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ABSTRACT

The vast applications of deep generative models are founded on the premise of
three fundamental capabilities: generating new instances (e.g., image/text synthe-
sis and molecule design), reconstructing inputs (e.g., data editing and restora-
tion), and learning latent representations (e.g., structure discovery and down-
stream classification). Existing model families, including Variational Autoen-
coders (VAEs), Generative Adversarial Networks (GANs), autoregressive mod-
els, and diffusion models, generally excel in specific capabilities but fall short
in others. We introduce Joint Autoencoding Diffusion (JEDI), a new generative
framework that unifies all three core capabilities, offering versatile applications
and strong performance in a single model. Specifically, JEDI generalizes the
noising/denoising transformations (based on simple Gaussian noise) in diffusion
process by introducing parameterized encoder/decoder transformations between
raw data and compact representations. Crucially, the encoder/decoder parameters
are learned jointly with all other diffusion model parameters under the standard
probabilistic diffusion formalism. This results in a model that not only inherits
the strong generation abilities of diffusion models but also enables compact data
representation and faithful reconstruction. Additionally, by choosing appropriate
encoder/decoder, JEDI can naturally accommodate discrete data (such as text and
protein sequences) which have been difficult for diffusion models. Extensive ex-
periments across different data modalities, including images, text, and proteins,
demonstrate JEDI’s general applicability to diverse tasks and strong improvement
over existing specialized deep generative models.

1 INTRODUCTION

Figure 1: An illustration of three fundamental abilities of deep generative models.

Generative models are central to deep learning, offering the ability to simulate, understand, and
manipulate complex data distributions. Their widespread applications hinge on three fundamental
capabilities: 1) Generating new instances aligned with a learned distribution; 2) Reconstructing the
inputs, which involves the extraction and utilization of salient features to reproduce input data. 3)
Learning latent representation that enables structure discovery and downstream classification. Fig. 1
underscores the importance of three capabilities by highlighting their respective applications.
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Figure 2: Conceptual illustrations of existing generative models and our proposed model.

Deep generative models, like Variational Autoencoders (VAEs, Kingma & Welling (2014)), Genera-
tive Adversarial Networks (GANs, Goodfellow et al. (2014)), autoregressive models (Van Den Oord
et al., 2016), and Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), each exhibits spe-
cific strengths in various applications. However, a comprehensive model that seamlessly integrates
all three fundamental capabilities remains elusive.

VAEs are known for their trade-off between reconstruction and generation, a balance governed by
the reconstruction loss and regularization loss (Bowman et al., 2016; Chen et al., 2017). While
variants such as the β-VAE (Higgins et al., 2016) aim to offer a more controllable trade-off, they
continue to face challenges in simultaneously achieving high-quality generation and precise recon-
struction. GANs, while renowned for their impressive generation capabilities, inherently lack an
explicit representation of the latent space (Radford et al., 2015; Donahue et al., 2016; Chen et al.,
2016). Although subsequent research (Zhou et al., 2019; Xia et al., 2023) has incorporated encoders
into GANs for reconstruction, as seen in BiGANs (Donahue et al., 2016) and CycleGANs (Zhu et al.,
2017), achieving a harmonious balance between generation, reconstruction, and meaningful latent
representation is still challenging. Autoregressive models excel in generating content, particularly
in the text domain (Vaswani et al., 2017; Radford et al., 2019). However, they often produce outputs
with limited diversity and do not inherently offer a semantically rich latent space for representation.
Diffusion models are adept at generation but frequently fall short in providing a semantically rich
latent space and effective reconstruction. While DDIM (Song et al., 2021) enhances the reconstruc-
tion capabilities of diffusion models, it still fail to encapsulate high-level semantics essential for
meaningful representations (Preechakul et al., 2022; Xiang et al., 2023). Latent diffusion model
(Rombach et al., 2021) employs an autoencoder to represent data in a low-dimensional space for
compression and enhanced efficiency, yet it still does not incorporate meaningful semantics.

Addressing these challenges, our primary contribution is the introduction of a unified generative
model: Joint Autoencoding Diffusion (JEDI, §3), tailored to tackle all three core functionalities.
Specifically, we generalize the noising/denoising transformations in standard diffusion process by
introducing parameterized encoder/decoder transformations between raw data and compact repre-
sentations. In the forward process, the encoder introduces a specific “noise” and concurrently maps
data into a compact latent space. In contrast, the decoder operates in the reverse, aiming to predict
and counteract the noise introduced by the encoder. This generalization naturally complements the
established diffusion model framework. Building upon these generalizations, we formulate the train-
ing objective directly from the data likelihood. Under the standard probabilistic diffusion formalism,
the encoder/decoder parameters are learned jointly with all other diffusion model parameters. This
results in a model that not only inherits the strong generation abilities of diffusion models but also
enables compact data representation and faithful reconstruction. Given the inherent fixed latent di-
mensionality of conventional diffusion models, handling variable-length sequential data remains a
challenge. However, by selecting suitable encoder/decoder configurations, our model can seamlessly
processes discrete data types, like text and protein sequences. A conceptual comparison between our
model and existing generative models can be seen in Fig. 2.

Our comprehensive experiments (§4), spanning varied data modalities including images, text, and
protein sequences, demonstrate our model’s general applicability to diverse tasks and strong im-
provement over existing specialized deep generative models.
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2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015) are probabilistic models designed to approximate a
target data distribution q(x0) with a model distribution pθ(x0) by gradually denoising a normally
distributed variable. The predominant formulation is the Denoising Diffusion Probabilistic Models
(DDPMs, Ho et al. (2020)), which involve two phases: the forward process and the reverse process.

Forward Process The forward process aims to transform any data distribution into a simple stan-
dard Gaussian distribution. This process, typically hand-designed, is formulated as a Markov chain
that sequentially introduces Gaussian noise into the data, as defined by:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1); q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where T is the number of diffusion steps, β1, . . . , βT represent the pre-defined variance schedule,
x1, . . . ,xT are latent vectors of the same dimensionality as the data x0 ∼ q(x0), and xT admits the
standard Gaussian distribution when T → ∞.

Reverse Process The reverse process involves learning pθ(xt−1|xt) to approximate the intractable
q(xt−1|xt). When βt is small enough, q(xt−1|xt) adopts a Gaussian form, ensuring the expressive-
ness of the reverse process. Initialized at p(xT ) = N (xT ;0, I), the reverse process is formulated as
a Markov chain featuring learnable Gaussian transitions:

pθ(x0:T ) := pθ(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

Training Objective During training, the parameters θ are optimized via the variational lower
bound, which provides a bound on the marginal likelihood:

Eq[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

[
− log p(xT )−

T∑
t=1

log
pθ(xt−1|x)
q(xt|xt−1)

]
=: L(θ). (3)

Although q(xt|xt−1) is intractable on its own, it becomes tractable when conditioned on x0:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI)), (4)

where µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt. (5)

Here αt := 1− βt and ᾱt :=
∏t

s=1 αs. Then L(θ) can be rendered tractable by rewriting it as:

Eq[KL (q(xT |x0)||p(xT ))︸ ︷︷ ︸
LT

+
T∑

t=2

KL (q(xt−1|xt,x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]. (6)

LT is ignored during optimization since it contains no learnable parameters. Both Lt−1 and L0 are
reduced to

Ex0∼q(x0),ϵ∼N (0,I)

[
γt∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
+ C (7)

by reparemetrizing µθ(xt, t) as 1√
ᾱt
(xt −

√
1− ᾱtϵθ(xt, t)) and approximating L0 on discrete

log likelihood, where γt =
β2
t

2σ2
tαt(1−ᾱt)

and C is a constant. During training, the loss is further
simplified by setting γt as 1 (Ho et al., 2020).

