐸 + logΔ). Assuming that every step of

DGI flips 𝑂 (1) non-adopter nodes, the total runtime complexity of

DGI to achieve a spread of 𝜙 can be determined as:

𝑂 (𝜙 (𝐸 log𝐸 + logΔ)) +𝑂 (|𝐷 | (𝐸 log𝐸 + logΔ)) . (33)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

We also use a faster variant of DGI, Fast DGI, for large scale network

splits, where we recompute budgets after every
𝜙
10

steps, therefore

bringing down the time complexity to:

𝑂 (𝐸 log𝐸 + logΔ) +𝑂 (|𝐷 | (𝐸 log𝐸 + logΔ)) . (34)

G Sensitivity Analysis
Table 7 reports the hyperparameters used in this work. The sen-

sitivity of Dynamic DGI to the hyperparameter 𝛽 for threshold is

presented in Fig. 7a and Fig. 7b respectively. Likewise, the sensitiv-

ity of Dynamic DGI to the hyperparameter 𝑘 for number of Meta

Attribute Flips is presented in Fig. 8a and Fig. 8b respectively. We

see that larger values of 𝛽 and smaller values of 𝑘 generally work

better.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

12

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Dynamic Viral Marketing Problem
	4.1 Relating DVM to Influence Maximization

	5 Dynamic Gradient Influencing Framework
	5.1 Gradient-Guided Node Flipping
	5.2 Node Flipping Budget Computation
	5.3 Meta Influence Using Meta Attribute Flips

	6 Experiments
	6.1 Performance Comparison (RQ1)
	6.2 Strategy of Meta Influence (RQ2)
	6.3 Cascades created by DGI (RQ3)
	6.4 Properties of Intermediary spreaders (RQ4)

	7 Concluding Remarks
	References
	A Proof of Thm. 1
	B Algorithm for Computing Budget
	C DGI Algorithm
	D Additional Results
	D.1 Implementation details
	D.2 Results on large-scale data

	E Ablation study
	F Complexity
	G Sensitivity Analysis

