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Abstract

Large pre-trained language models have shown promise for few-shot learning,
completing text-based tasks given only a few task-specific examples. Will models
soon solve classification tasks that have so far been reserved for human research
assistants? Existing benchmarks are not designed to measure progress in applied
settings, and so don’t directly answer this question. The RAFT benchmark (Real-
world Annotated Few-shot Tasks) focuses on naturally occurring tasks and uses an
evaluation setup that mirrors deployment. Baseline evaluations on RAFT reveal
areas current techniques struggle with: reasoning over long texts and tasks with
many classes. Human baselines show that some classification tasks are difficult
for non-expert humans, reflecting that real-world value sometimes depends on
domain expertise. Yet even non-expert human baseline F1 scores exceed GPT-3 by
an average of 0.11. The RAFT datasets and leaderboard will track which model
improvements translate into real-world benefits at https://raft.elicit.org.

1 Introduction

Few-shot learning, the capacity to complete a task given a small number of demonstrations [11], is
one of the hallmarks of human intelligence [30, 17]. As researchers, we leverage this capacity when
we delegate work on crowdsourcing platforms or give a task with examples to a human research
assistant.

Brown et al. [6] show that large pre-trained language models exhibit few-shot learning capabilities
for a wide range of natural language tasks. If those capabilities were comparable to people on
economically relevant tasks, this would be important to know: a single model could be used across
multiple real-world tasks, with low per-task data labeling cost. However, these models have also been
shown to have inconsistent few-shot performance depending on the exact setup and task being solved
[e.g. 21, 24]. The mixed evidence suggests that it would be valuable to measure and track few-shot
performance on a set of tasks that is representative of what appears in practice.

⇤Equal contribution. Correspondence to elifland@ought.org and salexucb@berkeley.edu. NA contributed
during an internship at Ought.
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Figure 1: RAFT includes naturally occurring classification datasets, mimicking work that is usually
given to human research assistants. Each task comes with natural language instructions and labels in
addition to 50 training examples.

Natural language tasks coarsely split into generation, classification, and retrieval. We focus on
classification tasks because they support high-quality automated evaluation, cover a wide range of
economically valuable tasks, and yet don’t have existing real-world benchmarks.

Existing few-shot classification benchmarks are typically designed to highlight areas where models
fall short [29] or to study particular model abilities [5, 37, 21]. The tasks and evaluation setup aren’t
optimized to measure progress in applied settings:

• Tasks that are generated or chosen specifically to test language models may not represent
some of the challenges found when applying these models in real-world settings. For
example, SuperGLUE [32] and the few-shot equivalent FewGLUE [29] mainly include short
texts. Doing well on applied tasks sometimes requires reasoning over long texts. Existing
systems struggle with long texts due to a limited context window, especially in the few-shot
setting where some systems learn from examples presented in context.

• The evaluation does not closely mirror deployment, and may both under- and overestimate
models’ capabilities. It may underestimate model capability by restricting models to the
closed-book setting (e.g., no retrieval from online sources) and using uninformative labels
(e.g., 0/1 instead of “about literature” vs. “about movies”). It may overestimate model
capability by using many more than a few examples for setting hyperparameters during
validation [24].

RAFT is a real-world few-shot text classification benchmark designed to measure how much recent
and upcoming NLP advances benefit applications:

• The tasks are naturally occurring tasks. Their labeling is inherently valuable to someone,
and they may have challenges that are not reflected in synthetic tasks. Inherent value means
that, if it were sufficiently fast and cheap, it would be desirable to outsource the task to
human research assistants or crowd workers. Challenges refers to the need for information
retrieval, domain expertise, parsing long documents, and making use of instructions. Table 1
shows the real-world challenges presented by RAFT, including 4 datasets with long input
texts.
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• The evaluation closely mirrors deployment. For each task, we release a public training set
with 50 examples and a larger unlabeled test set2. We encourage unsupervised pre-training
on the unlabelled examples and open-domain information retrieval. We keep the test-set
labels private and provide automated evaluation through a Hugging Face leaderboard3.

In addition to the gold-standard human labels, we collect automatic and crowdsourced baselines.
The automatic baselines reveal areas where current techniques struggle, such as reasoning over long
texts and tasks with many classes. The crowdsourced baseline reveals that RAFT includes a mix of
moderate to difficult tasks. We also observe difficulties in collecting human crowdsourced baselines
on some datasets, particularly when domain expertise is important, which suggests that real-world
value often depends on domain knowledge.

