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Abstract

The effectiveness of Multimodal Large Lan-001
guage Models (MLLMs) demonstrates a pro-002
found capability in multimodal understanding.003
However, the simultaneous generation of im-004
ages with coherent texts is still underdeveloped.005
Addressing this, we introduce a novel inter-006
leaved vision-and-language generation method,007
centered around the concept of “generative008
vokens". These vokens serve as pivotal ele-009
ments contributing to coherent image-text out-010
puts. Our method is marked by a unique two-011
stage training strategy for description-free mul-012
timodal generation, which does not necessitate013
extensive descriptions of images. We integrate014
classifier-free guidance to enhance the align-015
ment of generated images and texts, ensuring016
more seamless and contextually relevant mul-017
timodal interactions. Our model, ViLGen, ex-018
hibits substantial improvement over the base-019
line models on multimodal generation datasets,020
including MMDialog and VIST. The human021
evaluation shows ViLGen is better than the022
baseline model on more than 56% cases for023
multimodal generation, highlighting its efficacy024
across diverse benchmarks.025

1 Introduction026

The development of large-scale vision-and-027

language models is significantly impacting a wide028

range of fields like automated dialogue systems and029

digital content creation. With the surge in research030

and development in this domain, the current state-031

of-the-art Large Language Models (LLMs) (Ope-032

nAI, 2023; Chiang et al., 2023; Ouyang et al., 2022)033

and vision-and-language models such as (Wu et al.,034

2023a; Li et al., 2023c; Tsimpoukelli et al., 2021;035

Alayrac et al., 2022) fall short in generating coher-036

ent multimodal outputs. This limitation becomes037

particularly evident in tasks that demand an inte-038

grated handling of vision and language, essential039

for the next generation Large Language Models040

(LLMs).041

My sister arrived
early to help me
with the family

bar bq.

Every one else
arrived soon

after.

What should 
happen then?

Everyone was
hungry so we got

a lot of food.

We didn't realize
that there was

more to be done
and everyone
had their roles.

We were glad
when it was over
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little bit.

ViLGen
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Figure 1: ViLGen is a unified model for interleaved
vision-and-language comprehension and generation. Be-
sides the original multimodal comprehension and text
generation abilities, ViLGen can provide appropriate,
coherent multimodal outputs.

Our work, as illustrated in Fig. 1, seeks to ad- 042

dress these shortcomings by enhancing the integra- 043

tion of text and image generation in LLMs. The 044

challenges in developing a multimodal LLM capa- 045

ble of interleaved vision and language generation 046

are manifold. First, LLMs typically lack mecha- 047

nisms to directly produce images, prompting us to 048

introduce “generative vokens” that bridge the gap 049

between textual and visual feature spaces. Second, 050

the constraint of data scarcity, especially in vision- 051

and-language tasks (Sharma et al., 2018) lacking 052

extensive detailed descriptions of images (Huang 053

et al., 2016), is countered by our unique description- 054

free training approach. Third, maintaining both 055

image-text and image-image consistency poses a 056

significant challenge, which we address through 057

dual-loss strategies. Finally, as we push forward 058

the boundaries with LLMs, the large memory re- 059

quirements urge us to devise more efficient end- 060

to-end strategies and create an efficient training 061

pipeline accessible for the community, especially 062

in downstream tasks. 063

Specifically, to overcome these challenges, we 064

present ViLGen, a novel approach for interleaved 065

vision-and-language generation. By combing the 066

Stable Diffusion with LLMs through special visual 067
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tokens (Tan and Bansal, 2020) – “generative vo-068

