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ABSTRACT

Recent work discovered that training models to be invariant to adversarial per-
turbations requires substantially larger datasets than those required for standard
classification. Perhaps more surprisingly, these larger datasets can be “mostly”
unlabeled. Pseudo-labeling, a technique simultaneously pioneered by four separate
and simultaneous works in 2019, has been proposed as a competitive alternative to
labeled data for training adversarially robust models. However, when the amount of
labeled data decreases, the performance of pseudo-labeling catastrophically drops,
thus questioning the theoretical insights put forward by Uesato et al. (2019), which
suggest that the sample complexity for learning an adversarially robust model from
unlabeled data should match the fully supervised case. We introduce Bootstrap
Your Own Robust Latents (BYORL), a self-supervised learning technique based
on BYOL for training adversarially robust models. Our method enables us to train
robust representations without any labels (reconciling practice with theory). Most
notably, this robust representation can be leveraged by a linear classifier to train
adversarially robust models, even when the linear classifier is not trained adversari-
ally. We evaluate BYORL and pseudo-labeling on CIFAR-10 and IMAGENET and
demonstrate that BYORL achieves significantly higher robustness in the low-label
regime (i.e., models resulting from BYORL are up to two times more accurate).
Experiments on CIFAR-10 against `2 and `∞ norm-bounded perturbations demon-
strate that BYORL achieves near state-of-the-art robustness with as little as 500
labeled examples. We also note that against `2 norm-bounded perturbations of size
ε = 128/255, BYORL surpasses the known state-of-the-art with an accuracy under
attack of 77.61% (against 72.91% for the prior art).

1 INTRODUCTION

As neural networks tackle challenges ranging from ranking content on the web (Covington et al., 2016)
to autonomous driving (Bojarski et al., 2016) via medical diagnostics (De Fauw et al., 2018), it has
becomes increasingly important to ensure that deployed models are robust and generalize to various
input perturbations. Unfortunately, despite their success, neural networks are not intrinsically robust.
In particular, the addition of small but carefully chosen deviations to the input, called adversarial
perturbations, can cause the neural network to make incorrect predictions with high confidence
(Carlini & Wagner, 2017a; Goodfellow et al., 2014; Kurakin et al., 2016; Szegedy et al., 2013).
Starting with Szegedy et al. (2013), there has been a lot of work on understanding and generating
adversarial perturbations (Carlini & Wagner, 2017b; Athalye & Sutskever, 2017), and on building
models that are robust to such perturbations (Papernot et al., 2015; Madry et al., 2017; Kannan et al.,
2018). Robust optimization techniques, like the one developed by Madry et al. (2017), learn robust
models by trying to find the worst-case adversarial examples (by using gradient ascent on the training
loss) at each training step and adding them to the training data.

Since Madry et al. (2017), various modifications to their original implementation have been proposed
(Zhang et al., 2019; Pang et al., 2020; Huang et al., 2020; Qin et al., 2019). We highlight the
simultaneous work from Carmon et al. (2019); Uesato et al. (2019); Zhai et al. (2019a); Najafi et al.
(2019) that pioneered the use of additional unlabeled data using pseudo-labeling. While, theoretically,
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Figure 1: Dangers of using non-robust representation learning. We use a non-robust self-supervised
learning technique to learn image representations (i.e., BYOL; Grill et al., 2020). The right-hand
side shows CIFAR-10 images closest (in representation space using cosine similarity) to the query
image on the left. The top row demonstrates that, when given an unmodified image of an airplane,
the nearest matches resemble that query image either visually or semantically. The bottom row
demonstrates that a seemingly identical image can be used to retrieve images of animals which are
both visually and semantically far from the query image.

robustness can be achieved with only limited amount of labeled data, in practice, it remains difficult
to train models that are both robust and accurate in the low-label regime. 1

Finally, we note that there has been little work towards learning adversarially robust representations
that allow for efficient training on multiple downstream tasks (with the exception of Cemgil et al.,
2019; Kim et al., 2020). Learning good image representations is a key challenge in computer
vision (Wiskott & Sejnowski, 2002; Hinton et al., 2006), and many different approaches have been
proposed. Among them state-of-the-art methods include contrastive methods (Chen et al., 2020b;
Oord et al., 2018; He et al., 2020) and latent bootstrapping (Grill et al., 2020). However, none of these
recent works consider the impact of adversarial manipulations, which can render the widespread use
of general representations difficult. As an example, Fig. 1 demonstrates the effect that a non-robust
representation has on a content retrieval task, where two seemingly identical query images are
matched to widely different images (i.e., their nearest neighbors in representation space).

In this paper, we tackle the issue of learning robust representations that are adversarially robust on
multiple downstream tasks in the low-label regime. Our contributions are as follows:

• We formulate Bootstrap Your Own Robust Latents (BYORL), a modification of Bootstrap Your
Own Latents (BYOL) (Grill et al., 2020) that enables the training of robust representations without
the need for any label information. These representations allow for efficient training on multiple
downstream tasks with a fraction of the original labels.

• Most notably, even with only 1% of the labels, BYORL comes close to or even exceeds previous
state-of-the-art which uses all labels. For example, for `2 norm-bounded perturbations of size
ε = 128/255 on CIFAR-10, BYORL achieves 75.50% robust accuracy compared to 72.91% for
the previous state-of-the-art using all labels. BYORL reaches 77.61% robust accuracy when using
all available labels (and additional unlabeled data extracted from 80M-TINYIMAGES; Torralba
et al., 2008).

