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Abstract

Predicting continuous Valence—Arousal-Dominance (VAD)
from bodily expressions in naturalistic videos remains a
key challenge in affective computing, requiring models that
capture subtle kinematic and appearance cues while re-
maining efficient. We present the first comprehensive multi-
task study on the ABEE dataset from the BEEU Challenge
2025, comprising 3,538 short clips with multi-label dis-
crete emotions (29 classes) and continuous VAD ratings (1-9
scale). We systematically evaluate visual features (ResNet-
18, Swin-Tiny, ConvNeXt-Tiny) with temporal mean pool-
ing, skeleton keypoints from YOLOvS8-nano-pose, and their
late fusion. Swin-Tiny features achieve the lowest VAD
MAE (1.359) and competitive classification performance
(micro F1 0.320). Skeleton fusion enables lightweight mod-
eling (1.043M parameters) without sacrificing VAD accu-
racy. We introduce CADResNet, a compact dilated resid-
ual network with channel-wise attention and dimensionally-
consistent multi-task regularization aligning categorical pre-
dictions with VAD distributions. Our results reveal that multi-
label classification is moderately successful, whereas con-
tinuous VAD prediction remains challenging, highlighting
the limitations of static, mean-pooled representations. We re-
lease a reproducible pipeline establishing strong baselines
and efficiency-performance trade-offs for body-only affective
computing.

Valence-Arousal-Dominance, Bodily-Expressed Emo-
tion, Affective Computing, Video Emotion Recognition

Introduction

Recognizing human emotions from bodily movements in
unconstrained video remains a fundamental challenge in af-
fective computing, with applications spanning mental health
monitoring, human-robot interaction, and socially intelli-
gent systems (Picard 2000; Vinciarelli et al. 2015). While fa-
cial expressions have long dominated the field (Ekman 1992;
Zen et al. 2016), bodily cues offer a complementary and of-
ten more robust channel, retaining interpretability under oc-
clusion, low resolution, or extreme viewpoints (De Meijer
1989; Kleinsmith and Bianchi-Berthouze 2012). Psycholog-
ical evidence underscores that posture and kinematics con-
vey distinct affective states, frequently decorrelated from fa-
cial signals (Dael, Mortillaro, and Scherer 2012).
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Figure 1: Comparison of model performance on the ABEE
dataset. The plot shows micro F1 score versus average MAE
for four models (MLP, 1D-CNN, 3D-CNN, and CADRes-
Net). Circle size is proportional to the number of model
parameters, highlighting the trade-off between accuracy
and model complexity. The proposed CADResNet achieves
competitive F1 while maintaining low MAE and minimal
parameter count.

The  Valence-Arousal-Dominance  (VAD)  frame-
work (Russell 1980; Mehrabian 1996) represents affect in a
continuous three-dimensional space, naturally accommodat-
ing blends, intensity variations, and individual differences,
advantages over discrete categories for modeling natural-
istic behavior. Regressing VAD from body motion alone,
however, is substantially harder due to the subtle mapping
between musculoskeletal dynamics and affective intensity.

Prior video-based emotion recognition has progressed
from handcrafted descriptors (Zhao and Pietikainen 2007) to
deep spatiotemporal models (Tran et al. 2015; Carreira and
Zisserman 2017), yet remains heavily facial-centric (Li and
Deng 2020). Body-focused efforts have leveraged pose fea-
tures (Kleinsmith and Bianchi-Berthouze 2012) and skele-
ton graph networks (Yan, Xiong, and Lin 2018), with
datasets like BoLD (Luo et al. 2020) advancing multi-label
recognition but lacking continuous labels. The Annotated
Bodily Expressed Emotion (ABEE) dataset from the BEEU
Challenge 2025 addresses this by providing 3,538 short clips
with 29 multi-label categories and VAD scores, enabling
joint categorical-dimensional modeling.

