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Find Who to Look at: Turning
From Action to Saliency

Mai Xu , Senior Member, IEEE, Yufan Liu, Student Member, IEEE, Roland Hu, and Feng He

Abstract— The past decade has witnessed the use of high-
level features in saliency prediction for both videos and images.
Unfortunately, the existing saliency prediction methods only
handle high-level static features, such as face. In fact, high-level
dynamic features (also called actions), such as speaking or head
turning, are also extremely attractive to visual attention in
videos. Thus, in this paper, we propose a data-driven method
for learning to predict the saliency of multiple-face videos,
by leveraging both static and dynamic features at high-level.
Specifically, we introduce an eye-tracking database, collecting the
fixations of 39 subjects viewing 65 multiple-face videos. Through
analysis on our database, we find a set of high-level features that
cause a face to receive extensive visual attention. These high-level
features include the static features of face size, center-bias and
head pose, as well as the dynamic features of speaking and head
turning. Then, we present the techniques for extracting these
high-level features. Afterwards, a novel model, namely multiple
hidden Markov model (M-HMM), is developed in our method to
enable the transition of saliency among faces. In our M-HMM,
the saliency transition takes into account both the state of saliency
at previous frames and the observed high-level features at the
current frame. The experimental results show that the proposed
method is superior to other state-of-the-art methods in predicting
visual attention on multiple-face videos. Finally, we shed light on
a promising implementation of our saliency prediction method in
locating the region-of-interest, for video conference compression
with high efficiency video coding.
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I. INTRODUCTION

A. Background

WHEN people are exposed to a large scene, they use
their fovea to perceive an area of interest with high res-

olution. The other regions, namely the peripheral regions, are
perceived with low resolution. Therefore, under the limitation
of humans brain processing capacity, visual attention enables
humans to effectively process considerable amounts of visual
data [1]. Over the past decades, visual attention modeling
has been broadly studied in the fields of neurophysiology,
computer vision and multimedia [2]. Saliency prediction is
an effective way to model the deployment of possible visual
attention on images or videos. Recently, saliency prediction
has been widely applied in object detection [3], image retar-
geting [4], visual quality assessment [5] and video coding [6].

B. Related Work

Saliency prediction can be traced back to Itti’s model [7],
which combines the center-surround features of color, intensity
and orientation together. However, Itti’s model [7] mainly
focuses on images. For video saliency prediction, the initial
work is [8], in which Itti’s model was extended by incorpo-
rating two dynamic features, i.e., motion and flicker contrast.
Both [7] and [8] are low-level based methods, which explore
and integrate some low-level features for saliency detection.
Afterwards, low-level based video saliency prediction evolves
alongside directions of feature exploration and feature integra-
tion. In exploring saliency-related features, surprise is defined
in [9] as the Kullback-Leibler divergence (KL) between spatio-
temporal posterior and prior beliefs across video frames. Then,
a Bayesian framework was developed in [9] to calculate
surprise for predicting video saliency. Besides, sparse rep-
resentation of learnt texture atoms (SR-LTA) was proposed
in [10] as low-level features to predict saliency, benefiting
from the recent success of dictionary learning. Besides, some
compressed domain features, such as motion vector in [11]
and bit allocation in [12], were also utilized as low-level
features for low-level based video saliency prediction. In inte-
grating saliency-related features, some advanced works were
proposed. In particular, a graph-based visual saliency (GBVS)
was proposed in [13] for saliency prediction, which applies
graph model in combing low-level features of color, intensity
and orientation. There also exist dynamic saliency models [14]
and [15] fusing spatio and temporal visual features to generate
saliency maps. Later, Guo and Zhang [16] proposed to inte-
grate four low-level features (two color features, one intensity
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feature and one motion feature) using the phase spectrum of
quaternion Fourier transform (PQFT). Most recently, support
vector machine (SVM) [17] has been utilized for learning to
integrate low-level features in video saliency prediction.

However, the relationship between low-level features and
human visual attention is rather complicated, as the under-
standing of the HVS is still in its infancy. On the contrary,
high-level features (e.g., object, text and face) are the more
evident cues to receive a great amount of visual attention.
Thus, a large number of methods have recently employed high-
level features for the saliency prediction of images [18]–[24],
and these methods can be seen as high-level based meth-
ods. Those high-level based methods can be classified into
the saliency prediction of generic images and face images.
For generic saliency prediction, Judd et al. [18] combined
high-level features (e.g., face and text), middle-level features
(e.g., gist) and low-level features together, via learning
their corresponding weights with SVM. Most recently,
Huang et al. [19] have proposed the saliency in context
(SALICON) method to incorporate the high-level semantic
features of objects in saliency prediction, in light of deep
neural networks (DNN). Similarly, Bruce et al. [25] pro-
posed a fully convolutional networks (FCN) based model to
automatically extract high-level features in saliency prediction
and salient object segmentation. In addition, Shao et al. [26]
used DNN to extract semantic features fusing with low-level
features and saccadic amplitude to predict scanpath. For face
images, Cerf et al. [20] proposed to add face as an additional
feature into Itti’s model [7], such that the saliency prediction
accuracy can be dramatically improved. The impact of face in
the saliency prediction of face images was further investigated
in [21]. Later, Xu et al. [22] proposed to precisely model
saliency of face region, via learning the fixation distributions
of face and facial features. Meanwhile, Jiang et al. [23]
developed several face-related features at high-level to predict
saliency in a scene with multiple faces. These high-level
features include face size, pose and location.

There have also emerged some high-level based meth-
ods [27]–[30] that make use of high-level features, for video
saliency prediction. Specifically, Pang et al. [27] proposed to
explore the high-level based information of eye movement
patterns, i.e., passive and active states [31], to model attention
on videos. Later, Hua et al. [28] proposed to learn middle-
level features, i.e., gists of a scene, as the high-level based
cues in video saliency prediction. Rudoy et al. [29] proposed
to predict the saliency of a given frame, conditioned on
the detected saliency of previous reference frames. In their
method, high-level features (e.g., people) and low-level fea-
tures are integrated to perform saliency prediction for currently
processed frames. In [30], the high-level feature of camera
motion was incorporated for video saliency prediction. Most
recently, DNN has been developed in [32] and [33] for
learning some high-level features to predict video saliency. The
saliency prediction of face images has been extensively studied
in [20]–[23]. Similarly, several works [34]–[38] have been
devoted to saliency prediction of face videos, which focus on
talking face and consider the influence of sound on visual
attention. However, most of them only concentrate on the

Fig. 1. Examples of visual attention (viewed by 39 subjects) on multiple-face
videos influenced by different actions. Each row shows one video with their
attention heat maps. Some selected frames of these videos are provided in
each column. In the first and second columns, visual attention is attracted by
the action of head turning (profile-to-front and front-to-profile). In the third
column, the action of speaking receives substantial visual attention. Note that
the videos are chosen from our database, to be discussed in Section II.

conversation videos and do not aim at predicting the salient
face among multiple faces.

