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Abstract

Gene regulatory networks (GRNs) represent the causal relationships between
transcription factors (TFs) and target genes in single-cell RNA sequencing
(scRNA-seq) data. Understanding these networks is crucial for uncovering
disease mechanisms and identifying therapeutic targets. In this work, we
investigate the potential of large language models (LLMs) for GRN discov-
ery, leveraging their learned biological knowledge alone or in combination
with traditional statistical methods. We develop a task-based evaluation
strategy to address the challenge of unavailable ground truth causal graphs.
Specifically, we use the GRNs suggested by LLMs to guide causal synthetic
data generation and compare the resulting data against the original dataset.
Our statistical and biological assessments show that LLMs can support
statistical modeling and data synthesis for biological research.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a cutting-edge technology that enables the
collection of gene expression data from individual cells. This approach opens up new avenues
for a wide range of scientific and clinical applications. One crucial application of scRNA-seq
data is the reconstruction and analysis of gene regulatory networks (GRNs), which represent
the interactions between genes. GRN analysis can deepen our understanding of disease
mechanisms, identify key regulatory pathways, and provide a foundation for the development
of interventional gene therapies and targeted drug discovery.

Statistical causal discovery algorithms Scheines et al. (1998); Zheng et al. (2018); Mercatelli
et al. (2020); Brouillard et al. (2020); Lippe et al. (2021); Yu & Welch (2022); Roohani
et al. (2024) can reveal potential causal links between TFs and their target gene. However,
they often lack robustness and are prone to detecting spurious correlations, especially in
high-dimensional, noisy single-cell data. Furthermore, many of these approaches rely heavily
on prior knowledge from curated databases (e.g., TRANSFAC Wingender et al. (1996),
RegNetwork Liu et al. (2015), ENCODE de Souza (2012), BioGRID de Souza (2012), and
AnimalTFDB Hu et al. (2019)), which frequently lack essential contextual information
such as specific cell types or conditions, leading to inaccuracies in the inferred regulatory
relationships Zinati et al. (2024).
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The recent advancements in and success of large language models (LLMs) have opened up new
possibilities for their use in scientific discovery Sheth et al. (2024); Lu et al. (2024); AI4Science
& Quantum (2023), including causal discovery Kıcıman et al. (2023); Kasetty et al. (2024);
Vashishtha et al. (2023); AI4Science & Quantum (2023); Abdulaal et al. (2023); Khatibi
et al. (2024). Most of the above methods involve the refinement of the statistically inferred
causal graph by LLM. However, LLMs excel at synthesizing vast amounts of heterogeneous
knowledge, making them well-suited for tasks that require the integration of diverse datasets,
such as constructing full causal graphs based on scientific literature Sheth et al. (2024). In
addition, LLMs have already been shown to perform in genomic data analysis Märtens et al.
(2024); Jin et al. (2024); Tang & Koo (2023); Fang et al. (2024); Toufiq et al. (2023); Elsborg
& Salvatore (2023), including foundation models pre-trained for genomic tasks Wang et al.
(2024a); Cui et al. (2024).

Inspired by recent advancements, we harness LLMs for inferring GRNs from scRNA-seq data.
Specifically, we utilize LLMs either to generate complete GRNs (causal graphs) directly or to
provide prior knowledge in the form of a list of potential transcription factors (TFs), which
can then be integrated into traditional statistical causal discovery algorithms.

Gene regulation is highly complex and context-dependent, with relationships between genes
varying across cell types, disease states, developmental stages, and other factors. This
variability makes it challenging to establish a definitive ground truth for GRNs. To address
this, we use causal synthetic data generation as a downstream task to evaluate GRNs or
priors suggested by LLMs in the absence of reliable ground-truth graphs. The causal GAN
method integrates GRNs into the scRNA-seq data generation process and has been shown to
better preserve biological plausibility Zinati et al. (2024). Moreover, causal GAN serves as
an effective downstream task for assessing GRN quality, as poor GRNs result in unrealistic
or biologically implausible synthetic data.

We assess the practical utility of the inferred causal graph by comparing the synthetic data
to an oracle dataset, evaluating both its statistical similarity and biological plausibility. This
approach allows testing on real-world data instead of relying solely on causal benchmark
datasets. Although causal benchmark datasets are paired with ground truth graphs, their
widespread use in causal research may lead to their incorporation in the training data,
potentially inflating the models’ perceived causal performance. Our results highlight the
potential of general-purpose LLMs for GRN inference, particularly for the PBMC data,
as evidenced by both statistical and biological metrics. The best performance is achieved
by combining LLMs with statistical GRN inference, pointing to a promising direction for
scRNA-seq data analysis. The related work and preliminaries on Directed acyclic graphs
(DAGs), gene regulatory networks (GRNs) and GroundGAN algorithm can be found in the
Appendices A and B.

Our contributions:

1. We show the effectiveness of using out of the box Large Language Models (LLMs) for
inferring GRNs, showcasing their ability to capture complex biological interactions.

2. Comprehensive performance evaluation via synthetic data generation, enabling
rigorous assessment of inference methods despite the lack of ground-truth causal
graphs.

3. Extensive biological insight on the best-performing LLM for PBMC-All dataset.

2 LLM4GRN

In this work, we propose a novel approach integrating Large Language Models (LLMs) for
GRN inference. The overall goal is to leverage the potential of LLMs in capturing complex
biological interactions and to assess their utility. Given the lack of ground-truth data, we
consider causal synthetic data generation as a downstream task to perform biological (causal)
and statistical evaluations. Our methodology involves two distinct experimental settings that
leverage different knowledge about the potential transcription factors (TFs) to guide gene
regulatory network (GRN)-informed data generation. In each setting, we introduce LLMs
into the pipeline motivated by their ability to incorporate extensive contextual information.
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(b) Setting 2

Figure 1: Overview of LLM4GRN. Setting 1.A combines Human Knowledge Base (KB)
with LLM. Setting 1.B is the baseline setting that combines Human KB with GRNBoost2.
Setting 2.A is full LLM pipeline that combines LLM KB and LLM Inference. Setting 2.B
combines LLM KB with GRNBoost2 Inference.

• In the first setting ( Figure 1a, Setting 1.A), we use LLM to infer the GRN graph
by providing the LLM with a potential list of TF candidates sourced from a human-
curated database.

• In the second setting ( Figure 1b, Setting 2.A), we utilize the LLM as the knowledge
base, incorporating it earlier in the pipeline to infer potential TFs and to deduce the
GRN graph.

We compare with Setting 1.B and 2.B where the Human knowledge base and LLM knowledge
base are used by a statistically causal GRNBoost2 approach, respectively.

2.1 GRN Graph

To model the regulatory relationships between transcription factors and target genes. In this
framework, we maintain a knowledge base (KB) that contains comprehensive information
regarding the regulatory interactions, specifically indicating which genes are target genes of
specific transcription factors. KB takes as input a list of genes and outputs the corresponding
target genes and their regulating transcription factors:

KB : List of Genes → {(Ti,Rj) | Ti ∈ T,Rj ∈ R}

We represent the gene regulatory network as a bipartite graph G = (T,R, E), where T
represents transcription factors (TFs), R contains target genes regulated by these TFs. The
set E includes directed edges, where an edge (Ti,Rj) ∈ E indicates that transcription factor
Ti regulates target gene Rj .