2.2 VARIATIONAL AUTOENCODERS (VAES)

VAEs are a type of generative model that employ Bayesian inference techniques to learn a prob-
abilistic mapping between the data space and a latent space (Kingma & Welling, 2014; Rezende
et al., 2014). The key idea is to maximize the evidence lower bound (ELBO) with respect to both an
encoder, which maps data to the latent space, and a decoder, which reconstructs data from the latent
space:

L(λ, ϕ;x) = −Eqλ(z|x)[log pϕ(x|z)] + KL(qλ(z|x)||p(z)), (8)

where the two terms refer to the reconstruction loss and regularization loss, respectively.
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Figure 3: Overview of the diffusion process. The terms qλ(z0|x), pϕ(x|z0), and pθ(zt−1|zt) corre-
spond to the diffusion-based encoder, decoder and latent state transition model, respectively.

3 JOINT AUTOENCODING DIFFUSION (JEDI)

To address aforementioned challenges, we present JEDI, a comprehensive generative model that
unifies generation, reconstruction, and representation in one single model. Specifically, JEDI seam-
lessly integrates variational auto-encoding step into a generalized diffusion process by introducing
parameterized encoder/decoder transformations between raw data and latent representations, as il-
lustrated in Fig. 3 and §3.1. Aligning with the insights of Bansal et al. (2022), JEDI interprets
encoding as noise addition and decoding as denoising, achieving a reversible design. Under the
standard variational inference framework, the encoder/decoder parameters are learned jointly with
all other diffusion model parameters (§3.2). Crucially, JEDI not only inherits the strong generation
abilities of diffusion models but also enables compact data representation and faithful reconstruction
through VAEs (§3.3) by modeling the diffusion process as a learnable prior for VAE (§3.4).

3.1 DIFFUSION PROCESS

Forward Process We incorporate an encoder Eλ(·) to map data x into a low-dimensional latent
space Z0, which is integrated as an additional forward step to the established Markov chains on Zts,
for t ∈ 1, ..., T . The newly defined forward process can be expressed mathematically as:

qλ(z0:T |x) := qλ(z0|x)
T∏

t=1

q(zt|zt−1) (9)

qλ(z0|x) := N (z0; Eλ(x), β0I), q(zt|zt−1) := N (zt;
√

1− βtzt−1, βtI), (10)

where zt ∈ Zt,∀t ∈ 0, ..., T , and zT is expected to admit the standard Gaussian distribution.

Reverse Process Commencing from an initial distribution p(zT ) = N (zT ;0, I), the encompass-
ing probabilistic formulation, encapsulating both the observed data and latent variables across the
entire sequence, is thus:

pϕ,θ(x, z0:T ) = pϕ(x|z0)p(zT )
T∏

t=1

pθ(zt−1|zt) (11)

pϕ(x|z0) = N (x;Dϕ(z0),0), pθ(zt−1|zt) = N (zt;µθ(zt, t), σtI), (12)

where pϕ(x|z0) designates the decoder Dϕ(·) and pθ(zt−1|zt) signifies the transition probabilities
in the latent space, dictated by θ.

3.2 TRAINING OBJECTIVE

Compared to DDPM, we extend the likelihood function to the probability determined by both the
diffusion parameters θ and the decoder parameters ϕ, corresponding to model the observed data
through diffusion process followed by decoding process (details in §A.1):

Eq[− log pϕ,θ(x)] ≤ Eq

[
− log

pϕ,θ(x, z0:T )

qλ(z0:T |x)

]
=: L(λ, ϕ, θ) (13)

This objective is aimed at the concurrent optimization of λ for the encoder, ϕ for the decoder, as
well as θ governing the latent state transitions in the diffusion model (details in §A.2):

L(λ, ϕ, θ) =Eq

KL (q(zT |z0)||p(zT ))︸ ︷︷ ︸
LT

+

T∑
t=2

KL (q(zt−1|zt, z0)||pθ(zt−1|zt))︸ ︷︷ ︸
Lt−1

+KL (qλ(z0|x)||pθ(z0|z1))︸ ︷︷ ︸
Lalign

− log pϕ(x|z0)︸ ︷︷ ︸
Lrec

 . (14)
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Both LT and Lt−1 align with the terms in Eq. (6). This alignment can be achieved by simply
substituting x with z (Details in §A.3). The distinction between our loss and that of DDPM (Eq. (6))
lies in the last two terms: Lalign and Lrec.

Lalign This loss serves to align the latent representations derived from both the encoder and the
diffusion model, ensuring consistent latent spaces across the framework. Specifically, the KL di-
vergence between Gaussians qλ(z0|x) and pθ(z0|z1), as delineated in Eq. (10) and Eq. (12), can be
expressed as:

Lalign = Eq

[
1

2σ2
1

∥Eλ(x)− µθ(z1, 1)∥2
]
+ C = Eq

[
γ1 · ρ∥Eλ(x)− µθ(z1, 1)∥2

]
+ C, (15)

where C is a constant, and ρ := α1(1−ᾱ1)
β2
1

is introduced to align with Eq. (7).

Lrec This terms aligns with the reconstruction loss of VAE in Eq. (8). It is formulated as MSE loss
for continuous data like images and cross-entropy for discrete data like texts and proteins.

The final objective Lfinalcan be reformulated as (Details in §A.4):

Eq,ϵ


T∑

t=2

γt

(
w ∥ϵ− ϵθ (zt, t)∥2 +

1

γtT
Lrec

)
︸ ︷︷ ︸

Lfinal
t

+γ1

(
w
(
ρ∥Eλ(x)− µθ(z1, 1)∥2

)
+

1

γ1T
Lrec

)
︸ ︷︷ ︸

Lfinal
1

 , (16)

where we set the weights of Lfinal
t to 1,∀t ∈ {1, ..., T}, following Ho et al. (2020) for further

simplification, and w is a hyperparameter introduced to balance the diffusion/align loss with the
construction loss. The complete training approach is detailed in Algorithm 1 within Appendix B.

3.3 CORE FUNCTIONALITIES: RECONSTRUCTION, GENERATION, AND REPRESENTATION

Our proposed diffusion model is designed to excel in three pivotal tasks: generating diverse new
samples, accurately reconstructing input data, and representing data in a rich latent space. For
generation, starting with a random sample zT from p(zT ), the model undergoes a reverse diffusion
and leverages the decoder to produce a fresh sample x̂, expressed as:

zT ∼ p(zT ), z0 ← Reverse Diffusion(zT ), and x̂ = Dϕ(z0). (17)

This stochastic methodology ensures diverse sample production. For reconstruction, an input x
is encoded to a latent representation and decoded back, producing x̂ = Dϕ(Eλ(x)). The fidelity
of this process can be assessed via metrics like MSE, which is crucial for data interpolation and
manipulation. For representation, inputs are transformed into a semantically profound latent space
Z , generating beneficial embeddings for a range of tasks. The efficacy of this representation hinges
on its ability to retain essential features and its versatility in subsequent operations.

3.4 A LEARNABLE PRIOR PERSPECTIVE

The conventional VAE (§2.2) employs a standard Gaussian as its prior. However, achieving this
prior proves challenging (Doersch, 2016; Bowman et al., 2016; Kingma et al., 2017). Despite the
KL term in VAEs striving to narrow the distance between the posterior and the prior, a significant
gap often persists. This gap can compromise the quality of the generated outcomes.