The RAFT datasets and leaderboard can be viewed and submitted to at https://raft.elicit.org.

2 Related Work

We briefly review few-shot learning in NLP, then the benchmarks that are most similar to RAFT.

2.1 Few-shot learning in NLP

Pre-trained language models (PLMs) such as BERT [10] and GPT-3 [6] can learn to do some NLP
tasks when prompted with a few demonstrations, including some classification tasks. The two
primary approaches to few-shot classification using PLMs are in-context learning and prompt-based
fine-tuning.

In-context learning. A PLM is primed with labeled examples in its prompt. It classifies the
example included at the end of the prompt by predicting the classification conditioned on the priming.
GPT-3 [6] used in-context learning to achieve promising results on a variety of classification tasks.
UniFew [5] similarly achieved strong results on classification tasks via in-context learning, converting
classification tasks into a multiple-choice question answer format for prompting.

Prompt-based fine-tuning. A PLM is fine-tuned with masked-language modeling objectives to
learn from few examples. This is also known as Pattern-exploiting training (PET) [28]. While PET
requires task-specific prompts, it achieves better performance than GPT-3 in-context with smaller
models [29]. LM-BFF [13] improves prompt-based fine-tuning by dynamically constructing prompts.

2.2 Few-shot NLP benchmarks

The most closely related few-shot NLP benchmarks are FLEX [5], FewGLUE [29], CrossFit [37],
and NaturalInstructions [21]. Each of these benchmarks includes at least some classification tasks
with meaningful textual labels.

These benchmarks are designed to study transfer between tasks [5, 37], pinpoint where NLP models
fall short [29], and evaluate ability of models to follow instructions [21], whereas RAFT is designed
to be representative of real-world classification tasks. This difference in goals is reflected in selection
of tasks and evaluation:

Tasks. FLEX, FewGLUE and NaturalInstructions test on traditional NLP tasks. CrossFit tests on 160
tasks from the Hugging Face Datasets4 and includes some naturally occurring datasets, including the
TweetEval dataset [2] that RAFT uses as well. CrossFit excludes tasks that leverage external sources
or information retrieval techniques, need domain knowledge (e.g. COVID-19 datasets), and long
documents (e.g. scientific papers). Like RAFT, FLEX includes tasks with strong class imbalance.

Evaluation. None of the existing benchmarks allow open-domain information retrieval. Like FLEX,
RAFT provides no extra validation data beyond the training examples. Perez et al. [24] argue that
the performance of state-of-the-art few-shot methods has been overestimated by most other existing
benchmarks because they use labeled examples beyond the few training instances provided for model
and parameter selection.

2Datasets are at https://raft.elicit.org/datasets
3Instructions for submission are at https://raft.elicit.org/submit
4https://huggingface.co/datasets
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3 Benchmark Description

RAFT is a few-shot classification benchmark. We focus on classification primarily because automatic
evaluation is more reliable than for generation tasks. We believe (as our results will later confirm)
that there still is a substantial gap between even non-expert humans and automated systems in the
few-shot classification setting.

Both tasks (datasets and metadata) and evaluation (rules for submission, metrics) are chosen to mirror
real-world classification problems.

3.1 Tasks

A classification task is a dataset with labeled natural language entries. Each label corresponds
one-to-one with a natural language class name. Each task has instructions for labeling.

3.1.1 Dataset selection criteria

We selected datasets based on the following criteria (“non-trivial real world tasks”):

Naturally occurring. We focus on data that are naturally occurring, rather than being synthetically
generated to test and improve language models.

Intrinsic value. We select datasets for which the correct labeling inherently provides real-world
value. RAFT includes tasks like hate-speech detection, medical case report parsing, and literature
review automation, where better performance translates into practical benefits. This criterion involves
subjectivity, but we aimed to select tasks that approximate the distribution of valuable classification
tasks well.

Realistic class distribution. We did not exclude datasets with heavily imbalanced classes.

Open-domain feasibility. As we provide an open-domain setting where information retrieved from
the web may be used to augment predictions, we excluded tasks for which the correct label is extremely
easily discoverable through a Google search. For example, we considered including the LIAR [35]
dataset which includes Politifact statements and their veracity. We decided against including it since
it would be trivial to get 100% accuracy by running a site search on https://www.politifact.com/.

