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Abstract
This work studies the novel Crowdsourced Multi-
Label Learning (CMLL) problem, where each
instance is related to multiple true labels but the
model only receives unreliable labels from dif-
ferent annotators. Although a few Crowdsourced
Multi-Label Inference (CMLI) methods have been
developed, they require both the training and test-
ing sets to be assigned crowdsourced labels and
focus on true label inferring rather than prediction,
making them less practical. In this paper, by ex-
cavating the generation process of crowdsourced
labels, we establish the first unbiased risk es-
timator for CMLL based on the crowdsourced
transition matrices. To facilitate transition matrix
estimation, we upgrade our unbiased risk esti-
mator by aggregating crowdsourced labels and
transition matrices from all annotators while guar-
anteeing its theoretical characteristics. Integrat-
ing with the unbiased risk estimator, we further
propose a decoupled autoencoder framework to
exploit label correlations and boost performance.
We also provide a generalization error bound to
ensure the convergence of the empirical risk es-
timator. Experiments on various CMLL scenar-
ios demonstrate the effectiveness of our proposed
method. The source code is available at https:
//github.com/MingxuanXia/CLEAR.

1. Introduction
Multi-label learning (MLL) deals with scenarios where each
instance belongs to multiple categories concurrently (Zhang
& Zhou, 2007; 2014), which is widely adopted in real-world
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Figure 1. CMLI approaches focus on directly uncovering the
ground-truth labels given the crowdsourced ones on both train-
ing and testing sets, while CMLL takes a further step by learning a
robust predictor based on crowdsourced labels that can generalize
well on unseen instances.

applications such as image recognition (Zha et al., 2008;
Chen et al., 2019b), document classification (Rubin et al.,
2012; Xiao et al., 2019), protein function prediction (Wu
et al., 2014), and so on. However, the success of MLL
relies on large amounts of precisely labeled data, making
data annotation labor-intensive and time-consuming. On the
other hand, crowdsourcing (Snow et al., 2008; Albarqouni
et al., 2016; Rodrigues & Pereira, 2018) has recently estab-
lished itself as an efficient and cost-effective solution for
large-scale data annotation, where labels are collected from
low-cost crowds. This gives rise to the potential significance
of implementing crowdsourcing in the context of MLL.

Nonetheless, the study of crowdsourcing MLL has been
overlooked, since most existing crowdsourcing methods
emphasize multi-class classification problems, where each
instance is associated with a single label (Guan et al., 2018;
Rodrigues & Pereira, 2018; Wei et al., 2022; Gao et al.,
2022). Recently, a few Crowdsourced Multi-Label Inference
(CMLI) (Zhang & Wu, 2018; Li et al., 2019) approaches
have been proposed to address the crowdsourcing scenario
when learning with multiple labels. As shown in the up-
per part of Figure 1, CMLI approaches focus on directly
uncovering the ground-truth labels given the crowdsourced
ones on both training and testing sets. However, CMLI
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appears to be not only less practical but also lacks solid
theoretical grounding. On the one hand, CMLI requires
accessing crowdsourced labels on testing sets, which is
typically intractable. On the other hand, no existing CMLI
methods could provide theoretical guarantees as to how the
model trained based on crowdsourced labels generalizes on
unseen instances. This gives rise to an emergent question:
How to infer a theoretically robust MLL classifier from
crowdsourced labels?

To bridge the gaps, we deal with the urgent but under-
explored CMLL problem which aims to train a multi-
label predictor given crowdsourced labels directly and pro-
posed a theoretically grounded method named CLEAR,
i.e., Crowdsourced muLti-label learning with dEcoupled
AutoencodeR. Specifically, we first excavate the genera-
tion process of crowdsourced data in the setting of multiple
labels and establish the first unbiased risk estimator for
CMLL based on the crowdsourced transition matrices. Sub-
sequently, to avoid high time costs and accumulated errors
when estimating transition matrices, we upgrade the un-
biased risk estimator by aggregating labels from multiple
annotators and present the existence and formulation of
aggregated transition matrices. We also design feasible so-
lutions for approximating noisy posterior and estimating
the aggregated transition matrices which practicably real-
ize our unbiased objective. Equipping with the unbiased
risk estimator, we further devise a benchmark solution by a
decoupled autoencoder framework with latent space distil-
lation to exploit label correlations and boost performance.
Besides, we derive a generalization error bound for our sta-
tistically consistent algorithm to guarantee the performance
of our method on new instances. Empirically, we evaluate
CLEAR on five multi-label datasets under three crowdsourc-
ing scenarios, where CLEAR demonstrates superior results
among all baselines including crowdsourcing-based, MLL,
and weakly-supervised MLL approaches.

2. Related Work
2.1. Multi-Label Learning

Multi-label learning (MLL) (Liu et al., 2022) is a classical
learning paradigm where each data example simultaneously
relates to multiple binary labels. The most intuitive strat-
egy to resolve MLL is the one-versus-all algorithm (OVA)
(Zhang & Zhou, 2014) that decomposes MLL into several
binary prediction problems, which is followed by recent
deep approaches (Ridnik et al., 2021; Li et al., 2022; Gao
et al., 2023). Despite its simplicity, OVA neglects the rich
semantic dependencies among labels and thus suffers from
limited performance. To remedy this problem, there has
been a plethora of approaches developed, such as chain-
based algorithms (Read et al., 2011; Wang et al., 2016),
graph-based methods (Chen et al., 2019b; Zhu et al., 2023),

attention-based method (Huynh & Elhamifar, 2020a; Zhu
& Wu, 2021) and vision-language models (Hu et al., 2023;
Ding et al., 2023). Amongst them, the label embedding
algorithm (Chen & Lin, 2012; Yeh et al., 2017; Chen et al.,
2019a; Wang et al., 2020; Xiong et al., 2022) is a popular
solution that assumes the label vectors can be projected into
a lower dimensional space due to semantic relations. Fol-
lowing this line of work, we also devise a label embedding
framework, which only manipulates the feature space, to be
compatible with our unbiased loss.

2.2. Weakly-Supervised Multi-Label Learning

Classical MLL approaches mostly assume the training data
are fully-supervised. However, due to the complicated
structure of the label space, it can be too expensive and
time-consuming to collect precise labels. To mitigate this
problem, researchers have proposed a variety of weakly-
supervised settings of MLL, including semi-supervised
MLL (Wei et al., 2018; Shi et al., 2020; Wang et al., 2021),
multi-label with missing labels (Durand et al., 2019; Huynh
& Elhamifar, 2020b; Schultheis et al., 2022), MLL with
single positive label (Cole et al., 2021; Cho et al., 2022; Xu
et al., 2022), and partial MLL (Xie & Huang, 2018; Wang
et al., 2019; Lyu et al., 2020; Xu et al., 2020). In this work,
we study the crowdsourced MLL that collects labels from
multiple weak annotators for reduced cost.