In fact, it is intuitive that some high-level dynamic features,
also called actions, may attract extensive visual attention in
a face video. For example, Figure 1 illustrates that most
attention is focused on one face, related to the actions of speak-
ing or head turning. Unfortunately, to our best knowledge,
few existing video saliency prediction methods consider the
impact of multiple high-level dynamic features on visual
attention, despite single high-level dynamic feature of speak-
ing being well embedded in those methods [34]–[38]. It is
worth mentioning that most recently, human actions have
been explored [39] to find the key person for event detection
in videos of basketball games, in the area of recognition.
However, the prediction of the key person does not produce
saliency, because the correlation between the detected key per-
son and ground truth attention is not investigated . Moreover,
it is limited to basketball videos with human bodies.

C. Our Work and Main Contributions

In this paper, we propose a novel method to predict
the saliency of multiple-face videos, by modeling temporal
transition of saliency with regard to high-level static and
dynamic features. We found out that the most popular videos
of YouTube contain dialogue scenes (such as TV programs,
movies, etc), including one or more faces. Thus, this paper
mainly concentrates on multiple-face videos, in which faces
and their high-level dynamic features are indeed useful in
determining saliency as illustrated in Figure 1. It is worth
pointing out that the demand on video conferencing, like Face-
Time and Skype, is undergoing the growth explosion, posing
the bandwidth-hungry issue. To relieve this issue, this paper
discusses a potential implementation of our method in high
efficiency video coding (HEVC) [40] of video conferencing,
which can improve subjective quality at limited bit-rates via
locating a salient face as the region-of-interest (ROI).

Specifically, we established an eye-tracking database, which
is comprised by fixations of 39 subjects viewing 65 multiple-
face videos. We mine our database to investigate how impor-
tant the high-level static/dynamic features are in drawing
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TABLE I

VIDEO CATEGORIES IN OUR DATABASE

Fig. 2. One example for each category of videos. From left to right, the videos belong to TV play/movie, group interview, individual interview, video
conference, variety show, music/talk show, and group discussion.

visual attention. Our investigation revealed that most of human
attention is attracted by one among multiple faces in a video,
which is correlated with the size, center-bias and pose of
the face (seen as high-level static features). These features
are thus leveraged in our method as the high-level static
features for predicting the visual attention of each video frame.
This is similar to the work of [23], which refers to saliency
prediction among multiple faces in images. Beyond [23],
we find that the high-level dynamic features of speaking and
head turning attract even more visual attention, and hence,
they are utilized as high-level dynamic features for videos.
Then, we propose a multiple hidden Markov model (M-HMM)
to predict the dynamic transitions of saliency between faces
across video frames, according to the above high-level features
(either static or dynamic). The difference between [23] and
our method is that [23] is proposed for predicting the saliency
of multiple-face images with only high-level static features,
whereas our method aims at applying M-HMM to predict the
saliency transition of multiple-face videos upon both static and
dynamic features.

In summary, we make four contributions in this paper.
(1) We argue that high-level static and dynamic features
can draw extensive attention in multiple-face videos, based
on a thorough analysis using our eye-tracking database.
(2) We develop techniques to extract the actions of speaking
and head turning, as the high-level dynamic features for
saliency prediction. (3) We propose an M-HMM method to
take advantage of observed high-level features, achieving the
temporal transition of saliency across multiple faces in videos.
(4) We provide a promising implementation of our saliency
prediction method, locating a salient face as the ROI for video
conferencing coding.

II. DATABASE ESTABLISHMENT

This section describes how we conducted the eye-tracking
experiment to establish our database, which is comprised by
fixations of 39 subjects viewing 65 multiple-face videos. Our
eye-tracking database is specialized for multiple-face videos.
First, we asked 3 volunteers to randomly find videos from
YouTube and Youku, with the criterion that the videos should
contain obvious faces. Then, a set of 65 videos at 720p were
collected, which contain various numbers of faces varying
from 1 to 27. All of these videos were compressed using
H.264. The duration of each video was cut down to be
around 20 seconds. Note that these 65 videos are with either
indoor or outdoor scenes, and they can be classified into

7 categories1 (see Table I and Figure 2 for more details).
Also note that the audio track is removed in our database and
eye-tracking experiment, to make our approach focus on visual
cues of saliency.

Next, 39 subjects (26 males and 13 females, aging
from 20 to 49), with either corrected or uncorrected normal
eyesight, participated in our eye-tracking experiment to watch
all 65 videos. Among these subjects, two were experts working
in the field of saliency prediction. The other subjects did not
have any experience on saliency prediction, and they were
also naive to the purpose of our eye-tracking experiment. The
eye fixations of the 39 subjects on viewing each video were
recorded by a Tobii X2-60 eye tracker at 60 Hz. For the eye
tracker, a 23-inch LCD screen was used to display the test
videos at their original resolutions.

During the eye-tracking experiment, all subjects were
required to sit on a comfortable chair with the viewing distance
being ∼60 cm from the LCD screen. Before viewing videos,
each subject was required to perform a 9-point calibration
for the eye tracker. Subsequently, the subjects were asked to
free-view videos displayed at random order. In order to avoid
eye fatigue, the 65 test videos were divided into 3 sessions,
and there was a 5-minute rest after viewing each session.
Moreover, a 10-second blank period with black screen was
inserted between two successive videos for a short rest. Finally,
the eye-tracking data on viewing all 65 videos were collected
for our database, containing 1,011,647 fixations in total. For
facilitating future research, our database is available online:
https://github.com/yufanLiu/find.

III. DATA ANALYSIS

In Section I, we have shown the intuition that face, together
with its high-level features, is an evident cue to attract
visual attention in a multiple-face video. In this section,
we thoroughly analyze the collected eye-tracking data of our
database, to further predict the visual attention on multiple-
face videos. According to the analysis, several observations
are investigated, to be discussed in the following. Note that
the landmarks, features and actions of faces (i.e., speaking
and head turning) for the following observations are manually
annotated.2 The annotation results of all videos in our database
are also downloadable, together with our eye-tracking results.

1Note that the categories of our video dataset are based on the categories
of YouTube, Youku and the standard test set of video coding.

2The landmark features of face were manually annotated with a
Matlab software, and the software was provided along with our database
in https://github.com/yufanLiu/find. Then, the ground truth landmarks were
obtained by averaging over the annotation results of four subjects.
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Fig. 3. Proportions of fixations and pixels in face and background over all
65 videos of our database.

Fig. 4. Proportions of fixations falling into one face and other faces, for all
39 subjects.

A. Face vs. Attention

Observation 1: In multiple-face videos, faces draw a signif-
icant amount of attention. At each video frame, the attention
of different subjects consistently focuses on one face among
all faces.

Figure 3 shows the proportions of fixations and pixels
belonging to face and background, in our database. We can
see from this figure that despite taking up only 5% of the
pixels, faces receive 79% of the fixations. This verifies that
faces attract almost all visual attention in multiple-face videos.
Figure 4 further plots the proportions of fixations falling into
one face and the sum of those falling into other faces. We can
conclude from this figure that human attention of different
subjects is consistent in being attracted by one face among all
faces. Besides, the subjective examples presented in Figure 1
also imply that faces, normally one face, draw most visual
attention in a video. Meanwhile, there are only 14% of the
fixations falling into torso and limbs. This implies that face
attracts considerably more attention than the regions of torso
and limbs.

Observation 2: The amount of attention on each face has a
small positive correlation with face size.