A promising approach to address this discrepancy is to introduce a learnable prior in place of the
standard Gaussian (Dilokthanakul et al., 2016; Chen et al., 2017; Tomczak & Welling, 2018; Razavi
et al., 2019; Wehenkel & Louppe, 2021; Vahdat et al., 2021). From this perspective, our method-
ology can be interpreted as an extension of the VAE, augmented with a learnable prior. Diverging
from Eq. (8), our objective can be recast using Eq. (13) as (See §A.5 for details):

L(λ, ϕ, θ;x) = −Eqλ(z0|x)[log pϕ(x|z0)] + KL(qλ(z0|x)||pθ(z0)) (18)

In our proposed formulation, the prior is distinctively parameterized by pθ(z0), which harnesses
the capabilities of a diffusion model in the latent space. This parameterization not only endows
the VAE model with enhanced flexibility but also amplifies the representation capacity of the latent
variables. Reciprocally, this configuration facilitates the diffusion model’s adaptability to variable-
length inputs, accommodating diverse data types like texts and protein sequences.
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4 EXPERIMENTS

We evaluate JEDI’s performance across all three fundamental capabilities using diverse modalities
of data: image (§4.1), text (§4.2), and protein sequences (§4.3). For each modality, we consistently
employ a simple MLP with skip connections as the diffusion model in the latent space, as suggested
by Preechakul et al. (2022). By choosing appropriate encoder/decoder, JEDI seamlessly adapts to
these diverse modalities. Our experiments across these modalities highlight JEDI’s excellence in the
three fundamental capabilities.

4.1 IMAGE

Setup We adopt UNet (Long et al., 2015) as the encoder and the diffusion-based model in DiffAE
(Preechakul et al., 2022)) as the decoder. Following DiffAE, we train our model and then evaluate
the reconstruction as well as generation ability on FFHQ (Karras et al., 2019) and CelebA (Karras
et al., 2018). Then we use the CelebA-HQ dataset to test the representation ability. In addition to
DiffAE, we benchmarked our model against the Latent Diffusion Model (LDM, (Rombach et al.,
2021)) and DDIM (Song et al., 2021) for comparative analysis. We use FID and reconstruction-
FID (rFID) to evluate the generation quality and reconstruction quality, respecitively. To syntheti-
cally evaluate JEDI, besides the individual evaluations of reconstruction and generation (§4.1.1), we
mainly perform image interpolation (§4.1.2) and manipulation (§4.1.3) tasks, which can reflect the
comprehensive ability. A detailed image experimental setup can be found in §C.1.1.

4.1.1 IMAGE GENERATION AND RECONSTRUCTION

Dataset Model FID rFID
T=10 T=20 T=50 T=10 T=20 T=50

FFHQ 128

LDM 67.78 30.43 12.90 4.87
DDIM 29.56 21.45 15.08 88.22 45.30 22.23
DiffAE 20.80 16.70 12.57 12.59 9.23 5.93

JEDI 18.41 14.38 12.26 11.50 8.17 5.48

CelebA 64

LDM 41.87 31.40 25.80 9.58
DDIM 16.38 12.70 8.52 78.44 20.20 16.76
DiffAE 12.92 10.18 7.05 14.14 10.09 5.87

JEDI 12.35 9.49 6.65 11.84 8.60 5.15

Table 1: Performance metrics for image generation
(FID) and reconstruction (rFID). For reconstruction,
LDM, utilizing only VAE, yields a single result for each
metric, irrespective of T .

We evaluate generation and reconstruction per-
formance across varying inference steps T . A
comprehensive summary of our results is pre-
sented in Table 1. Notably, JEDI outperforms
the baselines, showing improvements in both
generation and reconstruction, which under-
scores the effectiveness of JEDI.

4.1.2 IMAGE INTERPOLATION

We perform interpolation within the latent
space and then reconstruct images from the
resulting interpolated representations. Given
two latent vectors, z10 and z20, we employ linear interpolation using the formula: αz10 + (1 −
α)z20, where α represents the interpolation ratio and we use α = 0.2, 0.4. This interpo-
lated latent vector is subsequently fed into the decoder to produce the interpolated image.
We evaluate interpolation using 50k images from each dataset. Following this, we calculate the
FID between the interpolated images and the original dataset, with results presented in Table 2.
When considered alongside Table 1, several observations emerge: (1) LDM, while demonstrating
commendable performance in reconstruction, falls short in maintaining quality during interpolation,
as evidenced by its notably higher FID in interpolation; (2) Across all scenarios, JEDI consistently
posts competitive performance, underscoring the compactness of our representation space. More
details and case study are in §C.1.

4.1.3 IMAGE MANIPULATION
Dataset Model α = 0.2 α = 0.4

T=10 T=20 T=50 T=10 T=20 T=50

FFHQ 128

LDM 21.29 75.13
DDIM 144.40 104.91 75.81 181.07 131.80 105.31
DiffAE 13.25 11.33 9.38 22.93 23.01 22.17

JEDI 12.57 9.80 6.66 19.11 18.36 16.98

CelebA 64

LDM 9.95 28.78
DDIM 148.22 80.06 51.84 163.26 103.01 82.77
DiffAE 11.09 9.30 6.90 17.13 16.82 15.35

JEDI 9.75 8.68 6.23 16.12 16.56 14.85

Table 2: Overall performance comparison of Im-
age interpolation.

We deploy our model trained on FFHQ to
CelebA-HQ in a zero-shot fashion. We se-
lect the CelebA-HQ dataset for this task due
to the availability of 40 binary classification
category labels. Following DiffAE, we train
a linear classifier, y = w⊤z0 + b, on
70% of the training data for each attribute.
This classifier predicts the attribute based on
the representation z0. To construct the manipulated image representation, we use z′0 = z0 + ϵw,

6



Under review as a conference paper at ICLR 2024

where ϵ is a scalar determining the manipulation magnitude. The manipulated representation z′ is
then used to generate the corresponding image. Our evaluation focuses on two aspects: 1) Image
Quality Post-Manipulation: As shown in Table 3, JEDI consistently yields high-quality images after
manipulation. 2) Alignment with Target Class: We test the linear classifier on the remaining 30%
of the dataset. In terms of weighted AUC, JEDI’s representation achieves 0.915, closely matching
DiffAE’s 0.917. Notably, JEDI surpasses in accuracy, registering 0.893 against DiffAE’s 0.795. A
detailed AUC comparison, enriched with case studies, can be found in §C.1.

4.2 TEXT

Model ϵ = 0.1 ϵ = 0.3

DiffAE 19.62 23.69
JEDI 13.48 18.43

Table 3: Manipulation.

Setup We base our experiments on the LatentOps model (Liu et al.,
2022a), a type of large VAE. We adopt BERT-small (Devlin et al.,
2019; Bhargava et al., 2021) as the encoder and GPT2-xl (Rad-
ford et al., 2019) as the decoder. An preliminary warmup training
is executed to align the encoder and decoder using the bookcorpus
dataset (Zhu et al., 2015) in the absence of the diffusion model. Sub-
sequently, joint training is undertaken on the Yelp review dataset (Shen et al., 2017; Li et al., 2018).
To ensure a fair comparison, we primarily compare JEDI with VAE (Kingma & Welling, 2014; Li
et al., 2020) and DAAE (Shen et al., 2020), maintaining consistent architecture and training pro-
cedures with the only difference in training objective. To holistically evaluate JEDI’s performance
across three core capabilities, in addition to generation and reconstruction assessments (§4.2.1), we
have selected two downstream tasks: sentence interpolation (§4.2.2) and style transfer (§4.2.3).
More details are in §C.2.1. For the evaluation, we use BLEU to measure content preservation,
while MAUVE (Pillutla et al., 2021) assess fluency. In the context of text style transfer, we evaluate
success rate using attribute accuracy from a BERT classifier.

4.2.1 TEXT GENERATION AND RECONSTRUCTION

Method Rec↑ Gen↑
VAE 87.6 0.20

DAAE 86.1 0.01
JEDI 92.1 0.98

Table 4: Reconstruction and
generation results.