2.3. Crowdsourcing

Crowdsourcing is a popular paradigm that collects low-cost
but unreliable labels, which release the burden of large-
scale data annotations (Liu et al., 2023; Wang et al., 2024).
Traditional crowdsourcing methods model crowdsourced
labels by expectation-maximization (EM) algorithm (Dawid
& Skene, 1979) that identify the accurate labels (White-
hill et al., 2009; Raykar et al., 2009; Raykar & Yu, 2012;
Dalvi et al., 2013; Zhang et al., 2016). Subsequently, deep
learning-based methods (Albarqouni et al., 2016; Guan et al.,
2018) are proposed and demonstrate superiority, where they
deal with crowdsourced label noise by learning label tran-
sition matrices (Rodrigues & Pereira, 2018; Li et al., 2023;
Chen et al., 2020; Wei et al., 2022; Gao et al., 2022). How-
ever, these methods study the problem where each instance
is associated with a single label. Instead, we explore the
crowdsourcing problem in the multi-label learning scenario
where samples are related to multiple labels. There have
also been some works (Zhang & Wu, 2018; Li et al., 2019)
studying the crowdsourcing problem in the context of learn-
ing with multiple labels. Nevertheless, they mostly concen-
trate on inferring the ground-truth labels behind the crowd-
sourced labels and need further training to obtain a predictor.
In contrast, our work aims to learn a classifier end-to-end
that can be generalized on unseen instances and provides
theoretical insights.
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3. Problem Setting
3.1. Multi-Label Learning

Multi-label learning (MLL) aims at assigning each instance
multiple binary labels simultaneously. Let X denotes the
d-dimensional feature space and Y = {0, 1}K denotes the
label space with K class labels. The training dataset D =
{(xi,yi)|1 ≤ i ≤ n} contains n examples, where xi ∈ X
is the instance vector and yi ∈ Y is the label vector. In this
setting, yik = 1 indicates that the k-th label is associated
with instance xi and yik = 0, otherwise. MLL aims to
learn a multi-label predictor f : X → Y by minimizing the
following risk:

R(f) = E(x,y)∼P (X,Y ) [L(f(x),y)] , (1)

where L : RK × Y → R is the multi-label loss function.
X,Y denotes the random variables of x,y, and P (X,Y )
is the data distribution from where the dataset is sampled.
Note that we say a method guarantees risk consistency
if an unbiased risk estimator is implemented, i.e., the risk
estimator that is equivalent toR(f) given the same classifier
f (Mohri et al., 2018; Feng et al., 2020).

3.2. Crowdsourced Multi-Label Learning

In this paper, we study a novel scenario called Crowd-
sourced Multi-Label Learning (CMLL), where the fully su-
pervised data is not accessible, and a crowdsourced dataset
D̃ = {(xi, {ỹim}Mm=1)|1 ≤ i ≤ n} is given. Specifically,
each instance is labeled byM annotators independently, and
ỹim ∈ Y denotes the label vector tagged by the m-th anno-
tator. Let ỹimk denote the label on k-th class given by the
m-th annotator. The goal of CMLL is to learn a multi-label
predictor f : X → Y from D̃ to assign a relevant label set
for each unseen instance. It is worth noting that the ground-
truth label yi corresponding to each instance is related to the
crowdsourced labels {ỹim}Mm=1, but is inaccessible during
training. In the following section, we omit the sample index
i when the context is CLEAR.

Data Generation Process of CMLL. We consider
that crowdsourced labels ỹmk are corrupted from their
ground-truth label yk through M × K class-dependent
instance-independent transition matrices {Tmk}M,K

m=1,k=1 ∈
[0, 1]

2×2. Denoting Ỹmk and Yk as the random variables
of ỹmk and yk, the transition matrix is defined by Tmkij =

P (Ỹmk = j|Yk = i),∀i, j ∈ {0, 1}. With the instance-
independent assumption (Xie & Huang, 2023; Li et al.,
2022), i.e. P (Ỹmk = j|Yk = i,X = x) = P (Ỹmk =
j|Yk = i), the transition matrix bridges the class posterior

probabilities for noisy and clean data following:

P (Ỹmk = j|X = x) =
∑

i∈{0,1}

Tmkij P (Yk = i|X = x),

∀j ∈ {0, 1}, Tmk01 + Tmk10 < 1.
(2)

Note that we assume the annotators will not make profound
mistakes (Xie & Huang, 2023; Gao et al., 2022), which
gives rise to the constraint on Tmk in Eq. (2).

4. The Proposed Method
4.1. Unbiased Risk Estimator

In this subsection, we establish the first unbiased risk esti-
mator for the CMLL problem. The theorem proposed below
guarantees risk consistency when solving CMLL.
Theorem 1. By decomposing the MLL problem into K in-
dependent binary classification problem, i.e., L(f(x),y) =∑K
k=1 ℓ(fk(x), yk), where fk refers to prediction of the

model on k-th class and ℓ is the base loss function. With
R̃(f) = EP (X,Ỹ )

[
L̃(f(x), {ỹm}Mm=1)

]
, and define

L̃(f(x), {ỹm}Mm=1) =
1

2M

K∑
k=1

1∑
j=0

P (Yk = j|X = x)∏M
m=1

∑1
i=0 T

mk
iỹmk

P (Yk = i|X = x)
ℓ(fk(x), j),

(3)

where Ỹ denotes the random variable of the crowdsourced
labels for each x. Then, R̃(f) is the unbiased risk estimator
with respect to R(f).

The proof is provided in Appendix A. Note that decom-
posing MLL loss into multiple binary classification loss is
commonly used for deep MLL (Ridnik et al., 2021; Li et al.,
2022; Gao et al., 2023).

Remark. The unbiased risk estimator provided by theo-
rem 1 directly models the impact on each individual annota-
tor. However, this objective requires estimatingM×K indi-
vidual transition matrices, which is not only time-consuming
but also troublesome since the transition matrix estima-
tion error can accumulate. In what follows, we show that
there exists an alternative solution that aggregates M crowd-
sourced label vectors {ỹm}Mm=1 ∈ {0, 1}M×K into one
label vector ỹ ∈ {0, 1}K . In this way, we only need to
estimate K transition matrices if there do exist transition
matrices for those aggregated labels.
Theorem 2. Let ỹ = [ỹ1, . . . , ỹK ] be the aggregated label
vector for each x, and Ỹk is the random variable of ỹk. We
have the following consequences:

(Existence) There exist a set of class-dependent instance-
independent transition matrices {T̄ k}Kk=1 ∈ [0, 1]

2×2 such

3



Unbiased Multi-Label Learning from Crowdsourced Annotations

that T̄ kij = P (Ỹk = j|Yk = i),∀i, j ∈ {0, 1}, the unbiased
risk estimator for CMLL with respect to R(f) is R̃(f) =

EP (X,Ỹ )

[
L̃(f(x), ỹ)

]
, and

L̃(f(x), ỹ) =
K∑
k=1

(
P (Ỹk = 1|X = x)− T̄ k01

1− T̄ k01 − T̄ k10
ℓ(fk(x), 1)

+
P (Ỹk = 0|X = x)− T̄ k10

1− T̄ k01 − T̄ k10
ℓ(fk(x), 0)

)
(4)

(Formulation of Transition Matrices) Let A be the random
variable of the index of the annotator. By denoting ωm =
P (A = m|X = x) as the contribution of m-th annota-
tor on tagging x, and with Tmk defined in subsection 3.2,
the transition matrices {T̄ k}Kk=1 for aggregated labels are
formalized as linear combinations of Tmk:

T̄ k =

M∑
m=1

ωm · Tmk, (5)

which are class-dependent and instance-independent.

The proof of Theorem 2 is provided in the Appendix B.
Theorem 2 enables us to adopt an aggregated version of
the unbiased risk estimator, reducing the cost of estimating
transition matrices.

Practical Implementation. Despite the efficiency
brought by objective 4, the aggregated label ỹ is un-
fortunately inaccessible and so does its noisy posterior
probability P (Ỹk = 1|X = x). To deal with this problem,
by assuming that each annotator tags each instance with
uniform contribution, we approximate P (Ỹk = 1|X = x)
by averaging the crowdsourced labels of M annotators,
i.e., sk = 1

M ỹmk. Thus, our unbiased objective function is
finally formalized as:

L̃(f(x), s) =
K∑
k=1

( [
sk − T̄ k01

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(x), 1)

+

[
(1− sk)− T̄ k10

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(x), 0)

)
,

(6)

where s = [s1, . . . , sK ] denotes the averaged crowdsourced
label vector for sample x, and [·]+ is abbreviated for
max(·, 0) which ensures the loss non-negative.