Does the largest face receive more fixations than other
faces in a video frame? To answer this question, we measure
the correlation between the ranking of face size3 in a video
and the corresponding saliency, via Spearman rank corre-
lation coefficients [41]. Note that the Spearman correlation
coefficient is a nonparametric measure of rank correlation.
We also report the Pearson correlation coefficient results in

3Here, the size of each face is calculated by the number of pixels of the
face region. In this paper, the face region is determined by contours of facial
landmarks.

the following analysis, to further verify our observations. The
Spearman rank correlation coefficients and Pearson correlation
coefficients are calculated according to the fixation number and
face size of each face in a video frame. Then, the Spearman
rank correlation coefficient and Pearson correlation coefficient
of all frames, averaged over the 65 videos in our database, are
0.25 (p-value p = 0.039) and 0.32 (p = 0.016), respectively.
Therefore, the positive correlation values suggest that a larger
face may draw more attention, which is consistent with [42].

B. Static Features vs. Attention

Observation 3: Humans are more likely to fixate on the face
that is close to the video center, among all the faces at a video
frame.

The center-bias [2], [43] is an obvious cue to predict human
fixations on generic videos. It is also intuitive that people are
likely to pay their attention on the face that is close to the
video center. We hence investigate the correlation of attention
on a face with the Euclidean distance of this face to the video
center. To quantify such correlation, we evaluate the average
Spearman rank correlation coefficient (ρ = −0.22, p = 0.019)
and Pearson correlation coefficient (γ = −0.19, p = 0.007),
following the same way as Observation 2. The negative values
of ρ and γ indicate that humans probably fixate on the face
that is close to the video center. According to [44], human
attention on the center face is mainly due to the photographer
bias, which means that the photographer or video editor
normally places the important face near the center of the video.

Observation 4: In multiple-face videos, visual attention on
each face is correlated with its head pose.

One observation to explore is the relationship between
visual attention and head pose for each face in multiple-face
videos. In this paper, we define head pose by two categories:
front and profile. Front is one case of pose that the angle
between face-viewing and image plane is less than 25°. Profile
is the other case of pose that the angle is in the range
of [25°, 90°]. There are in total 110,544 frontal faces and
30,007 profile faces in our database. Figure 5 shows that the
frontal face is more attention-capturing than the profile face
in a video frame. We further find that when speaking, frontal
faces receive 12.6 fixations per face, while profile faces only
draw 7.8 fixations per face.

Observation 5: Visual attention is almost irrelevant to face
attractiveness.

One hypothesis is that the attention on different faces
in a multiple-face video may be relevant to face aesthetic.
We therefore analyze this relevance. We follow the way
of [45] to measure the attractiveness of faces. Twenty-eight
subjects participated in rating the attractiveness of each face,
over all 65 videos in our database. The rating score ranges
from 1 to 10, and a larger score means a more beautiful
face. Then, the scores of all 28 subjects are averaged to
obtain the attractiveness value of each face. We find that the
average Spearman rank correlation coefficient is ρ = 0.05
with p = 0.266, as the correlation between attention and
face attractiveness. The corresponding Pearson correlation
coefficient is γ = −0.03 with p = 0.268. Surprisingly, visual
attention is almost irrelevant to face attractiveness. This is
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Fig. 5. Comparison of attention in front and profile faces. Note that (a) is the results of three frames of a randomly selected video. Also, note that the
statistical results in (b) are averaged over the fixation data of all 65 videos in our database. In (b), fixations per face are shown for frontal and profile faces,
respectively.

Fig. 6. Human fixations in speaking and non-speaking faces. (a) is the fixation
maps of 4 randomly selected videos at different crowd levels, containing 2,
3, 6, and 10+ persons. (b) shows the numbers of fixations per frame in
speaking and non-speaking faces, for each individual video of (a). In (b),
the bar of “average by all” shows the numbers of fixations per face, averaged
over all speaking and non-speaking faces of all 65 videos in our database.
(c) shows the actions of speaking and non-speaking versus normalized
fixations of one face of a selected video. In (c), fixations are normalized,
by dividing the fixation number of each face with the maximal fixations among
all faces.

probably due to the fact that visual attention is normally drawn
by face actions, as revealed in the following observations.

C. Dynamic Actions vs. Attention

Observation 6: A speaking face attracts a large amount of
visual attention.

Figure 6 shows the relationship between the action of
speaking and the fixations in multiple-face videos. We can
see from the subjective results in Figure 6-(a) that human
tends to look at the speaking face. Note that the interview-like

videos (with microphones) are chosen as examples, because
the microphones in these videos help readers locate the
speaking face. Figure 6-(b) quantifies the numbers of average
fixation on speaking and non-speaking faces, for the examples
of Figure 6-(a). More importantly, the statistical results of
“average by all” in Figure 6-(b) are averaged over all 65 videos
in our database, which verifies that speaking action attracts
approximately 20 fixations per frame, whereas non-speaking
action attracts less than 9 fixations per frame. Figure 6-(c)
also plots the actions of speaking and non-speaking versus
visual attention for a video. In summary, we can observe from
Figure 6 that the speaking action (i.e., mouth motion) may
draw extensive visual attention to the corresponding face in
multiple-face videos.

Observation 7: In multiple-face videos, visual attention on
each face is highly correlated with head turning.

It is also interesting to find out the correlation between
visual attention and head turning, in multiple-face videos.
Figure 7-(a) illustrates that fixations drop when head turns
from front to profile, and that attention increases when head
turns from profile to front. Note that the statistical results
of Figure 7-(a) are obtained by averaging over all videos in
our database. Figure 7-(b) provides some examples to show
how visual attention is attracted by head turning. We can
observe from Figure 7 that the front-to-profile head turning
significantly reduces visual attention, while the profile-to-front
head turning receives increasing visual attention.

IV. FEATURE DETECTION

Since Section III has found that visual attention is highly
correlated with some high-level features of face, this section
mainly discusses the techniques for detecting these features.
Specifically, Section IV-A describes the preliminary for face-
related feature detection, including tracking faces and their
landmarks in videos. After tracking facial landmarks, the size
and center-bias of face can be easily obtained. Section IV-B
proposes a technique to monitor the action of speaking.
Section IV-C presents a way to detect features of head pose
and head turning.

A. Preliminary

Observation 1 verified that a face is an obvious cue to draw
visual attention in a video. Accordingly, we need to detect
faces in multiple-face videos. Additionally, the landmarks
of faces are necessary to detect high-level features, such as
speaking. Thus, this section concentrates on the detection of
face and facial landmarks for multiple-face videos, as the
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Fig. 7. Correlation between fixations and head turning. Fixation change per video averaged over all 65 videos in our database, when head turns from front
to profile (F → P) and from profile to front (P → F). (b) Fixation maps for the frames of head turning.

preliminary of our saliency prediction method. The recent
work of [46] constructed a unified model for face detection,
pose estimation and landmark estimation, in multiple-face
images. Here, we first utilize [46] to detect faces and their
landmarks at each frame of a video, in which both frontal
and profile faces can be located. To improve face detection
performance, we follow our recent work [47] to manage
some harsh situations, such as partial occlusion and poor light
conditions, by exploring temporal information of videos. To be
more specific, we match the faces across frames, by searching
for the face with nearest Euclidean distance. We then identify
the nearest faces of two consecutive frames as the matched
face of the same person, provided that their distance is less
than a threshold:

thE = γ ×
√

w2 + h2, (1)

where w and h are the width and height of the detected
face, respectively. Otherwise, we regard them as non-matching
faces, belonging to different persons. In (1), γ is a parameter
to control the sensitivity of face matching, and it is simply set
to 0.5 in this paper. When matching faces across frames, some
faces may be missed due to occlusion or light conditions. For
detecting these missed faces, the linear interpolation of faces is
applied to neighboring frames within a sliding window. In this
paper, the length of the sliding window is empirically chosen
to be 17, to make the face detection results appropriate. The
experimental results have verified that the above technique is
simple yet effective in matching faces of our database, which
can also handle camera motion; thus, it is not necessary to
utilize another advanced tracking algorithm.