• Finally, we show that the representations learned through BYORL transfer much better to
downstream tasks (i.e., downscaled STL-10 (Coates et al., 2011) and CIFAR-100 (Krizhevsky
et al., 2014)) than those obtained through pseudo-labeling and standard adversarial training.
Importantly, we also highlight that classifiers trained on top of these robust representations do not
need to be trained adversarially to be robust.

2 RELATED WORK

Adversarial robustness. Biggio et al. (2013) and Szegedy et al. (2013) observed that neural
networks, while they achieve high accuracy on test data, are vulnerable to carefully crafted inputs
perturbations, called adversarial examples. Since then, there has been several work on building
stronger adversarial examples as well as defense against such adversarial examples (Carlini &
Wagner, 2017b; Athalye & Sutskever, 2017; Goodfellow et al., 2014; Papernot et al., 2015; Madry

1In Uesato et al. (2018) and Carmon et al. (2019), robust accuracy drops by 10% when limiting the number
of labels to about 10%.
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et al., 2017; Kannan et al., 2018). Arguably, the most successful approach for learning adversarially
robust models is adversarial training as proposed by Madry et al. (Athalye et al., 2018; Uesato
et al., 2018). This classic version of adversarial training has been augmented in different ways –
with changes in the attack procedure (e.g., by incorporating momentum; Dong et al., 2017), loss
function (e.g., logit pairing; Mosbach et al., 2018) or model architecture (e.g., using attention; Zoran
et al., 2020). We also highlight Zhang et al. (2019), who proposed TRADES which balances the
trade-off between standard and robust accuracy. By construction, to the contrary of our proposed
method, all aforementioned approaches use label information and are not capable of learning generic
representations that might be useful to multiple downstream tasks.

Semi- and self-supervised learning. Since human annotations can be expensive, semi- and self-
supervised learning approaches that leverage both labeled and unlabeled data have been proposed
to improve model performance (Chapelle et al., 2009; Bachman et al., 2014; Berthelot et al., 2019;
Laine & Aila, 2017; Miyato et al., 2018; Sajjadi et al., 2016; Xie et al., 2019). A common approach
is to train networks to solve a manually-predefined pretext task (e.g., predicting the relative location
of image patches) for representation learning, and later use the learned representation for a specific
supervised learning task (Dosovitskiy et al., 2014; Doersch et al., 2015; Noroozi & Favaro, 2016).
Recently, contrastive learning that uses different views of multiple augmented images has been an
effective tool to learn rich representation from unsupervised data (Oord et al., 2018; Chen et al.,
2020b; He et al., 2020; Tian et al., 2020), as these methods achieve comparable performance to
fully-supervised models. While these works focus on improving standard generalization, we leverage
representation learning, as proposed by Grill et al. (2020), to improve adversarial generalization.

Semi- and self-supervised learning for adversarial robustness. Schmidt et al. (2018) showed
that learning adversarially robust models requires more data. As such, adversarial robustness with
unlabeled data has recently drawn a lot of attention. We highlight the works by Uesato et al. (2019);
Carmon et al. (2019); Zhai et al. (2019a) which leveraged labeled data to train a standard classifier
that is in turn used to pseudo-label the remaining unlabeled data. However, as shown by Uesato
et al. (2019); Carmon et al. (2019); Zhai et al. (2019a), when only 10% of the CIFAR-10 labels are
available the robust accuracy drops significantly. In this paper, we focus on improving adversarial
robustness in the low-label regime by leveraging unlabeled data (e.g., when 1%–10% of labels are
available) to build robust representations. The result is a technique that significantly outperforms
state-of-the-art pseudo-labeling techniques in the low-label regime and remains competitive with
adversarial training when all labels are available. Chen et al. (2020a) also study adversarial pre-
training on self-supervised tasks and demonstrate that they can train robust representations. However,
to the contrary of our approach, their method does not preserve the robustness of their resulting
representations on downstream tasks (unless robust fine-tuning is used). Hendrycks et al. (2019)
combine supervised adversarial training with an additional self-supervised head. They demonstrate
that they can improve on standard adversarial training, but do not learn general representations.
We also highlight the recent work by Kim et al. (2020) which combines adversarial training with
contrastive learning. Our method reaches comparable robust accuracy, but is more scalable (as it is
not based on contrastive learning which requires large batch sizes). To the contrary of Kim et al., we
also study the transferability of robust representations and focus on the low-label regime.

3 METHOD

In this section, we explain BYORL which elegantly combines adversarial training with BYOL. Hence,
we start by giving a brief description of adversarial training and BYOL.

3.1 ADVERSARIAL TRAINING

Madry et al. (2017) formulate a saddle point problem whose goal is to find model parameters θ that
minimize the adversarial risk:

E(x,y)∼D

[
max
δ∈S

l(f(x+ δ;θ), y)

]
(1)

where D is a data distribution over pairs of examples x and corresponding labels y, f(·;θ) is a model
parametrized by θ, l is a suitable loss function (such as the 0− 1 loss in the context of classification
tasks), and S defines the set of allowed perturbations (i.e., the adversarial input set or threat model).
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Figure 2: Flow diagram that highlights the difference between BYOL and BYORL. Whereas BYOL
directly tries to maximize the cosine similarity between q(z;θ) and z′, BYORL first executes an
adversarial attack to retrieve an alternative image v̂.