Transition Matrix Estimation. With the existence of the
aggregated transition matrices proved in Theorem 2, we
further introduce how we estimate them in practice. Our
implementation is motivated by the anchor point assumption,
which is widely adopted in noisy label learning (Liu & Tao,
2016; Patrini et al., 2017; Xia et al., 2019). Here, we present

Algorithm 1 Pseudo-code of CLEAR.

Input: Crowdsourced multi-label dataset D̃
1: Aggregating the crowdsourced labels by sk = 1

M ỹmk
2: Fitting s by a neural network to estimate {T̄ k}Kk=1 by

averaging s of the top-C anchor points
3: Initialize the input of the label VAE by s′ = s
4: for epoch = 1, 2, . . . do
5: for step = 1, 2, . . . do
6: Calculate the unbiased loss Lunbiased by Eq. (7)
7: Calculate the distillation loss Ldistill by Eq. (10)
8: Train the decoupled autoencoders f and f ′ by

minimizing Lfinal = Lunbiased + Ldistill
9: Update s′ by Eq. (9)

10: end for
11: end for
Output: Multi-label predictor f

the transition matrix estimator following the anchor point
assumption in the setting of MLL.

Proposition 1. Given a sample x, if x satisfies P (Yk =
a|X = x) = 1, a ∈ {0, 1}, we say that x is the anchor
point for label value a of class k, and we have T̄ kaj =

P (Ỹk = j|X = x).

The proof is given by P (Ỹk = j|X = x) =∑
i∈{0,1} T̄

k
ijP (Yk = i|X = x) = T̄ kaj . In other words,

proposition 1 enables us to estimate the transition matri-
ces based on the noisy class probabilities, which are ap-
proximated by the aggregated crowdsourced label sk as
mentioned above. Following (Liu & Tao, 2016; Patrini
et al., 2017; Xia et al., 2019), we select samples that are far
from the classification boundary as anchor points, namely,
x̄ka = argmaxx∈D a · f̂k(x)+(1−a) ·(1− f̂k(x)), where
x̄ka is the anchor point for label a of class k, and f̂ is the
multi-label predictor after sigmoid, which is trained by sk.
Moreover, instead of selecting the most confident sample,
we select top-C confident samples as anchor points and take
the average of their noisy class probabilities to approximate
the aggregated transition matrices, which turned out to be
more robust. The detailed pseudo-code of transition matrix
estimation is summarized in Algorithm 2.

4.2. Training with Decoupled Autoencoder

Despite the risk consistency provided by the above objective
functions, all labels are treated independently. To capture the
rich semantic correlation among labels, we propose a bench-
mark solution for CMLL, i.e., Crowdsourced muLti-label
learning with dEcoupled AutoencodeR (CLEAR), which
integrates the unbiased risk estimator into a decoupled au-
toencoder framework.

As shown in Figure 2, CLEAR contains two variational au-
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Figure 2. Model architecture of our proposed CLEAR framework.

toencoders (VAE), namely a feature VAE f and a label
VAE f ′, where the feature x and the denoised label s′ are
encoded and decoded respectively to reconstruct the aggre-
gated crowdsourced label s. On the one hand, the unbiased
risk estimator is implemented as the reconstruction loss of
the two VAEs, which encourages training robust classifiers
and building clean latent spaces. On the other hand, we
leverage the label VAE whose latent embedding contains
implicit label correlations, to distill its latent space to the
feature VAE. Guided by the unbiased objective and label
correlation distillation, the feature VAE f can be optimized
and serves as the predictor at test time.

Specifically, each encoder first maps each input to
a Gaussian subspace, namely N (µϕ(x),Σϕ(x)) and
N (µψ(s′),Σψ(s′)), where ϕ and ψ are trainable param-
eters for the two encoders. Let zx and zs denote samples
from these two distributions respectively. Then, we map zx
and zs through two decoders gx and gy respectively, and
input them into two Multivariate Probit Models (Chen et al.,
2018) to output final prediction ŷf and ŷl, which is proved
to be effective on building label dependencies (Bai et al.,
2020). With the unbiased loss L̃ defined in Eq. (6), our
reconstruction loss can be formalized as:

Lunbiased = L̃(ŷf , s) + L̃(ŷl, s). (7)

Without loss of generality, we implement the popular binary
cross-entropy loss (BCE) as the base loss function, i.e.:

ℓ(ŷk, sk) = − (sk log σ(ŷk) + (1− sk) log σ(1− ŷk)) ,
(8)

where ŷk denotes the k-th value of the output vector ŷf or ŷl.
Note that instead of directly reconstructing s for the label
VAE, which might be problematic since the crowdsourced
labels are not reliable, we adopt a stable solution that uses

a denoised label s′ as the input of the label VAE which is
initialized by s and progressively refined by the more and
more reliable output ŷf , i.e.,

s′ = η · s′ + (1− η) · MultiHot(ŷf ), (9)

where η is the momentum parameter and MultiHot(ŷf ) is
the Multi-Hot version of ŷf with threshold 0.5.

Then we define the latent space distillation loss by the dis-
tance measures on multiple layers between the two autoen-
coders, i.e.,

Ldistill = αLkl + βLmse, (10)

where Lkl is the KL divergence between the two multivari-
ate Gaussian distributions, and Lmse is the mean square
error of the latent embedding samples and decoder output
between the two autoencoders. α, β are hyper-parameters
that trade off the weights of different losses. The two losses
are formalized as follows:

Lkl =
d∑
i=1

log
Σϕi,i(x)

Σψi,i(s
′)

− d+

d∑
i=1

Σψi,i(s
′)

Σϕi,i(x)

+

d∑
i=1

(µϕi (x)− µψi (s
′))2

Σϕi,i(x)
,

(11)

Lmse = (zx − zs)
2 + (gx(zx)− gy(zs))

2
. (12)

where d is the dimension of the Gaussian subspace. Over-
all, the final objective of CLEAR is defined by Lfinal =
Lunbiased + Ldistill. The pseudo-code of CLEAR is sum-
marized in Algorithm 1.

4.3. Generalization Error Bound

In this subsection, we establish a generalization error bound
for our proposed method. With the unbiased risk es-
timator defined in Eq. (6), we can obtain an learned
classifier f̂ by minimizing the empirical risk R̄(f) =
1
n

∑n
i=1 L̃(f(xi), si). We then define F as the hypothesis

class and Hk = {h : x 7→ fk(x)|f ∈ F} as the functional
space for the k-th class. Further, by denoting Rn(Hk) as
the expected Rademacher complexity (Bartlett & Mendel-
son, 2002) of Hk with sample size n, the generalization
error bound for our proposed unbiased risk estimator can be
derived as the following theorem.

