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Abstract—This paper presents a methodology to efficiently
estimate the training time and associated computational cost
of fine-tuning Large Language Models (LLMs). Our approach
introduces a novel two-stage methodology that incorporates an in-
telligent tuning algorithm called the Scaling Laws Smart Tuning
(SLST) algorithm for efficient sample data collection and a time
prediction model combining scaling laws with Gradient Boosting
techniques. The scaling laws capture broad training trends
concerning model parameters and dataset sizes, while Gradient
Boosting models effectively reduce residual errors by modeling
complex nonlinear relationships directly from data. Through this
integrated approach, we achieve a high accuracy in training time
predictions, which can significantly enhance resource planning
and infrastructure decision-making. Our results demonstrate the
effectiveness of the methodology, which balances interpretability
and predictive accuracy, and highlight its scalability across
various computational and parallelism environments.

I. BACKGROUND AND RESEARCH QUESTION

A. Infrastructure Cost Estimation for LLM

The rapid advancement of generative AI and Large Lan-
guage Models (LLMs) [2] has transformed numerous in-
dustries. Foundation models [1], typically large-scale models
pre-trained on extensive datasets, capture general knowledge
and can be fine-tuned for various downstream tasks. Despite
their success, substantial computational and financial demands
during pre-training and fine-tuning [5] present significant chal-
lenges. As investments in LLMs grow, accurately estimating
infrastructure costs becomes critical for efficient resource man-
agement, evaluating project feasibility, and guiding strategic
infrastructure decisions.

B. Scaling Laws for LLM

The LLM scaling laws by Kaplan et al. [13] empirically
quantify the relationships among model size (N ), dataset size
(D), and computational resources required (C). Pioneering
studies on models like GPT-3 [2] demonstrated that power-
law relationships effectively model training-related costs. Ini-
tially drawn from physics and natural sciences, these scaling
laws characterize nonlinear and predictable scaling behaviors.
However, much existing research has primarily focused on
predicting training loss rather than training time, creating a
noticeable gap in the fine-tuning context.

C. Improving LLM Fine-Tuning Performance

While large-scale pre-training remains resource-intensive
and primarily accessible to well-resourced entities, fine-tuning

has become increasingly feasible through Parameter-Efficient
Fine-Tuning (PEFT) techniques [6], particularly Low-Rank
Adaptation (LoRA) [11]. LoRA selectively updates a small
subset of model parameters, significantly reducing computa-
tional overhead. It operates independently from parallel com-
putation methods such as Pipeline Parallelism (PP) [12] and
Tensor Parallelism (TP) [17], which primarily manage com-
putational distribution rather than directly influencing learning
dynamics.

D. Motivation and Research Question

This work proposes a methodology for efficiently and
accurately estimating fine-tuning training times for LLMs.
While significant research exists on LLM training dynamics,
most studies emphasize training loss rather than training time,
leaving several key research gaps:

1) Emphasis on Pre-training Over Fine-tuning: Most
studies have primarily examined scaling laws within pre-
training scenarios. For instance, Hernandez et al. [10]
conducted an extensive analysis of scaling behaviors
for model transfer and pre-training, offering valuable
insights into optimal model sizes and resource alloca-
tion. While their findings could potentially be adapted
to fine-tuning contexts, their primary focus remains pre-
training, which inherently differs in runtime characteris-
tics compared to fine-tuning. Additionally, although pre-
dictions based on pre-training data might theoretically
apply to fine-tuning scenarios, practical experimental
validation remains lacking, leaving the feasibility of such
adaptation uncertain.

2) Focus on Training Loss Instead of Runtime Predic-
tion: Existing research typically emphasizes predicting
and minimizing training loss, often neglecting explicit
modeling of runtime, which is crucial for practical
resource management and scheduling. Zhang et al. [22]
provided comprehensive runtime analyses across various
stages of LLM development, yet generalized predictive
frameworks remain sparse.

3) Limited Integration of Scaling Laws with Empirical
Fine-tuning Time Prediction: Scaling laws have been
foundational in understanding pre-training performance,
but integration into runtime prediction methodologies for
fine-tuning remains relatively unexplored. Xia et al. [21]
developed analytical methods for estimating fine-tuning
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costs on specific GPU setups, but their approach does not
explicitly employ scaling laws for generalized prediction
across different computational environments.

Addressing these gaps, this paper aims to answer the
following research question: How can power-law scaling rela-
tionships effectively predict computational costs (training time)
for LLM fine-tuning, thereby enabling efficient and sustainable
AI infrastructure planning?