Several methods (also known as “attacks”) have been proposed to find adversarial examples (and
effectively solve the inner maximization problem in Eq. 1). Classical adversarial training as proposed
by Madry et al. (2017) uses Projected Gradient Descent (PGD),2 which replaces the impractical 0− 1

loss l with the cross-entropy loss l̂ and computes an adversarial perturbation δ̂ = δ(K) in K gradient
ascent steps of size α as

δ(k+1) ← projS

(
δ(k) + α∇δ(t) l̂(f(x+ δ(k);θ), y)

)
(2)

where δ(0) is chosen at random within S, and where projA(a) projects a point a back onto a set A.
Finally, for each example x with label y, adversarial training minimizes the loss given by

LAT
θ = l̂(f(x+ δ̂;θ), y) ≈ max

δ∈S
l̂(f(x+ δ;θ), y) (3)

where δ̂ is given by Eq. 2 and l̂ is the softmax cross-entropy loss.

3.2 BOOTSTRAP YOUR OWN LATENTS

Many successful self-supervised learning approaches learn image representations by identifying
whether different views belong to the same image (Dosovitskiy et al., 2014; Wu et al., 2018).
Whereas contrastive methods formulate this prediction problem into one of discrimination (i.e., from
the representation of an augmented view, they learn to discriminate between the representation of
another augmented view of the same image, and the representations of augmented views of other
images), BYOL relies on two neural networks: an online and a target network, that interact and learn
from each other. The goal of the online network is to predict the target network representation of
the same image under different augmented views, where the target network itself is defined by an
exponential moving average of the online network parameters. We selected BYOL as the basis of
our proposed method not only because it is currently the most successful representation learning
technique, but also because it is more amenable to adversarial training, to contrary of contrastive
methods which require large batch sizes (Chen et al., 2020b; Oord et al., 2018) or memory banks He
et al. (2020).

As shown in Fig. 2, the online network is composed of three stages: an encoder e(·;θ), a projector
g(·;θ) and a predictor q(·;θ). Omitting the predictor, the target network has the same architecture

2There exists a few variants of PGD which normalize the gradient step differently (e.g., using its sign or
`2-norm depending on the threat model).
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as the online network, but uses a different set of weights ξ. As explained by Grill et al. (2020), in
order to enhance representations while preventing their collapse, the target network’s weights are
allowed to change slowly throughout training. More precisely, given a decay rate τ ∈ [0, 1], after
each training step, the parameters ξ are updated as ξ ← τξ + (1− τ)θ. Given an image x, and two
augmentations t, t′ ∼ T sampled from a set of augmentations (e.g., random crops or recolorizations),
BYOL produces two augmented views v = t(x) and v′ = t′(x). The first view passes through the
online network, producing a representation h = e(x;θ) and a projection z = g(h;θ). The second
view similarly passes through the target network, producing a target projection z′ = g ◦ e(v′; ξ).
Finally, given an online prediction q(z;θ) (which should be predictive of the target projection),
BYOL minimizes the loss

LBYOL
θ =

∥∥∥∥ q(z;θ)

‖q(z;θ)‖2
− z′

‖z′‖2

∥∥∥∥2
2

= 2− 2 · 〈q(z;θ), z′〉
‖q(z;θ)‖2 · ‖z′‖2

. (4)

At the end of training, everything but e and θ is discarded and only the representation e(x;θ) of an
image x is used by downstream applications.

3.3 BOOTSTRAP YOUR OWN ROBUST LATENTS

We now introduce an effective and elegant approach to learn adversarially robust representations.
Whereas previous (semi-)supervised techniques that are directly based on adversarial training require
the presence of labels to produce adversarially robust neural networks (from which robust representa-
tions can be extracted at intermediate layers), our method can operate without any labels. As shown
in the experimental section, the resulting representations can then be used to train linear classifiers (on
top of these representation) that are intrinsically robust to adversaries. Our method, named Bootstrap
Your Own Robust Latents or BYORL, consists of combining BYOL with adversarial training. A
diagram summarizing BYORL is visible in Fig. 2.

For conciseness, we will denote by γ = g ◦ e the composition of the encoder and projector and by
κ = q ◦ g ◦ e the composition of the encoder, projector and predictor. Similarly to BYOL, BYORL
starts by generating two views v = t(x) and v′ = t′(x) of the same image x. While the second
view goes through the target network unmodified to produce a target projection z′ = γ(v′; ξ), the
first view is further augmented via an adversarial attack. The goal of the adversarial attack is to
maximize the disagreement between the online and target networks while respecting the threat model
described by S (see subsection 3.1). To this end, we would like to find an optimal perturbation δ? ∈ S
that minimizes the resulting cosine similarity between the online prediction κ(v + δ;θ) and target
projection z′:

δ? = argmin
δ∈S

〈κ(v + δ;θ), z′〉
‖κ(v + δ;θ)‖2 · ‖z′‖2

. (5)

Like adversarial training, we can leverage PGD to approximate δ? by δ̂. Taking K steps of size α,
resulting in δ̂ = δ(K), we have

δ(k+1) ← projS

(
δ(k) + α∇δ(t)

〈κ(v + δ(t);θ), z′〉
‖κ(v + δ(t);θ)‖2 · ‖z′‖2

)
(6)

where δ(0) is chosen at random within S. Finally, we seek to maximize the agreement between the
adversarially modified online prediction κ(v + δ̂;θ) and the target projection z′ by updating the
online weights θ as to minimize the following loss:

LBYORL
θ (v,v′) = 2− 2 · 〈κ(v + δ̂;θ), γ(v′; ξ)〉

‖κ(v + δ̂;θ)‖2 · ‖γ(v′; ξ)‖2
≈ 2− 2 ·min

δ∈S

〈κ(v + δ;θ), z′〉
‖κ(v + δ;θ)‖2 · ‖z′‖2

.