Next, we also use [46] to locate facial landmarks in
multiple-face videos. In our method, [46] is directly used
to locate 39 landmarks for profile faces. Then, we improve
the performance of [46] in landmark localization for frontal
faces, via applying the latest work of [48] to track landmarks
for each detected frontal face. After faces are interpolated
in some video frames, we implement our previous work
of [47] to predict the facial landmarks upon the matched
faces of neighboring frames. As a result, multiple faces, either
frontal or profile, can be detected and matched in a video with
well-located landmarks.

Finally, the size and center-bias of each face should
be estimated using facial landmarks in a video, since
Observations 2 and 3 have shown that attention is correlated

with the size and center-bias of face. Specifically, the contour
and region of each face are extracted by connecting the related
landmarks. Then, the number of pixels belonging to the face
region is considered to be the face size. Based on the contour
of the extracted face, the face center can also be estimated,
and its Euclidean distance to the video center is calculated
as the center-bias of each face. Note that both the size and
center-bias of each detected face should be normalized by
video resolution. In addition, the performance of our saliency
prediction method relies on the results of the above face
detection and tracking algorithm, which is the basis of our
method.

B. Detection on Speaking and Non-Speaking

Observation 6 has shown that speaking may attract a large
amount of visual attention. Thus, we now present an algorithm
to detect the actions of speaking. The procedure of our
algorithm is summarized in Figure 8, and it learns to detect
the speaking action using the motion, geometry and texture of
mouth regions. In general, we first incorporate a classic motion
detection approach, optical flow [49], to measure the intensity
and orientation of mouth motion. Second, we leverage the
detected mouth landmarks to measure the elongation of the
mouth for quantifying the geometry variation of speaking.
Third, the gray scale value of the mouth region pixels is
utilized to find the texture variation of speaking, similar
to [50] and [51]. Finally, our algorithm applies SVM as the
binary classifier of speaking, with respect to the features of
optical flow, mouth elongation and gray values.

Specifically, the geometry of the mouth variation is used
as a feature to make a judgement on speaking. Toward such
a geometry, the height and width of outer and inner lips
are measured on the basis of mouth landmarks. We define
the height and width of the outer lip by a and b, respec-
tively, and the height and width of the inner lip are denoted
as c and d , respectively. Refer to Figure 9 for more details.
Then, the elongation of the mouth can be calculated by

V = a + c

b + d
. (2)

Also, the texture change of the mouth region is incorporated
in speaking detection. The previous work of [51] has found
that speaking may change the distribution of gray values in
the mouth region. Specifically, if most pixels of mouth region
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Fig. 8. Framework of the speaking detection algorithm. In this framework, [46] is applied for face detection and alignment, such that both frontal and profile
faces can be processed. Likewise, there are 68 and 39 landmarks for frontal and profile faces, respectively. For profile faces, the calculation of elongation is
different, which uses different landmarks to compute the corresponding variables.

Fig. 9. Illumination for the height and width of outer and inner lips by facial
landmarks. Left is the facial landmark graph, and right is the landmarks of
the mouth.

are at very low gray scale, the person is more likely to
speak. It is because when speaking, mouth cavity decreases the
average intensity of mouth region due to black region. Here,
we follow [51] to use the gray values of the mouth region
as one feature for speaking detection. The binary process is
conducted on the gray image of the mouth region, with regard
to a predefined threshold thG . Then, the average binary value
of the mouth region is computed by

B =
∑

(x,y)∈R b(x, y)

#(R)
, (3)

where #(R) is the total number of pixels in the mouth
region R, and b(·) is the binary value of each pixel in the
mouth region.

Next, we estimate the intensity of mouth motion based
on optical flow. Here, the mouth region in a video frame,
defined by R, is extracted by connecting landmarks of the
outer lips. In the mouth region, we apply the Lucas-Kanade
algorithm [49] to detect pixel-wise optical flow. Then,
the intensity of mouth motion can be estimated by averaging
the optical flow of all pixels in the mouth region:

O =
∑

(x,y)∈R ||o(x, y)||2
#(R)

, (4)

where o(·) is the optical flow vector of each pixel.
We further compute the orientations of mouth motion, also

based on optical flow. Given the vectors of optical flow at
mouth region R, the orientations of mouth motion can be
represented by the following histogram:

histl =
∑

(x,y)∈R ||ol(x, y)||2
#(R)

, l = 1, 2, . . . , L . (5)

In (5), ol(·) is the orientations of optical flow belonging to
the l-th orientation. There are L equal bins for the orientation

histogram of (5), i.e., the bin width is 360◦/L. In this paper,
we set L to be 8, corresponding to 8 directions of mouth
movement.

Finally, SVM with the radial bias function (RBF) kernel
is used in our algorithm to train the binary classifier for
speaking and non-speaking. The input feature vector of SVM
consists of mouth motion intensity O, mouth motion orien-
tation histogram [hist1, . . . , histK ], mouth elongation V and
average binary value B at three neighboring frames. As a
result, the action of speaking can be detected, as one of the
high-level features for our saliency prediction method.

C. Detection on Head Pose and Head Turning

It has been demonstrated in Observation 4 that visual
attention on face is relevant to its pose. We thus need to detect
the head pose as a feature for predicting video saliency. In [46],
68 landmarks are detected for frontal face, whereas 39 land-
marks are found for profile face. In this paper, we estimate
the head pose on the basis of the number of landmarks of the
tracked face (by Section IV-A). That is, the face is viewed
as a frontal face when it has 68 landmarks; otherwise, it is
considered to be a profile face given 39 landmarks. Note that a
detected face can only have 68 landmarks (frontal) or 39 land-
marks (profile).

Observation 7 has pointed out that visual attention is also
correlated with head turning. Due to this, we further detect
the action of head turning, which has two categories: front-to-
profile or profile-to-front. In fact, head turning can be tracked
in a straightforward manner according to the change of head
pose (defined above). We empirically find that the duration of
head turning is normally 1 second. Thus, once a head pose
change is detected, the corresponding face of adjacent frames
within 1 second is annotated as head turning.

V. SALIENCY PREDICTION

After extracting the above features, our method introduces
the M-HMM model and postprocessing step to generate
saliency maps of multiple-face videos. The overall pipeline
of our method is summarized in Figure 10. As can be seen in
this figure, the input is frames of multiple-face videos, and the
output is the corresponding saliency map. After face detection
and feature extraction, M-HMM is used to predict the attention
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Fig. 10. Pipeline of our proposed method.