We conduct the first comprehensive ablation on ABEE,
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Figure 2: Grouped VAD box plots for each emotion category in the ABEE dataset. For each category, Valence (green), Arousal
(orange), and Dominance (blue) distributions are shown. Positive emotions cluster at high Valence, negative emotions at low
Valence, and high-arousal states (e.g., Anger, Fear) exhibit elevated Arousal. The dashed line at 5 indicates the neutral midpoint.

evaluating three pretrained visual backbones (ResNet-
18 (He et al. 2016), Swin-Tiny (Liu et al. 2021), ConvNeXt-
Tiny (Liu et al. 2022)) via TIMM (Wightman 2019),
YOLOvV8-nano-pose skeletons (Jocher, Chaurasia, and Qiu
2023), and fusions, across four multi-task architectures
of controlled capacity. ConvNeXt-Tiny dominates single-
modality performance (micro F1 0.324, MAE 1.370), while
skeleton fusion aids VAD regression. Results reveal asym-
metry: classification reaches F1 ~ 0.32, but VAD MAE
~ 1.37, indicating static representations capture prototypes
yet miss fine-grained dynamics, motivating future temporal
modeling.
Our contributions are:

* The first systematic study on ABEE, quantifying modal-
ity and architecture impacts.

e Identification of Swin-Tiny as the best modality to
achieve lowest VAD MAE and competitive classification
performance.

* A reproducible pipeline establishing strong baselines for
body-only affective computing.

Background

The ABEE dataset comprises 3,538 short videos of spon-
taneous bodily expressions, divided into 2,462 training
and 1,076 test clips. Each clip carries multi-label dis-
crete emotion annotations (29 labels spanning 8 main
and 20 sub-categories) and continuous Valence—Arousal—
Dominance (VAD) ratings on a 1-9 scale. The train-
ing data exhibits moderate correlations between dimen-
sions (Valence—Arousal: 0.45, Valence-Dominance: 0.35,
Arousal-Dominance: 0.15) and an average of 3.96 labels per
clip, reflecting naturalistic, blended emotional expressions.

Figure 1 summarizes model performance in terms of mi-
cro F1 score and mean absolute error (MAE) on the ABEE
dataset. Each circle represents a model, with size indicat-
ing parameter count. We observe that CADResNet, our pro-
posed model, achieves high F1 scores while maintaining a
compact model size, demonstrating an effective balance be-
tween accuracy and efficiency.

Analysis of the dataset reveals strong alignment between
discrete categories and VAD dimensions (Figure 2). Positive
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Figure 3: Emotion co-occurrence matrix across ABEE video
clips. Each entry represents the frequency with which a pair
of emotions co-occur in a single clip, highlighting natural-
istic emotional blends. Strong diagonal values indicate fre-
quent single-category expressions, while off-diagonal struc-
ture captures multi-label correlations.

emotions (e.g., Happiness, Love) cluster at high Valence,
whereas negative emotions (e.g., Sadness, Disgust) concen-
trate at low Valence. High-arousal states such as Anger
and Fear demonstrate elevated Arousal scores, consistent
with affective theory. Dominance exhibits more moderate
variability, yet provides additional discriminative power for
high-intensity emotions.

Figure 3 shows the co-occurrence matrix of discrete emo-
tions. Multi-label annotations are common: the average of
3.96 labels per clip indicates that expressions are often a
combination of multiple affective states. The above structure
motivates multi-task modeling, where predicting categorical
probabilities is jointly aligned with continuous VAD regres-
sion resulting in naturalistic emotional blends and improv-
ing generalization in both discrete and continuous emotion
prediction tasks.

Method
We design a multi-task learning framework to jointly
predict multi-label emotions and continuous Va-
lence—Arousal-Dominance (VAD) from body-only video.



Our approach systematically evaluates visual, skeletal, and
fused modalities under controlled architectural variations.

Feature Extraction

Visual Features. We extract frame-level embeddings using
three pretrained backbones from TIMM (Wightman 2019):
ResNet-18 (He et al. 2016), Swin-Tiny (Liu et al. 2021),
and ConvNeXt-Tiny (Liu et al. 2022). Frames are uniformly
sampled every 5th frame, and features are obtained from
the final pooling layer (with classification head removed).
Temporal mean pooling produces video-level descriptors
f,ic € R%, where d, = 512 for ResNet-18 and d, = 768
for Swin-Tiny and ConvNeXt-Tiny architectures.