(7)

Here are a few additional considerations. First, we symmetrize the loss LBYORL
θ in Eq. 7 by feeding

v′ to the online network and v to the target network. The adversarial attack is executed on v′ instead
of v and tries to minimize the cosine similarity between the online prediction κ(v′ + δ;θ) and target
projection γ(v; ξ): Lsymmetric

θ (v,v′) = LBYORL
θ (v,v′) + LBYORL

θ (v′,v). Second, one can observe
that the adversarial attack is always performed through the online network. We could similarly
perform the attack through the target network, but we found that training was less stable as batch
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statistics (needed by batch normalization) were not representative of statistics induced by adversarial
examples (as the online network would receive clean rather than adversarial images). Third, instead
of the proposed method, we could imagine making two passes through the online network (for both
the clean and adversarial images) and maximizing the agreement between both online predictions
(in addition to maximizing the agreement with the target projection). We found that this increased
the risk of representation collapse as this adds an incentive for the online network to output constant
predictions (i.e., collapsed representations are the perfect defense against adversarial attacks).

4 EXPERIMENTS

We assess the performance of BYORL across multiple axes. We evaluate the robustness of the
resulting representations by training robust linear classifiers on top of these representations. First,
we compare to the performance of various classifiers (comparing BYORL with pseudo-labeling).
Second, we study how these robust representations transfer to unseen new tasks. Finally, we also
evaluate whether robustness transfers to downstream tasks – even when the final task is not treated as
being adversarial.

4.1 SETUP AND IMPLEMENTATION DETAILS

We highlight here the most important components and defer some of the details to Appendix A.

Architecture. We use a convolutional residual network (He et al., 2015) with 34 layers (Pre-
Activation ResNet-34) as our encoder e. We also use wider (from ×1 to ×4) ResNets. The projector
g and predictor q networks are MLPs with hidden dimension 4096 and output dimension 256.

Outer optimization. We use the LARS optimizer (You et al., 2017) with a cosine learning rate
schedule (Loshchilov & Hutter, 2017) over 1000 epochs. We set the learning rate to 2 and use a
global weight decay parameter of 5 · 10−4. For the target network, the exponential moving average
parameter τ starts from 0.996 and is increased to one during training. We use a batch size of 512.

Inner optimization. The inner minimization in Eq. 7 is implemented using K PGD steps (con-
strained by an `2 or `∞ norm-bounded ball). Unless specified otherwise, we set K to 40 and use
an adaptive step size α (see Algorithm 1 in Croce & Hein, 2020). For `∞ and `2 norm-bounded
perturbations, the gradients in Eq. 6 are first normalized to their sign or by their `2 norm, respectively.

Evaluation protocol. We evaluate the performance of BYORL on CIFAR-10 against adversar-
ial `2 and `∞ norm-bounded perturbations (CIFAR-100 and IMAGENET results are in the ap-
pendix). For that purpose, we train a linear classifier parametrized by coefficients W and off-
sets b on top of frozen BYORL representations, following the procedure described in Kolesnikov
et al. (2019); Chen et al. (2020b). The linear model is either trained in a non-robust manner (i.e.,
minW ,b E(x,y)∈D l̂(W e(x;θ) + b, y)) or adversarially (i.e., minW ,b E(x,y)∈Dmaxδ∈S l̂(W e(x +
δ;θ) + b, y)). We then compute the robust accuracy, which is the accuracy of the combined model
W e(·;θ) + b against adversarial attacks (i.e., we count a successful attack as a misclassification):
1−E(x,y)∈Dmaxδ∈S l(W e(x+δ;θ)+b, y). In order to get faithful results, all models are evaluated
using a strong attack which combines elements of the AutoAttack procedure (Croce & Hein, 2020)
with the MultiTargeted attack (Gowal et al., 2019). Namely, we use a sequence of AutoPGD on
the cross-entropy loss with 5 restarts and 100 steps, AutoPGD on the difference of logits ratio loss
with 5 restarts and 100 steps, MultiTargeted on the margin loss with 20 restarts and 200 steps and
Square (Andriushchenko et al., 2019), an efficient black-box attack, with 5000 queries.

Baseline. Throughout the experimental section, we compare BYORL with adversarial training
(combined with pseudo-labeling to handle missing labels). Pseudo-labeling is currently, to the best
of our knowledge, the most successful semi-supervised method for learning adversarially robust
models (Carmon et al., 2019; Uesato et al., 2019; Zhai et al., 2019a; Najafi et al., 2019). More
specifically, we use Unsupervised Adversarial Training with Fixed Targets (UAT-FT) (Uesato et al.,
2019). When 100% of the labels are available UAT-FT is equivalent to classical adversarial training,
as proposed by Madry et al. (2017). In settings where less than 100% of the labels are available, we
train a separate non-robust model (with an architecture identical to the robust model being trained)
on the available labeled data and use it to pseudo-label the rest of the unlabeled images. UAT-FT
uses the same network architectures than those used by BYORL.
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(b) CIFAR-10 and 80M-TINYIMAGES

Figure 3: Accuracy under `2 attack of size ε = 128/255 for different CIFAR-10 models as a function
of the ratio of available labels. Panel a restricts the available data to CIFAR-10 only (labeled and
unlabeled), while panel b uses 500K additional unlabeled images extracted from 80M-TINYIMAGES.
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Figure 4: Accuracy under `∞ attack of size ε = 8/255 for different CIFAR-10 models as a function
of the ratio of available labels. Panel a restricts the available data to CIFAR-10 only (labeled and
unlabeled), while panel b uses 500K additional unlabeled images extracted from 80M-TINYIMAGES.