Fig. 11. Overview structure for HMM.

weight of each face by exploring the temporal transition of
salient faces across video frames. In our saliency prediction
method, we extend HMM to be M-HMM, by allowing more
than one interactive state at one time period. Besides, each
state in M-HMM depends on the observed features and the
previous states. More details about HMM and M-HMM are to
be discussed in Sections V-A and V-B, respectively. Finally,
a post-processing step is adopted to generate saliency maps of
multiple-face videos, as discussed in Section V-C.

A. HMM for Single-Face Saliency

First, we concentrate on the application of HMM in our
saliency prediction method. Figure 11 shows the structure of
HMM. In HMM, we treat high-level static/dynamic feature ft

(discussed in Section IV) as the observed feature at the t-th
frame. State St , the sequential unit in HMM, stands for the
variation of saliency attended to one face. In our application,
we have St ∈ {+δ1, 0,−δ2}, where δ1 (> 0) and δ2 (> 0)
define the amounts that saliency increase and decrease for a
face. Moreover, St = 0 indicates that the saliency of the face
remains unchanged across frames. In HMM, the value of the
currently processed state St relies on its previous state St−1
and observed feature ft . As such, the saliency map of a video
frame is determined by its observed high-level features and
the saliency of the face at the previous frame. However, HMM
can only deal with one face, since there is one state in each
time period for HMM. In the next subsection, we present our
M-HMM algorithm to predict the saliency of more than one
face.

B. M-HMM for Multiple-Face Saliency

For M-HMM, multiple HMMs are adopted and combined,
each of which is in accordance with the saliency of one face.
Figure 12 shows the structure of our M-HMM, in which
there are N states in total for a time period. In our saliency
prediction method, each state (among N states) means saliency
variation of one face at the t-th frame, and they are denoted
as {S(n)

t }N
n=1. Consequently, M-HMM can be applied to the

Fig. 12. Structure of M-HMM. Note that the fully-connected layer is different
from that in deep learning, because no weight needs to be learnt in this layer.

multiple-face scenarios. As with St , the possible values of
S(n)

t are ∈ {+δ1, 0,−δ2}. Then, all N states in M-HMM
are simultaneously transited along with the processed video
frames. Similar to HMM, the states of {S(n)

t }N
n=1 depend on

their corresponding observations of high-level features f (n)
t ,

as well as their previous states {S(n)
t−1}N

n=1.
In the following, we introduce a fully-connected network

in M-HMM, via adopting the basic idea of RNN [52].
Observation 1 has pointed out that most visual attention is
attracted by one face among all faces. In other words, if one
face receives a large amount of attention in a video frame,
then the other faces normally draw few fixations. That is,
saliency maps of different faces are highly correlated with
each other in a video frame. Thus, {S(n)

t }N
n=1 at one time

period need to be interactive with each other. Accordingly,
our M-HMM algorithm takes into account the interaction
of state set {S(n)

t }N
n=1 by adding a fully-connected network.

Specifically, we denote {z(n)
t }N

n=1 (∈ [0, 1]) as the set of
weights, reflecting the proportions of attention belonging to
different faces in a video frame. Additionally, {x (n)

t }N
n=1 is

the intermediate units for computing {z(n)
t }N

n=1. A higher x (n)
t

corresponds to a larger z(n)
t . Assuming that

∑N
n=1 z(n)

t = 1,
the following softmax activation function is used to formulate
weights {z(n)

t }N
n=1 in M-HMM:

z(n)
t = exp(x (n)

t )
∑N

n′=1 exp(x (n′)
t )

, (6)

where x (n)
t is defined as

x (n)
t = z(n)

t−1 + S(n)
t . (7)
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In (7), x (n)
t of one face is determined by saliency variation

S(n)
t (i.e., states of M-HMM) and the weight of face attention

z(n)
t−1 at the previous frame. They are modeled as hidden units

of the fully-connected network in our M-HMM structure (as
shown in Figure 12).

Finally, M-HMM is able to output weights {z(n)
t }N

n=1. Given
{z(n)

t }N
n=1, we can make use of the dynamic feature f (n)

t to
predict the visual attention on each face at the t-th frame.
In this paper, the predicted visual attention of the face channel
is modeled using the conspicuity map,4 denoted as MF

t . It can
be computed by

MF
t =

N∑

n=1

z(n)
t c(n)

t MFn
t , (8)

where MFn
t denotes the conspicuity of the n-th face upon

feature f (n)
t , and c(n)

t is the center-bias weight of each face.
In our method, MFn

t is calculated by the latest work [22],
which models the conspicuity map of a face with the Gaussian
mixture model (GMM). It is worth pointing out that in [22] the
conspicuity map of each face is proportional to its size, with
the relationship learnt from training data. As such, face size is
already considered in our method, satisfying Observation 2
of this paper. In addition, Observation 3 has revealed that
visual attention is also correlated with the center-bias feature
of faces in multiple-face videos. Therefore, we follow the way
of [53] to take into account the face center-bias feature by
weighting the Gaussian model c(n)

t in (8). Assuming that d(n)
t

is the Euclidean distance of the n-th face to the video center
at the t-th video frame, c(n)

t of (8) can be calculated using the
following Gaussian model:

c(n)
t = exp

(

− (d(n)
t − minn d(n)

t )2

σ 2

)

. (9)

In (9), σ is the standard deviation of the Gaussian model,
which reflects the degree of center-bias. Note that Gaussian
center-bias weights of (9) are only imposed on conspicuity of
each face in our method, rather than all pixels as in [53].

Now, the remaining task is to learn the parameters of our
M-HMM for estimating z(n)

t , such that the conspicuity of
each face can be yielded by (8). At the beginning, all initial
states S(n)

1 are simply set to 0 for M-HMM. Next, the matri-
ces of transition probabilities and emission probabilities are
two important parameters of M-HMM to be learnt. In our
M-HMM, the matrices of these two parameters are identical
across different HMMs. It is because transition probabilities
and emission probabilities of each HMM are independent of
other HMMs, as can be seen in Figure 12. In our method,
we apply the maximum likelihood estimation [54] to learn
these two matrices from training data. Given the learnt matri-
ces, the Viterbi algorithm [55] is adopted to perform the
transition between the previous state and the current state,
based on the observed dynamic feature f (n)

t of each face.

4Note that saliency produced by the channel of a single feature is defined as
the conspicuity map, to differentiate from the saliency map that is generated
by all features.

C. Feature Integration

According to Observations 6 and 7, the high-level features
f (n)
t can be the actions of speaking and head turning, for

predicting video saliency. Accordingly, we define the set of
the high-level dynamic features as { f (n)

t,k }K
k=1. Specifically,

f (n)
t,1 ∈ {1, 0} means whether the face speaks (= 1) or does not

(= 0d). f (n)
t,2 ∈ {1, 0} indicates whether the head turns from

front to profile, and f (n)
t,3 ∈ {1, 0} indicates whether the face

has the profile-to-front turning. Besides, since Observation 4
has shown that the frontal face receives more attention than the
profile face, we further include the static feature of head pose
f (n)
t,4 , which stands for frontal face (= 1) or profile face (= 0).

