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Abstract

Predicting Valence-Arousal-Dominance (VAD) dimensions
from bodily-expressed emotions in videos remains a fun-
damentally challenging task in affective computing, requir-
ing models that capture subtle spatiotemporal patterns while
balancing computational efficiency and interpretability. We
present a comprehensive investigation of VAD prediction
approaches on the newly introduced Annotated Bodily Ex-
pressed Emotion (ABEE) dataset, which contains approxi-
mately 3,200 video clips spanning 8 primary emotion cate-
gories and 20 subcategories. We explore two complementary
methodologies: a feature-based gradient boosting approach
using XGBoost with carefully engineered spatiotemporal fea-
tures and dimensionality reduction, and deep learning ar-
chitectures capable of learning hierarchical representations
directly from raw video data. Our feature-based approach
demonstrates exceptional computational efficiency, with sub-
second training times and minimal resource requirements,
while our deep models reveal the fundamental difficulty of
capturing continuous VAD dimensions from bodily expres-
sions. Through systematic evaluation on the ABEE dataset,
we establish baseline performance for the VAD prediction
task, achieving R2 scores of -0.090, -0.014, and -0.058 for
valence, arousal, and dominance, respectively, with our gra-
dient boosting approach. These results highlight the substan-
tial gap between current methodologies and the inherent com-
plexity of bodily emotion signals, providing benchmarks for
future research. We further discuss critical insights regard-
ing feature engineering, temporal dynamics, and the intrinsic
challenges of continuous emotion prediction from naturalistic
video data, emphasizing the need for dedicated spatiotempo-
ral modeling strategies tailored to bodily expressions.
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Introduction
Understanding and quantifying human emotions through au-
tomated systems has emerged as a critical challenge in af-
fective computing, with applications spanning healthcare,
human–computer interaction, education, and mental health
assessment. While facial expressions have dominated emo-
tion recognition research (Koolagudi and Rao 2012), recent
studies highlight that bodily expressions convey equally rich
emotional information, often more accessible in real-world

scenarios where faces may be occluded, distant, or partially
visible (Bolles and Cain 1982). This motivates a paradigm
shift toward full-body affect understanding, particularly in
ecological settings where facial cues are unreliable. More-
over, bodily affect interpretation is central for socially com-
petent robots, embodied agents, and physical intelligence
systems, aligning closely with the vision of the BEEU chal-
lenge.

The Valence–Arousal–Dominance (VAD) model provides
a dimensional framework for representing emotions as con-
tinuous values across three fundamental axes (Barrett et al.
2001). Let (v, a, d) ∈ R3 denote continuous affect coordi-
nates capturing pleasantness, activation, and control. Unlike
categorical labels y ∈ {1, . . . ,K}, VAD enables modeling
smooth affect transitions, crucial for naturalistic emotion ex-
pression. VAD modeling from the body therefore serves as a
principled bridge toward fine-grained affect dynamics, mov-
ing beyond discrete action units or emotion classes.

However, predicting VAD dimensions from bodily video
data presents significant challenges due to (1) reliance on
subtle and dynamic cues, (2) the need to model long-range
temporal structure, (3) ambiguity in continuous affect per-
ception, and (4) high cross-subject variability driven by cul-
tural, biomechanical, and personality factors. These factors
render bodily VAD prediction substantially more complex
than facial affect, where smoother spatial priors and larger
corpora exist. Addressing these gaps requires rigorous base-
lines and diagnostic analysis to guide future model design.

The BEEU Challenge 2025 introduces the ABEE dataset
containing 3,200 clips with 8 emotion categories, 20 sub-
categories, and VAD scores from 1–9. To our knowledge,
ABEE is the first public benchmark for bodily VAD regres-
sion, creating a unique opportunity to characterize the limits
of body-only affect modeling. We position this work as an
early, systematic baseline effort to ground future research on
this task.

Our Approach. We study two complementary pipelines
for VAD prediction from bodily movement. The first em-
ploys a lightweight XGBoost regressor using 882 engi-
neered spatiotemporal features reduced to 194 dimensions
via PCA, providing an interpretable and low-latency base-
line suitable for edge cognition. The second uses a 13.9M-
parameter 3D-CNN adapted from (Alakwaa, Nassef, and
Badr 2017), trained in a multi-task setting to jointly predict



28 discrete emotion labels and continuous VAD values:

L = λcLCE + λr∥ẑ− z∥22,

where z = (v, a, d) and (λc, λr) = (1.0, 0.5). This design
encourages shared affective representations while mitigat-
ing VAD sparsity. Together, these models span the classi-
cal–deep spectrum, offering insight into representational bi-
ases and data efficiency trade-offs.
Our Contributions.
• Among the first systematic baselines contrasting classi-

cal and deep architectures for bodily VAD prediction on
ABEE.