II. TWO-STAGE METHODOLOGY

To address the aforementioned research question, we pro-
pose a comprehensive approach combining theoretical model-
ing and empirical validation. Our method involves two primary
stages: first, efficient sample data collection guided by the
Scaling Laws Smart Tuning (SLST) algorithm to ensure data
quality and adherence to the LLM Scaling Laws; second,
leveraging the collected data to predict training time (T )
using redesigned LLM Scaling Laws formulas. Constants and
exponents within these formulas are determined via the curve-
fitting method, and the residuals, which are the differences
between observed and predicted training time, are further
minimized using Gradient Boosting.

A. Scaling Laws Smart Tuning

Our method begins with sample collection via fine-tuning
LLMs. To ensure valid and predictive training time (T ) data,
the training loss (L) must conform to LLM Scaling Laws. Con-
currently, hyperparameters such as learning rate and batch size
are tuned during sample data collection, explicitly guided by
the Scaling Laws. The LLM Scaling Laws provide a reliable
and interpretable framework, characterizing the relationships
among model size (N ), dataset size (D), and training dynam-
ics. By leveraging it, we can significantly reduce the number
of empirical trials while ensuring the quality of the collected
data samples, that is suitable for training time predictions.
To formalize this approach, we introduce the Scaling Laws
Smart Tuning (SLST) algorithm (Algorithm 1). The algorithm
operates as follows:

• Pre-defines the key parameters such as model sizes N [ ],
maximum dataset size D, e.g., 80k # of tokens (22MB),
and dataset intervals (lines 1–3).

• Initializes the hyperparameters such as learning rate (lr)
and batch size (bs) along with their bounds (lines 5–9).

• Trains the language model using the llm fine tuning()
function with current parameters (line 11).

• Evaluates training logs at specified intervals(lines 12–13),
as illustrated in Figure 1, ensuring the loss L adheres to
the LLM Scaling Laws which is the L should improve
as we increase N and D (lines 14–19).

• If non-compliance occurs, adjusts the hyperparameters
and retrains (lines 20–26).

• Outputs optimal parameters upon compliance and pro-
gresses systematically through dataset intervals, as
demonstrated in Figure 2, then advances to subsequent
model sizes (lines 28–31).

Algorithm 1 Scaling Laws Smart Tuning Algorithm
Input: Define ML models N , max data sizes D with interval range.

Define initial batch size bs and learning rate lr.
Define batch size, learning rate boundary (min bs, max lr).

Output: Optimal learning rate lr, batch size bs, loss L, time T
1: N [ ]← get models list()
2: D ← get max dataset()
3: range← get dataset range(D)
4: for each n in N [125m, 1.3b, . . . , 66b} do
5: lr ← get initial lr by model(n)
6: bs← get initial bs by model(n)
7: max lr ← get max ls by model(n)
8: min bs← get min bs by model(n)
9: Initialize parameters: totalT ime ← 0, prevDLoss ← 0,

currD ← 1
10: while currD ̸= patterns[range] do
11: log ← llm fine tuning(lr, bs, n,D)
12: step← get log step(log)
13: patterns[ ]← np.linspace(1, steps, range)
14: for each d in patterns[currD, . . . ] do
15: read log file at d
16: extract values Loss, T ime from log file
17: prevNLoss← get previous loss(N [n− 1], d)
18: currLoss← Loss
19: if currLoss > prevNLoss or currLoss >

prevDLoss then
20: if bs > min bs then
21: bs← bs/2
22: else if lr < max ls then
23: lr ← lr × 2
24: end if
25: currD ← d
26: break
27: else
28: totalT ime← totalT ime+ T ime
29: Output: lr, bs, currLoss as L, and totalT ime as

T
30: totalT ime← 0
31: prevDLoss← currLoss
32: end if
33: end for
34: end while
35: end for

B. Training Time Prediction

The second stage consists of two phases: Scaling Law T
formulation and Gradient Boosting.

1) Scaling Laws T Formulation: Leveraging SLST, we
collect comprehensive sample data across various GPU and
parallelism configurations. We analyze this sample data using
SciPy’s optimization curve fitting module [18], employing
nonlinear least squares to fit the redesigned training time scal-
ing laws formula and calibrate our own formula, effectively
capturing the inherent nonlinearities.

Power laws [20] characterize nonlinear relationships as
straight lines on log-log plots, forming the basis for LLM
Scaling Laws. While LLM Scaling Laws for training loss (L)
typically show decreasing trends by dividing model size (N )
and dataset size (D) by constants, training time (T ) shows
increasing trends. First, to predict training time in regards with
N and D, we adapt a scaling formula by multiplying N and D
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Fig. 1: SLST Log Example

Model Size N=125m and Dataset Size D=80k with 14 steps and 8 ranges(intervals)

Fig. 2: SLST trys diff lr and bs with Result Example

Model Size N=6.7b, G (# of GPUs)=8 and PPxTP=2x4; L is Training Loss, T is
Training Time, D is Dataset Size (# of Tokens), lr is Learning Rate and bs is Batch Size

with constants, aligning with the observed increasing behavior
in formula (1).