2.2 Setting 1: Human Knowledge Base

Given the ability of large language models (LLMs) to generate causal graphs from metadata
(such as variable names) Abdulaal et al. (2023), we establish the foundational components
of GRNs using a human knowledge base, denoted as KBH . Let TH represent the set of
transcription factors identified through the human-curated database, and let RH denote
the set of target genes regulated by these factors. Total set of genes are defined by G. The
directed edges in the graph are represented as E , where an edge (TH

i ,RH
j ) ∈ E signifies that

transcription factor TH
i regulates target gene RH

j .
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In Setting 1A, ( Figure 1a), the LLM is employed to establish causal relationships between
TFs and target genes, utilizing a list of TFs transcription factor candidates sourced from
a human-curated database. We model the LLM as a function FLLM that, given a set of
metadata M, produces a bipartite graph G = (T,R, E), expressed as:

FLLM(M,TH ,RH) = G (1)

The input metadata M encompasses gene names, transcription factors (TFs), single-cell
RNA sequencing (scRNA-seq) data, and relevant biological context (such as species or
experimental conditions) sourced from relevant literatures about the dataset.

It is important to highlight that, unlike traditional inference methods like GRNBoost2, the
LLM-based GRN inference approach in this work does not rely on observational data, ensuring
that individuals’ privacy in the dataset remains uncompromised. By integrating metadata
from scRNA-seq datasets, the LLM can construct GRNs that are tailored specifically for
the biological context of the data, potentially capturing nuances that statistical methods
cannot. Detailed descriptions of the various prompting strategies employed can be found in
the Appendix C.2.

2.3 Setting 2: LLM Knowledge Base

In Setting 2A, ( Figure 1b), we utilize LLM knowledge base, denoted as KBLLM, to establish
partition between transcription factors and target genes. In this context, the LLM is
tasked with extracting relevant information directly from its knowledge base, which includes
extensive biological data and relationships derived from various sources.

FLLM(M) =
(
TLLM,RLLM) (2)

Here, TLLM denotes the set of transcription factors identified from the LLM knowledge base,
and RLLM represents the corresponding target genes. The input metadata M includes gene
names, transcription factors (TFs), and relevant biological context, leveraging the extensive
knowledge embedded in the LLM.

2.4 GRN-induced causal synthetic data generation

We use the GRNs obtained by either of the settings, to perform synthetic causal data gener-
ation. These GRNs are fed into a causal GAN algorithm, specifically GRouNdGAN Zinati
et al. (2024), which uses them to generate synthetic datasets that correspond to each GRN
structure in a two-stage approach.

3 Results

We evaluate and compare the resulting synthetic datasets based on a range of statistical
and biological metrics, allowing us to assess the quality and biological relevance of the data
produced in each setting. Additionally, we analyze the TFs list generated by the LLM to
gain insights, comparing them to priors from human curated database.

Experimental Setup. We generated synthetic data using datasets and protocols from Zinati
et al. (2024). Our preprocessing focused on creating train, test, and validation sets while
maintaining 1,000 genes across all datasets (see AppendixC.1 for details). For each setting,
we construct three different GRNs: one derived directly from the LLM, one generated by
a causal discovery algorithm that incorporates the prior information (the dataset), and a
third, randomly generated graph (based on TF list extracted from KBH or KBLLM). For
the GRN inference of LLM, we prompted with contextual knowledge. We used the state-
of-art pretrained GPT-4 model Achiam et al. (2023). Given GPT-4 strong performance
for causal discovery Abdulaal et al. (2023) across different domains including genomics, we
prompted (see Appendix C.2) in zero-shot fashion. We also compare open-source model,
Llama-3.1-70B Dubey et al. (2024).

Evaluation. We employed four statistical metrics: Cosine and Euclidean distances to
measure the differences between centroids, maximum mean discrepancy (MMD) to assess
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the proximity of high-dimensional distributions without centroid creation, and Random
Forest Area Under the Receiver Operating Characteristic (RF-AUROC) to determine the
distinguishability of real and synthetic cells. We evaluate the biological plausibility of the
datasets by conducting single-cell RNA sequencing analysis using the Scanpy Python library.
The cell annotations from the original dataset were utilized to annotate the synthetic datasets.
Our analysis included log1p normalization and scaling to 10,000, focusing on 1,000 highly
variable features. We performed dimensionality reduction using PCA with 50 principal
components, followed by Uniform Manifold Approximation and Projection (UMAP). Cell
type proportion analysis was conducted with custom code, while gene expression profiling
for the top markers of each cell type was visualized using dot plots. For more details, refer
to Appendices C and D.

Datasets. For the direct comparison of the different settings, we focus on the dataset
and genomic database information by Zinati et al. (2024). Specifically, we used PBMC-All,
PBMC-CTL and BoneMarrow data sets, that span (details in Appendix C.1.1). Importantly,
the datasets cover a wide range of biological diversity, spanning both human and animal
samples as well as single-cell and multicell types. Our objective is to assess the performance
of large language models (LLMs) in gene regulatory network (GRN) inference. To evaluate
the utility of the inferred GRNs, we employ causal synthetic data generation as a downstream
task in scenarios where a reliable ground truth graph is unavailable.

3.1 Comparision against baseline

Evaluation of GPT-4 graphs. For Setting 1, in the absence of ground truth for the
GRN, we compare the overlap between the graph proposed by GRNBoost2, a statistical
method, and the graph hypothesized by the GPT-4 . While GRNBoost2 is not the definitive
ground truth, it serves as a useful reference point. Analyzing this overlap allows us to assess
how the hypothesized connections align with established statistical methods and examine
how these differences impact downstream synthetic data generation metrics. As a baseline,
we also compared against a randomly generated causal graph. Additionally, we test the
consistency of the LLM’s performance across different random seeds by measuring the overlap
between graphs produced from multiple seeds. This helps us evaluate the robustness and
stability of the GPT-4 -generated hypotheses. We plot the overlaps for all of the datasets
in Figure 2. Our two main observations are that (1) the LLM-derived GRN demonstrates
greater robustness compared to the GRNBoost2 (GRNB) GRN, particularly in terms of
higher certainty; and (2) the overlap between the GPT-4 -generated GRN and the random
GRN is smaller than between GPT-4 GRN and GRNBoost2 GRN, suggesting, that the
GPT-4 could be generating meaningful graphs.

3.2 Statistical Evaluation of GRN Inference Methods on Synthetic Data

In Table 1 we present the statistical metrics results for the PBMC-ALL data set. Additional
results on all three data sets can be found in Appendix E,Table 4. Metrics are computed
between a synthetic dataset of 1000 cells and a held-out test set of 1000 real cells for PBMC-
ALL and PBMC-CTL. For BoneMarrow, 500 samples were used for synthetic and held-out
test set. In GRouNdGAN’s imposed GRN, each gene is regulated by 10 transcription factors
(TFs). Lower values (↓) indicate better performance for all metrics, with the first two metrics
representing the distance between the centroids of the real and synthetic cells. The “control”
metrics are based on the real training dataset. The best performance values (excluding
control and Stage1 which is a non-causal baseline) are highlighted in bold. Evaluations were
carried out on 4 synthetic datasets, with experiments repeated using 2 cross-validation seeds.