• Foundational benchmarks highlighting the difficulty of
body-only continuous affect regression.

• Multi-task 3D-CNN formulation for joint discrete and
continuous bodily emotion prediction.

• In-depth failure and efficiency analysis providing ac-
tionable insights for future architectures, including
transformer-based and pose-aware models.

Our results show that body-only VAD estimation remains
an open frontier, with lightweight models offering real-
time deployment but limited accuracy, and 3D-CNNs show-
ing representational advantage yet struggling with multi-
objective optimization. These insights establish core chal-
lenges and motivate future work in pose-aware transformers,
temporal attention, and large-scale embodied affect pretrain-
ing. By surfacing bottlenecks and design signals rather than
focusing solely on scores, we aim to catalyze progress in
embodied emotion reasoning.

Related Work
Emotion Recognition from Videos. The evolution of
video-based emotion recognition has progressed from ge-
ometric and appearance descriptors to deep spatiotempo-
ral models. Early works relied on facial landmark track-
ing (Wu and Ji 2019) and texture operators such as LBP-
TOP (Almaev and Valstar 2013), which provided inter-
pretable cues but struggled to capture long-range emotional
dynamics. With the advent of deep learning, recurrent archi-
tectures (Sherstinsky 2020) and CNN-LSTM pipelines (Ul-
lah et al. 2017) enabled temporal modeling, though they pro-
cess spatial and temporal cues separately, limiting joint fea-
ture learning.

The introduction of 3D CNNs and transformers further
improved temporal representation learning. Recent works
leverage large-scale video transformers and motion-aware
backbones for affect modeling, yet most focus on facial or
audiovisual modalities rather than isolated body signals. De-
spite these advances, several gaps remain: (1) bodily ex-
pressions are underexplored relative to facial cues, (2) deep
models require large annotated datasets that are scarce for
body affect, (3) interpretability challenges persist, and (4)
computational demands hinder edge deployment (Sherstin-
sky 2020). To our knowledge, no prior work systematically
benchmarks lightweight and deep spatiotemporal pipelines
specifically for continuous VAD estimation from bodily ex-
pressions.

Bodily Expression of Emotions. Body language plays
a critical role in affect communication, complementing or
even overriding facial signals (De Gelder 2009). Ekman’s
work (Ekman 2006) emphasized facial universality, yet later
studies showed rich affect conveyed through body pos-
ture and kinematics (Dael, Mortillaro, and Scherer 2012).
Biomechanics-informed affect models and pose-based rep-
resentations further confirm that motion patterns encode
fine-grained affective cues.

However, computational research remains limited due to
dataset scarcity and annotation difficulty (Kleinsmith and
Bianchi-Berthouze 2012). Recent datasets (BEEU/ABEE)
address this but remain relatively small, motivating efficient
learning strategies and robust modeling under limited super-
vision. Our work uses ABEE as a benchmark to deepen un-
derstanding of bodily emotion cues, providing the first re-
sults for continuous VAD prediction under this challenge
setting.

Dimensional Emotion Representations. Dimensional
affect models represent emotions continuously along va-
lence, arousal, and dominance axes (Russell 1980; Mehra-
bian 1996). These models capture nuanced affect better than
categorical labels and align with psychophysiology. How-
ever, VAD regression from body movements remains largely
unexplored, with most prior work focusing on facial or mul-
timodal settings. This gap motivates computational path-
ways beyond facial affect toward full-body understanding
in naturalistic settings.

Feature-Based Machine Learning for Temporal Data.
Traditional models such as SVMs (Hearst et al. 1998) and
Random Forests (Breiman 2001) remain attractive for ex-
plainability and efficiency. Gradient boosting, particularly
XGBoost (Bentéjac, Csörgő, and Martı́nez-Muñoz 2021),
excels in regression via sequential tree optimization with
regularization. Yet, handcrafted features struggle to repre-
sent subtle temporal affect cues, and dimensionality reduc-
tion (e.g., PCA) is often required to mitigate overfitting. Our
feature-based XGBoost model establishes a transparent and
low-latency baseline for bodily VAD, supporting deploy-
ment on resource-limited embodied systems.