kens", we develop a new approach for multimodal069

generation. Our two-stage training methodology070

emphasizes a description-free foundational phase,071

enabling effective model training even with limited072

caption-grounded images. This strategy, distinct073

from existing works, pivots on generic stages free074

from image annotations. To ensure that the gen-075

erated text and images are in harmony, our dual-076

loss strategy comes into play, further enhanced077

by our innovative generative voken approach and078

classifier-free guidance. Our parameter-efficient079

fine-tuning strategy optimizes training efficiency080

and addresses memory constraints.081

As shown in Fig. 2, leveraging ViT (Vision082

Transformer) and Qformer (Li et al., 2023c), along-083

side Large Language Models, we adapt multimodal084

inputs into generative vokens, seamlessly com-085

bined with the high-resolution Stable Diffusion 2.1086

model (Rombach et al., 2022b) for context-aware087

image generation. Incorporating images as auxil-088

iary input with instruction tuning approaches and089

pioneering both the text and image generation loss,090

we amplify the synergy between text and visuals.091

We experiment on the CC3M (Sharma et al., 2018),092

VIST (Huang et al., 2016), and MMDialog (Feng093

et al., 2022) datasets. Notably, ViLGen shows su-094

perior performance across the two multimodal gen-095

eration datasets.096

In summary, our contributions are primarily097

threefold:098

• We introduce a novel framework that lever-099

ages “generative vokens” to unify LLMs100

with Stable Diffusion, facilitating interleaved101

vision-and-language generation without rely-102

ing on detailed image descriptions. We bridge103

the modality gap and improve the generation104

quality by using the loss of the latent diffusion105

model, the text generation loss, and the cap-106

tion alignment loss together during training.107

• We propose a new two-stage training strat-108

egy for description-free multimodal genera-109

tion. The first stage focuses on extracting110

high-quality text-aligned visual features from111

large text-image pairs, while the second stage112

ensures optimal coordination between visual113

and textual prompts during generation. The114

inclusion of classifier-free guidance during115

training enhances the overall generation qual-116

ity.117

• ViLGen achieves significant improvements 118

over baseline methods on interleaved vision- 119

and-language datasets, including VIST and 120

MMDialog, and comparable results to the 121

state-of-the-art on the single text-image pair 122

dataset, CC3M. The human evaluation fur- 123

ther shows that, compared with the two-stage 124

baseline, ViLGen can provide better genera- 125

tion in perspectives of appropriate texts (55%), 126

high-quality images (53%), and coherent mul- 127

timodal outputs (56%). 128

2 Related Work 129

Text-to-Image Generation To transform textual 130

descriptions into their corresponding visual repre- 131

sentations, text-to-image models (Reed et al., 2016; 132

Dhariwal and Nichol, 2021; Saharia et al., 2022; 133

Rombach et al., 2022b,a; Gu et al., 2023; Nichol 134

et al., 2021; Ramesh et al., 2021; Yu et al., 2022; 135

Chang et al., 2023) design algorithms to bridge the 136

gap between textual information and visual content. 137

A notable recent contribution is Stable Diffusion 138

V2 (Rombach et al., 2022b), which employs a dif- 139

fusion process to generate conditional image fea- 140

tures and subsequently reconstructs images from 141

these features. Our research aims to leverage this 142

pretrained model, enhancing its capabilities to ac- 143

commodate both multimodal input and output. 144

Multimodal Generation with Large Language 145

Models To augment the LLM’s capabilities in 146

seamlessly integrating vision and language genera- 147

tion, recent studies have introduced a variety of in- 148

novative methods (Ge et al., 2023; Sun et al., 2021; 149

Koh et al., 2023; Sun et al., 2023b; Yu et al., 2023; 150

Aiello et al., 2023; Wu et al., 2023c). For instance, 151

CM3Leon (Yu et al., 2023) presents a retrieval- 152

augmented, decoder-only architecture designed for 153

both text-to-image and image-to-text applications. 154

Similarly, Emu (Sun et al., 2023b) employs the 155

pretrained EVA-CLIP (Sun et al., 2023a) model 156

to convert images into one-dimensional features 157

and fine-tunes the LLAMA (Touvron et al., 2023) 158

model to generate cohesive text and image features 159

through autoregressive techniques. On the other 160

hand, NextGPT (Wu et al., 2023c), GILL (Koh 161

et al., 2023) and SEED (Ge et al., 2023) explore 162

the concept of mapping vokens into the text feature 163

space of a pretrained Stable Diffusion model; GILL 164

and NextGPT employ an encoder-decoder frame- 165

work, while SEED utilizes a trainable Q-Former 166

structure. In contrast to these approaches, our 167
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model takes a more direct route by aligning vo-168