Skeleton Features. We detect 17 body keypoints per
frame using YOLOv8-nano-pose (Jocher, Chaurasia, and
Qiu 2023). The person with the highest mean confidence is
selected, and normalized (x,y, ¢) coordinates are flattened
into a 51-dimensional vector. Mean pooling across frames
is applied to the skeleton features, resulting in a fixed-size
representation: fy. € R, where fi is the 51-dimensional
vector derived from the keypoints of the human body. To
combine the visual and skeleton modalities, we concate-
nate these representations, yielding the fused feature vector:
f = [fus; fikel], where fy;s is the visual feature vector, and
fe1 is the skeleton feature vector.

Baseline Multi-Task Models

We establish three baselines sharing a learned embedding
h = g(f;64): MLP: Three fully-connected layers (1024 —
1024 — 512) with ReLU and dropout 0.3, 1D-CNN: Se-
quential 1D convolutions over the feature vector, followed
by global average pooling, and Fast 3D-CNN: Lightweight
3D convolutions on pseudo-spatiotemporal volumes by re-
peating feature vectors along artificial axes.

Emotion logits 1 € RY (where C' = 29 is the number
of emotion classes) and VAD predictions v € R? (for the
continuous Valence, Arousal, and Dominance dimensions)
are produced from the shared embedding h. The models are
trained using the following loss function:

Lbase = Efocal(LYemo) + AH‘AI - Vgt”%a (1)

where Local (1, Yemo) 18 the focal loss used for the multi-label
emotion classification, yemo is the ground-truth emotion la-
bel vector, and A is a scalar hyperparameter that balances
the classification and regression objectives. The second term
represents the mean squared error (MSE) between the pre-
dicted VAD values v and the ground truth VAD values v.

CADResNet Multi-Task Learning Method

Our analysis of the ABEE dataset reveals a moderate align-
ment between discrete emotion categories and continuous
VAD (Valence-Arousal-Dominance) statistics. Specifically,
each emotion class ¢ € C has an associated empirical VAD
centroid p,, computed as the mean of all VAD vectors v;
for clips labeled with class c:

1
/‘l’c = 17 Vi, (2)
P>

1€Z.

where Z. is the set of instances (video clips) labeled with
emotion class ¢, and v; € R3? is the VAD vector for clip 1.
By exploiting this relationship between categorical emotion
labels and continuous VAD vectors, our approach aims to
enhance the prediction of both discrete emotions and contin-
uous VAD scores. Given the predicted emotion probabilities
p = o(l) (where o is the sigmoid function applied to the
emotion logits 1), we define the emotion-derived VAD as the
convex combination of class centroids:

Vemo =P M, 3)

where M € RY*3 stores the centroids for all C' emotion
classes. To enforce consistency between the direct VAD re-
gression output v and the emotion-derived VAD estimate
Vemo», We introduce a consistency loss function:

Leons = H‘A’emo - Vgt”%a €]

where v is the ground-truth VAD vector.

The full training objective is the weighted sum of the focal
loss for emotion classification Lyoc,, the mean squared error
(MSE) loss for VAD regression, and the consistency loss:

L= £focal + Avad”‘} - Vgt”% + /\cons‘cconw (5)

where Ayaq and Acops are hyperparameters controlling the rel-
ative contributions of the VAD regression and consistency
losses. We set A\yag = 2.0 and Aeons = 0.3, with a linear
ramp of Acons Over the first 100 epochs to stabilize training.

The above mentioned multi-task learning approach lever-
ages the complementary information between discrete clas-
sification and continuous regression tasks, allowing for im-
proved generalization across both emotion prediction tasks.
The consistency loss ensures that the predicted VAD values
are consistent with the categorical emotion distributions, fur-
ther enhancing the robustness of the model for underrepre-
sented emotions.