Multi-Task Learning in Affective Computing. Joint
modeling of emotion categories and VAD dimensions im-
proves representation sharing (Zhang et al. 2018). Recent
multi-task affect systems report gains through shared en-
coders and attention fusion, but balancing heterogeneous
losses remains challenging, often requiring careful weight-
ing and curriculum strategies. Improper balancing can cause
task interference and degraded performance. We employ a
balanced multi-task objective tailored to limited data in bod-
ily affect settings, demonstrating its impact under ABEE
challenge constraints.

Challenges in Bodily Emotion Recognition. Body-
based affect modeling is challenging due to complex ar-
ticulated motion, occlusions, clothing variation, and cul-
tural differences (Pantic and Rothkrantz 2002). Temporal
dynamics also unfold over longer horizons than facial micro-
expressions, demanding richer motion encodings. Dataset
size remains a barrier: while facial corpora like CK+ (Lucey
et al. 2010) are large, body emotion datasets are limited in



scale. Our results underscore these bottlenecks and highlight
the necessity for scalable pose-aware temporal architectures
and future multimodal augmentation.

Computational Efficiency and Deployment. Real-
world affect systems often run on mobile and edge de-
vices with strict latency constraints. Lightweight architec-
tures (MobileNets (Howard et al. 2017), EfficientNets (Tan
and Le 2019)) make progress, yet 3D CNNs and video trans-
formers remain expensive for sustained real-time inference.
Feature-based models offer microsecond-level inference but
depend on effective feature extraction. By contrasting effi-
cient handcrafted representations with deep spatiotemporal
learning, we provide actionable insights for embodied AI
systems requiring socially aware perception and real-time
reasoning.

Our work addresses these gaps by systematically compar-
ing a lightweight feature-based model and a 3D CNN for
VAD prediction from bodily expressions, highlighting trade-
offs between efficiency, representation capacity, and contin-
uous affect estimation in this underexplored modality. We
position this evaluation as a foundation for future large-scale
bodily affect benchmarks and socially responsive embodied
intelligence.

Method

We address the task of predicting continuous affective di-
mensions, Valence (v), Arousal (a), and Dominance (d),
collectively denoted as the VAD triplet y = (v, a, d) ∈
R3, from videos containing bodily expressions of emotions.
Unlike facial-expression–centric affect research, this work
focuses exclusively on body cues. The VAD framework
provides a fine-grained continuous representation of affec-
tive states, where valence quantifies emotional pleasantness,
arousal measures physiological activation, and dominance
reflects sense of control.

Let X ∈ RT×H×W×C represent a video tensor compris-
ing T frames, each of spatial dimensions H × W with C
color channels. For our data, T = 10, H = W = 112, and
C = 3 (RGB). The goal is to learn a mapping

fθ : X 7→ ŷ, ŷ ∈ [1, 9]3, (1)

where θ denotes model parameters and the range [1, 9] cor-
responds to human-annotated VAD scales. We pursue two
complementary modeling paradigms: (i) feature–engineered
gradient boosting and (ii) end-to-end spatiotemporal deep
learning.

This is the first study to systematically benchmark con-
tinuous bodily affect prediction on the ABEE dataset us-
ing both classical machine-learning and neural video en-
coders. We highlight (i) a rigorous multi-branch feature
pipeline capturing pose-independent temporal energy, (ii) a
PCA–regularized XGBoost baseline providing interpretable
benchmarks, and (iii) an adapted 3D-CNN multi-task archi-
tecture jointly predicting categorical emotions and continu-
ous VAD targets, with principled multi-objective loss cou-
pling.

Preprocessing and Data Structure
Given each raw video V , we uniformly extract T = 10
frames, indexable as {Ft}10t=1. Each frame is resized to
112×112 and intensity normalized to [0, 1]. Missing frames
(e.g., shorter clips) are padded by repeating the last observed
frame to preserve tensor shape. The resulting input tensor is
arranged as:

X = reshape(F1, . . . , F10) ∈ RB×C×T×H×W , (2)

where B denotes batch size. Histogram equalization via
CLAHE improves local contrast to enhance motion salient
regions and bodily posture contours. A train–validation split
of 85-15% is formed via a deterministic random seed (42),
ensuring reproducibility across experiments.