ken features with visual information. Additionally,169

we introduce several training strategies to enhance170

image quality and contextual coherence.171

3 Method172

In order to endow Large Language Models with173

multimodal generation capabilities, we introduce174

a new framework that integrates pretrained multi-175

modal Large Language Models and text-to-image176

generation models. Central to our approach is the177

introduction of “generative vokens”, special visual178

tokens that effectively bridge the textual and visual179

domains during the training process. Additionally,180

we implement a two-stage training method com-181

bined with a classifier-free guidance strategy to182

enhance the quality and coherence of generated183

outputs. Fig. 2 provides an overview of our model184

structure. ViLGen primarily consists of two mod-185

ules: the Integrated Vision-Language Encoding186

Module, utilizing the pretrained multimodal large187

language model (MiniGPT-4) for handling mul-188

timodal inputs, and the Multimodal Output Gen-189

eration module, employing Stable Diffusion for190

generating visual outputs.191

3.1 Multimodal Understanding Module192

Recent advancements in multimodal Large Lan-193

guage Models, such as MiniGPT-4 (Zhu et al.,194

2023), have primarily concentrated on multimodal195

comprehension, enabling the processing of im-196

ages as sequential input. The Integrated Vision-197

Language Encoding Module is designed to extend198

the capabilities of LLMs from mere comprehen-199

sion to active generation in multimodal contexts.200

Generative vokens play a crucial role in this mod-201

ule, enabling the translation of raw visual inputs202

into a format that LLMs can process and utilize for203

subsequent generation tasks.204

Multimodal Encoding Each text token is embed-205

ded into a vector etext ∈ Rd, while the pretrained206

visual encoder transforms each input image into207

the feature eimg ∈ R32×d. These embeddings are208

concatenated to create the input prompt features.209

Generative Vokens Since the original LLM’s210

V vocabulary only includes the textual tokens,211

we need to construct a bridge between the212

LLM and the generative model. Therefore,213

we introduce a set of special tokens Vimg =214

{[IMG1], [IMG2], . . . , [IMGn]} (by default n = 8)215

as generative vokens into the LLM’s vocabulary216

V . The LLM’s output hidden state for these vo- 217

kens is harnessed for subsequent image generation, 218

and the positions of these vokens can represent the 219

insertion of the interleaved images. With all pre- 220

trained weights θpretrained in MiniGPT-4 fixed, the 221

trainable parameters include extra input embedding 222

θvoken_input and output embedding θvoken_output. 223

Parameter-Efficient Fine-Tuning (PEFT) 224

Parameter-efficient fine-tuning (PEFT) (Houlsby 225

et al., 2019; Hu et al., 2021; Li and Liang, 2021) 226

is critical in training Large Language Models 227

(LLMs), employed to adapt LLMs to downstream 228

tasks without the need for extensive retraining. 229

In PEFT, rather than updating all the parameters 230

of a model, only a small subset of parameters is 231

trained. This subset typically includes task-specific 232

components or lightweight layers added to the 233

original model architecture (Zhang et al., 2021; 234

Houlsby et al., 2019; Hu et al., 2021; Dettmers 235

et al., 2023). We apply PEFT to the MiniGPT- 236

4 (Zhu et al., 2023) encoder, enhancing its ability 237

to process and generate multimodal content based 238

on given instructions or prompts. More specifically, 239

this involves the use of prefix tuning (Li and 240

Liang, 2021) and LoRA(Hu et al., 2021) over 241

the entire language encoder – Vicuna (Chiang 242

et al., 2023) used in MiniGPT-4. Additionally, we 243

implement learnable queries at the input of the 244

transformer decoder, a conventional approach in 245

sequence-to-sequence transformer architectures, to 246

further improve the model’s multimodal generation 247

capabilities. We also adopted learnable queries 248

at the input of the transformer decoder as a 249

conventional setting for sequence-to-sequence 250

transformer architectures (Vaswani et al., 2017a). 251

Learnable queries in the decoder allow the model 252

to have dynamic, adaptable representations for 253

initiating the generation process. This is partic- 254

ularly useful when the model needs to generate 255

outputs based on a mix of visual and textual inputs. 256

Combined with the instruction tuning (Ouyang 257

et al., 2022), it notably amplifies multimodal 258

generation performance across various datasets. 259

3.2 Mutimodal Generation Module 260

To accurately align the generative vokens with the 261

text-to-image generation models, we formulate a 262

compact mapping module for dimension matching 263

and incorporate several supervised losses, includ- 264

ing voken positioning loss and voken alignment 265

loss. The voken positioning loss assists the model 266

in learning the correct positioning of tokens, while 267
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Figure 2: The overview structure of ViLGen pipeline. We leverage the pretrained multimodal large language model
(MiniGPT-4) and text-to-image generation model (Stable Diffusion 2.1) to create a unified multimodal generation
pipeline. The input image encoder includes a ViT, Qformer, and linear layer, pretrained by MiniGPT-4. The orange
blocks include learnable parameters, while the blue blocks are fixed during training. More details can be found in
Section 3.