Setting 1 Comparison. The Setting 1 (using KBH , Table 1) result shows the GPT-4-
inferred GRN achieves the best performance across all metrics for PBMC-ALL. The LLM
model shows the lowest Cosine distance of 0.00024 and Euclidean distance of 89, indicating
that the synthetic data generated is most similar to the real data in terms of overall structure.
Its lower MMD of 0.0072 compared to the GRNBoost2 model suggests it effectively captures
subtle gene expression distributions. Additionally, the LLM model performs well on the
Random Forest metric of 0.63, which measures binary classification accuracy in distinguishing
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real from synthetic data. Unsurprisingly, the Random Graph method performs the worst
across all metrics, particularly with a high MMD of 0.0166 and the largest Euclidean distance
of 121, highlighting the importance of informed GRN inference methods. In contrast, for the
PBMC-CTL and BoneMarrow, the GRNBoost2 graph outperform the GPT-4 in this setting
(see Appendix E).

Setting 2 Comparison. Table 1 presents the results for Setting 2, where we incorporate
LLM-derived transcription factor (TF) lists into GRN inference. When using GPT-4 as
the knowledge base (KBGPT4), GRNBoost2—combining GPT-4-proposed TF lists with
statistical GRN inference—outperforms the fully GPT-4-based GRN approach (where the
LLM suggests both the TF list and the TF-gene interactions) across all datasets. GRNBoost2
also achieves the best overall performance among KBGPT4 approaches, delivering substantial
improvements in PBMC-ALL, where it reduces the Euclidean distance from 121 (Setting 1)
to 83 and improves RF AUROC from 0.73 to 0.59.

However, Llama-3.1-70B (KBLlama) demonstrates the best overall performance in Setting
2, surpassing GPT-4 across all metrics. When Llama-3.1-70B is used as the knowledge
base, GRNBoost2 achieves the most accurate results, further validating the effectiveness of
integrating LLM-derived priors with statistical inference. This trend also holds for PBMC-
CTL, where GRNBoost2 consistently improves upon its Setting 1 performance. BoneMarrow
performed best in Setting 1 but remains competitive in Setting 2 when the KBGPT4 is
combined with GRNBoost2 ( Appendix E, Table 4).

Cosine distance ↓ Euclidean distance ↓ MMD ↓ RF AUROC ↓
Baseline
Control 0.00029±0.00008 100±16 0.0051± 0.001 0.49±0.017

Stage 1 0.00036±0.00009 107±15 0.0057±0.005 0.55±0.021

KBRandom 0.00132±0.00101 187±79 0.0214±0.009 0.86±0.080

Setting 1 KBH

GPT-4 0.00024±0.00004 89±7 0.0072±0.0012 0.63±0.04

Llama-3.1 0.00114±0.00048 193±52 0.0244±0.0075 0.84±0.04

GRNBoost2 0.00047±0.00021 121±25 0.0139±0.0058 0.73±0.05

Random 0.00045±0.00013 121±22 0.0166±0.0031 0.85±0.02

Setting 2 KBGPT4

GPT-4 0.00026±0.00009 90±13 0.0206±0.0025 0.86±0.02

GRNBoost2 0.00023±0.00008 83±17 0.0069±0.0012 0.59±0.03

Random 0.00026±0.00011 92±14 0.0226±0.0020 0.87±0.02

Setting 2 KBLlama

Llama-3.1 0.00029±0.00005 97±10 0.0100±0.0007 0.77±0.030

GRNBoost2 0.00022±0.00006 83±11 0.0067±0.0011 0.58±0.023

Random 0.00035±0.00009 105±17 0.0152±0.0011 0.86±0.028

Table 1: Comparison of KBLlama - performance GRN Inference Methods in
Simulating Realistic scRNA-seq Data for PBMC-ALL dataset. The best value is
presented in boldface and the best value in each setting is underline. The lower (↓) the
better for all metrics.

3.3 Biological Plausibility of Causal Synthetic Data

We conduct cell-type annotation based on the original dataset, gene expression analysis
to identify top markers for each cell type and cell-type proportion analysis on the most
statistically robust datasets. Full analysis can be found in Appendix D (subsection E.4).
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3.3.1 Gene Expression Profiling Per Cell Type

General Performance of KBLlama GRNBoost2 in Cell-Specific Expression Profiles.
The KBLlama GRNBoost2 model shows that specific cell types, such as CD8+/CD45R+
naive cytotoxic T cells and CD4+ T helper cells, exhibit significantly higher mean expression
levels for the same markers across multiple cells while maintaining similar cell fraction of
expression. Additionally, the KBLlama GRNBoost2 model demonstrates superior performance
in elucidating expression patterns in certain cases, such as with dendritic cells. Although
KBLlama GRNBoost2 synthetic data Figure 4a introduces some noise, it generally improves
cell-specific expression profiles, which could be further optimized for even cleaner cell type
differentiation. A key observation was that when mean expression was higher in specific
cell types, it tended to be lower in others, with fewer than 30% of cells displaying similar
expression fractions. In contrast, when expression was noisy across multiple cell types, both
mean expression and cell fraction tended to be similar across these groups.

KBGPT4 GRNBoost2 Dataset Performance and Noise Patterns. The KBGPT4 GRN-
Boost2 model identifies top marker genes, revealing notable differences in expression profiles.
While expression levels among some markers are noisy and indistinguishable, this model
effectively highlights markers that are more discriminative for certain cell types. The KBGPT4

GRNBoost2 dataset Figure 7b exhibited more noise than the KBLlama dataset Figure 4a,
with multiple markers expressed across various cell types at comparable mean expression
levels and with higher cell fractions. For the KBH GRNBoost2 dataset ( Figure 4c), the
noise was primarily observed in a few cell types, including CD4+/CD45A+/CD25– Naïve T
cells and CD8+/CD45RA+ Naïve cytotoxic T cells. Some markers from other cell types also
showed similar expression across multiple cell types. These noisy patterns were not observed
in Stage 1 or random datasets and were less pronounced in the KBLlama and KBGPT4 models,
though KBLlama GRNBoost2 outperformed KBGPT4 GRNBoost2 in reducing noise for these
specific cell types.

3.3.2 Differential Cell Type Proportion Analysis

Variations in Cell Type Proportions Across Datasets. A notable observation is
that the cell type proportions in each generated dataset differ significantly from those in
the original dataset, indicating a noisy overall expression profile that alters distribution
of cell types. In the KBLlama GRNBoost2 dataset ( Figure 8b), CD8+/CD45RA+ Naïve
Cytotoxic T cells were the most abundant at 34%, followed closely by CD56+ NK cells,
CD8+ Cytotoxic T cells, and CD4+/CD25+ T regulatory cells. This trend was similarly
observed in KBGPT4 GRNBoost2 ( Figure 8a) and other datasets, albeit with slightly varying
percentages.