Theorem 3. Assume that the true aggregated transition ma-
trices {T̄ k}Kk=1 are given, and the loss function L̃(f(x), s)
is LT -Lipschitz continuous with respect to f(x), and the
base loss function l is upper-bounded by λ. Let µ =
maxk

1
1−Tk

01−Tk
10

. Then, for any δ > 0, with probability
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Table 1. Comparison of CLEAR with baselines when T̄ k
01 = 0.2 and T̄ k

10 = 0.2. The best results are shown in boldface.
Metric Dataset BCE MV DoctorNet ML-KNN MPVAE PML-NI CLEAR

Example-F1

Image 0.6360 0.6433 0.6427 0.5060 0.6269 0.5845 0.6730
Scene 0.7241 0.7277 0.7288 0.6701 0.7106 0.5949 0.7596

Corel5K 0.0194 0.0210 0.0234 0.0172 0.1240 0.1084 0.1237
Mirflickr 0.7792 0.7838 0.7841 0.7098 0.7875 0.6830 0.7997

NUS-WIDE 0.2677 0.2931 0.2893 0.1014 0.2934 0.0677 0.3198

Micro-F1

Image 0.6579 0.6677 0.6721 0.5707 0.6491 0.6072 0.6809
Scene 0.7569 0.7579 0.7593 0.7219 0.7364 0.5706 0.7743

Corel5K 0.0195 0.0210 0.0249 0.0251 0.1437 0.1375 0.1432
Mirflickr 0.8162 0.8185 0.8160 0.7567 0.8179 0.6717 0.8254

NUS-WIDE 0.3358 0.3524 0.3420 0.1628 0.3533 0.0630 0.3827

Macro-F1

Image 0.6621 0.6692 0.6754 0.5666 0.6508 0.6079 0.6851
Scene 0.7639 0.7634 0.7651 0.7249 0.7433 0.5750 0.7836

Corel5K 0.0103 0.0049 0.0013 0.0067 0.0237 0.0216 0.0263
Mirflickr 0.7133 0.7228 0.7175 0.6330 0.7240 0.5591 0.7405

NUS-WIDE 0.0314 0.0423 0.0407 0.0194 0.0714 0.0548 0.0740

Table 2. Comparison of CLEAR with baselines when T̄ k01 = 0.2 and T̄ k10 = 0.5. The best results are shown in boldface.
Metric Dataset BCE MV DoctorNet ML-KNN MPVAE PML-NI CLEAR

Example-F1

Image 0.3098 0.3183 0.3347 0.0305 0.3292 0.5617 0.5738
Scene 0.3348 0.3337 0.3519 0.0955 0.3656 0.4310 0.6055

Corel5K 0.0182 0.0176 0.0112 0.0005 0.0390 0.0241 0.0601
Mirflickr 0.4272 0.4344 0.4403 0.0535 0.4242 0.4242 0.7267

NUS-WIDE 0.0101 0.1028 0.0876 0.0001 0.0781 0.0832 0.1968

Micro-F1

Image 0.3905 0.4092 0.4189 0.0497 0.4181 0.5761 0.6036
Scene 0.4325 0.4468 0.4528 0.1628 0.4662 0.4199 0.6609

Corel5K 0.0182 0.0176 0.0121 0.0007 0.0406 0.0341 0.0677
Mirflickr 0.5109 0.5278 0.5170 0.0773 0.5039 0.4278 0.7818

NUS-WIDE 0.0219 0.1474 0.1290 0.0001 0.1122 0.0781 0.2565

Macro-F1

Image 0.3892 0.4074 0.4192 0.0492 0.4165 0.5783 0.6050
Scene 0.4338 0.4473 0.4552 0.1563 0.4652 0.4186 0.6606

Corel5K 0.0099 0.0045 0.0008 0.0003 0.0145 0.0060 0.0159
Mirflickr 0.3949 0.4159 0.3993 0.0799 0.4015 0.3651 0.6328

NUS-WIDE 0.0019 0.0142 0.0121 0.0005 0.0163 0.0584 0.0491

at least 1− δ, we have

E[R̄(f̂)]− R̄(f̂) ≤ 2
√
2LT

K∑
k=1

Rn(Hk)

+ λK(µ+ 1)

√
log(1/δ)

2n
.

(13)

Theorem 3 shows that minimizing the empirical risk can
bound population level error, which ensures the general-
ization ability of our proposed unbiased loss. The proof is
given in Appendix C.

5. Experiments
In this section, we report our empirical results to show the
superiority of CLEAR. We refer the readers to the Appendix
for more experimental results.

5.1. Setup

Datasets. We conduct our experiments on five bench-
mark multi-label image datasets1, including Image, Scene,
Corel5K, Mirflickr, NUS-WIDE. For these datasets, we cor-
rupt the training sets according to true transition matrices
{Tmk}M,K

m=1,k=1. We consider the following three CMLL
scenarios: Tmk01 = Tmk10 , Tmk01 < Tmk10 , and Tmk01 > Tmk10 .
Specifically, the inverse diagonal elements of the aggregated
transition matrices (T̄ k01, T̄

k
10) are set as (0.2,0.2), (0.2,0.5),

and (0.5,0.2) for the above three scenarios. For convenience,
for each annotator, we adopt the same true transition ma-
trices for all classes but do not leak this information to the
algorithm. Moreover, we set the number of annotators as
M = 5 for all the experiments unless otherwise specified.

Baselines. For a comprehensive comparison, we exploit
the following four types of baselines: 1) A naive baseline
BCE, which trains the classifier by BCE loss on the aggre-

1http://mulan.sourceforge.net/datasets-mlc.html
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Table 3. Comparison of CLEAR with baselines when T̄ k01 = 0.5 and T̄ k10 = 0.2. The best results are shown in boldface.
Metric Dataset BCE MV DoctorNet ML-KNN MPVAE PML-NI CLEAR

Example-F1

Image 0.4885 0.4889 0.4912 0.3938 0.4891 0.5824 0.6224
Scene 0.4429 0.4433 0.4482 0.3539 0.4484 0.3122 0.7043

Corel5K 0.0259 0.0261 0.0264 0.0255 0.0256 0.0075 0.0258
Mirflickr 0.5432 0.5395 0.5453 0.4274 0.5388 0.3969 0.7106

NUS-WIDE 0.0782 0.0834 0.0821 0.0697 0.0817 0.0571 0.0763

Micro-F1

Image 0.4821 0.4836 0.4856 0.4006 0.4819 0.5753 0.6120
Scene 0.4254 0.4258 0.4306 0.3499 0.4272 0.3126 0.6865

Corel5K 0.0259 0.0261 0.0264 0.0255 0.0256 0.0103 0.0258
Mirflickr 0.5402 0.5382 0.5423 0.4329 0.5366 0.4045 0.7166

NUS-WIDE 0.0794 0.0856 0.0844 0.0706 0.0830 0.0578 0.0786

Macro-F1

Image 0.4796 0.4816 0.4837 0.3986 0.4796 0.5778 0.6235
Scene 0.4236 0.4252 0.4288 0.3575 0.4268 0.3114 0.7051

Corel5K 0.0180 0.0184 0.0187 0.0176 0.0180 0.0017 0.0192
Mirflickr 0.4275 0.4264 0.4302 0.3610 0.4265 0.3520 0.6378

NUS-WIDE 0.0542 0.0622 0.0628 0.0523 0.0612 0.0523 0.0683

Figure 3. Ablation analysis when T̄ k
01 = 0.2 and T̄ k

10 = 0.5 where CLEAR is compared with its variant CLEAR-B and CLEAR-M.

gated crowdsourced label s; 2) Two crowdsourcing-based
methods, namely, MV (Majority Voting) (Zhou, 2012),
which trains the classifier with majority voting labels, and
DoctorNet (Guan et al., 2018), which models multiple an-
notators individually and averages their outputs at test time.
Note that we use sigmoid layers and BCE loss to replace the
softmax layers and cross-entropy loss; 3) two MLL meth-
ods, namely, ML-KNN (Zhang & Zhou, 2007) a nearest-
neighbor based MLL approach where we input the major-
ity voting labels as the training targets, and MPVAE (Bai
et al., 2020), a Multivariate Probit Variational Autoencoder
designed for learning latent embedding spaces with label
correlations; 4) A partial multi-label learning (PML) meth-
ods PML-NI (Xie & Huang, 2022), which simultaneously
models the ground-truth labels and noisy labels.