First, we assess the foundational performance in both reconstruction
and generation tasks. For reconstruction, we process the test set and
evaluate its outcomes using the BLEU metric. For generation, we
produce 100 sentences derived from the prior distribution and subse-
quently evaluate them using the MAUVE score. The results are pre-
sented in Table 4. JEDI not only enhances the reconstruction quality
but also generates notably more fluent text. The main reason for our
improvements is that the prior in VAE and DAAE can not properly reflect the real distribution of
data in latent space. In our case, the real distribution is jointly defined by the diffusion model, which
could better fit the diffusion.

4.2.2 SENTENCE INTERPOLATION

Figure 4: Perplexity of text interpolation.

We randomly choose 200 samples from the test set. We
then perform interpolation between the initial 100 sam-
ples and the remaining 100 samples. When provided with
two samples, we encode them into z10 and z20. For de-
coding, given that both latent distributions adhere to a
Gaussian distribution, we employ the spherical linear in-
terpolation (Slerp) method (Shoemake, 1985) using the
formula: Slerp(z10, z

2
0; t) with 0 ≤ t ≤ 1. The expected

outcome is a series of fluent sentences that exhibit a pro-
gressive semantic shift. The number of interpolation steps
is 50, and we evaluate the quality of each step to explore the performance. As illustrated in Fig. 4,
JEDI consistently produces fluent sentences in the middle that align with the original data distribu-
tion. In contrast, baselines, especially VAE, exhibit poor generation at this midpoint. This can be
attributed to the presence of holes in the VAE’s latent space, leading to the generation of subpar
samples. We also evaluate MAUVE and BLEU and provide the generated examples in §C.2.2.

7



Under review as a conference paper at ICLR 2024

4.2.3 STYLE TRANSFER VIA LATENT VECTOR ARITHMETIC

Previous research (Mikolov et al., 2013; Shen et al., 2020) demonstrate that representations
of sentences or words, derived from unsupervised learning, can capture linguistic relationships
through simple arithmetic operations, as exemplified by “King” - “Man” + “Woman” ≈ “Queen”.
In our study, we focus on the sentiment attribute to determine whether the representation of
JEDI can draw a similar inference. We derive a single sentiment vector by separately av-
eraging the latent vectors for 100 sentences each with positive and negative sentiments from
the dataset. Subsequently, we compute the difference between the two sentiment vectors, de-
noted as v. For a given sentence, it is first encoded to obtain its latent vector, z = E(x).

Figure 5: Results of style transfer.

The sentiment-transferred sentence is then acquired via
D(z ± kv), where k serves as a weight modulating the
degree of transfer. We tried different k ∈ range(1, 5, .5)
and summerize the results in Fig.5. With the same accu-
racy, JEDI achieves competitive BLEU, better than VAE
and DAAE, which demonstrates the latent representation
could capture linguistic relationships. While maintaining
the same accuracy, JEDI attains a BLEU, outperforming
both VAE and DAAE. This underscores that the latent
representation of JEDI effectively captures linguistic re-
lationships and semantics.

4.3 PROTEIN

Setup Following the setup of ReLSO (Castro et al., 2022), we adopt a simple transformer as the
encoder and convolutional layers as the decoder. In line with ReLSO, we jointly train a simple re-
gressor to predict the fitness values from the latent embeddings of protein sequences. This fitness
value, representing the log of the round-to-round sequence frequency ratio, serves as a performance
metric with higher values indicating superiority. Our models are trained and evaluated on the Gifford
(Liu et al., 2019) dataset. We trained 2 separate models with w in Eq. (16) set to 1 and 5, and also
trained a vanilla VAE as one of our baselines. Detailed experimental setups are in §C.3.1. We eval-
uate JEDI’s representation ability in §4.3.1 and its generation ability through protein optimization
(§4.3.2). The evaluation on JEDI’s reconstruction ability is provided in the appendix at §C.3.3.

4.3.1 PROTEIN REPRESENTATION

After training, each protein sequence in the test set is transformed into a latent representation, upon
which the fitness value is predicted using the regressor in the latent space. Evaluation metrics in-
cluding Mean Squared Error, L1 norm, Pearson correlation coefficient, and Spearman correlation
coefficient are computed between the predicted values and the ground truth; these results are pre-
sented in Table 5. The regressor trained in the latent space of JEDI demonstrates superior perfor-
mance over the regressor from the baseline models on both MSE and L1 norm. This suggests that
our model obtained more refined representations for the protein sequences, leading to more accurate
predictions by the regressor. This is also evident from the visualization of the latent space. In Fig.
6, we display the latent spaces for both ReLSO and JEDI, categorizing proteins by their respective
fitness values intervals. In the latent space of ReLSO in Fig. 6a, proteins with fitness values less
than 0 exhibits an overlap, and sequence with fitness value greater than 0.5 are interwined with each
other. While some overlap persists across intervals in our latent space in Fig. 6b, the delineation
between each interval is more clear.

4.3.2 PROTEIN OPTIMIZATION
Model MSE↓ L1↓ Pearson↑ Spearman↑
VAE 0.253 0.365 0.839 0.474

ReLSO 0.293 0.401 0.826 0.477
JEDI (w=1) 0.248 0.364 0.821 0.465
JEDI (w=5) 0.234 0.355 0.833 0.460

Table 5: Protein Representation

We optimize a protein sequence by optimiz-
ing its corresponding representation in the la-
tent space. We adopt the sampling algorithm
introduced in LatentOps that solves an ODE in-
volving the regressor (Liu et al., 2022b). This
approach requires a target fitness value to guide
the optimization. We set this value to 1, 1.5, 2, and 2.5, all of which represent reasonable fitness
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values within the dataset. Visualizations of the optimized sequence using LatentOps optimization
algorithms are shown in Fig. 7. The grey dots represent proteins from the training set, while col-
ored dots represens optimized proteins with varying target fitness values. As shown in Fig. 7a, the
pseudo-conves nature of ReLSO leads to convergence of optimized sequences at a singular point,
revealing a diversity deficit. In contrast, as depicted in Fig. 7b, our model not only achieves superior
fitness values but also fosters a broader protein variety. For a detailed quantitative analysis, refer to
§C.3.2.

(a) ReLSO (b) JEDI

Figure 6: Protein Latent Space.

(a) ReLSO (b) JEDI

Figure 7: Optimized protein sequence.

5 RELATED WORK

To address the limitations of existing generative models, the research community has focused on
the development of hybrid and augmented architectures. One direction has been the fusion of
VAEs (Razavi et al., 2019; Vahdat & Kautz, 2020) and GANs (Karras et al., 2020; Esser et al.,
2021; Xia et al., 2023). This led to the emergence of VAE-GAN hybrids (Larsen et al., 2016; Xu
et al., 2021), designed to enhance both generation and reconstruction capabilities. However, si-
multaneous achievement of all three fundamental abilities, namely, generation, reconstruction, and
representation, in one unified model remains a challenging problem.

Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have showcased impressive
generative capabilities. However, they are limited by the absence of a robust semantic latent space,
which curtails their versatility in broader applications. To bridge this gap, some researchers have
explored the parameterization of the VAE’s prior with diffusion models (Wehenkel & Louppe, 2021).
For instance, Vahdat et al. (2021) leveraged a score-based model to parameterize the VAE’s prior for
image generation, introducing simplifications for tractability. Another noteworthy approach is the
Latent Diffusion Model (LDM) (Rombach et al., 2021), or Stable Diffusion. This model integrates
the architecture of an autoencoder with a diffusion model in the latent space, with the VAE’s role
being pivotal in image dimension compression, thereby optimizing diffusion training. A deeper dive
into this is available in §D.