Overall Performance of KBLlama GRNBoost2. CD4+/CD45RA+/CD25– Naïve T
Cells and CD8+/CD45RA+ Naïve Cytotoxic T Cells exhibited consistently noisy expression
patterns across all datasets. The original dataset performed better for CD8+/CD45RA+
Cytotoxic T Cells, showing lower noise in their expression compared to the KBLlama GRN-
Boost2 ( Figure 8b) dataset. Among the various models, the KBLlama GRNBoost2 model
emerged as the best performer, providing clearer segregation of cell types and reduced noise,
particularly for CD4+/CD45RA+/CD25– Naïve T Cells and dendritic cells. In contrast, the
KBGPT4 GRNBoost2 ( Figure 8a) model exhibited more noise than KBLlama GRNBoost2,
with similar markers expressed across various cell types at comparable mean expression
levels.

3.4 Discussion and Limitations

We observe promising results in using LLM for GRN discovery, especially on the PBMC
dataset. The hybrid approach incorporating TFs suggested by LLM (KBLLM) and GRN-
Boost2 causal discovery yield the best overall performance (for PBMC-ALL and PBMC-CTL
data sets). Surprisingly, a smaller open-source model Llama has shown the best result in
this setting. One possible explanation could be the number of TFs proposed in Setting 2.
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The number of TFs in KBLlama is higher than those in KBH or KBGPT4. Our additional
experiments (subsection E.2) indicate that the number of transcription factors (TFs) may be
significant, as it provides a broader set of variables for the GRNBoost2 algorithm to evaluate
during causal discovery. Nevertheless, although further evaluation is needed, new Llama mod-
els might perform as good or better than state-of-the-art GPT for specific tasks Valero-Lara
et al. (2023). However, Llama performs worse on the more challenging, GRN construction
task. The lower performance of LLMs on CTL and BoneMarrow data sets is not surprising.
Recent studies suggest that genomic LLMs under-perform on cell-specific data Tang & Koo
(2023). In addition, human transcription factors outnumber mice transcriptomic information
in the databases Members & Partners (2024) making the information on mice genes scarcer
in the LLMs training data.

Biological plausibility analysis reveals that the Setting 2, KBLlama dataset significantly
improves cell type differentiation and reduces noise compared to other generated datasets,
particularly for CD4+/CD45RA+/CD25– Naïve T cells and dendritic cells, which indicates
better performance of the model due to its ability to handle large contexts Xiong et al.
(2023).

In contrast, while the Setting 2, KBGPT4 model exhibited higher noise and less specificity,
the Setting 1, KBH, GRNBoost2 model also showed noisy patterns, especially in Naïve T and
cytotoxic T cells, emphasizing the need for models that clearly delineate cell type-specific
expression. Notably, discrepancies in cell type proportions across generated datasets, par-
ticularly the inflated presence of CD8+/CD45RA+ Naïve Cytotoxic T cells, raise concerns
about the biological relevance of these models. As reported previously, large-scale single-cell
studies tend to be more noisy which can lead to sub-optimal biological inferences Kavran
& Clauset (2021). Therefore, further refinements are essential across all approaches to
enhance specificity and reliability in representing true cellular compositions, which is cru-
cial for accurate downstream biological analyses and interpretations. Finally, the KBH

GPT-4 model exhibited highly noisy or non-specific expression profiles, particularly for
CD4+/CD45A+/CD25– Naïve T cells, CD8+/CD45RA+ Naïve cytotoxic T cells, CD4+ T
helper cells, CD4+/CD25+ T regulatory cells, and CD4+/CD45RO+ memory cells. For
other cell types, the model either failed to express most top markers or showed high cell
fractions with reduced mean expression across different cell types.

One of the limitations of the study is the unifying constraints that are imposed on the GRN
discovery due to the parametric requirements of GRouNdGan Zinati et al. (2024). Namely,
all GRN graphs are set to be bipartite graphs with the same number of TFs and same number
of target genes for each TF. These constraints restrict the diversity of the generated graphs,
resulting in fairly similar performance metrics among different GRN discovery approaches.
In addition, multi-layer graphs with transcription factors, cofactors, and target genes are
more realistic and can better reflect biological complexity Karlebach & Shamir (2008).

Despite promising results, LLMs should be used cautiously in high-stakes decision-making,
as they can confidently generate false information Ji et al. (2023); Farquhar et al. (2024) and
inherit biases from training data. A key issue in machine learning is the underrepresentation
of minority populations, which also affects transcription factor databases and literature,
often lacking diversity in ethnicity, ancestry, gender, and age. Most genetic studies are
based on individuals of European ancestry Sirugo et al. (2019); Bentley et al. (2017),
potentially overlooking gene-disease associations in other populations and leading to less
effective treatments Landry et al. (2018); Tawfik et al. (2023); Barral-Arca et al. (2019).
Additionally, children, the elderly, females, low-income populations, and rural communities
are underrepresented in clinical trials, limiting their access to precision medicine Mosenifar
(2007); Davis et al. (2019); Steinberg et al. (2021). LLMs should be used with caution to
avoid exacerbating existing health disparities Pfohl et al. (2024), as they can be influenced
by biases present in genomic data.

8



Published as a conference paper at ICLR 2025

4 Conclusion

In conclusion, our analysis demonstrates the potential of Large Language Models (LLMs)
for gene regulatory network (GRN) inference. The results are most promising for PBMC
data, where LLM-based approaches achieve the highest accuracy and biological plausibility.
Notably, the best-performing approach combines LLM-derived TF priors with GRNBoost2
for statistical inference. In addition, we see good potential for using open-source models
such as Llama for GRNs, and we aim to explore their utility further, either directly or with
fine-tuning. Our biological results suggest that additional refinement is needed. For this we
foresee developing GRNs tailored to individual cell types, as evidence indicates that GRNs
are often cell-type-specific.
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A Related Works

LLMs and Causality. Gene regulatory network inference from scRNA-seq data traditionally
relies on statistical causal discovery methods Pratapa et al. (2020); Huynh-Thu et al. (2010);
Moerman et al. (2019). However, causal discovery often requires external knowledge in the
form of interventions Brouillard et al. (2020), expert input Kleinegesse et al. (2022), or
priors from curated databases Zinati et al. (2024). Recent advances in large language models
(LLMs) offer a promising solution, as LLMs excel at integrating diverse knowledge and
providing contextual information Wan et al. (2024); Ma (2024). Many of the recent works
leverage LLMs for causal discovery by utilizing metadata, such as variable names, to infer
causal relationships Kıcıman et al. (2023); Ban et al. (2023b); Vashishtha et al. (2023); Ban
et al. (2023a). Further optimizations, including more advanced prompting strategies beyond
pairwise variable comparisons, have been developed to enhance causal discovery Vashishtha
et al. (2023); Jiralerspong et al. (2024). Subsequently, Sheth et al. (2024) explored the
effectiveness of completing a partial causal graph across diverse domains. This work, however,
considers LLM as an oracle to discover causal graphs for GRN inference.