Implementation Details. The encoder and decoder for
CLEAR are parameterized as three fully connected layer neu-
ral networks with hidden sizes 512 and 256. To facilitate fair
comparison, the compared methods are equipped with the
same network structure in cases where neural networks are
used. Note that for the baseline BCE, MV, and DoctorNet,
we also implement the three-layer fully connected networks
of hidden sizes 512 and 256. Following (Bai et al., 2020),

we train the models with Adam optimizer (Kingma & Ba,
2015) with a learning rate of 7.5×10−4 and a weight decay
of 1e−5. For hyper-parameters in CLEAR, the confident-
sample number C and the momentum parameter η are fixed
as 20 and 0.9 for all settings. The Gaussian subspace dimen-
sionality d is set as 100 for Corel5K and NUS-WIDE, and
50 otherwise. The trade-off parameters α and β are set by
1.0 and 1.1 by default. Other parameters in the baselines are
set to their default values. Besides, the training targets of
all baselines are replaced by the aggregated crowdsourced
label s except ML-KNN, MV, and DoctorNet.

For performance evaluations, we adopt three widely used
multi-label metrics, namely example-based F1 (example-
F1), micro-averaged F1 (micro-F1), and macro-averaged
F1 (macro-F1) (Zhang & Zhou, 2014; Chen et al., 2019a;
Bai et al., 2020). Note that for all these metrics, the higher
the better. For all the experiments, we perform ten-fold
cross-validation and report the mean as well as the standard
deviation for metric values.

5.2. Main Results

The comparison results of CLEAR on three CMLL scenarios
are shown in Table 1, 2, and 3, where the best results are

7
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Figure 4. Comparison results of different numbers of annotators on Image in the setting of T̄ k
01 = 0.2 and T̄ k

10 = 0.5.

shown in boldface. Overall, our proposed method outper-
forms all baselines on three metrics on most CMLL datasets
and scenarios. For example, in the setting of T̄ k01 = 0.2 and
T̄ k10 = 0.5 on the Mirflickr dataset, CLEAR improves the
best baseline by a notable margin of 28.64%, 25.40%, and
21.69% on Example-F1, Micro-F1, and Macro-F1 respec-
tively. The superior results against various types of baselines
imply that CLEAR can effectively tackle the CMLL task.

Specifically, CLEAR improves BCE on average by 12.49%,
11.89%, and 10.03% on Example-F1, Micro-F1, and Macro-
F1 respectively which significantly proves the effectiveness
of our proposed method. Moreover, CLEAR outperforms the
crowdsourcing-based approaches, i.e. MV and DoctorNet,
especially when the corruption probability is large. This
is because MV naively trusts the false majority voting la-
bels and DoctorNet overfits a large number of error labels
when most labels are incorrectly tagged. Besides, these
two methods lack the consideration of label dependencies.
Furthermore, CLEAR achieves better results compared to
the MLL algorithm, i.e., ML-KNN and MPVAE, which
shows the robustness of CLEAR when handling unreliable
crowdsourcing information. Our method also outperforms
PML-NI, which is designed for solving redundant labels.

5.3. Additional Experiments

Ablation Analysis. To show how the proposed unbiased
risk estimator and the decoupled autoencoder influence
CLEAR respectively, we conduct comparison on two vari-
ants of CLEAR: 1) CLEAR-B, which implements BCE loss as
the reconstruction loss instead of unbiased loss; 2) CLEAR-
M, which individually trains each class predictor by the
unbiased loss, without considering label relationships. For
CLEAR-M, we implement a three-layer fully connected net-
work with the same hidden sizes as CLEAR. Figure 3 demon-
strates the comparison results on the three datasets. In gen-
eral, CLEAR consistently achieves the best performance
compared to the two variants. These results clearly ver-
ify the superiority of our proposed unbiased loss and the
decoupled autoencoder framework.

Table 4. Results of estimating transition matrices of CLEAR with
different strategies. Note that the smaller the mean absolute
error is the better, and the best results are shown in boldface.

Dataset T̄ k
01/T̄

k
10 T -max S-1 S-20

Image
0.2/0.2 0.55 0.34 0.21
0.2/0.5 0.31 0.66 0.22
0.5/0.2 0.33 0.74 0.27

Scene
0.2/0.2 0.61 0.47 0.30
0.2/0.5 0.30 0.63 0.20
0.5/0.2 0.34 0.57 0.25

Corel5K
0.2/0.2 0.73 0.73 0.57
0.2/0.5 0.33 0.35 0.16
0.5/0.2 0.60 0.63 0.59

Mirflickr
0.2/0.2 0.52 0.39 0.15
0.2/0.5 0.25 0.57 0.12
0.5/0.2 0.38 0.39 0.26

NUS-WIDE
0.2/0.2 0.63 0.69 0.54
0.2/0.5 0.25 0.34 0.17
0.5/0.2 0.58 0.60 0.57

Effect of Annotator Number. To investigate how the
number of annotators affects CLEAR, we further explore
the performance of our method as well as the competitive
baselines on a wide range of the annotator number M on
the Image dataset when T̄ k01 = 0.2 and T̄ k10 = 0.5, where
M ∈ {3, 5, 7, 9, 11, 13, 15}. As shown in Figure 4, CLEAR
achieves the best results by beating all baselines on all set-
tings on Example-F1, Micro-F1, and Macro-F1. In addition,
as the number of annotators increases, the result of CLEAR
improves in general while most other baselines decrease.
This indicates that CLEAR can benefit from the growth of
the annotation number, even when heavy noise exists on
crowdsourced labels.

Results of Estimating Transition Matrices. Moreover,
we evaluate the transition matrix estimation results of
CLEAR under different estimation strategies. Specifically,
T-max uses the model-predicted probability of the most
confident sample to estimate the transition matrices follow-
ing (Patrini et al., 2017; Xia et al., 2019; Li et al., 2022).

8
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S-C conducts approximation by averaging the top-C con-
fident crowdsourced labels, as mentioned in section 4.1.
We use the mean absolute error to measure the estimation
results, i.e., 1

K

∑K
k=1 ∥

ˆ̄T k − T̄ k∥1, where ˆ̄T k and T̄ k de-
note the estimated and ground-truth transition matrices re-
spectively. As shown in Table 4, our proposed estimation
strategy achieves the best results.

6. Conclusion
In this work, we study the CMLL problem which aims to
learn a robust multi-label predictor given crowdsourcing la-
bels. We establish the first unbiased risk estimator under the
CMLL and upgrade it by integrating the annotations while
ensuring theoretical characteristics. We then exploit label
correlations by proposing a decoupled autoencoder frame-
work. Experiments on various CMLL settings verify the
effectiveness of our algorithm. Note that our study resolves
the data annotation issue in MLL by greatly reducing the
labeling cost while ensuring the robustness of the learner.
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A. Proof of Theorem 1
Theorem 1. By decomposing the MLL problem into K independent binary classification problem, i.e., L(f(x),y) =∑K

k=1 ℓ(fk(x), yk), where fk refers to prediction of the model on k-th class and ℓ is the base loss function. With

R̃(f) = EP (X,Ỹ )

[
L̃(f(x), {ỹm}Mm=1)

]
, and define

L̃(f(x), {ỹm}Mm=1) =
1

2M

K∑
k=1

1∑
j=0

P (Yk = j|X = x)∏M
m=1

∑1
i=0 T

mk
iỹmk

P (Yk = i|X = x)
ℓ(fk(x), j), (14)

where Ỹ denotes the random variable of the crowdsourced labels for each x. Then, R̃(f) is the unbiased risk estimator
with respect to R(f).