T (N,D) =
[(

NcN
αN
αD

)
+DcD

]αD
(1)

Then, in order to model the training time for Pipeline Paral-
lelism (PP) and Tensor Parallelism (TP), each of which would
contribute to reduce the training time, we extend formula (1)
with the TP and PP time factors that are modeled via two
approaches: first, Power law based TP (2) and PP (3) factors,
and second, Amdahl’s law based TP (4) and PP (5) factors,
as follows.

Factor(TP )P =

(
TPc

TP

)αTP

(2)

Factor(PP )P =

(
PPc

PP

)αPP

(3)

Amdahl’s Law [9] illustrates performance limits in paral-
lelization contexts. It highlights diminishing returns as parallel

TABLE I: Candidate Scaling Laws Formulas for T ( )

Formula Base and Factors

TA(N,D, TP, PP )
[(

NcN
αN
αD

)
+DcD

]αD
×

[(
γ
TP

+ 1− γ
)]

×
[(

δ
PP

+ 1− δ
)]

TP (N,D, TP, PP )
[(

NcN
αN
αD

)
+DcD

]αD
×

(
TPc

TP

)αTP ×
(
PPc

PP

)αPP

resources grow, providing accurate training-time improvement
estimates:

Factor(TP )A =
[( γ

TP
+ 1− γ

)]
(4)

Factor(PP )A =

[(
δ

PP
+ 1− δ

)]
(5)

Note that the factors Factor(PP ) and Factor(TP ), which
represent the scaling behavior due to GPU, tensor, and pipeline
parallelism, respectively, are explicitly combined into single,
comprehensive equations. For clarity and concise reference,
these unified equations, including base terms and both factors,
are summarized in Table I:

2) Residual Reduction via Gradient Boosting: Gradient
Boosting [8], a sequential ensemble machine learning tech-
nique, minimizes pseudo-residuals iteratively. It enhances the
Training Time Scaling Laws through a hybrid approach: ini-
tially fitting a physics-inspired scaling model to broadly cap-
ture trends, then employing Gradient Boosting (e.g., XGBoost
[3], LightGBM [14], or CatBoost [16]) to refine predictions
by learning residual nuances. This combination effectively in-
tegrates interpretability with predictive accuracy, significantly
enhancing model reliability.

Gradient Boosting [8] enhances the Scaling Laws model
by minimizing residuals through a sequential ensemble of
weak learners. This approach refines predictions beyond the
Scaling Laws’ broad trends, significantly improving accuracy
and robustness.

III. EXPERIMENT

To validate our time prediction methodology, we conducted
comprehensive experiments utilizing the Meta OPT (Open Pre-
trained Transformer) model [23], selected due to its status
as a robust foundation model and the extensive range of
model sizes available. In our experiments, we focus on fine-
tuning LLMs using the Low-Rank Adaptation (LoRA) [11]
technique. The dataset selected for our experiments is the Self-
Instruct dataset [19], containing 52k instructions along with
82k paired inputs and outputs. The dataset was segmented
into eight intervals, ranging from 10,000 to 80,000 tokens, and
sizes from 2.6MB to 22MB. We utilized a computing cluster
equipped with 16 NVIDIA H100 GPUs [4] and leveraged
the Megatron framework [17], enabling various experimental
scenarios involving different GPU counts and levels of pipeline
and tensor parallelism.

A. Scaling Laws Smart Tuning

We first compare our SLST algorithm against a simple
grid search approach. The grid search exhaustively explores
16 scenarios for each model-dataset combination, using 4
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TABLE II: Number of Trials: Brute Force Grid Search vs. SLST

D(=80K) \ N 125M 1.3B 2.7B 6.7B 13B 30B 66B Total
SLST Trials (P=4) 1 1 1 1 2 2 4 12
Brute Force (P=4) 128 128 128 128 128 128 128 896
SLST Trials (P=8) 0 1 1 1 3 1 4 11
Brute Force (P=8) 0 128 128 128 128 128 128 768
SLST Trials (P=16) 0 0 1 1 0 3 4 9
Brute Force (P=16) 0 0 128 128 0 128 128 512

TABLE III: Test Results for Self-Instruct Dataset

Formula MAE S (↓) R2 S (↑) MAE C (↓) RMAE C (↓) R2 C (↑)
TA( ) 20.974 0.790546 12.710 16.695 0.918035
TP ( ) 20.963 0.790435 13.307 17.624 0.908659

Testing Dataset D=60k (16MB)˜80K (22MB) with Masking Out non-compliance LLM
Scaling Laws results for different # of GPU and Parallelism Configurations. The
metrics with S means performance result after 1st phase: scaling laws T ; the metrics
with C means performance result after 2nd phase: Gradient Boosting (CatBoost).

different learning rates and 4 different batch sizes. Partial ex-
perimental results for configurations with PP ×TP = 16×1,
PP × TP = 8 × 2, and PP × TP = 4 × 4 using 16
GPUs are presented in Table II. The results clearly illustrate
SLST’s efficiency in significantly reducing the number of trials
required during sample data collection.