At the k-th frame, we can generate the set of face conspicuity
maps {MF

t,k}4
k=1, corresponding to different features { f (n)

t,k }4
k=1.

Then, we need to combine all conspicuity maps of
{MF

t,k}4
k=1 for predicting the face saliency of multiple-face

videos. Let SF
t be the face saliency of the t-th video frame.

It can be computed by the linear combination:

SF
t =

4∑

k=1

wkMF
t,k, (10)

where wk is the weight of the k-th conspicuity map.
Finally, we can compute (10) to predict saliency maps of

multiple faces in a video, once the values of {wk}4
k=1 are

known. In fact, the weights of wk can be learnt from training
data via solving the following optimization formulation:

arg min
{wk }4

k=1

L∑

l=1

||
4∑

k=1

wkMF∗
l,k − SF∗

l ||2,

s.t .
4∑

k=1

wk = 1, wk = 1 > 0, (11)

where {MF∗
l,k }L

l=1 are the conspicuity maps and {SF∗
l }L

l=1 are
human fixation maps, for all L training video frames. In this
paper, we apply the disciplined convex programming (CVX)
to solve the above optimization formulation.

In order to consider both low-level and high-level features
in saliency prediction, our method combines face saliency SF

t
with saliency maps of three low-level features of GBVS [13]
(i.e., SI

t for intensity, SC
t for color and SO

t for orienta-
tion). In addition, the weights for the linear combination are
determined through the least square fitting on training data.
Afterwards, the final saliency map St of each video frame can
be yielded for multiple-face videos.

VI. MODEL EVALUATION

A. Setting

In our experiments, we tested all 65 videos in our eye-
tracking database (mentioned in Section II). Here, 5-fold cross
validation was applied, in which 65 videos were equally
divided into 5 non-overlapping sets. One set was used for
the test with the others being training sets. Following this
way, all 5 sets can be tested. In this paper, the saliency
prediction results are reported by averaging over all 65 videos
in 5-fold cross validation. Note that both speaking detection
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and saliency prediction were trained and tested with the same
5-fold cross validation. Besides, we simply utilized the face
detector and head pose detector provided by [46], which had
been already trained over the external data of [46].

For speaking detection, the threshold of binary process on
gray scale mouth was empirically to be thG = 28, in our
experiments. Furthermore, the SVM (with the RBF kernel) of
the LIBSVM toolbox [56] was applied, which detects speaking
actions of all test videos in 5-fold cross validation. In the
LIBSVM toolbox, the penalty parameter C and kernel parame-
ter γ were tuned by grid search on training data. Specifically,
the grid search was divided into two steps: one for loose grid
search on C = 2−5, 2−4, ..., 29 and γ = 2−15, 2−14, ..., 29

(the optimal results are C = 23 and g = 25), and then
the other for a fine grid search on C = 22, 22.2, ..., 24 and
γ = 24, 24.2, ..., 26. The final optimized parameters were
C = 6.96 (i.e., 22.8) and γ = 18.38 (i.e., 24.2) for our
experiments.

For saliency prediction, the values of latent state Sn
t,k in

M-HMM were tuned to be δ1 = δ2 = 0.38. When training
the matrices of the transition and emission probabilities for
M-HMM, the values of z(n)

t were obtained by computing the
proportion of human fixations on the n-th face to fixations on
all faces. When training the weight of each high-level feature
channel in (11), the fixations on face regions in the training
frames were smoothed with a two-dimensional Gaussian filter
(with the cut-off frequency being 6 dB) to obtain {SF∗

l }L
l=1.

In addition, all fixations of each training frame were smoothed
with the same Gaussian filter, to train the weights of channels
on face and low-level features.

B. Evaluation on Feature Detection

In this section, the extraction of high-level features is
evaluated, as it is the foundation of saliency prediction.
First, we evaluate the performance of our speaking detection
algorithm proposed in Section IV-B. Recall that the man-
ually annotated speaking results are available in our eye-
tracking database (https://github.com/yufanLiu/find), and they
are considered to be the ground truth for speaking detection.
The state-of-the-art of speaking detection algorithms [51]
and [50] were compared with our algorithm. The metrics of
F-measure, accuracy, false positive rate (PF P ) and false nega-
tive rate (PF N ) are measured for evaluation. Here, F-measure
is calculated as follows,

F1 = 2PT P

2PT P + PF P + PF N
, (12)

where PT P represents the true positive rate. Note that accuracy
is the ratio of correctly detected speaking and non-speaking
faces to the total number of faces, at all frames of test
videos. Table II reports the results of the three algorithms
for all test videos in 5-fold validation. It can be seen that
our speaking detection algorithm is significantly superior
to [50] and [51], in terms of overall performance measured by
F-measure and accuracy. Although [50] has the smallest false
negative rate (PF N = 0.06), its false positive rate is extremely
high (PF P = 0.84). By contrast, our algorithm achieves the
best false positive rate (PF P = 0.13) and its false negative

TABLE II

EVALUATION ON SPEAKING DETECTION BY OUR AND
OTHER TWO COMPARATIVE ALGORITHMS

rate (PF N = 0.38) is comparable to that of other algorithms.
In other words, our algorithm performs the best among all
three algorithms on speaking detection. Note that our database
is tough for speaking detection because there are multiple faces
in the videos and some of them are small, blurry and partially
occluded. Meanwhile, our speaking detection algorithm relies
on the face alignment algorithm [46] to handle occlusion, pose
changes and illumination.

Moreover, we show the effectiveness of our detection
method on head pose and head turning. For head pose detec-
tion, we found from our experiments that its accuracy is
approximately 99.1%, averaged over all test videos, which is
close to the 99.9% accuracy reported in [46]. For head turning
detection, the average accuracy is 90.1%, which is similar to
the accuracy of head pose detection as head turning is based
on the results of detected head pose. In a word, head pose and
head turning can be effectively detected in our method.

C. Evaluation on Saliency Prediction

In this section, we compare our method with
8 conventional saliency prediction methods, including
Xu et al. [22], Jiang et al. [23], SALICON [19], GBVS [13],
Rudoy et al. [29], PQFT [16], Surprise [9] and OBDL [12].
Additionaly, [13], [19], [22], and [23] are image saliency
prediction methods. To be more specific, [22] and [23] work
on face saliency prediction of images, which incorporate the
high-level static features of face. We compare our method
to these two high-level based methods, as there is no face
saliency prediction method for videos. On the contrary, [19]
is a state-of-the-art deep neural network (DNN) method that
automatically learns hierarchical static features for saliency
prediction. Besides, [13] is a low-level based method, which
provides the saliency of low-level features for our method.
Therefore, [13] and [19] are also included in our comparison.

Note that we use our multiple-face tracking technique to
detect faces for [22], since it only handles the single-face
scenario.