In order to gather datasets meeting the above requirements, we put out a collaboration request. We
also reached out to users of classification on Elicit [23]. Lastly, we conducted a search of existing
datasets on the Hugging Face Hub5 and PapersWithCode 6.

3.1.2 Dataset preparation

In cases where the test set was over 5,000 data points, we randomly selected 5,000 to serve as a test
set in order to keep the test set sizes manageable. When the dataset didn’t already have textual labels,
we added textual labels according to our best understanding of the task.

3.1.3 Selected RAFT datasets

We selected 11 datasets, accessible at https://raft.elicit.org/datasets. Table 1 presents an overview of
the datasets. More details are available in the Appendix.

ADE Corpus V2 (ADE). The ADE corpus V2 [15] contains sentences from medical case reports
annotated for relation to adverse drug effects. We focus on the binary classification task of whether a
sentence is related to an adverse drug effect (ADE).

Banking77 (B77). Banking77 [7] contains online banking customer service queries annotated with
their intents.

NeurIPS impact statement risks (NIS). We include the broader impact statements from NeurIPS
2020 papers collected in the dataset from Ashurst et al. [1]. We annotate these based on whether they
mention possibly harmful applications of the research done in the paper .7

5https://huggingface.co/datasets
6https://paperswithcode.com
7The raw scraped NeurIPS impact statements can be found at https://raft.elicit.org/neurips-impact.
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Dataset Name Long
inputs

Domain
expertise

Detailed
instructions

Number of
classes

Test set
size

ADE Corpus V2 (ADE) – X – 2 5,000

Banking77 (B77) – – – 77 5,000

NeurIPS impact statement risks (NIS) X – – 2 150

OneStopEnglish (OSE) X – – 3 516

Overruling (Over) – X – 2 2,350

Semiconductor org types (SOT) – – – 3 449

Systematic review inclusion (SRI) X – X 2 2,243

TAI safety research (TAI) X X X 2 1,639

Terms of Service (ToS) – X X 2 5,000

TweetEval Hate (TEH) – – X 2 2,966

Twitter complaints (TC) – – – 2 3,399

Table 1: Overview of the tasks in RAFT. Long inputs, Domain expertise, and Detailed instructions
are some of the real-world challenges posed by RAFT.

OneStopEnglish (OSE). OneStopEnglish [31] contains articles sourced from The Guardian news-
paper and rewritten by teachers to suit three levels of adult English as a Second Language (ESL)
learners.

Overruling (Over). Overruling [39] contains statements from a law corpus annotated based on
whether they are overruling, defined as nullifying a previous case decision as a precedent.

Semiconductor org types (SOT). We collect a dataset of institutions that have contributed to semi-
conductor conferences in the last 25 years, then classify these institutions into organization types:
“university", “company", and “research institute".

Systematic review inclusion (SRI). We use data from a systematic meta-review studying interven-
tions to increase charitable donations [22]. The task is to predict whether a paper advances past the
screening stage.

TAI safety research (TAI). We include data from the formation of a bibliographic database for
research on the safety of transformative artificial intelligence (TAI) [27]. We choose the binary task
of predicting whether a work is classified as TAI safety research.

Terms of Service (ToS). The Terms of Service dataset [19] contains clauses from Terms of Services,
annotated by whether they are potentially unfair to consumers.

TweetEval Hate (TEH). We include the hate-speech detection task from the TweetEval dataset [2],
which was curated from Basile et al. [3].

Twitter complaints (TC). We include a dataset of tweets annotated by whether they contain a
complaint [25].

3.2 Evaluation

3.2.1 Setting and rules

The RAFT evaluation replicates real-world few-shot classification problems by restricting to 50
labeled examples without validation set, providing meaningful instructions and labels, and using a
no-holds-barred setting:

50 labeled examples. We provide 50 labeled examples per task (not per class). In the authors’
experience with users of the classification tool Elicit [23], this is approximately the number of
examples people are willing to label for a task with a few thousand unlabeled examples. The 50
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examples are chosen randomly, mirroring the applied setting in which one can’t easily choose a
balanced set. No examples beyond the chosen 50 are available for validation.8

Task-specific instructions. As an important replacement for large amounts of labeled data, instruc-
tions can specify how a task should be done. Therefore, we provide the instructions we give to
human labelers so that they can be used in instructing automatic systems. The level of detail of the
instructions varies. We write the instructions based on information from publications (for datasets
published elsewhere) or in consultation with the dataset creator (for new datasets).