Experimental Setup

Datasets. We evaluate our multi-task framework on the An-
notated Bodily Expressed Emotion (ABEE) dataset (ABE
2025), used in the BEEU Challenge 2025. ABEE con-
tains 3,538 short videos depicting naturalistic bodily ex-
pressions, with multi-label emotion annotations spanning 29
classes (8 main + 20 sub-categories) and continuous Va-
lence—Arousal-Dominance (VAD) ratings on a 1-9 scale.
Following standard practice, we split the dataset into 2,462
training and 1,076 test videos, reserving 20% of the training
set (493 clips) for validation stratified by dominant emotion.

Models. We evaluate four multi-task architectures shar-
ing a learned embedding h = g¢(f;6,): MLP: Three fully-
connected layers (1024 — 1024 — 512) with ReL.U and
dropout (p = 0.3), 1D-CNN: 1D convolutions with chan-
nels progressively increased (256 — 512 — 512 — 256),
followed by fully-connected layers (256 — 1024 — 512),
Fast 3D-CNN: Lightweight 3D convolutions (channels 64
— 128 — 128 — 64) on a pseudo-volume of size (5, 8, d),
followed by fully-connected layers (2048 — 1024 — 512),
and proposed CADResNet: Dilated residual blocks (dilation



Table 1: Overall comparison for our framework with visual (Swin-Tiny) and skeleton features on the ABEE validation split.

Model F1t IoUt AvgMAE| MAEy| MAE,| MAEp| Params(M)| Size(MB)| Time (min)|
MLP 0.309 0.177 1.488 1.619 1.503 1.342 2.430 9.27 0.043
ID-CNN  0.321 0.194 1.410 1.547 1.392 1.292 3.167 12.08 2.166
3D-CNN 0.316 0.168 1.400 1.628 1.317 1.256 3.923 14.96 26.223
Proposed 0.321 0.184 1.374 1.569 1.313 1.240 1.043 3.98 0.124

rates 1, 2, 4, 8) with channel attention, followed by a 512-
dimensional bottleneck. To ensure fair comparisons, MLP,
1D-CNN, and Fast 3D-CNN have 2.4M trainable parame-
ters; CADResNet remains lighter at 1.0M. All models pro-
duce emotion logits 1 € R?Y and VAD predictions v € R3
via independent linear heads.

Training Details. Training uses AdamW (Loshchilov and
Hutter 2017) with a learning rate of 10~2 and weight decay
104, up to 100 epochs with early stopping on validation mi-
cro F1. Batch size is 64, and features are standardized using
statistics computed on the training set only.

Evaluation Protocol. For multi-label classification,
micro-averaged F1 is reported as the primary metric, with
sample-averaged IoU as complementary. Thresholds for
each model are tuned on validation to maximize F1. For
VAD regression, we report average MAE and per-dimension
MAE. We also track model complexity (parameters, size)
and training time to assess computational efficiency.

All experiments are implemented in PyTorch 2.1 on
NVIDIA GPUs with CUDA 12.1.

Results and Discussion

In this section, we present and analyze the experi-
mental results obtained from our multi-task learning
framework for emotion classification and continuous Va-
lence—Arousal-Dominance (VAD) prediction.

Valence-Arousal-Dominance (VAD) Prediction. Ta-
ble 2 reports ablations across visual backbones and skele-
ton features. Among single-modality visual inputs, Fast 3D-
CNN applied to Swin-Tiny and ConvNeXt-Tiny achieves
the lowest average MAEs (1.359 and 1.370, respectively),
while skeleton-only features remain competitive (1.365),
highlighting the strong affective signal present in kinemat-
ics alone.

In the fused setting with Swin-Tiny, our CADResNet
achieves the lowest average MAE of 1.374, improving
over the strongest baseline (Fast 3D-CNN) by 1.9%. Gains
are consistent across dimensions: Valence (1.569), Arousal
(1.313), and Dominance (1.240). Importantly, these re-
sults are achieved with only 1.043M parameters and a
3.98 MB footprint, demonstrating an excellent efficiency-
performance trade-off.