LLMs and Biology. Models based on transformer architecture and trained on DNA or
RNA genomic sequences are effective at prediction and generation tasks Zhang et al. (2024).
However, the availability of generative Gene-LLMs is limited, they lack rich contextual
information and are focused on specific tasks Zhang et al. (2024). To overcome these
limitations, foundation models are tailored for the genomic tasks Wang et al. (2024a); Cui
et al. (2024). However, models trained on the genetic data do not achieve the wide context
of LLMs like GPT4 that inject information from the scientific literature and freely available
genomic databases. LLMs have been used for the tasks such as gene perturbation Märtens
et al. (2024), protein interaction prediction Jin et al. (2024), gene selection Toufiq et al.
(2023), analyzing biomarkers Elsborg & Salvatore (2023) and cell annotation Fang et al.
(2024). To the best of our knowledge, general-purpose LLMs have not been used for gene
regulatory network inference.

Causal Synthetic Data Generation. Causally synthetic data generation is an approach
that focuses on embedding true causal relationships within the generated data. Several
techniques have been proposed in which the generator is guided by the causal acyclic
graph Cinquini et al. (2021); Van Breugel et al. (2021); Wen et al. (2021); Wang et al.
(2024b); Bandyopadhyay & Sarkar (2023). We use a recently proposed causal GAN designed
for scRNA-seq data generation, shown to produce more biologically plausible results Zinati
et al. (2024).

B Preliminaries

B.1 Gene Regulatory Network

A gene regulatory network (GRN) is a collection of molecular regulators that interact with
each other and with other substances in the cell to control the gene expression levels of
mRNA and proteins. GRNs describe the relationships between genes, transcription factors,
RNA molecules, and other regulatory elements within a biological system, illustrating how
genes are turned on or off and how their expression is modulated over time and in different
conditions. GRN can be expressed as a directed acyclic graph (DAG) ??. In this work we are
considering a two layer DAG consisting of transcription factors (TFs) and target genes. TFs
are proteins that bind to specific DNA sequences to regulate the transcription and influence
the expression levels of target genes. GRNs are crucial for understanding how cells respond
to changes in their environment, how different cell types develop, and how malfunctions in
these networks can lead to diseases like cancer or Alzheimer’s disease.

B.2 GroundGan

GRouNdGAN Zinati et al. (2024) is a deep learning model that generates simulated single-
cell RNA-seq data by leveraging causal generative adversarial networks (CausalGAN) and
imposed user-defined causal gene regulatory networks (GRNs). The model comprises a causal
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controller, target generators, a critic, a labeler, and an anti-labeler, each implemented as
separate neural networks. Training involves two steps: pre-training the causal controller using
a Wasserstein GAN (WGAN) to generate TF expression values resembling reference data,
followed by training the target generators to produce target gene expressions based on these
TF values and random noise. The generated expressions undergo library-size normalization
(LSN). The critic quantifies the Wasserstein distance between reference and simulated data,
while the target generators are adversarially trained to generate realistic data points. The
labeler and anti-labeler ensure that target gene expressions encode regulatory information
from TFs.

B.3 GRNBoost2

GRNBoost2 Moerman et al. (2019) is a scalable algorithm for inferring gene regulatory
networks (GRNs) from single-cell RNA sequencing (scRNA-seq) data. It is part of the
arboreto framework and is widely used due to its efficiency and scalability, especially for
large datasets. GRNBoost2 employs gradient boosting, a machine learning method, to model
the relationships between transcription factors (TFs) and target genes.

C Experimental setup

C.1 Data Preparation and Modifications

In synthetic data generation, we use the same data sets and follow the protocol described by
Zinati et al. Zinati et al. (2024).

We downloaded the three datasets using the link provided at https://emad-combine-lab.
github.io/GRouNdGAN/tutorial.html#demo-datasets.

After downloading the raw data, we followed the pre-processing steps using scanpy as
mentioned in the paper. In each dataset, cells with nonzero counts in fewer than ten genes
were excluded to eliminate low-quality cells. Genes expressed in less than three cells across
the dataset were discarded to reduce noise. We selected 1000 highly variable genes using
dispersion based-method. After pre-processing, we split each of the datasets into train,
validation and test sets. Following the paper’s recommendation. we used a test set of 1000
cells for the PBMC and CTL datasets, and 500 cells for BoneMarrow.

After preprocessing, we followed the rest of the process as detailed in the tutorial provided
by the authors.

C.1.1 Data Sets

• Human peripheral blood mononuclear cell (PBMC-Al). 68579 samples corresponding
to 11 cell types

• Human peripheral blood mononuclear CD8+ Cytotoxic T-cells (PBMC-CTL). 20773
samples from the most common cell type in PBMC-All

• Mouse bone marrow Hematopoietic stem cells lineage differentiation (BoneMarrow).
2730 cells.

Dataset # TFs # Targets # Genes # Possible Edges # Imposed Edges GRN density Edges

PBMC 75 925 1000 69375 9250 0.1333
CTL 65 935 1000 60775 9350 0.1538

BoneMarrow 68 932 1000 63376 9320 0.1471
COVID 56 944 1000 52864 9440 0.1786

Table 2: The density of the causal graphs.
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C.2 LLM Prompting Strategies

In this study, we utilize prompting techniques to guide the behavior of a Large Language
Model (LLM) for gene regulatory network (GRN) inference and other downstream analyses.
The model employed is based on a pretrained large language model, specifically GPT-4,
which has not been fine-tuned for this task. Instead, we rely on advanced prompting
strategies, including Chain of Thought (CoT) reasoning and context provision, to enhance
the performance of the LLM in generating biologically plausible results.

C.2.1 Chain of Thought (CoT) Prompting

Chain of Thought (CoT) prompting is a method that encourages the LLM to reason through
intermediate steps, producing a more transparent and logical progression towards its final
answer. By guiding the model to provide step-by-step explanations before arriving at a
conclusion, we aim to improve the interpretability and accuracy of its predictions. CoT
prompting is particularly valuable for tasks that require complex reasoning, such as GRN
inference, where multiple factors, such as transcription factor interactions and gene expression
patterns, must be considered.

C.2.2 Context Provision

To further enhance the performance of the LLM, we utilize context provision by supplying the
model with relevant background information prior to prompting. This technique is especially
important when the task requires domain-specific knowledge, such as GRN inference from
single-cell RNA sequencing (scRNA-seq) data. By embedding relevant context in the prompt,
we can better align the model’s responses with the biological characteristics of the data being
analyzed. Specifically, we provide excerpts from the original articles where the analyzed
data sets were introduced Paul et al. (2015); Zheng et al. (2017). [Prompt] We need to find
transcriptomic factors related to CONTEXT. What are the transcriptomic factors genes
related to GENE-X out of LIST-OF-TFs. Which of these 10 TFs have a causal relationship
with GENE-X gene? Do not include any genes beyond these. Give potential candidates.
Think step by step and return the answer in the format <Answer> [first suggestion, second
suggestion, third suggestion, fourth suggestion and so on....] </Answer>. You have to
return the 10 potential TFs that are related to the give gene only, otherwise your answer
will be disqualified.