Meaningful label names. Similar to instructions, textual labels are an important aspect of few-shot
and especially zero-shot learning. We create default textual labels for each dataset as recommended
by FLEX [5].

Transfer learning permitted. Transfer and meta-learning using other datasets is permitted, including
further pre-training on other corpora.

Unlabeled data permitted. Use of the unlabeled RAFT test sets is permitted, as unlabeled data are
usually available in the applied setting.

Open-domain retrieval permitted. Models may be augmented with information retrieved from the
internet, e.g. via automated web searches.9

Submission requires only labels. Submission on the test set is open to the public and only requires
upload of test set labels. This is in line with benchmarks like GLUE [33] and SuperGLUE [32], but
is in contrast to the few-shot benchmark FLEX [5]. By only requiring labels, we give submission
creators maximal flexibility in what models to set up.

Weekly evaluation. Evaluation is run on a weekly basis to minimize information gained from
frequent repeated submissions.

Baseline Avg ADE B77 NIS OSE Over SOT SRI TAI ToS TEH TC

Human (crowdsourced) .735 .830 .607 .857 .646 .917 .908 .468 .609 .627 .722 .897

GPT-3 (175B) .627 .686 .299 .679 .431 .937 .769 .516 .656 .574 .526 .821

AdaBoost .514 .543 .023 .626 .475 .838 .455 .506 .556 .560 .443 .625

GPT-Neo (2.7B) .481 .452 .149 .408 .343 .681 .406 .493 .605 .565 .554 .636

GPT-2 (1.6B) .458 .600 .121 .561 .245 .498 .380 .492 .612 .498 .311 .723

BART MNLI Zero-shot .382 .234 .332 .615 .360 .462 .644 .026 .469 .122 .543 .400

Plurality class .331 .446 .000 .353 .164 .337 .271 .493 .344 .471 .366 .391

GPT-3 Zero-shot .292 .163 .000 .572 .323 .378 .628 .027 .362 .164 .303 .290

Table 2: Performance of RAFT baselines (F1)

3.3 Metrics

Since some RAFT datasets have substantial class imbalances, we use F1 as our evaluation metric.
We compute macro-averaged F1 scores, even for binary datasets. To get an overall score, we average
across all datasets.

8By only releasing 50 labelled examples, we make it difficult to cheat by using more than 50 examples for
validation. For the NeurIPS impact statement risks and Semiconductor org type datasets, the test set labels aren’t
available publicly. For other datasets, the test set labels are available publicly but it is non-trivial and discouraged
to seek them out.

9Ideally, we’d only allow information from before the time each dataset needed to be labeled. This isn’t
currently feasible, so we settle for a fully open-domain setting.
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4 Baselines

The code for all automatic baselines is open-sourced at https://raft.elicit.org/baselines.

4.1 GPT-3 baseline

We provide a simple automatic baseline using GPT-3 [6], accessed through the OpenAI API10. As in
Brown et al. [6], we use in-context learning, adding labeled examples to the prompt to prime GPT-3.
We also run a zero-shot version with no training examples included in the prompt.

4.1.1 Prompt construction

We build a prompt consisting of:

1. Task-specific instructions
2. N labeled examples, with N selected on a per-task basis
3. The target example to classify

Example prompts for all datasets are available at https://raft.elicit.org/baseline-prompts.

Truncation. GPT-3’s context window support up to 2, 048 tokens. The experiments in Brown et al.
[6] include as many complete labeled examples as would fit in the context, reporting that typically 10
to 100 examples fit. However, datasets such as OSE have very long inputs so that only 1-2 complete
labeled examples would fit, suggesting that another approach may be better.

We select N training examples to include in a given prompt and then truncate the examples. In a
given task, the instructions take up I tokens. Separators between the instructions and each example
take up S tokens. No more than T = 2, 048 tokens can be used.

1. E = T � I � S tokens are allotted for the training examples and classification target.
2. The classification target is truncated to 1

4E tokens.