4.2 RESULTS

Robustness on CIFAR-10. We evaluate BYORL and UAT-FT on a wide range of tasks across
different threats for various amounts of available labels. As is typical in the literature (Rice et al.,
2020; Augustin et al., 2020), we evaluate our models on CIFAR-10 against `2 and `∞ norm-bounded
perturbations of size ε = 128/255 and ε = 8/255 (CIFAR-100 and IMAGENET are evaluated in the
appendix). CIFAR-10 contains 60K images (i.e., 50K in the train set and 10K in the test set). As such,
when we evaluate on 1% of labeled data, we only use 500 random labeled images from CIFAR-10
(we do not artificially balance the number of labels per class). As done in Carmon et al. (2019) and
Uesato et al. (2019), we also explore the limits of BYORL in the setting where additional unlabeled
data is available. This additional data is extracted from 80M-TINYIMAGES and consists of 500K
unlabeled 32× 32 images3. In settings without this additional data, we use a ResNet-34× 2, whereas
in settings with this additional data, we use a ResNet-34× 4.

Fig. 3 shows the robust accuracy of BYORL and UAT-FT on the full CIFAR-10 test set against `2
norm-bounded perturbations (similar figures that show clean accuracy are available in Appendix B).
We observe that linear classifiers trained on top of robust BYORL representations are more robust
than those trained with UAT-FT. In particular, we highlight than when only 500 labeled images are
available, BYORL remains competitive with state-of-the-art methods that use all labels: without
additional data from 80M-TINYIMAGES, BYORL reaches 65.43% compared to 69.24% (Engstrom
et al., 2019); with additional data from 80M-TINYIMAGES, BYORL reaches 75.50% compared to
72.91% (Augustin et al., 2020).

Fig. 4 shows the robust accuracy of BYORL and UAT-FT on the full CIFAR-10 test set against
`∞ norm-bounded perturbations. Again, we can observe that BYORL remains competitive: in the
low-label regime, BYORL surpasses UAT-FT by a significant margin (up to 2× more accurate); in
the high-label regime BYORL loses a few percentage points. Perhaps surprisingly, under both threat
models (i.e., `∞ and `2), BYORL reaches peak performance with 5% of the labels (and beyond).

3We use the dataset from Carmon et al. (2019) available at https://github.com/yaircarmon/semisup-adv.
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Table 1: Robust accuracy (under adversarial attack) obtained by finetuning a linear head on top of
robust representations trained on CIFAR-10.

STL-10 CIFAR-100
METHOD NORM RADIUS 1% 10% 100% 1% 10% 100%

BYORL
`2 ε = 128/255

33.85% 53.23% 57.88% 10.09% 22.51% 28.24%
UAT-FT 37.71% 42.16% 53.23% 3.68% 10.80% 14.43%

BYORL
`∞ ε = 8/255

24.18% 36.30% 37.28% 5.28% 10.12% 14.82%
UAT-FT 23.47% 36.52% 37.79% 2.18% 4.88% 7.21%

Table 2: Clean (no perturbations) and robust (under adversarial attack) accuracy obtained when
training robust and non-robust representations on CIFAR-10 against `2 norm-bounded perturbations
of size ε = 128/255. We evaluate the representations by finetuning a robust and non-robust linear
head on CIFAR-10, STL-10 and CIFAR-100. Table 6 in the appendix shows `∞ perturbations.

TRAINING OF CIFAR-10
REPRESENTATION LINEAR HEAD NORM RADIUS Clean Robust

Robust (BYORL) Robust (AT) on CIFAR-10

`2 ε = 128/255

93.01% 77.61%
Robust (BYORL) Non-robust on CIFAR-10 93.19% 77.09%
Non-robust (BYOL) Robust (AT) on CIFAR-10 91.23% 0.05%
Non-robust (BYOL) Non-robust on CIFAR-10 94.76% 0.00%

FINETUNING OF LINEAR HEAD STL-10

Robust (BYORL) Robust (AT) on STL-10
`2 ε = 128/255

76.49% 57.88%
Robust (BYORL) Non-robust on STL-10 77.54% 57.66%

FINETUNING OF LINEAR HEAD CIFAR-100

Robust (BYORL) Robust (AT) on CIFAR-100
`2 ε = 128/255

48.34% 28.24%
Robust (BYORL) Non-robust on CIFAR-100 49.20% 27.17%

Transfer to unseen tasks. We evaluate our robust representations on other classification datasets to
assess whether the features learned on CIFAR-10 are generic and thus useful across image domains,
or if they are CIFAR-10-specific. As a comparison, we test whether pre-logits activations resulting
from training a model using UAT-FT can also be used for transfer learning. For both representations,
we train a robust linear model using adversarial training (see subsection 3.1) with different label
availability on STL-10 and CIFAR-100 against `∞ and `2 norm-bounded perturbations. Table 1 shows
that BYORL representations result in equivalent or more robust models than UAT-FT representations.
We note, however, that – at least on CIFAR-100 – the robust accuracy remains significantly lower
than models trained directly on CIFAR-100.

Transfer without adversarial training. So far, the linear classifiers trained on top of BYORL
representations were trained robustly using adversarial training. We now evaluate whether adversarial
training is needed for downstream tasks. Conversely, we also verify that learning robust repre-
sentations is needed to obtain robust linear classifiers. Table 2 shows the robust accuracy of four
models: (i) an adversarially trained linear model on top of robust BYORL representations, (ii) a
classically trained (not necessarily robust) linear model on top of robust BYORL representations,
(iii) an adversarially trained linear model on top of non-robust BYOL representations, and (iv) a
classically trained linear model on top of non-robust BYOL representations. Although not a guarantee
in theory (Allen-Zhu & Li, 2020), we observe that the adversarial training of the linear classifier is, in
practice, not necessary and that it is enough to train robust representations to obtain robust classifiers.
Indeed, for all three considered downstream tasks (CIFAR-10, STL-10 and CIFAR-100), the resulting
non-robustly trained linear classifiers are within a few percentage points of the robustly trained ones
(similar results for IMAGENET are available in the appendix in Table 5).