The importance of a semantically meaningful latent space has been underscored in various
works (Donahue et al., 2017; Shen et al., 2020; Preechakul et al., 2022; Li et al., 2020; Liu et al.,
2022b). An effective latent space not only enhances performance in reconstruction and generation
but also accompanies semantic representations that are invaluable for downstream applications, in-
cluding clustering, anomaly detection, among others.

6 CONCLUSION

In this work, we generalized the diffusion model to introduce JEDI, an innovative generative frame-
work designed to seamlessly integrate the three core functionalities for generative models: genera-
tion, reconstruction and representation. To achieve the goad, we incorporated parameterized encoder
and decoder transformations into the conventional diffusion process, redefining both the forward and
reverse process. Subsequently, we derived an end-to-end training objective from the data likelihood,
which encompasses three components, each addressing one of the core functionalities. Experimen-
tal results across image, text, and protein sequence data demonstrate that JEDI consistently out-
performs strong baselines across all three core functionalities. Building on the versatility of our
approach, which accommodates a range of data types via tailored encoder/decoder configurations,
future investigations could extend its applicability across diverse domains. Additionally, a deeper
exploration into the distinct benefits conferred by JEDI would be a valuable avenue of research.
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A DERIVATION

A.1 DERIVATION OF OUR ELBO LOSS

Below is a derivation of Eq. (13).

Ex∼q(x) [− log pϕ,θ(x)] (19)
≤ Ex∼q(x) [− log pϕ,θ(x) + KL(qλ(z0:T |x)||pϕ,θ(z0:T |x))] (20)

= Ex∼q(x)

[
− log pϕ,θ(x) + Ez0:T∼qλ(z0:T |x)[log

qλ(z0:T |x)
pϕ,θ(z0:T |x)

]

]
(21)

= Ex∼q(x)

[
− log pϕ,θ(x) + Ez0:T∼qλ(z0:T |x)[log

qλ(z0:T |x)
pϕ,θ(x, z0:T )/pϕ,θ(x)

]

]
(22)

= Ex∼q(x)

[
− log pϕ,θ(x) + Ez0:T∼qλ(z0:T |x)[log

qλ(z0:T |x)
pϕ,θ(x, z0:T )

] + log pϕ,θ(x)

]
(23)

= Ex∼q(x),z0:T∼qλ(z0:T |x)

[
log

qλ(z0:T |x)
pϕ,θ(x, z0:T )

]
(24)

= Eq

[
− log

pϕ,θ(x, z0:T )

qλ(z0:T |x)

]
(25)

A.2 DERIVATION OF OUR KL LOSS

Below is a derivation of Eq. (14).

L(λ, ϕ, θ) =Eq

[
− log

pϕ,θ(x, z0:T )

qλ(z0:T |x)

]
(26)

= Eq

[
− log

pϕ(x|z0)pθ(z0:T )
q(z1:T |z0)qλ(z0|x)

]
(27)

= Eq

[
− log

pϕ(x|z0)p(zT )
∏T

t=1 pθ(zt−1|zt)∏T
t=1 q(zt|zt−1)qλ(z0|x)

]
(28)

= Eq

[
− log p(zT )−

T∑
t=2

log
pθ(zt−1|zt)
q(zt|zt−1)

− log
pθ(z0|z1)
q(z1|z0)

− log
pϕ(x|z0)
qλ(z0|x)

]
(29)

= Eq

[
− log p(zT )−

T∑
t=2

log
pθ(zt−1|zt)
q(zt−1|zt, z0)

· q(zt−1|z0)
q(zt|z0)

− log
pθ(z0|z1)
q(z1|z0)

− log
pϕ(x|z0)
qλ(z0|x)

]
(30)

= Eq

[
− log

p(zT )

q(zT |z0)
−

T∑
t=2

log
pθ(zt−1|zt)
q(zt−1|zt, z0)

− log
pθ(z0|z1)
qλ(z0|x)

− log pϕ(x|z0)

]
(31)

= Eq

KL (q(zT |z0)||p(zT ))︸ ︷︷ ︸
LT

+

T∑
t=2

KL (q(zt−1|zt, z0)||pθ(zt−1|zt))︸ ︷︷ ︸
Lt−1

+KL (qλ(z0|x)||pθ(z0|z1))︸ ︷︷ ︸
Lalign

− log pϕ(x|z0)︸ ︷︷ ︸
Lrec

 . (32)

A.3 DERIVATION OF EACH KL TERM

In line with Ho et al. (2020), our objective exclusively involves KL divergences between Gaussians,
thus facilitating closed-form evaluations.

For LT : The posterior distribution q lacks learnable parameters due to the deterministic forward
mapping from z0 to zT . Specifically, we have q(zT |z0) = N (zT ;

√
ᾱT z0, (1 − ᾱT )I). When

ᾱT ≈ 1, this simplifies to q(zT |z0) = N (zT ;0, I). Given this property, LT remains constant
during training and can be excluded from optimization.
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For L1:T−1 : This term aligns with the conventional diffusion model in Eq. (7). Given the two
conditional Gaussian distributions, pθ(zt−1|zt) in Eq. (12) and q(zt−1|zt, z0) derived as

q(zt−1|zt, z0) = N (zt−1; µ̃(zt, z0), β̃t), (33)

where µ̃t(zt, z0) :=

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt and β̃t :=

1− ᾱt−1

1− ᾱt
βt, (34)

Lt−1 can be compactly represented as:

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t(zt, z0)− µθ(zt, t)∥2
]
+ C, (35)

where C is a constant, independent with θ. We can expand Eq. (35) further by reparameterizing
q(zt|z0) as zt(z0, ϵ) =

√
ᾱtz0 +

√
1− ᾱtϵ for ϵ ∼ N (0, I) and reparemetrizing µθ(zt, t) as

1√
ᾱt
(zt −

√
1− ᾱtϵθ(zt, t)):

Lt−1 = Ez0∼q(z0),ϵ∼N (0,I)

[
γt

∥∥ϵ− ϵθ
(√

ᾱtz0 +
√
1− ᾱtϵ, t

)∥∥2
]
, (36)

where γt =
β2
t

2σ2
tαt(1−ᾱt)

, which aligns with the γt in Eq. (7).

For Lalign : This loss serves to align the latent representations derived from both the encoder and
the diffusion model, ensuring consistent latent spaces across the framework. From Eq. 10 and Eq. 12,
we know that pθ(z0|z1) and qλ(z0|x) are Gaussian distributions. Therefore, the KL divergence has
the similar form as Eq. (35), while the µ̃t(zt, z0) becomes the mean of qλ(z0|x), which corresponds
to Eλ(x). So the loss function becomes:

Lalign = Eq

[
1

2σ2
1

∥Eλ(x)− µθ(z1, 1)∥2
]

(37)

= Eq

[
β2
1

2σ2
1αt(1− ᾱ1)

α1(1− ᾱ1)

β2
1

∥Eλ(x)− µθ(z1, 1)∥2
]

(38)

= Eq

[
γ1 · ρ∥Eλ(x)− µθ(z1, 1)∥2

]
(39)

where γ1 is consistent with Eq. (36), ρ := α1(1−ᾱ1)
β2
1

is a constant, and µθ(z1, 1) is repareme-

terized under the same reparemetrization trick used in L1:T−1, i.e., µθ(z1, 1) = 1√
ᾱ1

(z1 −
√
1− ᾱ1ϵθ(z1, 1)).

For Lrec : This is the reconstruction loss corresponding to the first term in Eq. (8). Depending on
the data type, it can be formulated using different loss functions. In our model, we employ MSE loss
for continuous data like images and cross-entropy for discrete data, including texts and proteins.