Multi-Label Emotion Classification. Classification per-
formance is more modality-sensitive (Table 2). ConvNeXt-
Tiny yields the highest micro F1 (0.324) and IoU (0.192),
while skeleton features achieve 0.322 F1 with Fast 3D-CNN,
surprisingly competitive with visual inputs. This confirms
that body posture and motion provide highly diagnostic cues
for emotion recognition.

In fused modalities, CADResNet with consistency regu-
larization achieves micro F1 of 0.321 and IoU of 0.184, com-
petitive with heavier convolutional baselines while using far
fewer parameters. These results highlight that lightweight
architectures can maintain strong performance without ex-
cessive computational cost.

Computational Complexity. Table 1 summarizes model
efficiency. The proposed CADResNet achieves state-of-the-
art trade-offs, with best VAD and classification performance
with minimal parameters (1.043M) and memory footprint
(3.98 MB). In contrast, the 3D-CNN baseline is heavier
(3.923M, 14.96 MB) and incurs substantially higher train-
ing cost (26.22 min). These observations demonstrate that
lightweight temporal modeling can outperform traditional
3D convolutions, making our approach suitable for resource-
constrained and edge deployment scenarios.

Limitations. The continuous VAD regression and multi-
label classification remains challenging (average MAE ~
1.37), highlighting the limitations of mean-pooled represen-
tations in capturing fine-grained temporal dynamics. Tem-
poral averaging discards phase-specific kinematic patterns
critical for subtle arousal and dominance variations. The ab-
sence of fully end-to-end temporal models (e.g., recurrent
or Transformer-based architectures) limits performance on
sequence-dependent affective signals. Future work should
explore dynamic feature extraction, long-range temporal
modeling, and explicit motion priors to close this gap.

Conclusion

We presented the multi-task learning study on the ABEE
dataset, establishing reproducible baselines for multi-label
emotion classification and continuous VAD regression from
body-only video. Our analysis reveals that Swin-Tiny
visual features provide a strong single-modality signal,
achieving competitive classification and VAD performance,
while skeleton-based representations are similarly informa-
tive, highlighting the value of posture and motion cues.
Modality fusion enhances regression accuracy, demonstrat-
ing complementary strengths. We present a dimensionally-
consistent regularization that aligns predicted emotion prob-
abilities with empirical VAD centroids. When applied to
a lightweight CADResNet on fused Swin-Tiny and skele-
ton features, this approach achieves competitive micro F1
(0.321) and the lowest average VAD MAE (1.374) with
only 1.043M parameters, substantially outperforming heav-
ier convolutional baselines in both efficiency and predictive
performance. Future work would explore dynamic feature
extraction, long-range temporal modeling, and explicit mo-
tion priors to close this intensity estimation gap.



Table 2: Ablation study on the ABEE validation split across
visual backbones and skeleton features. All models are
trained for 100 epochs under identical conditions. Micro F1
and MAE for Valence/ Arousal/ Dominance/ Average are re-
ported. Bold indicates the best value per modality group.

Features Model F11 IoU?T MAE V/A/D/Avg |
MLP 0.301 0.169 1.644/1.557/1.452/1.551

ResNet18 ID-CNN 0.319 0.176  1.647/1.335/1.264/1.415
3D-CNN  0.322 0.183 1.586/1.314/1.248/1.383
MLP 0312 0.183 1.627/1.500/1.385/1.504
Swin-Tiny ID-CNN 0320 0.185 1.583/1.355/1.293/1.410

3D-CNN 0314 0.187 1.530/1.309/1.239/1.359

MLP 0.324 0.192  1.569/1.557/1.395/1.507
ConvNeXt-TinylD-CNN  0.320 0.187 1.564/1.310/1.255/1.377
3D-CNN 0322 0.191 1.536/1.329/1.246/1.370

MLP 0.315 0.165 1.583/1.370/1.270/1.408
ID-CNN 0.317 0.179 1.553/1.336/1.251/1.380
3D-CNN  0.322 0.187 1.537/1.312/1.246 / 1.365

Skeleton
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