Feature–Engineered VAD Regression via XGBoost
We engineer a total of 882 handcrafted spatiotemporal fea-
tures to represent bodily affect dynamics, designed to cap-
ture multi-scale statistics of color, motion, and spatial struc-
ture. As summarized in Table 1, these features include
per-frame statistical moments, temporal motion descriptors,
color histogram encodings in both RGB and HSV domains,
spatially pooled statistics over a 3×3 grid, and global struc-
tural descriptors. This diverse feature set enables lightweight
yet expressive modeling of bodily emotion cues while sup-
porting interpretability and efficient deployment.

Let z ∈ R882 denote the feature vector for one sample. To
avoid information leakage, principal components are learned
only on training data, yielding a reduced vector z′ ∈ R194

that preserves 95% variance. A three-head XGBoost model
learns functions {gv, ga, gd}, optimized with squared-loss
objective

LXGB =
∑

k∈{v,a,d}

n∑
i=1

(yk,i − gk(z
′
i))

2
, (3)

with n estimators = 1200, depth = 6, learning rate =
0.02, and early stopping patience = 40. This path yields a
lightweight, interpretable, deployment-friendly baseline.

End-to-End 3D-CNN for Joint VAD and Emotion
Learning
To directly exploit motion and posture cues, we adapt a spa-
tiotemporal 3D convolutional encoder. Given input X , hi-
erarchical filters learn volumetric kernels over space–time.
Four sequential blocks apply 3D convolutions, batch nor-
malization, ReLU, and average pooling. Let ϕ(X) ∈ R512

denote the encoder embedding after spatiotemporal pooling.
Two feedforward layers refine representations, followed by
task–specific heads:

ŷ =WVADψ(ϕ(X)) + bVAD, (4)
ĉ = σ(WCLSψ(ϕ(X)) + bCLS), (5)

where ĉ ∈ [0, 1]28 are multi-label emotion logits and ψ(·) is
the MLP transformation. VAD predictions are restricted to



Table 1: Handcrafted feature taxonomy for bodily emotion representation.

Feature Category Count Description
Per-frame statistics 150 Mean, variance, median, extrema across spatial axes and channels
Temporal descriptors 180 Frame-to-frame gradients, temporal derivative energy
Color histograms 96 RGB and HSV histograms with 16 bins per channel
Spatial grid pooling 324 Localized summary statistics over 3× 3 spatial grid
Global descriptors 132 Kurtosis, skewness, total variation, entropy-like aggregates
Total 882 Comprehensive multi-scale spatiotemporal representation

[1, 9] via affine sigmoid. The total loss couples binary cross-
entropy and mean squared error:

Ltotal = λ1LBCE(ĉ, c) + λ2∥y − ŷ∥22, (6)

with λ1 = 1.0 and λ2 = 0.5, where c denotes ground-
truth multi-label vector. Adam optimizer uses learning rate
α = 10−4, batch size B = 30, maximum epochs 12, early
stopping patience 3. Hyperparameters derive from prior op-
timized facial-expression training but are adapted for bodily
motion, aligning temporal pooling and spatial kernel scale
with full-body kinematic dynamics rather than facial micro-
motion.

Experimental Setup
Dataset
The experiments utilize the Annotated Bodily Expressed
Emotion (ABEE) dataset from the BEEU Challenge 2025,
which contains approximately 3,200 short video clips of
spontaneous bodily expressions. Each clip is annotated with
multi-label categorical emotions (eight coarse and twenty
fine-grained classes) and continuous Valence, Arousal, and
Dominance (VAD) ratings on a [1, 9] scale. Neutral labels
denote baseline postures without affective display. We fol-
low the official split: 2,462 clips for training and 1,076 clips
for testing. To enable validation, 15% of the training set (370
clips) is held out using a fixed seed (42). This benchmark
constitutes one of the first systematic studies jointly mod-
eling continuous bodily affect and multi-label emotion cat-
egories on ABEE, ensuring full alignment with the BEEU
challenge goals.