the voken alignment loss directly aligns the vokens268

with the appropriate conditional generation features269

of the diffusion model. Since the gradients of gen-270

erative vokens’ features can be directly calculated271

from images, shown on the right side of Fig. 2, our272

method does not need comprehensive descriptions273

of images, leading to description-free learning.274

Voken Positioning We first jointly generate both275

text and vokens in the text space by following276

next-word prediction in autoregressive language277

model (Vaswani et al., 2017b). During the train-278

ing, we append the vokens Vimg to the positions279

of ground truth images and train the model to280

predict vokens within text generation. Specif-281

ically, the generated tokens are represented as282

W = {w1, w2, . . . , wm}, where wi ∈ V ∪ Vimg,283

and the causal language modeling loss is defined284

as:285

Ltext : = −
m∑
i=1

log p(wi|etext, eimg, w1, . . . , wi−1;286

θpretrained, θvoken_input, θvoken_output), (1)287

where wi ∈ V ∪ Vimg288

Voken Alignment for Image Generation Next,289

we align the output hidden state hvoken, shown in290

Fig. 2, with the conditional feature space of the291

text-to-image generation model. To map the voken292

feature hvoken to a feasible image generation condi-293

tional feature etext_encoder ∈ RL×d̂ (where L is the294

maximum input length of text-to-image generation295

text encoder, and d̂ is the dimension of encoder296

output feature in text-to-image generation model).297

We construct a feature mapper module, including a298

two-layer MLP model θMLP, a four-layer encoder-299

decoder transformer model θenc-dec, and a learnable 300

decoder feature sequence q. The mapping feature 301

ĥvoken is then given by: 302

ĥvoken := θenc-dec(θMLP(hvoken), q) ∈ RL×d̂ (2) 303

To generate appropriate images, the mapping 304

feature ĥvoken is used as a conditional input in the 305

denoising process. Intuitively, ĥvoken should rep- 306

resent the corresponding conditional features that 307

conduct the diffusion model to generate the ground 308

truth image. We employ the latent diffusion model 309

(LDM) loss as voken alignment loss for training 310

the image generation module. During the training, 311

the ground truth image is first converted to latent 312

feature z0 through the pretrained VAE (Variational 313

Autoencoder) (Kingma and Welling, 2013). Then, 314

we obtain the noisy latent feature zt by adding 315

noise ϵ to z0. A pretrained U-Net model ϵθ is used 316

to calculate the conditional LDM loss as: 317

LLDM := Eϵ∼N (0,1),t

[∥∥∥ϵ− ϵθ

(
zt, t, ĥvoken

)∥∥∥2
2

]
(3) 318

To summarize, the voken positioning loss en- 319

ables the model to learn the accurate placement 320

of tokens. Without this component, the model 321

lacks the essential capability to predict when vo- 322

kens should be generated during inference. Ad- 323

ditionally, the voken alignment loss ensures the 324

direct correspondence between vokens and the ap- 325

propriate conditional generation characteristics of 326

the diffusion model. In the absence of this loss, 327

the model is unable to learn semantic vokens from 328

images directly. This comprehensive approach en- 329

sures a coherent understanding and generation of 330
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both textual and visual elements, leveraging the ca-331