C.2.3 Extracting Potential TFs From The Gene List

we provide the LLM with a curated list of genes, accompanied by relevant contextual
information such as biological function, tissue type, and experimental conditions derived
from scRNA-seq datasets. The prompt explicitly requests the LLM to identify and propose
TFs that are known to regulate the expression of each gene within the list. In our approach,
we start with a total of 1000 genes and sequentially query the Large Language Model (LLM)
about subsets of 20 genes at a time to extract potential transcription factors (TFs). For
each initial query, the LLM identifies and proposes TFs that may regulate the selected genes,
leveraging its extensive contextual knowledge of gene regulatory mechanisms. In subsequent
prompts, we maintain a 50% overlap with the previous set of genes, ensuring that 10 of the
genes are revisited while introducing 10 new genes. This iterative process allows us to refine
the extraction of TFs, incorporating insights from the previous queries while continuously
expanding our understanding of the regulatory landscape. By doing so, we aim to capture
a comprehensive set of potential TFs that interact with the entire gene pool, facilitating a
more robust inference of the Gene Regulatory Network (GRN).

[Prompt] We need to find transcriptomic factors related to CONTEXT out of given genes.
What are the transcriptomic factors genes out of LIST-OF-TFs. Which of these can be
transcriptomic factors? Do not include any TFs beyond these. Give potential candidates.
Return the answer in the format <Answer> [first suggestion, second suggestion, third
suggestion, fourth suggestion and so on....] </Answer>. Describe the reasoning first and
then return answer in requested format with the potential TFs.
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D Metrics

D.1 Statistical Evaluation Metrics

Euclidean Distance: To compute the Euclidean distance between the centroids of the
real and simulated cells, we first calculate the centroid by finding the mean along the gene
axis across all simulated and real cells. The Euclidean distance d(r, s) is then given by:

d(r, s) = ∥µ(R)− µ(S)∥2

Where R amd S are matrix of real and simulated cells, with elements Ri,j and Si,j where i
indexes the cells and j indexes the genes. µ(R) and µS is the mean vector of the real and
synthetic cells along the gene axis (columns) respectively.

µ(R) =

(
1

n

n∑
i=1

Ri,j

)
j=1,...,m

and µ(S) =

(
1

n

n∑
i=1

Si,j

)
j=1,...,m

Cosine Distance: This computes the cosine distance between the centroids of the real
and simulated cells. The centroid is obtained by calculating the mean along the gene axis
across all simulated and real cells.

dcos(r, s) = 1− µ(R) · µ(S)
∥µ(R)∥2∥µ(S)∥2

Cosine distance measures the difference in orientation of the two centroids while the Euclidean
distance measures the absolute difference between the two centroids. Since cosine focus on
angle between the vectors, it is useful in comparing the shape of data distributions rather
than their scale.

Maximum Mean Discrepancy (MMD): Maximum Mean Discrepancy (MMD) serves
as a non-parametric two-sample test to determine if samples are drawn from the same
distribution. MMD metric is identified as a particularly convenient method for assessing the
similarity of real data. We followed the description in Zinat et al. Zinati et al. (2024).

Discriminative Metric (RF AUROC): This metric evaluates a model’s ability to
distinguish between real and synthetic datasets. A random forest (RF) classifier is employed,
and the area under the receiver operating characteristic (AUROC) curve is used to assess
whether real and simulated cells can be effectively differentiated.
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E Additional Results

E.1 Statistical Metrics

Comparison of synthetically generated dataset with known causal graph approach.
We include results for a synthetically generated dataset, LinearUniform (Table 3), to evaluate
the impact of causality. Since the LinearUniform dataset was generated with a known
causal graph, we applied GRNBoost2 as the causal inference method. For comparison, the
non-causal model is represented in Stage 1. The results indicate that the causal model
(GRNBoost2) outperforms across all three metrics.

Cosine distance Euclidean distance MMD RF AUROC

LinearUniform
Control 0.00082±0.00012 108±8 0.0090±0.000 0.57±0.016

Stage 1 0.00097±0.00010 119±6 0.0139±0.001 0.64±0.020

GRNBoost2 0.00061±0.00011 93±9 0.0152±0.001 0.63±0.028

Table 3: Evaluation of synthetically generated dataset.

E.2 Llama-3.1 Ablation

We carried out ablation of using Llama-3.1 as knowledge base to study the impact of size
of TFs used for GRN creation.The result shown in Table 1 indicate that the number of
transcription factors (TFs) may be significant, as it provides a broader set of variables for
the GRNBoost2 algorithm to evaluate during causal discovery.

E.2.1 Overlaps between Human KB and GPT-4 KB

From the Table 6, we observe lower TF overlap between Human KB and GPT-4 KB for
CTL than PBMC, suggesting that GPT-4 might be struggling to

E.2.2 Density of graphs

In the Table 7, we observe that LLama suggests more TFs than other methods making the
GRNs sparser.

E.3 Qualitative Evaluation of Synthetic Data Sets

In addition we perform a qualitative evaluation of the synthetic data sets by visualizing
them using TSNE projections (Figure 3). We observe that using random GRN induces
"hallucinated" extra clusters in the data, whereas both GRNB2 and LLM proposed graphs
stay faithful to the original distribution. The overlap between GRNs proposed by different
inference methods can be found in the Table 2.
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(c) Bone Marrow

Figure 2: Overlap between GRNs proposed by different methods. LLM demonstrates a
higher self-overlap compared to GRNBoost2 algorithm.
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Cosine distance ↓ Euclidean distance ↓ MMD ↓ RF AUROC ↓