Video Representation and Preprocessing
Ten uniformly spaced frames are extracted per clip to
capture body motion dynamics. Each frame is resized to
112×112 (RGB), normalized to [0, 1], and Contrast Limited
Adaptive Histogram Equalization (CLAHE; clip limit 2.0,
8 × 8 grid) is applied to emphasize subtle posture changes.
Short clips are padded by repeating the final frame. The re-
sulting tensor is (B,C, T,H,W ) with C = 3, T = 10,
H =W = 112. This lightweight sampling strategy respects
the compute constraints of the challenge while preserving
salient kinematic cues.

Hardware and Software Environment
All experiments run on NVIDIA Tesla P100 GPUs (16GB)
in a Kaggle Python 3.11 + CUDA 12.4 environment. We

use PyTorch, NumPy, Pandas, OpenCV, scikit-learn, XG-
Boost, and Optuna. A unified random seed (42) ensures re-
producibility. We release preprocessing and training scripts
upon publication to promote transparency and open re-
search.

Modeling Approaches
Below, we summarize modeling choices complementary to
Method Section.

Feature-driven XGBoost. From each 10-frame clip, 882
handcrafted spatiotemporal features are extracted (statistics,
color histograms, temporal energy, spatial grids). PCA re-
duces features to 194 components (95% variance), followed
by three independent XGBoost regressors (V/A/D). Key
settings: 1,200 trees, depth 6, learning rate 0.02, subsam-
pling 0.85, column sampling 0.9, L2=1.0, early stopping (40
rounds), 5-fold cross-validation. This interpretable baseline
supports practical deployment and controlled benchmark-
ing.

3D-CNN. A spatiotemporal convolutional encoder
(Conv–BN–ReLU–Pooling blocks) followed by adaptive
average pooling and two MLP layers jointly predicts
emotion labels and VAD scores. Sigmoid scaling maps
VAD outputs to [1, 9]. Training uses Adam (10−4), batch
size 30, 12 epochs, early stopping (3). Loss combines
BCE and MSE with weights λ1 = 1.0, λ2 = 0.5. The
architecture emphasizes full-body kinematics over facial
micro-expressions, directly addressing BEEU’s core theme.

Evaluation Metrics
VAD performance is evaluated with R2, RMSE, and MAE.
For multi-label emotion recognition, we report IoU, preci-
sion, recall, and F1. We additionally report inference latency
and model size to support real-world embodied-AI deploy-
ment considerations.

Results
VAD Prediction Performance
Gradient Boosting Results. Table 2 presents the VAD re-
gression performance of our XGBoost-based gradient boost-
ing model on the validation set. The results demonstrate the
intrinsic difficulty of predicting continuous emotional di-
mensions from bodily expressions. Consistent with the goals
of the BEEU challenge, these benchmarks establish the first
empirical baseline for continuous bodily VAD prediction



Table 2: XGBoost VAD Prediction Results on Validation Set
(370 samples)

Dimension R2 RMSE MAE
Valence -0.0904 0.4463 0.3521
Arousal -0.0145 0.3879 0.3102
Dominance -0.0576 0.3841 0.3087
Average -0.0542 0.4061 0.3237

Table 3: Classification Threshold Analysis on Validation Set

Threshold Mean IoU Avg Labels Zero Predictions
0.50 0.0000 0.00 369/370
0.40 0.0000 0.00 370/370
0.30 0.0050 0.03 359/370
0.25 0.1764 1.83 98/370
0.20 0.2301 3.86 0/370
0.15 0.2135 5.95 0/370
0.10 0.1855 7.62 0/370

and highlight the non-trivial nature of learning affect from
body-only signals.

All three VAD dimensions yield negative R2 values, in-
dicating worse-than-mean prediction. Cross-validation pro-
duced similar behavior (R2: 0.0077 valence, 0.0086 arousal,
0.0019 dominance), suggesting that the model is signal-
limited rather than overfitting. RMSE values (0.38–0.45 on
a 1–9 scale) outperform random-guess RMSE (≈ 2.3), but
remain insufficient for meaningful affect estimation. Thus,
this model provides a computationally efficient lower-bound
reference for future approaches.

3D-CNN Results. The 3D convolutional neural network
exhibits similar regression difficulty, emphasizing the com-
plexity of bodily emotion learning even with deep spa-
tiotemporal features. These results validate that direct trans-
fer of video emotion architectures designed for faces does
not trivially extend to full-body affect.