A.4 DERIVATION OF OUR FINAL LOSS

The final objective in Eq. (14) in can be reformulated as:

Eq,ϵ

[
T∑

t=2

γt ∥ϵ− ϵθ (zt, t)∥2 + γ1 · ρ∥Eλ(x)− µθ(z1, 1)∥2 + Lrec

]
(40)

= Eq,ϵ

[
T∑

t=2

γt ∥ϵ− ϵθ (zt, t)∥2 + γ1 · ρ∥Eλ(x)− µθ(z1, 1)∥2 + T · 1
T
Lrec

]
(41)

= Eq,ϵ

[
T∑

t=2

γt

(
∥ϵ− ϵθ (zt, t)∥2 +

1

γtT
Lrec

)
+ γ1

(
ρ∥Eλ(x)− µθ(z1, 1)∥2 +

1

γ1T
Lrec

)]
(42)

We further introduce a hyperparameter w to balance the diffusion/align loss with the reconstruction
loss, which gives us the following loss:

Eq,ϵ

[
T∑

t=2

γt

(
w ∥ϵ− ϵθ (zt, t)∥2 +

1

γtT
Lrec

)
+ γ1

(
w
(
ρ∥Eλ(x)− µθ(z1, 1)∥2

)
+

1

γ1T
Lrec

)]
. (43)
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A.5 DERIVATION OF OUR LOSS FROM A LEARNABLE PRIOR PERSPECTIVE

The following is a derivation of Eq. (18) in §3.4, the objective from a learnable prior perspective.

L(λ, ϕ, θ;x) = Eq

[
− log

pϕ,θ(x, z0:T )

qλ(z0:T |x)

]
(44)

= Eq

[
− log

pϕ(x|z0)pθ(z0:T )
qλ(z0|x)q(z1:T |z0)

]
(45)

= Eq

[
− log

pϕ(x|z0)pθ(z0)
qλ(z0|x)

]
(46)

= −Eqλ(z0|x)[log pϕ(x|z0)] + KL(qλ(z0|x)||pθ(z0)) (47)

B ALGORITHM

Below shows the complete training algorithm of JEDI.

Algorithm 1 Training
1: repeat
2: x ∼ q(x)
3: ϵ0 ∼ N (0, I)
4: z0 = Eλ(x) + β0ϵ0
5: t ∼ Uniform({1, . . . , T})
6: ϵ ∼ N (0, I)
7: zt =

√
ᾱtz0 +

√
1− ᾱtϵ

8: if t == 1 then
9: µθ(z1, 1) =

1√
ᾱ1

(z1 −
√
1− ᾱ1ϵθ(z1, 1))

10: Take gradient descent step on Lfinal
1

11: else
12: Take gradient descent step on Lfinal

t
13: end if
14: until converged

C DETAILS OF EXPERIMENTS

This section is the counterpart of the experiment section §4.

C.1 IMAGE

C.1.1 SETUP

Model Architecture In line with the architecture presented by Diffusion Autoencoders (DiffAE)
(Preechakul et al., 2022), our model is structured with an encoder designed as a UNet and a decoder
functioning as a conditional diffusion-based model at the pixel level. Given the latent semantic rep-
resentation z0 and a random Gaussian sample xT that shares the same dimensionality as the raw
data x, the decoder employs reverse diffusion transitions to produce the output x̂. Complement-
ing this, we integrate an additional standard diffusion process, with transitions realized through a
straightforward MLP fortified with skip connections.

Dataset Following the approach of DiffAE, we train our model and subsequently evaluate its
reconstruction and generation capabilities on the FFHQ (Karras et al., 2019) and CelebA (Karras
et al., 2018) datasets. To assess the representation ability, we employ the CelebA-HQ dataset (Karras
et al., 2018). The FFHQ dataset comprises 70,001 images, CelebA encompasses 202,599 images,
and CelebA-HQ consists of 9,000 images distributed across 40 categories.
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(a) FFHQ128, T=10

(b) FFHQ128, T=20

(c) FFHQ128, T=50

Hyperparameter settings We trained our model on two Nvidia A100-SXM4-40GB GPUs with
a batch size of 100. For evaluation purposes, we sampled 50,000 images to compute the FID,
setting total steps T = 100 for both the diffusion process and the decoder at every 500,000 training
steps interval. The optimization was carried out using the Adam Optimizer, with a learning rate of
1× 10−4 and no weight decay. The image dimensions inputted into the model were consistently set
at 128× 128 for FFHQ and 64× 64 for CelebA.

Evaluation Metrics For the assessment of the generated images’ quality, we resort to the Fréchet
Inception Distance (FID) (Heusel et al., 2017), a widely-accepted metric in the field. To assess the
fidelity of our reconstruction, we employ the reconstruction-FID (rFID) metric.

C.1.2 IMAGE GENERATION

For FFHQ128, we present the generated images in Figure 8a, 8b, 8c). Then for CelebA64, the
generated images are shown in Figure 9a, 9b, 9c. As depicted in the figures, images generated with
T = 50 typically exhibit finer granularity when contrasted against those produced with T = 10 or
T = 20.

C.1.3 IMAGE RECONSTRUCTION

For a comparative analysis, we present reconstructed images from various models, each utilizing a
distinct total step T in the decoder. The results for FFHQ128 and CelebA64 are depicted in Figure
10 and Figure 11, respectively. From the figures, it’s clear that the VAE in LDM is effective at
reconstruction. Our model JEDI also produces strong results.

C.1.4 IMAGE REPRESENTATION

Interpolation The interpolation results for FFHQ128 and CelebA64 are illustrated in Figure 12
and Figure 13, respectively. A close examination of the figures reveals that while the VAE in LDM
is adept at reconstruction, its interpolation with α = 0.4 appears akin to a superposition of two
images. This aligns with the inherent nature of their VAE, where the representation predominantly
encodes spatial rather than semantic information. In contrast, both our approach and DiffAE yield
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(a) CelebA64, T=10

(b) CelebA64, T=20

(c) CelebA64, T=50

Figure 10: Image reconstructions for FFHQ128 with different models. Best viewed with zooming
in.

superior results at α = 0.4. Specifically, our method demonstrates fewer visual artifacts compared
with DiffAE, underscoring the better representation space of our model.

Manipulation 1. AUC Comparison: The comprehensive comparisons are presented in Table 6.
As indicated by the table, our model consistently delivers comparable AUC values across all classes.
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Figure 11: Image reconstructions for CelebA64 with different models. Best viewed with zooming
in.

Figure 12: Image interpolations for FFHQ128 with different models. T is fixed to 50 in these
experiments.

2. Case Study: Manipulated images derived from JEDI and the baseline models are showed in
Figure 14. The presented examples suggest that our approach better handles semantic information,
resulting in more proficient manipulations.

C.2 TEXT

C.2.1 SETUP

Model Architecture We closely adhere to the experimental setup presented in LatentOps (Liu
et al., 2022a). For our encoder, denoted as Eλ, we utilize the BERT-small model (Devlin et al.,
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Figure 13: Image interpolations for CelebA64 with different models. T is fixed to 50 in these
experiments.

Figure 14: Image Manipulation: The procedure for manipulation is detailed in Section 4.1.3. The
class names provided at the bottom indicate the target class towards which the images are being
manipulated.

2019; Bhargava et al., 2021). As for the decoder, represented as Dϕ, we employ the GPT2-xl
architecture (Radford et al., 2019). Our diffusion model is constructed using a straightforward MLP
with skip connections, as inspired by (Preechakul et al., 2022). The latent dimension is set to 128.

Building upon the methodologies of Li et al. (2020); Liu et al. (2022a), we equip the pretrained
language model (LM) with a linear layer that precedes the LM, facilitating the passage of z0 to the
decoder. To maintain generative capabilities and acclimate the LM to the latent space, we incorpo-
rate an additional transformer layer between the original first layer and the embedding layer of the
LM, fostering adaptability. During the training phase, our optimization is confined to the MLP lay-
ers, the embedding layer, the newly inserted transformer layer, the encoder, and the diffusion model
with all other parameters remaining frozen.