3. Each of the N remaining training examples is truncated to 3
4
E
N tokens.

We truncate from a training example’s data fields first, leaving the label intact.

Field selection and sorting. We exclude data fields that are unlikely to contribute substantially to
GPT-3’s performance. These fields either deal with the authors of the textual example or are URLs.
Additionally, we sort the order in which the text fields occur to put the most important fields first.
When examples are truncated, the most important information is preserved.

Semantic selection. To select training examples to include in the prompt for a given test example,
we selected the most similar training examples as in Liu et al. [20]. To perform semantic search, we
use the OpenAI API search endpoint with the ada engine.

4.1.2 Classification

With the prompt formed, we retrieve GPT-3’s 100 most likely next tokens using the davinci engine.
For each class, we assign the probability that its first token is generated. We then normalize the
probabilities to sum to 1. For the B77 dataset, multiple labels share the same first token so we prepend
a numerical prefix such as “1. ” to each class.

4.1.3 Parameter selection

We tune the GPT-3 baseline on the training set using leave-one-out cross validation (LOOCV): k-fold
cross validation with k = n so that only one test example is used at a time for validation. While
LOOCV isn’t robust with as few as 50 examples as discussed in Perez et al. [24], it is one of the best
options for parameter selection in the few-shot setting. Detailed LOOCV results are in Section A.5.

Instructions. We test two modes of instruction: (a) a generic classification prompt: "Possible labels:"
followed by a list of textual labels. (b) instructions similar to the ones given to human labelers, plus

10https://beta.openai.com
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the list of textual labels. The instructions are taken whole when possible, and otherwise shortened
and summarized manually to limit usage of the GPT-3 context window. Task-specific instructions
outperform generic instructions by an .04 on averaged F1 score, thus we include task-specific
instructions in the baseline.

Semantic training example selection. To select training examples for inclusion in the prompt from
a larger set, we consider (a) selecting examples randomly and (b) using semantic search to identify
the training examples most similar to the test example. Semantic selection outperforms random
selection by 0.03 on averaged F1, thus we include semantic selection in the baseline.

Number of examples in the prompt. We select the number of examples to include in the prompt on
a per-dataset basis, as our truncation strategy induces a quality-quantity trade-off. For each dataset,
we test performance with 5, 10, 25, and 5011 training examples and choose the number that performs
best by F1. For datasets with long inputs, smaller numbers of more detailed samples often produce
better performance, while datasets with smaller inputs can fit more complete labeled examples in the
prompt.

4.2 Other automatic baselines

In-context baselines. We run further in-context baselines GPT-Neo [4] and GPT-2 [26]. We provide
code12 for generating predictions on RAFT using these models and any other causal language model
available on the HuggingFace Hub. For semantic search, we use a MiniLM [34] fine-tuned on
sentence pairs via the sentence-transformers package13.

Zero-shot baselines. We run two transformers in the zero-shot setting:

• GPT-3, to judge to what extent training examples in the prompt aid performance
• BART [18] trained on MNLI [36], as suggested by Yin et al. [38] and Davison [9] as an

effective zero-shot classification approach

Non-neural baselines. We run AdaBoost [12] to establish a strong non-neural baseline. We construct
feature vectors for each example based on the counts of n-grams of 1-5 words as the input to a
weighted ensemble of 100 depth-3 decision trees. These decision trees and weights are trained with
AdaBoost with learning rate 1, and evaluated through weighted voting. We also include a plurality
(most frequent) class baseline.

4.3 Human baseline

To collect human baselines, we use the Surge14 crowdsourcing platform. Following Wang et al. [32],
we randomly select 100 data points from each test set and use a 2-step labeling process: qualification
then annotation. The crowdsourced label is the plurality vote of 5 labelers.

We put crowd workers in a similar situation to automated systems. We link to a sheet with the same
50 labeled examples, use the same textual labels, and give the same task-specific instructions that we
are providing to practitioners to adapt for instructing language models.15

4.4 Analysis

Humans generally outperform GPT-3. Humans outperform GPT-3 on 8 out of 11 tasks, demon-
strating room for improvement for models on real-world few-shot tasks. We expect that exceeding
the crowdsourced baseline will require substantial advances in model performance, and even more so
for a future expert human baseline.