The most recent work of [57] and [58] reported that
normalized scanpath saliency (NSS) and correlation coefficient
(CC) perform the best among all metrics in evaluating saliency
prediction accuracy.5 Thus, we compare our method with
8 other methods in terms of NSS and CC. Table III reports
the comparison results of saliency prediction, averaged over
all test videos in the 5-fold cross validation. As shown in this
table that our method is much better than all other methods
in predicting the saliency of multiple-face videos. Specifi-
cally, our method significantly outperforms all video saliency

5 [57] also showed that area under ROC (AUC) is the worst metric in
measuring the accuracy of saliency prediction.
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TABLE III

ACCURACY OF SALIENCY PREDICTION BY OUR METHOD AND 8 OTHER METHODS,
AVERAGED OVER ALL TEST VIDEOS IN THE 5-FOLD CROSS VALIDATION

TABLE IV

SHUFFLED AUC OF SALIENCY PREDICTION BY OUR METHOD
AND 3 OTHER STATE-OF-THE-ART METHODS

prediction methods in both NSS and CC. Moreover, our
method performs much better than the latest DNN method
SALICON, with 0.65 and 0.14 increases in NSS and
CC, respectively. Furthermore, our method has 0.47 and
0.05 improvements in NSS and CC compared with [22]. These
improvements are due to the following reason: The saliencies
of all faces have equal importance in [22], whereas the use of
high-level dynamic features enables our method to precisely
predict salient faces across frames. Moreover, note that both
our method and [22] are superior to [23], which imposes
unequal importance on different faces in an image. The main
reasons are as follows: (1) The predicted saliency of [23]
suffers from incorrectly detected faces because it is based on
image face alignment [46], and (2) the utilization of high-
level static features in [23] may predict incorrect salient faces
in a video. Conversely, the high-level dynamic features of our
method are highly effective in finding the salient faces in a
video.

Since the above comparison takes into account the influ-
ence of center-bias embedded in saliency prediction methods,
we further compare the saliency prediction performance in
terms of shuffled AUC, which removes the influence of
center-bias. Table IV reports the shuffled AUC results of our
method and Xu et al. [22], Jiang et al. [23] and GBVS [13]
methods, which bias the saliency prediction toward the center.
It can be seen that our method still performs better than the
other methods, when removing the influence of center-bias in
saliency prediction. In Section VI-D, we further analyze the
influence of center-bias in our saliency prediction method in
more detail.

Next, we move to the comparison of subjective results.
We show in Figure 13 the saliency maps of several frames
in a video, generated by our method and 8 other methods.
As shown in this figure, our method is capable of finding
the salient face according to high-level dynamic features.
Consequently, the saliency maps of our method are more
accurate than those of other methods. For example, we can see
from Figure 13 that the face of the girl is much more salient
than the other, when she is speaking (the first column) or turn-
ing her head (the last column). Moreover, the man’s face
is more salient, when he is speaking (the second and third
columns) or the girl’s face is profile. In contrast, [22] finds
all three faces as salient ones, and [23] misses the salient

Fig. 13. Saliency maps for different frames of a video selected from
our database. These maps are generated by ground truth human fixations,
our method, Xu et al. [22], SALICON [19], Jiang et al. [23], OBDL [12],
Rudoy et al. [29], PQFT [16], Surprise [9] and GBVS [13].

face of the speaking man because he is far from the video
center. In addition, although the predicted saliency of [19]
involves some detected faces benefiting from the learned
features of DNN, it fails to predict the transition of the salient
face. It is mainly because [19] focuses on image saliency
prediction, without considering temporal information or high-
level dynamic features. Figure 14 provides the saliency maps
of the frames selected from 5 videos. It is worth pointing out
that in the fourth video of Figure 14, all 9 faces are singing
simultaneously. In this case, people usually look at each singer,
and then concentrate on the singer located in the center.
Fortunately, Figure 14 shows that our method can successfully
detect the salient face, benefiting from the incorporated center-
bias feature. Similarly, the last column of Figure 14 further
shows that our method is able to locate the salient face by
taking advantage of the center-bias feature, when one face is
speaking and some of the other faces are acting. We can further
see from the fourth column of Figure 14, our method can
still find the salient face when more than one face speaking,
benefitting from other features (e.g., the center-bias feature).
Again, this figure verifies that our method is able to precisely
locate salient faces by turning from actions to saliency.
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Fig. 14. Saliency maps for several frames selected from different videos
in our database. These maps are generated by ground truth human fixations,
our method, Xu et al. [22], SALICON [19], Jiang et al. [23], OBDL [12],
Rudoy et al. [29], PQFT [16], Surprise [9] and GBVS [13].

D. Performance Analysis of Saliency Prediction

Section VI-C has validated that the high-level dynamic
features are rather effective in improving the performance
of saliency prediction for multiple-face videos. However,
these features are automatically detected by the technique
of Section IV, which may incur some detection errors as
verified in Section VI-B. Thus, it is interesting to see the
influence of the feature detection errors on saliency prediction.
In Table III, we present the NSS and CC of our method with
manually annotated dynamic features. We find that there is
a 0.27 NSS improvement or a 0.06 CC improvement, when
using manual annotation instead of automatic annotation on
high-level features. Thus, the performance of our method can
be further improved, via advancing the technique of feature
extraction.

Next, we analyze the performance of each individual feature
and the feature integration in our method. Figure 15 plots
the NSS and CC of our method with each single feature and
with all features integrated together. Additionally, the results
of [22] are also provided, since our method weights the
detected salient faces of [22] with respect to several proposed
features. Obviously, we can see from Figure 15 that all single
features perform better than [22], validating the effectiveness
of each single feature in our method. Besides, one may
observe that the feature of speaking is more effective than
the features of head turning and head pose in predicting
video saliency. More importantly, Figure 15 shows that the
integration of all high-level features is superior to each single
feature in saliency prediction. This verifies the effectiveness
of the feature integration in our method.

Fig. 15. Performance comparison of our method with different features and
the method of [22].

Fig. 16. Saliency prediction performance versus different center-bias para-
meter σ of (9).

Finally, it is necessary to investigate the effectiveness of the
feature of face center-bias in our method. To this end, standard
deviation σ in (9) is traversed, imposing different impact of
face center-bias on saliency prediction. Figure 16 plots the
NSS and CC results at different σ , averaged over all training
videos of the 5-fold cross validation. It is clear that the best
performance is achieved once σ = 10−0.2, and thus, σ was set
to 10−0.2 in our above experiments. This figure also shows that
when σ increases from 10−0.2 to 103, the accuracy of saliency
prediction slightly decreases. This implies that the feature of
face center-bias is effective in our method, since its impact
dramatically decreases in (9) for σ = 10−0.2 → 103. On the
other hand, a small value of σ causes our method to only
predict the face closest to the video center as the most salient
one, according to (8) and (9). When σ is as small as 10−1,
the NSS of our method is ∼ 3.16, reflecting the performance
of the single feature of face center-bias.

For time complexity, our method consumes roughly
2.37 seconds per frame. Our method was implemented in
Matlab R2016b and run on a computer with a Intel Core
i7-6700K CPU@4.00 GHz and RAM 32.0GB. Specifically,
the time consumption of our method includes face detection
and landmark localization (2 s per frame), face tracking
(287 ms per frame), feature extraction (52 ms per frame),
M-HMM (0.6 ms per frame) and feature integration (40 ms
per frame). To improve the speed of our method, some fast
algorithms of face detection and landmark localization may be
applied, e.g., [48].