5 CONCLUSION

In this work, we present BYORL, a modification of BYOL that enables us to train robust image
representations. To the contrary of previous methods, BYORL does not require the presence of label
information. In fact, it is even possible to use these robust representations to train adversarially robust
classifiers on multiple downstream tasks (without the need to use adversarial training). Interestingly,
classifiers using BYORL representations can be trained with as little as 500 labeled examples. Across
all experiments, BYORL with 1% of labels (i.e., 500 labeled examples) matches or surpasses the
performance of pseudo-labeling (implemented through UAT-FT) with 10-20% of labels (i.e., between
5K and 10K labeled examples).
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A EXPERIMENTAL SETUP

Image augmentations. BYORL uses similar image augmentations to SimCLR (Chen et al., 2020b)
and BYOL (Grill et al., 2020). First, a random patch of the image is selected and resized to 32× 32
with a random horizontal flip, followed by a color distortion, consisting of a random sequence of
brightness, contrast, saturation, hue adjustments, and an optional grayscale conversion. Because of
the low image resolution of CIFAR-10 and CIFAR-100, we do not apply a final Gaussian blur and
solarization to the patches.

Architecture. For consistency with prior work on adversarial robustness (Rice et al., 2020; Wong
et al., 2020), we use a convolutional residual network (He et al., 2015) with 34 layers (Pre-Activation
ResNet-34) as our encoder e. We also use wider (from ×1 to ×4) ResNets. The final representation
h is the output of the final average pooling layer, which has a feature dimension of 2048 (when the
width multiplier is ×1). The projector g and predictor q networks are multi-layer perceptrons. They
consist of a linear layer with output size 4096 followed by batch normalization (Ioffe & Szegedy,
2015), rectified linear units (ReLU) (Nair & Hinton, 2010), and a final linear layer with output
dimension 256.

Outer optimization. We use the LARS optimizer (You et al., 2017) with a cosine decay learning
rate schedule (Loshchilov & Hutter, 2017) over 1000 epochs, with a warm-up period of 10 epochs.
We set the learning rate to 2 and use a global weight decay parameter of 5 · 10−4. For the target
network, the exponential moving average parameter τ starts from 0.996 and is increased to one during
training using a cosine schedule. We use a batch size of 512 split over 32 Google Cloud TPU v3
cores. We train linear classifiers using the Adam optimizer (Kingma & Ba, 2014) for 50 epochs with
an initial learning of 2 · 10−3 (the learning rate is decayed by a factor 10× after 25 epochs). For
linear classifiers, we perform early stopping as suggested by Rice et al. (2020) using a separate set of
1024 validation images (we do the same when training UAT-FT models). Note that linear models
trained on frozen BYORL representations do not really need early stopping (as the linear model do
not overfit significantly). However, UAT-FT and adversarial training are prone to robust overfitting
and obtain significantly higher robust accuracy using early stopping.

Inner optimization. The inner minimization in Eq. 7 is implemented using K PGD steps (con-
strained by an `2 or `∞ norm-bounded ball). In particular, unless specified otherwise, we set K to 40
and use an adaptive step size (as specified in Algorithm 1 in Croce & Hein, 2020). For `∞ and `2
norm-bounded perturbations, the gradients in Eq. 6 are first normalized to their sign or by their `2
norm, respectively. With this setup, training takes approximately 19 hours for a ResNet-34× 2 and 3
days for a ResNet-34× 4.

Evaluation protocol. We evaluate the performance of BYORL on CIFAR-10 and CIFAR-100
against adversarial `2 and `∞ norm-bounded perturbations. For that purpose, we train a linear
classifier parametrized by coefficients W and offsets b on top of frozen BYORL representations,
following the procedure described in Kolesnikov et al. (2019); Kornblith et al. (2019); Zhang
et al. (2016); Chen et al. (2020b). The linear model is either trained in a non-robust manner (i.e.,
minW ,b E(x,y)∈D l̂(W e(x;θ) + b, y)) or adversarially (i.e., minW ,b E(x,y)∈Dmaxδ∈S l̂(W e(x +
δ;θ) + b, y)). We then freeze the linear model and compute the accuracy of the combined model
W e(x;θ) + b against adversarial attacks (i.e., we count a successful attack as a misclassification).
In other words, we approximate the result of Eq. 1 using an inner-maximization procedure (i.e.,
adversarial attack). In order to get faithful results, all models are evaluated using a strong attack
which combines elements of the AutoAttack procedure (Croce & Hein, 2020) with the MultiTargeted
attack (Gowal et al., 2019). Namely, we use a sequence of AutoPGD on the cross-entropy loss with 5
restarts and 100 steps, AutoPGD on the difference of logits ratio loss with 5 restarts and 100 steps,
MultiTargeted on the margin loss with 20 restarts and 200 steps and Square (Andriushchenko et al.,
2019), an efficient black-box attack, with 5000 queries.
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B ADDITIONAL EXPERIMENTS

In this section, we perform ablation studies on network architectures, strength of the attack used
during representation learning, and color augmentation strength.