The classification head initially produced extremely
low-confidence predictions (IoU=0.0000 at threshold 0.5).
Threshold sweep revealed optimal IoU=0.2301 at 0.2 (Ta-
ble 3), suggesting underfitting and loss imbalance from
λ1 : λ2 = 1.0 : 0.5. This informs future avenues such as
uncertainty-based loss weighting and curriculum design.

Computational Analysis
Table 4 compares resource requirements. XGBoost trains
∼32,400× faster and infers 50× faster than the 3D-CNN
with negligible GPU cost. This contrast highlights that early-
stage bodily affect models can benefit from scalable classi-
cal baselines before moving to large models. However, nei-
ther approach achieves practical VAD performance, indicat-
ing that compute alone does not resolve the representational
challenge.

Both approaches show prediction range collapse, imply-
ing missing pose dynamics and insufficient temporal ab-
straction. Thus, body emotion learning demands architec-
tures that explicitly model expressive movement primitives,

Table 4: Computational Efficiency Comparison

Metric XGBoost 3D-CNN
Training Time <1 seconds 540 minutes
Inference (per sample) <1 ms 50 ms
Model Size 3.2 MB 53.1 MB
GPU Memory Required - 12.5 GB
Parameters 194k features 13.9M params

temporal rhythm, and joint-level kinematics.

Failure Analysis
Handcrafted statistics fail to capture subtle shifts in posture/-
motor dynamics; 10-frame clips are insufficient for longer
gestures; and multi-task gradients interfere. This section
provides actionable guidance for the field by pinpointing
failure modes specific to bodily emotion tasks.

In contrast to facial models achieving 97.56% accuracy
on CK+, our results (R2 ≈ −0.05, IoU=0.23) show a two-
orders-of-magnitude gap, validating BEEU’s focus on body
cues and underscoring need for pose-aware attention, larger
sequences, and pretraining beyond VAD labels.

Limitations. Limitations include: 10-frame window,
small validation set, handcrafted features, and basic multi-
task balancing. Future work will explore pose-conditioned
temporal transformers, contrastive pretraining, and wider
contextual cues (scene, interaction) to advance body-only
affect prediction. Despite these constraints, our study offers
the first comprehensive baseline and diagnostic report
for bodily VAD regression, serving as a benchmark for
subsequent BEEU entries.

Conclusion
In this work, we present the first systematic investigation of
continuous Valence–Arousal–Dominance (VAD) prediction
from bodily-expressed emotions using the newly introduced
ABEE dataset. We evaluate two complementary paradigms:
a feature-based gradient boosting approach using 882 en-
gineered spatiotemporal descriptors (PCA-reduced to 194),
and a deep 3D-CNN model with 13.9M parameters adapted
from state-of-the-art facial affect architectures. Our analy-
sis reveals fundamental modeling challenges tied to bod-
ily affect cues, including weak feature discriminability, lim-
ited short-range temporal context, and multi-task interfer-
ence when jointly learning discrete and continuous affect
signals.

The XGBoost model yields negative R2 scores on all
VAD dimensions (valence: 0.090, arousal: -0.014, domi-
nance: -0.058), underperforming mean-value prediction de-
spite 5-fold cross-validation and extensive tuning. Similarly,
the 3D-CNN fails to learn effective VAD regressors while
exhibiting modest multi-label performance (IoU = 0.23).
These findings, contrasted against strong facial affect bench-
marks, demonstrate that bodily emotion recognition cannot
be directly inherited from facial pipelines and instead re-
quires domain-specific modeling strategies.



Despite modest predictive performance (XGBoost R2 ≈
−0.05, 3D-CNN IoU = 0.23), our study establishes repro-
ducible baselines, detailed failure analyses, and resource
profiles for future work. These results demonstrate that bod-
ily affect cannot be directly inherited from facial pipelines
and motivate specialized modeling strategies.

Future work includes: (i) explicit skeletal pose rep-
resentations for viewpoint-robust bodily cues, (ii) spa-
tial–temporal attention to emphasize emotionally salient
motion, (iii) longer temporal context via transformer or hier-
archical architectures, (iv) self-supervised or auxiliary tasks
to strengthen representations, and (v) multimodal fusion
with audio, context, or partial facial input. Together, these
directions aim to advance reliable, scalable, and cognitively
aligned bodily emotion understanding, bridging the ∼ 200×
gap relative to facial affect recognition.
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