P
B

M
C

-A
L
L

Baseline
Control 0.00029±0.00008 100±16 0.0051± 0.001 0.49±0.017

Stage 1 0.00036±0.00009 107±15 0.0057±0.005 0.55±0.021

KBRandom 0.00132±0.00101 187±79 0.0214±0.009 0.86±0.080

Setting 1 KBH

GPT-4 0.00024±0.00004 89±7 0.0072±0.001 0.63±0.043

GRNBoost2 0.00047±0.00021 121±25 0.0139±0.006 0.73±0.050

Random 0.00045±0.00013 121±22 0.0166±0.003 0.85±0.019

Setting 2 KBGPT4

GPT-4 0.00026± 0.00009 90±13 0.0206±0.001 0.86±0.018

GRNBoost2 0.00023± 0.00008 83±17 0.0069±0.001 0.59±0.028

Random 0.00026±0.00011 92±14 0.0226±0.002 0.87±0.018

P
B

M
C

-C
T

L

Baseline
Control 0.00020±0.00005 57±7 0.0045±0.000 0.54±0.007

Stage 1 0.00023±0.00003 63±4 0.0049±0.000 0.57±0.030

KBRandom 0.00016±0.00002 51±3 0.0071±0.000 0.73±0.022

Setting 1 KBH

GPT-4 0.00265±0.00253 176±115 0.0238±0.020 0.79±0.206

GRNBoost2 0.00025±0.00004 65±6 0.0053±0.000 0.59±0.028

Random 0.00027±0.0001 66±7 0.0085±0.001 0.75±0.021

Setting 2 KBGPT4

GPT-4 0.00028±0.00009 67±11 0.0067±0.001 0.70±0.025

GRNBoost2 0.00020±0.00004 57±6 0.0049±0.000 0.59±0.019

Random 0.00022±0.00005 59±7 0.0080±0.000 0.76±0.023

B
on

e
M

ar
ro

w

Baseline
Control 0.00205±0.00018 80±4 0.0109±0.001 0.60±0.037

Stage 1 0.00320±0.00115 101±16 0.0197±0.007 0.66±0.037

KBRandom 0.00206±0.00034 80±7 0.0156±0.002 0.75±0.048

Setting 1 KBH

GPT-4 0.00238±0.00052 86±9 0.0124±0.001 0.70±0.080

GRNBoost2 0.00190±0.00023 77±5 0.0118±0.001 0.64±0.023

Random 0.00219±0.00030 82±6 0.0150±0.003 0.75±0.041

Setting 2 KBGPT4

GPT-4 0.00217±0.00050 82±10 0.0137±0.003 0.72±0.044

GRNBoost2 0.00193±0.00023 78±4 0.0119±0.001 0.64±0.033

Random 0.00297±0.00080 96±13 0.0172±0.004 0.79±0.046

Table 4: Performance of Different GRN Inference Methods in Simulating Realistic
scRNA-seq Data across all 3 datasets. The best value for each dataset is presented in
boldface and the best value in each setting is underline. The lower (↓) the better for all
metrics.

Cosine distance ↓ Euclidean distance ↓ MMD ↓ RF AUROC ↓

Setting 2 KBLlama

GRNBoost2 (Tf=266) 0.00022±0.00006 83±11 0.0067±0.0011 0.58±0.023

GRNBoost2 (Tf=95) 0.00032±0.00008 103±17 0.0083±0.0006 0.65±0.024

GRNBoost2 (Tf=75) 0.00034±0.00023 102±38 0.0097±0.0029 0.67±0.043

Table 5: Comparison of KBLlama with varying number of TFs - performance
of GRNBoost2 Inference Method in Simulating Realistic scRNA-seq Data for
PBMC-ALL dataset. The best value is presented in boldface. The lower (↓) the better
for all metrics.
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Dataset # TFs % Overlap

PBMC 95 64.00
CTL 135 49.23
BM 157 55.82

Table 6: The overlaps of TFs between of KBH and KBGPT4.

Dataset # TFs # Targets # Genes # Possible Edges # Imposed Edges GRN density Edges

KBH

PBMC 75 925 1000 69375 9250 0.1333
CTL 65 935 1000 60775 9350 0.1538
BoneMarrow 68 932 1000 63376 9320 0.1471

KBGPT

PBMC 95 905 1000 85975 9050 0.1052
CTL 135 865 1000 116775 8650 0.0740
BoneMarrow 157 843 1000 132351 8430 0.0639

KBLlama

PBMC 266 843 1000 224238 8430 0.0375

Table 7: The density of different causal graphs wrt different KB.

Evaluation of KBGPT4. In Setting 2, we introduced the LLM to filter TF and target genes
from a list of genes. Similar to calculating overlaps in GRN evaluation, we also compute the
overlap of TF produced by both approaches. From Table 6 (Appendix E), we observe there
exists around just about half an overlap between the two knowledge bases. Interestingly we
observe less than 50% overlap between KBH and KBGPT4 for PBMC-CTL while a much
higher overlap for the PBMC-ALL dataset. We also observed that LLM proposed a higher
number of TFs, over 2 times in the case of the Bone Marrow dataset. As stated in the Table 2
(Appendix E), would change the density of the graphs potentially affecting the downstream
tasks.

Figure 3: TSNE projections of synthetic vs. real data for different GRN graphs
(Setting 1). “Control” corresponds to the projection of training and testing data, “GRNB2”
-the synthetic data based on GRNBoost2 graph, “LLM” - synthetic data based on LLM
graph, and “RAND” - the data based on the random graph. Red dots correspond to the real
data points and blue ones - to the synthetic data points. “Hallucinated” extra blue clusters
in the RAND graph are marked with red circles.

E.4 Biological evaluation

KBLlamaGRNBoost2 Dataset and Improved Cell Type Segregation Compared
to the original dataset, it was observed that the KBLlama GRNBoost2 dataset segregates
cell types more effectively. In the original dataset, four of the top five marker genes for
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CD4+/CD45RA+/CD25– Naïve T cells exhibited similar expression across multiple cell
types, introducing noise that could complicate biological analysis. In contrast, the KBLlama

dataset demonstrated more distinct expression for CD4+/CD45RA+/CD25– Naïve T cells,
with the exception of a single marker, LTB, which was expressed in other cell types as well.

Reduction of Noise in Other Cell Types in KBLlama GRNBoost2Dataset Addi-
tionally, dendritic cells in the KBLlama GRNBoost2 model exhibited a less noisy expression
pattern compared to the original dataset, a trend also observed in CD8+ cytotoxic T cells
and CD4+/CD25+ T regulatory cells. A notable difference was found in CD8+/CD45RA+
cytotoxic cells, where the original dataset showed little to no expression of top markers, while
the KBLlama dataset had a more widespread, noisy expression.

General Performance of KBLlama GRNBoost2 in Cell-Specific Expression Profiles
Although KBLlama GRNBoost2 synthetic data Figure 4a introduces some noise, it generally
improves cell-specific expression profiles, which could be further optimized for even cleaner
cell type differentiation. A key observation was that when mean expression was higher in
specific cell types, it tended to be lower in others, with fewer than 30% of cells displaying
similar expression fractions. In contrast, when expression was noisy across multiple cell
types, both mean expression and cell fraction tended to be similar across these groups.

Comparison with KBGPT4 B GRNBoost2 and Random Datasets In compari-
son, the KBGPT4 GRNBoost2 dataset Figure 7b exhibited more noise than the KBLlama

dataset Figure 4a, with multiple markers expressed across various cell types at comparable
mean expression levels and with higher cell fractions. The random GRN dataset resembled
the Stage 1 non-causal dataset, with mean expression profiles being more clearly defined for
each specific cell type. However, cell fractions for the same markers in other cell types were
still significant, often exceeding 80%, indicating suboptimal gene expression specificity.

Stage 1 Dataset and Noise Reduction in Markers Stage 1 data demonstrated a
less noisy expression pattern, where markers were primarily confined to their specific cell
types, showing lower mean expression in others. However, even though mean expression in
non-specific cell types were low, cell fractions remained similar to those of the main cell type,
which is not ideal for clear differentiation.