Dataset Regarding our dataset selection, we commence with the bookcorpus dataset (Zhu et al.,
2015) to train the autoencoder in the absence of the diffusion model. Subsequently, we engage in
joint training of the model with diffusion, utilizing the Yelp review dataset (Shen et al., 2017), which
has been preprocessed by Li et al. (2018). It’s noteworthy that Yelp serves as a sentiment dataset,
encompassing approximately 179K negative and 268K positive sentences.

Baselines To ensure a fair comparison, we primarily contrast our approach with VAE (Kingma &
Welling, 2014; Li et al., 2020) and DAAE (Shen et al., 2020), maintaining consistent architecture
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Class # Positives DiffAE JEDI
5 o Clock Shadow 1314 0.9469 0.9466
Arched Eyebrows 3171 0.8822 0.8811

Attractive 5009 0.8849 0.8792
Bags Under Eyes 2528 0.8787 0.8821

Bald 174 0.9886 0.9843
Bangs 1593 0.9779 0.9770

Big Lips 3187 0.7031 0.7108
Big Nose 2796 0.8757 0.8683

Black Hair 1895 0.9483 0.9427
Blond Hair 1469 0.9775 0.9760

Blurry 27 0.8434 0.8762
Brown Hair 2074 0.8476 0.8334

Bushy Eyebrows 1658 0.9174 0.9117
Chubby 579 0.9439 0.9339

Double Chin 481 0.9503 0.9486
Eyeglasses 404 0.9916 0.9877

Goatee 650 0.9724 0.9690
Gray Hair 346 0.9865 0.9856

Heavy Makeup 3963 0.9714 0.9695
High Cheekbones 4043 0.9490 0.9474

Male 3184 0.9977 0.9969
Mouth Slightly Open 4125 0.9784 0.9777

Mustache 495 0.9573 0.9547
Narrow Eyes 1061 0.8569 0.8600

No Beard 7047 0.9784 0.9754
Oval Face 1772 0.7494 0.7469
Pale Skin 458 0.9635 0.9618

Pointy Nose 2738 0.7263 0.7235
Receding Hairline 718 0.9373 0.9340

Rosy Cheeks 975 0.9482 0.9416
Sideburns 684 0.9768 0.9726
Smiling 4050 0.9827 0.9803

Straight Hair 1866 0.8030 0.8027
Wavy Hair 3099 0.8804 0.8770

Wearing Earrings 2328 0.8933 0.8851
Wearing Hat 311 0.9875 0.9862

Wearing Lipstick 4911 0.9803 0.9789
Wearing Necklace 1496 0.7788 0.7789
Wearing Necktie 600 0.9583 0.9560

Young 6871 0.9230 0.9130

Weighted Avg AUC - 0.9174 0.9154
Weighted Avg ACC - 0.7954 0.8929

Table 6: Classification performance comparison.

and training procedures. The sole distinction lies in the training objective. DAAE (Denoising Ad-
versarial Autoencoders) is a modified autoencoder that improves text generation by reconstructing
sentences from slightly altered versions, combining adversarial training with a denoising objective.

Tasks In addition to assessing individual functionalities (reconstruction and generation), our goal
is to empirically evaluate the holistic performance of JEDI across the three foundational capabilities.
To this end, we primarily focus on two downstream tasks: text style transfer and interpolation. The
reasons are shown below:
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• Good Reconstruction: Central to this is the ability to preserve content. In the context
of text style transfer and interpolation, maintaining the integrity of the original content is
paramount.

• Robust Representation: Beyond mere content preservation, it’s crucial to accurately capture
the intrinsic meaning, nuances, and essential features of the input text. This capability
becomes especially significant in tasks that require a deep understanding of the source
material, such as text style transfer.

• Potent Generation: The ultimate measure of a model’s efficacy is its output. For JEDI, en-
suring the fluency and coherence of the generated text is a testament to its robust generation
capabilities, which is evident in both the text style transfer and interpolation tasks.

Thus, these two tasks can synthetically reflect the three functionalities.

C.2.2 SENTENCE INTERPOLATION

In addition to perplexity, we assess using MAUVE and BLEU metrics, as depicted in Fig.15. For
a more intuitive comparison, we present the generated sentences from intermediate steps in Table 7
and Table 7. It’s evident that the transition in JEDI is smoother, and the intermediate sentences are
more coherent.

(a) Generation perplexity.

Input-1 Input-2

(b) Reconstruction BLEU. (c) Generation MAUVE.

Figure 15: Results of sentence interpolation.
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Input-1 i ca n’t believe how inconsiderate this pharmacy is .
Input-2 we were sat right away and every staff member was extremely friendly and happy .

VAE

i ca n’t believe how inconsiderate this pharmacy is .
i was n’t so worried about how pharmacy membership is an inconvenience .
i was n’t worried about how inconsiderate this pharmacy is .
i was n’t asked how inconsiderate this pharmacy is .
i was n’t asked how trustworthy this pharmacy is .
i was shocked how inconsiderate this pharmacy is .
i was shocked ... how inconsiderate this pharmacy is .
i was shocked ... how inconsiderate this staff is extremely friendly .
i was sent ... how inconsiderately friendly and extremely disappointed .
we were sat right away and every staff member was extremely friendly and accommodating .
we were sat right away and every staff member was extremely friendly and welcoming .
we were sat right away and every staff member was extremely friendly and happy .

DAAE

i ca n’t believe how inconsiderate this pharmacy is .
i ca n’t believe how very inconsiderate this pharmacy is .
i ca n’t believe how very inconsiderate this store is .
i could n’t believe how very inconsiderate this store is .
i could n’t believe how very inconvenient this restaurant is .
i could n’t believe how very indifferent this pharmacy staff is .
i could not say how very inconvenient this store was friendly .
i could not say how very inconvenient the staff is being and i am very disappointed .
i could not say how very inconvenient the staff was being and i am very disappointed .
i could not say how very inconvenient the staff was being so friendly .
i could not say how very inconvenient the staff was extremely friendly and welcoming .
i could not say very much about the locker owner and was very welcomed .
i could not sit down and every friend was charging it was very uncomfortable .
we were so rudely referred to every good gas company and was extremely rude .
we were so rudely sat at every friend and it was extremely friendly .
we were sat down and every friend and staff was extremely happy .
we were sat down very much and the staff member was extremely friendly and welcoming .
we were sat right away and every staff member was extremely happy .
we were sat right away and every staff member was extremely friendly and welcoming .
we were sat right away and every staff member was extremely friendly and happy .

JEDI

i ca n’t believe how inconsiderate this pharmacy is .
i ca n’t believe how inconsiderate this staff is .
i ’m not sure how this pharmacy is .
i ’m not impressed how inconsiderate this place is .
i am very impressed and every customer service is great .
i was very impressed and every customer service was great .
i was very impressed and every staff member was amazing .
we were very impressed and every staff member was extremely friendly .
we were very impressed and every staff member was extremely friendly and helpful .
we were very impressed ... every staff member was extremely friendly and helpful .
we were sat right away and every staff member was extremely friendly and helpful .
we were sat right away and every staff member was extremely friendly and happy .

Table 7: Examples of sentence interpolation with 50 steps. To avoid redundancy, repetitive outputs
from adjacent steps are omitted.
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Input-1 she was not happy being there .
Input-2 the chips and guacamole were excellent too !

VAE

she was not happy being there .
the chips were cheap too .
the chips were cheap and definitely excellent .
the chips were cheap and excellent !
the chips and guacamole were excellent !
the chips and guacamole were excellent too !