VII. IMPLEMENTATION IN VIDEO COMPRESSION

The proposed saliency prediction method has potential to be
implemented in some tasks of video processing. For instance,
in human-centered multimedia, our method may be utilized to
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locate salient faces in a video, seen as ROI. Then, the quality
of experience (QoE) of video conferencing can be improved
by assigning more coding bits to salient faces, during video
compression. In this section, we present a simple implemen-
tation of our saliency prediction method in the compression
of video conferencing, which is embedded into the latest
HEVC standard.

A. Method for Video Compression

When encoding a multiple-face video frame by HEVC,
our implementation allocates target bits to each coding tree
unit (CTU) according to the video saliency predicted by our
method. Specifically, our implementation is embedded into the
r-λ rate control (RC) scheme [59] of HEVC. In the conven-
tional HEVC, the RC scheme [59] estimates the bit per pixel
(bpp) at each CTU given a target bit-rate, for rate-distortion
optimization. Instead, we follow our previous work [60] to
define bit per saliency weight (bpw), for perceptual rate-
distortion optimization (also called the perceptual RC scheme)
in HEVC. For the t-th frame, assuming that bpwt,i is the bpw
of the i -th pixel, the target bit rt, j for the j -th CTU can be
determined by

rt, j =
∑

i∈It, j

bpwt,i , (13)

where It, j is the set of pixels in the j -th CTU. Before encoding
a frame of a multiple-face video, bpwt,i in (13) can be obtained
from the saliency map St generated by our saliency prediction
method. Let St (i) be the predicted saliency value of the i -th
pixel at the t-th frame. Then, we have

bpwt,i = St (i) · rt∑
i∈It

St (i)
, (14)

where rt and It are the target bit-rate and pixel number of the
t-th frame, respectively.

Next, the average bpw in each CTU can be estimated by

bpwt, j = rt, j

#(It, j )
. (15)

where #(It, j ) indicates the overall number of pixels in the j -
th CTU. Then, we make bpwt, j instead of average bpp in the
conventional RC scheme [59], such that the following exists
for perceptual RC in HEVC:

λt, j = αt, j · (bpwt, j )
βt, j ,

Q Pt, j = c1 · ln(λt, j ) + c2, (16)

In (16), for each LCU, λt, j is the Lagrange multiplier of
optimization, and Q Pt, j is the quantization parameter (QP) as
the output of RC. In addition, αt, j and βt, j are the parameters
to estimate the r-λ relationship; c1 and c2 are the fitting
parameters for QP estimation. Refer to [59] for more details
on how to update these parameters alongside compressed
frames. Finally, each frame of video conferencing can be
encoded by HEVC, on the premise of the CTU-wise QPs
estimated by our perceptual RC. Figure 17 summarizes the
overall procedure of our implementation in perceptual RC for
HEVC-based video compression.

Fig. 17. The framework of our perceptual RC on the basis of our saliency
prediction method.

Fig. 18. Rate-distortion curves of our and conventional schemes.

B. Results of Video Compression

In this section, we report the compression results to validate
the performance of the above implementation. Since our
saliency prediction method is capable of locating salient faces
in a multiple-face video, our experiments test on the sequences
of Class E (the class of video conferencing) from the JCT-
VC database [61]. In the JCT-VC database, Class E consists
of three 720p raw sequences: Johnny, KristenAndSara and
FourPeople. The HEVC reference software HM 16.0 (in the
LowDelay configuration) was used to compress all those three
sequences at different bit-rates, with its conventional r-λ [59]
and our perceptual RC schemes.

Here, the eye-tracking weight PSNR (EWPSNR) [62] is
used to evaluate the distortion of compressed sequences at
various bit-rates. Note that EWPSNR weights PSNR with
human fixation maps, thereby well reflecting the subjective
quality of compressed sequences. Figure 18 plots the rate-
distortion curves of compressing all three test sequences,
in terms of EWPSNR. We can see from this figure that
EWPSNR of our perceptual RC implementation is much
better than the conventional HEVC compression, with approx-
imately 1-2 dB improvement. Thus, we can conclude that the
implementation of our saliency prediction method is able to
improve the perceptual quality of HEVC compression on video
conferencing.
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Fig. 19. Subjective quality comparison of KristenAndSara. (a) and (b) are the 320thframe compressed at 100 Kbps by the conventional and our scheme,
respectively.

TABLE V

DMOS COMPARISON OF HEVC AND OUR

APPROACH AT 300 Kbps BIT RATE

We further compare the subjective quality of our imple-
mentation and conventional compression in Figure 19. One
may observe from this figure that our implementation yields
more satisfactory quality in ROI (the salient face) with some
quality loss in non-ROI, compared to the conventional HEVC
compression. To quantify the subjective quality, we conducted
the difference mean opinion score (DMOS) experiment using
the single stimulus continuous quality scale (SSCQS) proce-
dure of Rec. ITU-R BT.500 [63]. In the DMOS experiment,
12 subjects were asked to rate the quality of sequences
compressed at 300 Kbps. The quality rate scales are divided
as: excellent (100-81), good (80-61), fair (60-41), poor (40-21)
and bad (20-1). Since DMOS measures the difference of
the rated scores between uncompressed and compressed
sequences, smaller DMOS indicates better subjective quality.
Table V tabulates the DMOS results of our and conventional
HEVC compression. As shown, the subjective quality of our
perceptual RC is superior to the conventional one. This again
verifies the potential implementation of our saliency prediction
method in video compression.

VIII. CONCLUSION

In this paper, we have proposed a novel saliency prediction
method for multiple-face videos, which learns to predict the
salient face with regard to some static and dynamic high-
level features of faces. First, we established an eye-tracking
database consisting of 65 multiple-face videos. Then, we found
out from our database that visual attention in multiple-face
videos is highly correlated with both static and dynamic
features of face at high-level. These features include face size,
center-bias, speaking, head turning and head pose. Accord-
ingly, we developed the techniques to extract these features.
Next, a new M-HMM algorithm was proposed to integrate
the observed features and saliency transition from previous
frames into a uniform framework. This way, the high-level
features, such as actions of speaking and head turning, can be

turned to video saliency, for predicting who to look at. The
experimental results demonstrated that our method is able to
advance state-of-the-art saliency prediction on multiple-face
videos. Finally, we provided a potential implementation of our
saliency prediction method in video compression.

There exist three directions for the future work. (1) Our
database and analysis at the current stage may be lacking
generalization, as it mainly handles limited high-level features,
e.g., speaking, head turning, and so forth. In the future,
the database can be extended to include more general scenar-
ios, and some other high-level features, such as gesture and
expression, may be incorporated into the saliency prediction
framework. (2) There is still room to improve saliency pre-
diction accuracy by refining the speech detection algorithm.
For instance, the audio component of videos may be taken
into account in the speaking detector for saliency prediction.
(3) RNN is an efficient deep learning approach, which shares a
similar sequential structure with the proposed M-HMM. Thus,
applying RNN to saliency prediction is another promising
future work. (4) Our method only focuses on the visual cues to
predict saliency of video. Actually, audio may also have impact
on visual attention. Therefore, it is an interesting future work
to consider the audio cues in saliency prediction of multiple-
face videos.
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