KBH GRNBoost2 Dataset Performance and Noise Patterns For the KBH

GRNBoost2d dataset, noise was primarily observed in a few cell types, including
CD4+/CD45A+/CD25– Naïve T cells and CD8+/CD45RA+ Naïve cytotoxic T cells.
Some markers from other cell types also showed similar expression across multiple cell types.
These noisy patterns were not observed in the Stage 1 or random datasets and were less
pronounced in the KBLlama and KBGPT4 models, though KBLlama GRNBoost2 outperformed
KBGPT in reducing noise for these specific cell types. Beyond these examples, most cell
types in the KBH GRNBoost2 dataset did not exhibit significant noise.

KBH LLM Model’s Noisy Expression Profiles Finally, the KBH LLM model exhibited
highly noisy or non-specific expression profiles, particularly for CD4+/CD45A+/CD25–
Naïve T cells, CD8+/CD45RA+ Naïve cytotoxic T cells, CD4+ T helper cells, CD4+/CD25+
T regulatory cells, and CD4+/CD45RO+ memory cells. For other cell types, the model
either failed to express most top markers or showed high cell fractions with reduced mean
expression across different cell types.

Variations in Cell Type Proportions Across Datasets A notable observation is that
the cell type proportions in each generated dataset differ significantly from those in the
original dataset, indicating a noisy overall expression profile that can alter the distribution of
cell types. In the KBLlama GRNBoost2 dataset, CD8+/CD45RA+ Naïve Cytotoxic T cells
were the most abundant at 34.1%, followed closely by CD56+ NK cells, CD8+ Cytotoxic T
cells, and CD4+/CD25+ T regulatory cells. This trend was similarly observed in the Stage 1,
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KBHGRNBoost2, KBH LLM, and KBGPT4 GRNBoost2 datasets, albeit with slightly varying
percentages.

Discrepancies in Cell Type Proportions The most considerable variation in proportions
was noted for CD8+/CD45RA+ Naïve Cytotoxic T cells, with KBLlama GRNBoost2 reporting
the highest percentage at 34.1% and GPT-4 the lowest at 28.2%. Importantly, all generated
datasets displayed significant differences when compared to the original dataset, where
CD8+/CD45RA+ Naïve Cytotoxic T cells constituted only 0.1% of the population, and
CD4+/CD45RA+ Naïve T cells accounted for 65.1%. These findings suggest that the models
manipulate the expression profiles in such a way that the proportions of CD8+/CD45RA+
Naïve Cytotoxic T cells, CD4+/CD45RA+ Naïve T cells, and other cell types are elevated
in the generated datasets.

Overall Performance and Future Improvements for KBLlama GRNBoost2 There-
fore, it was observed that CD4+/CD45RA+/CD25– Naïve T Cells and CD8+/CD45RA+
Naïve Cytotoxic T Cells exhibited noisy expression patterns consistently across all datasets.
The original dataset performed better for CD8+/CD45RA+ Cytotoxic T Cells, showing
lower noise in their expression compared to the KBLlama GRNBoost2 generated dataset.
Among the various models, the Llama model emerged as the best performer, providing
clearer segregation of cell types and reduced noise, particularly for CD4+/CD45RA+/CD25–
Naïve T Cells and dendritic cells.

Conclusion: Challenges and Future Refinements In contrast, the KBGPT4 GRN-
Boost2 model exhibited more noise than KBLlama GRNBoost2, with similar markers expressed
across various cell types at comparable mean expression levels. The Stage 1 model displayed
less noisy expression patterns, but some markers were still expressed significantly across
non-specific cell types, while the random-generated dataset had poorer cell-specific profiling.
In conclusion, the discrepancies in cell-type proportions between generated datasets and the
original dataset highlight the challenges in achieving accurate cell-type specificity. These
variations can significantly impact downstream analyses and interpretations in biological
research. Consequently, refining these models to enhance the specificity of marker expression
is essential for producing more reliable datasets that reflect the true cellular composition
observed in biological samples.
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(a) Setting 2. KBLlama, GRNBoost2 Top Markers

(b) Setting 2. KBGPT4, GRNBoost2 Top Markers

(c) Setting 1, KBH, GRNBoost2 graph.

Figure 4: Dot plots illustrating the gene expression profiles of top marker genes across
different cell types. The red color represent overexpression of the marker gene in the cell
type while blue color represents the downregulation. Size of the bubble (dot) represents the
cell percentage or fraction of the expression.
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(a) Setting 1, KBH, LLM graph.

(b) Setting 1, KBH, GRNBoost2 graph.

Figure 5: Dot plots visualization the gene expression profiles of KBH LLM and KBH

GRNBoost2 datasets. (a) Expression profiles of the KBH LLM model show significant noise
for multiple cell types, including T helper and regulatory cells. (b) Noise patterns observed
in the KBH GRNBoost2 dataset, particularly in CD4+/CD45A+/CD25– Naïve T cells
and CD8+/CD45RA+ Naïve cytotoxic T cells, with reduced noise in the KBLlama model
compared to GKBGPT4.
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(a) Original data.

(b) Stage 1, non-causal synthetic data.

Figure 6: Dot plots illustrating gene expression profiles of key marker genes across various
cell types in the Original and Stage 1 datasets. (a) In the original dataset, a dot plot of the
top marker genes shows a highly variable expression profile for CD4+/CD45RA Naive T
cells. While other cell types also exhibit a noisy expression profile, it is not as pronounced
as that of the Naive T cells. (b) The Stage 1 non-causal synthetic dataset, when represented
in a dot plot, displays an extremely noisy expression profile for all top markers across all cell
types, characterized by lower mean expression but a broader range of expression across a
higher cell fraction.
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(a) Original data.

(b) Setting 2. KBGPT4, GRNBoost2 Top Markers

(c) Stage 1, non-causal synthetic data.

Figure 7: Dot plots illustrating gene expression profiles of key marker genes across various cell
types in the Original, KBGPT4, GRNBoost2 and Stage 1 datasets. The Stage 1 non-causal
synthetic dataset displays an extremely noisy expression profile for all top markers across all
cell types, characterized by lower mean expression but a broader range of expression across
a higher cell fraction.
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(a) Setting 2, KBGPT4, GRNBoost2 graph. (b) Setting 2, KBLlama, GRNBoost2 graph.

Figure 8: Cell type proportions analysis of GPT4-KB LGRNBoost2 and Llama-KB GRN-
Boost2 datasets reveals similar cell type proportions where the differences in percentages is
between 0.1% to 4% across same cell types between the two datasets.

(a) Setting 1, KBH, LLM graph (b) Setting 1, KBH, GRNBoost2 graph

Figure 9: Cell type proportions analysis of KBH LLM and KBH GRNBoost2 datasets reveals
similar cell type proportions where the differences in percentages is between 0.1% to 3%
across same cell types between the two datasets.
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(a) Original data. (b) Stage 1, non-causal data.

Figure 10: Comparison of cell annotations and proportions between the Original and Stage 1
datasets reveals significant differences in the prevalence of CD4+/CD45RA+/CD25- Naive
T cells. In the Original dataset, these cells constitute 65.1% of the population. In contrast,
Stage 1 non-causal and synthetic datasets show a marked reduction, with Naive T cells
accounting for only 4.4%.
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