Proof. The multi-label learning risk R(f) could be rewritten as

R(f) = EP (X,Y ) [L(f(x),y)]

=

K∑
k=1

EP (X,Yk) [ℓ(fk(x), yk)]

=

K∑
k=1

∫
x

1∑
j=0

P (X = x, Yk = j)ℓ(fk(x), j)dx

=

K∑
k=1

∫
x

∑
{ỹmk}M

m=1∈{0,1}M

1

2M
·

1∑
j=0

P (Yk = j|X = x)

P ({Ỹmk}Mm=1 = {ỹmk}Mm=1|X = x)
P (X = x, {Ỹmk}Mm=1 = {ỹmk}Mm=1)ℓ(fk(x), j)dx

=

K∑
k=1

EP (X,{Ỹmk}M
m=1)

 1

2M

1∑
j=0

P (Yk = j|X = x)

P ({Ỹmk}Mm=1 = {ỹmk}Mm=1|X = x)
ℓ(fk(x), j)


=

K∑
k=1

EP (X,{Ỹmk}M
m=1)

 1

2M

1∑
j=0

P (Yk = j|X = x)∏M
m=1 P (Ỹmk = ỹmk|X = x)

ℓ(fk(x), j)


=

K∑
k=1

EP (X,{Ỹmk}M
m=1)

 1

2M

1∑
j=0

P (Yk = j|X = x)∏M
m=1

∑1
i=0 T

mk
iỹmk

P (Yk = i|X = x)
ℓ(fk(x), j)


= EP (X,Ỹ )

 1

2M

K∑
k=1

1∑
j=0

P (Yk = j|X = x)∏M
m=1

∑1
i=0 T

mk
iỹmk

P (Yk = i|X = x)
ℓ(fk(x), j)


= EP (X,Ỹ )

[
L̃(f(x), {ỹm}Mm=1)

]
= R̃(f).

(15)

By proving that R̃(f) is equivalent to R(f) given the same classifier f , we demonstrate our proposed risk estimator R̃(f)
guarantees risk consistency.

B. Proof of Theorem 2
Theorem 2. Let ỹ = [ỹ1, . . . , ỹK ] be the aggregated label vector for each x, and Ỹk is the random variable of ỹk. We have
the following consequences:

(Existence) There exist a set of class-dependent instance-independent transition matrices {T̄ k}Kk=1 ∈ [0, 1]
2×2 such

that T̄ kij = P (Ỹk = j|Yk = i),∀i, j ∈ {0, 1}, the unbiased risk estimator for CMLL with respect to R(f) is R̃(f) =

12
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EP (X,Ỹ )

[
L̃(f(x), ỹ)

]
, and

L̃(f(x), ỹ) =
K∑
k=1

(
P (Ỹk = 1|X = x)− T̄ k01

1− T̄ k01 − T̄ k10
ℓ(fk(x), 1) +

P (Ỹk = 0|X = x)− T̄ k10
1− T̄ k01 − T̄ k10

ℓ(fk(x), 0)

)
(16)

(Formulation of Transition Matrices) LetA be the random variable of the index of the annotator. By denoting ωm = P (A =

m|X = x) as the contribution of m-th annotator on tagging x, and with Tmk defined in subsection 3.2, the transition
matrices {T̄ k}Kk=1 for aggregated labels are formalized as linear combinations of Tmk:

T̄ k =

M∑
m=1

ωm · Tmk, (17)

which are class-dependent and instance-independent.

Proof. We first detail the proof of the existence and the formulation of the aggregated transition matrices {T̄ k}Kk=1. Assuming
there exists a set of class-dependent instance-independent transition matrices {T̄ k}Kk=1, we have P (Ỹk = j|X = x) =∑1
i=0 T̄

k
ijP (Yk = i|X = x), which is similar to the data generation process discussed in subsection 3.2. Also,

P (Ỹk = j|X = x) =

M∑
m=1

P (Ỹk = j, A = m|X = x)

=

M∑
m=1

P (A = m|X = x)P (Ỹk = j|A = m,X = x)

=

M∑
m=1

ωmP (Ỹmk = j|X = x)

=

M∑
m=1

ωm
1∑
i=0

Tmkij P (Yk = i|X = x)

=

1∑
i=0

(

M∑
m=1

ωm · Tmkij )P (Yk = i|X = x).

(18)

Thus, {T̄ k}Kk=1 exist and T̄ k =
∑M
m=1 ω

m · Tmk. Then, the unbiased risk estimator is derived by:

R(f) = EP (X,Y ) [L(f(x),y)]

=

K∑
k=1

EP (X,Yk) [ℓ(fk(x), yk)]

=

K∑
k=1

∫
x

1∑
j=0

P (X = x)P (Yk = j|X = x)ℓ(fk(x), j)dx

=

K∑
k=1

EP (X) [(P (Yk = 1|X = x)ℓ(fk(x), 1) + P (Yk = 0|X = x)ℓ(fk(x), 0))]

= EP (X,Ỹ )

[
K∑
k=1

(
P (Ỹk = 1|X = x)− T̄ k01

1− T̄ k01 − T̄ k10
ℓ(fk(x), 1) +

P (Ỹk = 0|X = x)− T̄ k10
1− T̄ k01 − T̄ k10

ℓ(fk(x), 0)

)]
= EP (X,Ỹ )

[
L̃(f(x), ỹ)

]
= R̃(f).

(19)

13
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Note that the third last equation holds because, with P (Ỹk = j|X = x) =
∑1
i=0 T̄

k
ijP (Yk = i|X = x), we have:

P (Ỹk = 1|X = x) = T̄ k01P (Yk = 0|X = x) + T̄ k11P (Yk = 1|X = x)

= T̄ k01(1− P (Yk = 1|X = x)) + (1− T̄ k10)P (Yk = 1|X = x)

= T̄ k01 + (1− T̄ k01 − T̄ k10)P (Yk = 1|X = x),

(20)

thus P (Yk = 1|X = x) =
P (Ỹk=1|X=x)−T̄k

01

1−T̄k
01−T̄k

10
, and similarly P (Yk = 0|X = x) =

P (Ỹk=0|X=x)−T̄k
10

1−T̄k
01−T̄k

10
.

C. Proof of Theorem 3
Theorem 3. Assume that the true aggregated transition matrices {T̄ k}Kk=1 are given, and the loss function L̃(f(x), s) is
LT -Lipschitz continuous with respect to f(x), and the base loss function l is upper-bounded by λ. Let µ = maxk

1
1−Tk

01−Tk
10

.
Then, for any δ > 0, with probability at least 1− δ, we have

E[R̄(f̂)]− R̄(f̂) ≤ 2
√
2LT

K∑
k=1

Rn(Hk) + λK(µ+ 1)

√
log(1/δ)

2n
. (21)

Recall that the empirical risk is defined by R̄(f) = 1
n

∑n
i=1 L̃(f(xi), si), and

L̃(f(x), s) =
K∑
k=1

( [
sk − T̄ k01

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(x), 1) +

[
(1− sk)− T̄ k10

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(x), 0)

)
. (22)

Let S and S′ be two crowdsourced datasets that exactly differ by the i-th example, i.e.,

S = {(x1, s1), . . . , (xi, si), . . . , (xn, sn)},
S′ = {(x1, s1), . . . , (x

′
i, s

′
i), . . . , (xn, sn)},

(23)

and denote the function Φ as:

Φ(S) = sup
f∈F

(
E
[
R̄(f)

]
− R̄(f)

)
(24)

where the generalization risk E
[
R̄(f)

]
is equivalent to EP (X,Ỹ )

[
L̃(f(xi), si)

]
= R̃(f) and the empirical risk R̄(f) is

equivalent to ÊS
[
L̃(f(xi), si)

]
. The proof of Theorem 3 is mainly composed of the following two lemmas.