Network size. In Table 3, we study the impact of model architectures on CIFAR-10 against `∞
norm-bounded perturbations of size ε = 8/255. We train robust representations using wider ResNet,
as in (Chen et al., 2020b; Grill et al., 2020), with 34 layers and a width multiplier 1, 2 and 4, and
denoted by ResNet34×1, ResNet34×2, ResNet34×4. We observe that models increase performance
in both clean and robust accuracy when model size increases. Without using additional unlabeled
data, the robust accuracy saturates when using ResNet34×2. Hence, unless mentioned explicitly, in
this paper, we use ResNet34×2 for settings without additional data.

Table 3: Clean (no perturbations) and robust (under adversarial attack) accuracy obtained by networks
of different sizes on CIFAR-10 against `∞ norm-bounded perturbations of size ε = 8/255.

CIFAR-10
ARCHITECTURE NORM RADIUS Clean Robust

RESNET 34x1
`∞ ε = 8/255

78.02% 41.30%
RESNET 34x2 80.80% 43.24%
RESNET 34x4 81.32% 43.19%

Attack strength. Table 4 shows results of training robust representations using different attack
strengths on CIFAR-10 against `∞ norm-bounded perturbations of size ε = 8/255. We study the
effect of using standard PGD, as well as its adaptive variant named AutoPGD (Croce & Hein, 2020),
with different step sizes using ResNet34×2 models. We observe that more robust representations are
obtained as the attack strength increases. Although this finding is similar to previous observations (Qin
et al., 2019), we notice that robust representation learning is more prone to gradient masking (resulting
from using weak attacks during training) and requires stronger attacks then typically used in classical
adversarial training. Throughout the paper, unless mentioned explicitly, we used AutoPGD with 40
steps.

Table 4: Clean (no perturbations) and robust (under adversarial attack) accuracy obtained by rep-
resentations trained against attacks of different strength on CIFAR-10 against `∞ norm-bounded
perturbations of size ε = 8/255.

CIFAR-10
ATTACK STEPS NORM RADIUS Clean Robust

PGD

5

`∞ ε = 8/255

85.26% 1.05%
10 81.44% 37.88%
20 80.29% 42.58%
40 79.60% 43.41%

AUTOPGD

10

`∞ ε = 8/255

80.49% 40.59%
20 80.53% 43.27%
40 80.47% 43.64%
60 80.69% 43.64%

Impact of color augmentations. In Chen et al. (2020b) and Grill et al. (2020), the authors demon-
strate the importance of using color augmentations, which is composed color jittering and color
dropping. We follow the same setup as Chen et al. (2020b) and Grill et al. (2020), in Fig. 5, we
perform an ablation study on the strength of color augmentations. We use AutoPGD with 20 steps
on a ResNet34×2 model. We observe that BYORL is relatively stable in both clean and robust
accuracy for color augmentation strength between 0.1 and 0.5. In this paper, we had fixed the color
augmentation strength to be 0.5 across all the experiments. A better choice in retrospect would have
been 0.3 which provides an improvement of 0.34%.
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Figure 5: Accuracy on CIFAR-10 for different strengths of the color augmentation. Panel a shows the
accuracy under `∞ attacks of size ε = 8/255, while panel b shows the corresponding clean accuracy.
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Figure 6: Accuracy under `∞ attack of size ε = 8/255 for different CIFAR-100 models as a function
of the ratio of available labels. The available data is restricted to CIFAR-100 only (labeled and
unlabeled).

CIFAR-100. We repeat the experiments in subsection 4.2 on CIFAR-100. For CIFAR-100, we
expected BYORL to perform significantly better than UAT-FT as the number of classes is ten times
larger than on CIFAR-10. However, Fig. 6 shows a more nuanced story and remains similar to Fig. 4.
It is interesting to observe that BYORL tends to struggle with `∞ norm-bounded perturbations of size
ε = 8/255. As it has long been known that `∞ norm-bounded perturbations of size ε = 8/255 are
harder to cope with than `2 norm-bounded perturbations of size ε = 128/255, we posit that, at equal
model capacity, the pretext task (consisting of augmenting two different views of the same image)
needs to be slightly modified to accommodate the more difficult threat. Indeed, the investigation on the
impact of the color augmentation strength showed that it is possible to improve robust representations
by reducing the strength of these augmentations.

IMAGENET. We repeat a subset of the experiments from subsection 4.2 on IMAGENET. For
IMAGENET, we train BYORL representations with a ResNet 50×4 for 300 epochs. Following Grill
et al. (2020) and Chen et al. (2020b), we add random blur to the image preprocessing pipeline. We
also change the learning rate from 2 to 1.2 and the initial target network weight decay rate τ to 0.999.
We use a batch size of 1024 split over 128 Google Cloud TPU v3 cores. All other parameters remain
identical to other experiments.

Table 5 shows that BYORL is capable of learning robust representations for larger datasets such as
IMAGENET. In particular, our best model achieves 45.44% robust accuracy against `∞ norm-bounded
perturbations of size ε = 4/255 (as evaluated by the combined set of attacks consisting of AutoPGD
on the cross-entropy loss with 5 restarts and 100 steps, AutoPGD on the difference of logits ratio loss
with 5 restarts and 100 steps). Note that classical adversarial training achieves 39.7% (when evaluated
against PGD on the cross-entropy loss with 1 restart and 100 steps), while the current state-of-the-art
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is 47.00% (Qin et al., 2019). While BYORL does not reach the state-of-the-art in robustness, it
is remarkable to see it perform so well with only 1% of available labels and reach 31.57% robust
accuracy (e.g., classical non-robust supervised finetuning achieves 25.4% top-1 accuracy when no
adversarial perturbations are present as stated in Zhai et al., 2019b). Finally, these results also confirm
the results from Table 2 whereby training a non-robust linear classifier still achieves significant robust
accuracy.