B. Training Time Prediction

Following the sample data collection via SLST, we evalu-
ated two candidate scaling laws formulas, which are Amdahl’s
law-based TA( ) and Power Law-based TP ( ), presented in
Table I. Sample data collected using SLST from 10k (2.6MB)
to 50k (13MB) tokens served as the training set, while the 60k
(16MB) to 80k (22MB) tokens range was reserved for testing.
The GPU configurations varied systematically, with the total
number of GPUs (G) ranging from 16 down to 8, and the
pipeline parallelism (P ) adjusted accordingly—for instance,
when G = 16, configurations included PP × TP = 16 × 1,
8× 2, and 4× 4, among others, ensuring comprehensive cov-
erage of parallelism combinations. Constants and exponents
within the formulas were determined using curve fitting, and
residual errors were further minimized using CatBoost. Test
results comparing the models are shown in Table III.

The results in Table III indicate the superior performance
of the TA( ) model, evidenced by the lowest MAE and RMAE
and the highest R2 scores. These outcomes highlight the
effectiveness of Amdahl’s law-based factors in modeling GPU
and parallelism scaling more accurately than the power law-
based factors. Optimized constants and exponents example
for Self-Instruct Dataset for the TA( ) model after curve
fitting are listed in Table IV. Further examples, shown in
Figures 3 illustrate the prediction trends clearly across various
test scenarios, demonstrating the scalability of model sizes and
dataset intervals.

IV. CONCLUSION AND FUTURE WORKS

In conclusion, this research presents a robust methodology
for accurately predicting training time and computational costs
associated with LLM fine-tuning. We introduced a two-stage
predictive framework, incorporating the novel Scaling Laws
Smart Tuning (SLST) algorithm for efficient sample data

TABLE IV: Constants and Exponents Example for Self-Instruct Dataset

Constant and Exponents for TA() Values
Nc 9.52074184e-04
αN 7.92198609e-01
Dc 1.72112915e-044
αD 2.17499781e+00
γ 6.52994195e-30
δ 9.80222336e-01

collection alongside a time predictive approach. This time
prediction model combines the LLM scaling laws with time
modeling for GPU parallelism, and we use Gradient Boosting
to enhance prediction accuracy. The approach can effectively
capture broad trends related to model parameters and dataset
sizes, while Gradient Boosting models further refine these
predictions by modeling nonlinear relationships and reducing
residual errors. This integrated approach achieves high accu-
racy and reliability, striking a balance between explainability
and predictive flexibility, which can be significantly helpful in
improving resource planning and informing strategic infras-
tructure decisions across diverse computational and parallelism
environments.

For future work, we plan to further enhance the robustness
and broader applicability of our approach by:

• Expanding our experimental dataset with larger sizes and
various types of datasets, to improve the generalizability
and robustness of predictions.

• Evaluating the methodology’s applicability advances not
only OPT-based fine-tuning but also extends to other
LLMs such as Llama [7] [15], future pre-training phases,
inference tasks, and potentially diverse domains like
Computer Vision.

• Investigating the effectiveness of our methodology across
various GPU vendors and extending this to include infras-
tructure components beyond GPU, such as networking,
storage, power, and thermal management.

While initial sampling and the two-phase prediction ap-
proach remain essential for calibrating predictive models, sub-
sequent predictions significantly reduce the need for exhaus-
tive empirical evaluations. By enabling accurate estimations
of training times and computational resources across various
configurations, our predictive methodology optimizes resource
allocation, reduces operational costs, and supports effective
strategic decision-making, particularly in large-scale or unex-
plored scenarios. These initiatives will further demonstrate the
versatility and extend the practical utility of our predictive
model, ensuring comprehensive adaptability and robust per-
formance across diverse computational environments.
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Fig. 3: Training time vs model size (left) and Self-Instruct dataset size (right) across G/P settings prediction examples. Our experiments
cover model sizes ranging from N = 125m to 66b parameters, with testing dataset sizes between D = 60K tokens (16MB) and 80K
tokens (22MB). We present example prediction results for various GPU parallelism configurations, denoted as (G,PP × TP ), specifically
(16, 4× 4), (16, 8× 2), and (8, 4× 2). The 8-GPU setup supports fine-tuning only up to the 30B parameter model. Additionally, the
configurations (16, 8× 2) and (8, 4× 2) cannot accommodate all tested model sizes because certain model architectures have numbers of
layers or attention heads that are not divisible by the specified pipeline or tensor parallelism factors.
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