Lemma 1. Let f̂ be the minimizer of the empirical risk R̄(f), and E
S
[Φ(S)] is the expectation of Φ(S) over all S drawn

from the data distribution. With the base loss function l upper-bounded by λ and µ = maxk
1

1−Tk
01−Tk

10
, for any δ > 0, with

probability at least 1− δ, we have

E[R̄(f̂)]− R̄(f̂) ≤ E
S
[Φ(S)] + λK(µ+ 1)

√
log(1/δ)

2n
. (25)

Proof. To apply McDiarmid’s inequality (Boucheron et al., 2013) to prove the lemma, we first check the bounded difference

14
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property of Φ(S) by

Φ(S)− Φ(S′) ≤ sup
f∈F

1

n

(
L̃(f(xi), si)− L̃(f(x′

i), s
′
i)
)

= sup
f∈F

1

n

K∑
k=1

( [
sk − T̄ k01

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(xi), 1)−

[
s′k − T̄ k01

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(x

′
i), 1)

+

[
(1− sk)− T̄ k10

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(xi), 0)−

[
(1− s′k)− T̄ k10

]
+

1− T̄ k01 − T̄ k10
ℓ(fk(x

′
i), 0)

)

≤ sup
f∈F

1

n

K∑
k=1

(
1− T̄ k01

1− T̄ k01 − T̄ k10
ℓ(fk(xi), 1)−

1− T̄ k01
1− T̄ k01 − T̄ k10

ℓ(fk(x
′
i), 1)

+
1− T̄ k10

1− T̄ k01 − T̄ k10
ℓ(fk(xi), 0)−

1− T̄ k10
1− T̄ k01 − T̄ k10

ℓ(fk(x
′
i), 0)

)
≤ 1

n

K∑
k=1

(
1− T̄ k01

1− T̄ k01 − T̄ k10
· λ+

1− T̄ k10
1− T̄ k01 − T̄ k10

· λ
)

=
λ

n

K∑
k=1

(
1

1− T̄ k01 − T̄ k10
+ 1

)
≤ λK(µ+ 1)

n
.

(26)

Similarly, we can obtain Φ(S′)−Φ(S) ≤ λK(µ+1)
n and thus |Φ(S)−Φ(S′)| ≤ λK(µ+1)

n . Then, by McDiarmid’s inequality,
for any δ > 0, with probability at least 1− δ, we have

Φ(S) ≤ E
S
[Φ(S)] + λK(µ+ 1)

√
log(1/δ)

2n
. (27)

Besides, we have E[R̄(f̂)]− R̄(f̂) ≤ sup
f∈F

(
E
[
R̄(f)

]
− R̄(f)

)
= Φ(S), which complete the proof. Then, we give an upper

bound of E
S
[Φ(S)] in the following lemma.

Lemma 2. Denote F as the hypothesis class and Hk = {h : x 7→ fk(x)|f ∈ F} as the functional space for the k-th class
and let Rn(Hk) be the expected Rademacher complexity of Hk with sample size n. Assuming the loss function L̃(f(x), s)
is LT -Lipschitz continuous with respect to f(x), then we have

E
S
[Φ(S)] ≤ 2

√
2LT

K∑
k=1

Rn(Hk) (28)

Proof. Note that the Rademacher complexity of Hk is formalized as Rn(Hk) = E
σ,S

[
sup
h∈Hk

1
n

∑n
i=1 σih(xi)

]
, where

σ = [σ1, . . . , σn] are i.i.d. Rademacher random variables. By abbreviating EP (X,Ỹ )

[
L̃(f(xi), si)

]
as E[L̃ ◦ f ], and

15



Unbiased Multi-Label Learning from Crowdsourced Annotations

denoting the base loss function of the unbiased risk as ℓ̃, we bound E
S
[Φ(S)] by the following derivations:

E
S
[Φ(S)] = E

S

[
sup
f∈F

(
E[L̃ ◦ f ]− ÊS [L̃ ◦ f ]

)]

= E
S

[
sup
f∈F

E
S′

[
ÊS′ [L̃ ◦ f ]− ÊS [L̃ ◦ f ]

]]

≤ E
S,S′

[
sup
f∈F

(
ÊS′ [L̃ ◦ f ]− ÊS [L̃ ◦ f ]

)]

= E
S,S′

[
sup
f∈F

1

n

n∑
i=1

(
L̃(f(x′

i), s
′
i)− L̃(f(xi), si)

)]

= E
σ,S,S′

[
sup
f∈F

1

n

n∑
i=1

σi

(
L̃(f(x′

i), s
′
i)− L̃(f(xi), si)

)]

≤ E
σ,S′

[
sup
f∈F

1

n

n∑
i=1

σiL̃(f(x′
i), s

′
i)

]
+ E

σ,S

[
sup
f∈F

1

n

n∑
i=1

−σiL̃(f(xi), si)

]

= 2 E
σ,S

[
sup
f∈F

1

n

n∑
i=1

σiL̃(f(xi), si)

]

≤ 2
√
2LT

K∑
k=1

E
σ,S

[
sup
h∈Hk

1

n

n∑
i=1

σih(xi)

]

= 2
√
2LT

K∑
k=1

Rn(Hk).

(29)

The second inequality holds due to the sub-additivity of the supremum function, and the last inequality holds because of the
Rademacher vector contraction inequality (Maurer, 2016). Theorem 3 follows by combining Lemma 1 and Lemma 2.

Extension of Theorem 3. The proposal of Theorem 3 ensures the empirical risk minimizer approximately approaches its
population minimizer counterpart. Further, with the uniform convergence of E

[
R̄(f)

]
− R̄(f), we extend our theoretical

guarantees by proposing Theorem 4, which demonstrates that the empirical risk minimizer converges to the true risk
minimizer as n→ ∞.

Theorem 4. Let f̂ and f∗ be the minimizer of R̄(f) and of R(f) respectively. With the conditions in Theorem 3, for any
δ > 0, with probability at least 1− δ, we have

R(f̂)−R(f∗) ≤ 4
√
2LT

K∑
k=1

Rn(Hk) + 2λK(µ+ 1)

√
log(1/δ)

2n
. (30)

Proof. We first bound the left-hand side by the following derivation:

R(f̂)−R(f∗) = R̃(f̂)− R̃(f∗)

= [R̃(f̂)− R̄(f̂)] + [R̄(f̂)− R̄(f∗)] + [R̄(f∗)− R̃(f∗)]

≤ [R̃(f̂)− R̄(f̂)] + 0 + [R̄(f∗)− R̃(f∗)]

≤ 2 sup
f∈F

|R̃(f)− R̄(f)|,

(31)

where the first equation holds due to the risk consistency of the estimator, and the first inequality holds since f̂ is defined by
the minimizer of R̄(f). Using the same trick in Lemma 1, we can derive the same bound for sup

f∈F

(
R̄(f)− E

[
R̄(f)

])
with

16
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sup
f∈F

(
E
[
R̄(f)

]
− R̄(f)

)
. Then, combining with Lemma 2, we have

sup
f∈F

∣∣E [R̄(f)]− R̄(f)
∣∣ ≤ 2

√
2LT

K∑
k=1

Rn(Hk) + λK(µ+ 1)

√
log(1/δ)

2n
. (32)

Note that E
[
R̄(f)

]
is equivalent to R̃(f), thus

R(f̂)−R(f∗) ≤ 2 sup
f∈F

∣∣∣R̃(f)− R̄(f)
∣∣∣ ≤ 4

√
2LT

K∑
k=1

Rn(Hk) + 2λK(µ+ 1)

√
log(1/δ)

2n
. (33)

D. Pseudo-Code of Transition Matrix Estimation

Algorithm 2 Pseudo-code of Transition Matrix Estimation.