Table 5: Clean (no perturbations) and robust (under adversarial attack) accuracy obtained when
training robust representations on IMAGENET against `∞ norm-bounded perturbations of size ε =
4/255. We evaluate the representations by training/finetuning a robust and non-robust linear head
on IMAGENET with varying numbers of labels. For completeness, we also add results for `2 norm-
bounded perturbations of size ε = 128/255

TRAINING OF IMAGENET (100%) IMAGENET (10%) IMAGENET (1%)
LINEAR HEAD NORM RADIUS Clean Robust Clean Robust Clean Robust

Robust (AT)
`∞ ε = 4/255

65.14% 45.44% 62.39% 41.58% 47.07% 31.57%
Non-robust 65.27% 43.83% 62.40% 41.06% 47.64% 31.99%

Robust (AT) `2 ε = 128/255 69.64% 65.48% 66.39% 61.90% 55.06% 51.00%

Transfer without adversarial training against `∞ norm-bounded perturbations. In subsec-
tion 4.2, we evaluate how robust accuracy degrades when linear classifiers trained on top of BY-
ORL representations are not trained robustly. In Table 2, we evaluate models trained against `2
norm-bounded perturbations. In Table 6, we evaluate models trained against `∞ norm-bounded
perturbations. In both cases, non-robust downstream classifiers are able to exhibit non-trivial levels
of robustness that remain within a few percentage points of the robustly trained ones.

Table 6: Clean (no perturbations) and robust (under adversarial attack) accuracy obtained when
training robust and non-robust representations on CIFAR-10 against `∞ norm-bounded perturbations
of size ε = 8/255. We evaluate the representations by training/finetuning a robust and non-robust
linear head on CIFAR-10, STL-10 and CIFAR-100.

TRAINING OF CIFAR-10
REPRESENTATION LINEAR HEAD NORM RADIUS Clean Robust

Robust (BYORL) Robust (AT) on CIFAR-10
`∞ ε = 8/255

84.96% 52.75%
Robust (BYORL) Non-robust on CIFAR-10 86.57% 50.94%

FINETUNING OF LINEAR HEAD STL-10

Robust (BYORL) Robust (AT) on STL-10
`∞ ε = 8/255

65.40% 37.79%
Robust (BYORL) Non-robust on STL-10 65.75% 36.51%

FINETUNING OF LINEAR HEAD CIFAR-100

Robust (BYORL) Robust (AT) on CIFAR-100
`∞ ε = 8/255

37.80% 14.82%
Robust (BYORL) Non-robust on CIFAR-100 39.51% 12.21%
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C ADDITIONAL FIGURES
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(a) CIFAR-10 only
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(b) CIFAR-10 and 80M-TINYIMAGES

Figure 7: Clean accuracy of same models presented in Fig. 3.
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Figure 8: Clean accuracy of same models presented in Fig. 4.

D ANALYSIS OF RESULTING MODELS

In this section, we perform analysis on the adversarial loss landscape from the BYORL models in `2
and `∞ cases to further examine whether adversarial accuracy is due to gradient masking (Uesato
et al., 2018; Athalye et al., 2018). The analysis made here complements the use of the black-box
Square (Andriushchenko et al., 2019) attack used by AutoAttack within our evaluation pipeline. For
generating a loss landscape, we vary the input along a linear space defined by the worse perturbations
found by PGD (u direction) and a random Rademacher direction (v direction). The u and v axes
represent the magnitude of the perturbation added in each of these directions respectively and the z
axis represents the adversarial margin loss (Carlini & Wagner, 2017b).

`2 model. In Fig. 9, we show the adversarial loss landscapes of 4 randomly selected CIFAR-10 test
images from the BYORL model trained against `2 perturbations on both CIFAR-10 and a subset of
80M-TINYIMAGES. The loss surfaces are generally smooth in Fig. 9, which provides evidence that
the model performance is not due to gradient obfuscation. We also note that our rigorous evaluation
already uses a black-box attack (i.e., Square Andriushchenko et al., 2019).

`∞ model. Fig. 10 shows the adversarial loss landscapes of 4 randomly selected CIFAR-10 test
images from the BYORL model trained against `∞ perturbations on both CIFAR-10 and a subset of
80M-TINYIMAGES. We observe that the loss landscapes are generally smooth in Figure 10, which
further suggests the model performance is not due to gradient obfuscation. We also note that our
rigorous evaluation already uses a black-box attack (i.e., Square by Andriushchenko et al., 2019).
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Figure 9: Loss landscapes around different CIFAR-10 test images. It is generated by varying the input
to the model, starting from the original input image toward either the worst attack found using PGD
(u direction) or a random Rademacher direction (v direction). The loss used for these plots is the
margin loss zy −maxi 6=y zi (i.e., a misclassification occurs when this value falls below zero). The
model used is the BYORL model trained against `2 perturbations on both CIFAR-10 and a subset of
80M-TINYIMAGES. The circular-shape represents the projected `2 ball of size ε = 128/255 around
the nominal image.
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Figure 10: Loss landscapes around the clean image of different CIFAR-10 test images. It is generated
by varying the input to the model, starting from the original input image toward either the worst
attack found using PGD (u direction) or a random Rademacher direction (v direction). The loss used
for these plots is the margin loss zy − maxi6=y zi (i.e., a misclassification occurs when this value
falls below zero). The model used is the BYORL model trained against `∞ perturbations on both
CIFAR-10 and a subset of 80M-TINYIMAGES. The diamond-shape represents the projected `∞ ball
of size ε = 8/255 around the nominal image.
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