DAAE

she was not happy being there .
she was not happy with the food being there .
she was not happy with the food and was not there .
she was so happy and had fun being there .
she was so happy and the food was excellent too .
they were so happy with the food and it was delicious !
the food was sooooo delicious and i was happy to have found it .
the food was sooooo delicious and i was happy to have found it !
the food was sooooo delicious and i was very happy !
the chips and guacamole were excellent too !

JEDI

she was not happy being there .
she was not happy .
she was not happy !
she was happy !
the food was excellent !
the chips and salsa were excellent too !
the chips and guacamole were excellent too !

Table 8: Examples of sentence interpolation with 50 steps. To avoid redundancy, repetitive outputs
from adjacent steps are omitted.
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C.3 PROTEIN

Protein design plays a crucial role in drug discovery, protein therapeutics and various other applica-
tions in biotechnology. However, due to the complex and large search space of protein sequences,
traditional empirical methods that demands intensive and thorough experiments and screening for
validation are expensive and time-consuming. Recent advances in machine learning and computa-
tional methods introduces new approaches for protein optimization, however, most of these methods
focuses on protein design in the discrete text space and lacks a meaningful latent space. Our work
combines the Autoencoder and Diffusion Model, enabling effective protein generation/optimization
and establishing a robust latent space for protein representation.

C.3.1 SETUP

Architecture We adopt the set up of ReLSO Castro et al. (2022) which consists of a simple trans-
former as the encoder and convolutional layers as the decoder. While ReLSO relies on Negative
Sampling Loss which augments the datasets with synthetic samples with negative labels and Inter-
polative Regularization which penalizes differences between interpolated points and nearest neigh-
bors to achieve a smooth pseudo-convex latent space, we leverage the same MLP with skip con-
nections in our text and image model as the backbone of the diffusion model to act as a learnable
prior. In line with ReLSO, we jointly train a simple regressor consists of linear layers and ReLU that
predicts the fitness value with the latent embedding of a protein sequence. The regressor is trained
with mean squared error and added to each sample loss of Eq. (16) :

Lprotein
t = Lfinal

t + Lregressor, (48)

The dimension of the latent space is set to 30.

Dataset The models are trained on the Gifford Liu et al. (2019) dataset which was generated from
directed evolution of 1010 mutants of an antibody against a single target(Ranibizumab) through three
rounds of phage display panning. Fitness value is defined as the log of the round-to-round ratio of
sequence frequencies and a higher fitness value indicate better performance. In this dataset, each
protein sequence has a length of 20 with a vocabulary of 20 amino acids which are represented by
20 letters. The resulting dataset consists of 57603 sequences in the training set, 10166 sequences in
the validation set, and 22690 sequences in the test set.

Baselines We have trained 2 separate models with w in Eq. (16) set to 1 and 5. We have also
trained a vanilla Variational Autoencoder as a baseline model. All the models are trained with the
training set and evaluated with the test set.

C.3.2 PROTEIN OPTIMIZATION

We optimize a protein sequence by optimizing its corresponding embedding in the latent space.
Given a protein sequence x, we first obtain its latent embedding with z0 = Eλ(x). z0 can be
optimized with 100 steps of gradients of the regressor (GA: Gradient Ascent). Alternatively, we
adopt the sampling algorithm introduced in LatentOps that solves an ODE involving the regressor
Liu et al. (2022b). This approach requires a target fitness value to guide the optimization. We set
this value to 1, 1.5, 2, and 2.5, all of which represents reasonable fitness value within the dataset.
For evaluation, we optimize 60 random protein sequence and evaluated their fitness value using the
regressor. We assess the results on Diversity, quantified by the average Levenshtein distance of each
sequence relative to the other 59 optimized sequences; on Novelty, determined by the median of
the minimum Levenshtein distance between each optimized sequence and the training set; and on
Quality, measured by the negative log likelihood given by ProtGPT2, a large protein language model
trained on the UniRef50 dataset.

The results are presented in Table 9. From Table 9, our model attains higher fitness values than
ReLSO when using the same settings. Note that since the latent space of our model is non-convex,
optimizing a sequence using gradient ascent without stopping criteria could result in proteins with
unnaturally high fitness values.
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Model Algorithm Max Fitness Mean Fitness Diversity Novelty NLL

VAE GA 1.821 -0.316 12.955 1 29.841
VAE LatentOps 1.000 0.824 13.242 5.5 29.747

ReLSO GA 0.739 0.579 12.795 7 29.022
ReLSO LatentOps 0.738 0.737 2.121 6 28.631

JEDI (w=1) GA 4.012 2.283 12.801 7 29.803
JEDI (w=1) LatentOps 1.002 1.000 13.294 6 29.825
JEDI (w=5) GA 9.769 7.674 12.816 10 28.938
JEDI (w=5) LatentOps 1.003 1.000 13.072 5 29.433

ReLSO (target fitness=1.5) LatentOps 0.7382 0.7371 2.376 7 28.748
ReLSO (target fitness=2.0) LatentOps 0.7386 0.7373 2.362 7 28.803
ReLSO (target fitness=2.5) LatentOps 0.7383 0.7372 2.027 7 28.823

JEDI (w=1, target fitness=1.5) LatentOps 1.502 1.500 12.907 6 28.713
JEDI (w=1, target fitness=2.0) LatentOps 2.002 1.999 12.580 6.5 29.705
JEDI (w=1, target fitness=2.5) LatentOps 2.505 2.500 12.466 7 29.775

Table 9: Comparison of Protein Optimization.

Model Cross Entropy Reconstructed Bleu

VAE 1.011 0.651
ReLSO 0.940 0.734

JEDI (w=1) 0.996 0.515
JEDI (w=5) 1.113 0.660

Table 10: Protein Reconstruction

C.3.3 PROTEIN RECONSTRUCTION

Reconstruction is evaluated with Cross Entropy and BLEU to compare input and reconstructed pro-
tein sequences in the test set. The results are presented in Table 10. From Table 10, JEDI achieves
comparable reconstruction ability compared to the baselines.

D CONTRASTING WITH LATENT DIFFUSION MODELS

Latent Diffusion Models (LDMs), often termed Stable Diffusion Rombach et al. (2021), utilize an
architectural combination of an autoencoder and a diffusion model in latent space. In this section,
we delineate the primary distinctions between LDMs and our proposed approach in detail:

Autoencoder’s Functionality: LDMs: The overarching objective of their autoencoder is twofold:
to compress images into a compact latent representation and to ensure robust reconstruction ca-
pabilities from these latent vectors. To bias the autoencoder towards stronger reconstruction, they
introduce a KL term but assign it a minute KL weight (∼ 10−6). Their employment of a purely
convolution-based encoder-decoder emphasizes spatial preservation in the latent space, which, while
bolstering reconstruction, poses challenges to distilling semantically rich latent features. Our Ap-
proach: Our autoencoder extends beyond mere dimensionality reduction. It’s intricately tailored to
synchronize effectively with the diffusion process, thereby fostering a more semantically-coherent
latent space. Instead of relying on the conventional KL regularization against a standard Gaussian,
we harness a learnable prior, rendering our latent space more adaptive and insightful.

Training Paradigm: LDMs: Their training strategy bifurcates into two discrete phases: initial
autoencoder training followed by subsequent training of the diffusion model in latent space. Con-
sequently, the latent space’s architecture predominantly adheres to the objectives set forth by the
autoencoder. Our Approach: Our methodology pivots on end-to-end training, ensuring the latent
space’s architecture is sculpted by the holistic objectives of the entire model. This integrated ap-
proach instills the latent space with nuanced semantics and more discernible significance, enhancing
both interpretability and utility.
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