Weaknesses of GPT-3 include:

• Many classes: Humans most outperform GPT-3 on B77, which has by far the most classes
in RAFT. With 77 classes and 50 labeled examples, many classes have no corresponding

1149 rather than 50 training examples for LOO experiments
12https://raft.elicit.org/baselines
13https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
14https://www.surgehq.ai/
15For details on the human baseline gathering process, see Section A.7.
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labeled examples. Additionally, just listing out the possible classes takes up a large portion
of GPT-3’s context window.

• Long inputs: GPT-3 performs poorly on some tasks requiring reasoning over long inputs,
such as NIS and OSE. GPT-3’s context window may be a contributing factor.

Crowd-sourced baselines struggle on domain-specific tasks. Crowd-sourced humans substantially
outperform GPT-3 on only 1 of 4 tasks we identified as requiring domain expertise:

• Humans substantially outperform GPT-3 on ADE, which requires medical expertise.
• Humans outperformed GPT-3 by just .053 on ToS, which requires parsing legal language.
• GPT-3 outperforms humans on Over, which requires greater legal expertise than ToS [39],

and TAI, which requires expertise in AI safety research.

Zero-shot performance is weak. GPT-3 zero-shot does poorly on RAFT, performing worse than
the plurality class baseline. BART zero-shot exceeds the plurality class baseline but does not do so in
every dataset, and it is not competitive with few-shot language models. We encourage future research
on improving performance in the zero-shot setting, perhaps through improved prompt construction
and transfer learning.

Neural baselines besides few-shot GPT-3 perform worse than AdaBoost. Generative language
models smaller than GPT-3 comfortably outperform the plurality class baseline but remain below
AdaBoost. We use the same amount of labelled examples in the prompt as with GPT-3 despite the
context window being smaller; performance may improve with fewer (but longer) examples.

5 Discussion

5.1 Limitations

Linguistic diversity. The benchmark only includes English tasks. Dealing with multilingual corpora
is a real-world challenge for many NLP systems, especially for those deployed in countries where
there are multiple national languages. To fully capture the distribution of real-world tasks, additional
languages will be needed.

Possible biases in data collection. While we attempted to execute our dataset selection process as
described in Section 3.1.3 in an unbiased manner, the datasets we ended up selecting are part of a
subjective human process that may be subject to biases. For example, the organizations we work with
are disproportionately in technology and policy.

5.2 Impact

Offensive content. By including a hate-speech detection dataset, we include offensive content and
may harm readers of the dataset. We believe the advantages from studying hate-speech detection are
likely greater than the disadvantages of publicizing hate-speech datasets.

Prohibitive costs. The models best equipped to perform well on RAFT will often be the massive
transformer models trained by private corporations. In advancing this benchmark as a means of
evaluating models, we risk further widening the gap between what a dedicated individual or team can
do, and what can only be done by industry research labs with sufficient funding.

5.3 Future Work

Stronger human baselines. Human baselines are intended to tell us how well the dataset would be
labeled in the absence of automated systems. For many RAFT datasets, this process would involve a
stronger baseline than is easily available via a crowd-worker platform: for example, the Over dataset
would be labeled by someone with law expertise. In addition to ML submissions, we welcome efforts
to collect stronger human baselines for RAFT.

Additional automatic baselines. We expect that systems that use prompt-based fine-tuning rather
than in-context learning may provide an even stronger automatic baseline. We further expect that
models that leverage the open-domain information retrieval option can surpass models that don’t.
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Application-specific metrics. Different applications care about different metrics; e.g., in some
applications it is more important to minimize false positives, whereas in others the focus is on false
negatives. An ideal measure of real-world value would take that into account.

Learning from natural language In this work, we focused on instructions as a supplement to labeled
examples. Similarly to Mishra et al. [21], we found that including task-specific instructions improved
performance. Like humans, NLP systems could also learn from other types of natural language.
For example, could including explanations with each labeled example be used to further improve
few-shot performance?

6 Conclusion

RAFT is a benchmark that tests language models across multiple domains on economically valuable
classification tasks in the true few-shot setting. To our knowledge, this is the first multi-task benchmark
designed to closely mirror how models are applied in both the task distribution and the evaluation
setup. By complementing existing synthetic benchmarks designed to highlight where models fall
short, it helps measure the gap between research and practice, incentivizes work that is valuable for
deployed systems, and provides a template for future benchmarks that mirror deployment.
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