Input: Crowdsourced multi-label dataset D̃, a randomly initialized fully connected network f̂
1: Aggregating the crowdsourced labels by sk = 1

M ỹmk

2: Train f̂ by minimizing Lest = −
∑K
k=1 sk log f̂k(x) + (1− sk) log(1− f̂k(x)) until convergence

3: for k in {1, . . . ,K} do
4: for a in {0, 1} do
5: Select top-C samples in D̃ with largest value of a · f̂k(x) + (1− a) · (1− f̂k(x)), denoting them as Aka

6: Set ˆ̄T ka(1−a) =
1
C

∑
x∈Aka

(1− f̂k(x)) and ˆ̄T kaa = 1
C

∑
x∈Aka

f̂k(x)
7: end for
8: end for

Output: Estimated transition matrices { ˆ̄T k}Kk=1

E. Complexity Analyses
Let B, Dx, and K denote the batch size, the dimensionality of feature x and the number of classes, and let Dh denote
the proxy of the hidden dimensionalities of the encoders and decoders in CLEAR. On the one hand, the time complexity
of the feature VAE and label VAE correspond to O(BDxDh) and O(BKDh) respectively. On the other hand, the time
complexity of the sampling process in the multivariate probit models corresponds to O(BSK) where S is the sampling
number. Thus, the total time complexity of CLEAR is O(B(DxDh +KDh + SK)). Table 5 shows the empirical running
time (in seconds) of CLEAR and the deep-model-based baselines, regarding one training epoch, which shows that CLEAR is
in the same magnitude as baseline methods.

Table 5. Running time (in seconds) of one training epoch of deep-model-based approach.
Dataset BCE MV DoctorNet MPVAE CLEAR

Image 1.04 1.04 1.15 1.85 2.06
Scene 1.09 1.07 1.22 2.06 2.47

Corel5K 1.41 1.40 1.94 6.96 7.82
Mirflickr 1.64 1.60 2.12 6.08 7.63

NUS-WIDE 24.24 24.55 26.30 31.33 32.94

F. Standard Deviation
In this paper, we conduct ten-fold cross-validation for all the experiments, and only the mean metric values are reported in
the main paper since the page is limited. In this section, we further report the standard deviations of CLEAR and baselines in
Table 6, 7, and 8, which demonstrates the robustness of CLEAR.
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Table 6. Standard deviations of CLEAR and baselines when T̄ k01 = 0.2 and T̄ k10 = 0.2.
Metric Dataset BCE MV DoctorNet ML-KNN MPVAE PML-NI CLEAR

Example-F1

Image 0.0389 0.0358 0.0232 0.0416 0.0360 0.0287 0.0370
Scene 0.0279 0.0260 0.0272 0.0431 0.0312 0.0146 0.0245

Corel5K 0.0032 0.0067 0.0142 0.0051 0.0066 0.0130 0.0110
Mirflickr 0.0097 0.0094 0.0107 0.0123 0.0087 0.0324 0.0094

NUS-WIDE 0.0013 0.0044 0.0017 0.0075 0.0012 0.0035 0.0082

Micro-F1

Image 0.0350 0.0334 0.0277 0.0355 0.0285 0.0256 0.0343
Scene 0.0214 0.0223 0.0261 0.0402 0.0314 0.0130 0.0212

Corel5K 0.0032 0.0067 0.0149 0.0070 0.0066 0.0185 0.0136
Mirflickr 0.0082 0.0063 0.0068 0.0096 0.0057 0.0368 0.0075

NUS-WIDE 0.0028 0.0065 0.0041 0.0126 0.0055 0.0014 0.0100

Macro-F1

Image 0.0328 0.0323 0.0271 0.0341 0.0281 0.0293 0.0342
Scene 0.0200 0.0226 0.0259 0.0377 0.0305 0.0139 0.0202

Corel5K 0.0018 0.0014 0.0006 0.0014 0.0030 0.0031 0.0023
Mirflickr 0.0165 0.0110 0.0150 0.0187 0.0108 0.0404 0.0154

NUS-WIDE 0.0004 0.0016 0.0025 0.0011 0.0055 0.0004 0.0067

Table 7. Standard deviations of CLEAR and baselines when T̄ k01 = 0.2 and T̄ k10 = 0.5.
Metric Dataset BCE MV DoctorNet ML-KNN MPVAE PML-NI CLEAR

Example-F1

Image 0.0343 0.0475 0.0282 0.0164 0.0344 0.0376 0.0467
Scene 0.0309 0.0312 0.0253 0.0178 0.0295 0.0236 0.0251

Corel5K 0.0309 0.0312 0.0253 0.0178 0.0295 0.0236 0.0251
Mirflickr 0.0119 0.0084 0.0134 0.0341 0.0166 0.0141 0.0174

NUS-WIDE 0.0007 0.0079 0.0054 0.0000 0.0035 0.0260 0.0029

Micro-F1

Image 0.0369 0.0477 0.0282 0.0259 0.0367 0.0328 0.0459
Scene 0.0334 0.0332 0.0248 0.0279 0.0344 0.0213 0.0242

Corel5K 0.0182 0.0048 0.0070 0.0008 0.0038 0.0090 0.0056
Mirflickr 0.0185 0.0153 0.0162 0.0519 0.0207 0.0121 0.0104

NUS-WIDE 0.0017 0.0106 0.0085 0.0000 0.0065 0.0197 0.0116

Macro-F1

Image 0.0355 0.0469 0.0243 0.0243 0.0370 0.0336 0.0430
Scene 0.0307 0.0321 0.0262 0.0201 0.0355 0.0212 0.0204

Corel5K 0.0099 0.0015 0.0005 0.0004 0.0023 0.0020 0.0037
Mirflickr 0.0230 0.0272 0.0126 0.0246 0.0252 0.0069 0.0256

NUS-WIDE 0.0001 0.0010 0.0005 0.0006 0.0012 0.0048 0.0013

Table 8. Standard deviations of CLEAR and baselines when T̄ k01 = 0.5 and T̄ k10 = 0.2.
Metric Dataset BCE MV DoctorNet ML-KNN MPVAE PML-NI CLEAR

Example-F1

Image 0.0133 0.0139 0.0092 0.0039 0.0091 0.0247 0.0269
Scene 0.0111 0.0086 0.0148 0.0140 0.0119 0.0039 0.0204

Corel5K 0.0259 0.0004 0.0003 0.0005 0.0005 0.0026 0.0006
Mirflickr 0.0106 0.0116 0.0103 0.0091 0.0113 0.0025 0.0374

NUS-WIDE 0.0008 0.0003 0.0004 0.0008 0.0006 0.0003 0.0027

Micro-F1

Image 0.0121 0.0126 0.0103 0.0041 0.0071 0.0220 0.0236
Scene 0.0096 0.0082 0.0123 0.0132 0.0102 0.0041 0.0243

Corel5K 0.0259 0.0004 0.0003 0.0005 0.0005 0.0044 0.0006
Mirflickr 0.0101 0.0116 0.0100 0.0086 0.0110 0.0025 0.0314

NUS-WIDE 0.0007 0.0004 0.0005 0.0009 0.0006 0.0003 0.0028

Macro-F1

Image 0.0128 0.0129 0.0120 0.0046 0.0081 0.0219 0.0215
Scene 0.0102 0.0086 0.0137 0.0167 0.0104 0.0043 0.0208

Corel5K 0.0180 0.0003 0.0003 0.0004 0.0005 0.0007 0.0004
Mirflickr 0.0066 0.0078 0.0050 0.0056 0.0067 0.0023 0.0304

NUS-WIDE 0.0020 0.0007 0.0005 0.0003 0.0006 0.0002 0.0013
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