pabilities of pretrained models, specialized tokens,332

and innovative training techniques.333

3.3 Training Strategy334

Given the non-negligible domain shift between text335

and image domains, we observe that direct training336

on a limited interleaved text-and-image dataset can337

result in misaligning generated texts and images338

and diminished image quality. Consequently, we339

adopt a two-stage training strategy: an initial pre-340

training stage focusing on coarse feature alignment341

for unimodal generation, followed by a fine-tuning342

stage dedicated to intricate feature learning for mul-343

timodal generation. Furthermore, to amplify the344

effectiveness of the generative tokens throughout345

the diffusion process, we incorporate the idea of346

classifier-free guidance (Ho and Salimans, 2022)347

technique through the whole training process.348

Two-stage Training Strategy Recognizing the349

non-trivial domain shift between pure-text genera-350

tion and text-image generation, we propose a two-351

stage training strategy: Pretraining Stage and Fine-352

tuning Stage. Initially, we align the voken feature353

with image generation features in single text-image354

pair datasets, such as CC3M, where each data sam-355

ple only contains one text and one image, and the356

text is usually the caption of the image. During this357

stage, we utilize captions as LLM input, enabling358

LLM to generate vokens. Since these datasets in-359

clude the image descriptive information, we also360

introduce an auxiliary loss to aid voken alignment,361

minimizing the distance between the generative362

feature ĥvoken and the caption feature from the text363

encoder τθ in the text-to-image generation model:364

LCAP := MSE(ĥvoken, τθ(c)) (4)365

The pretraining stage loss is expressed as366

LPretrain = λ1 ∗ Ltext + λ2 ∗ LLDM + λ3 ∗ LCAP,367

with selected values λ1 = 0.01, λ2 = 1, λ3 = 0.1368

to rescale the loss into a similar numerical range.369

After the pretraining stage, the model is capa-370

ble of generating images for single text descrip-371

tions but struggles with interleaved vision-and-372

language generation, which includes multiple text-373

image pairs and requires complicated reasoning374

for both text and image generation. To address375

this, in the fine-tuning stage, we further fine-tune376

our model with PEFT parameters by interleaved377

vision-and-language datasets, such as VIST, where378

the data sample has several steps with text-image379

and texts are sequentially relevant. During this 380

stage, we construct three types of tasks from the 381

dataset, encompassing (1) text-only generation: 382

given the next image, generating the related text; 383

(2) image-only generation: given the next text, 384

generating the related image, and (3) multimodal 385

generation: generating text-image pair by given 386

context. The fine-tuning stage loss is given by 387

LFine-tune = λ1 ∗ Ltext + λ2 ∗ LLDM. More imple- 388

mentation details can be found in Appendix A. 389

Classifier-Free Guidance (CFG) To enhance the 390

coherence between the generated text and images, 391

we first leverage the idea of Classifier-free Guid- 392

ance for multimodal generation. Classifier-free 393

guidance is introduced in the text-to-image diffu- 394

sion process. This method observes that the gener- 395

ation model Pθ can achieve improved conditional 396

results by training on both conditional and uncon- 397

ditional generation with conditioning dropout. In 398

our context, we want the model to focus directly 399

on the output features hvoken from LLM. Instead of 400

using original stable diffusion unconditional distri- 401

butions (dropping ĥvoken), the whole feature map- 402

per also needs to be included during the uncon- 403

ditional process. Therefore, our objective is to 404

accentuate the trainable condition hvoken and the 405

generation model is fixed. During training, we re- 406

place hvoken with zero features h0 ∈ 0n×d with a 407

10% probability, obtaining the unconditional fea- 408

ture ĥ0 = θenc-dec(θMLP(h0), q). During inference, 409

ĥ0 serves as negative prompting, and the refined 410

denoising process is: 411

log P̂θ

(
ϵt | zt+1, ĥvoken, ĥ0

)
= log Pθ

(
ϵt | zt+1, ĥ0

)
+

γ
(
log Pθ

(
ϵt | zt+1, ĥvoken

)
− log Pθ

(
ϵt | zt+1, ĥ0

))
(5) 412

4 Experiments 413

To assess the efficacy of our model, we conducted 414

a series of evaluations across multiple benchmarks. 415

These experiments aim to address several key ques- 416

tions: (1) Can our model generate plausible im- 417

ages and reasonable texts? (2) How does our 418

model compare with state-of-the-art models in both 419

single-turn and multi-turn interleaved vision-and- 420

language generation tasks? (3) What impact does 421

the design of each module have on overall per- 422

formance? Below we will discuss the experimen- 423

tal setup and present a comprehensive analysis of 424

our model’s performance. We use three datasets: 425

CC3M (Sharma et al., 2018), VIST (Huang et al., 426
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Table 1: Image generation on VIST. Given the histor-
ical context, models need to generate images for each
step. FID scores evaluate the visual diversities between
generated and ground truth images within each story
sequence.

Model CLIP-I (↑) FID (↓)

SD 2.1 (Rombach et al., 2022b) 0.59 393.49
Fine-tuned SD 2.1 0.61 390.25
Two-stage Baseline 0.57 403.06
GILL (Koh et al., 2023) 0.60 381.88
ViLGen (Prefix Tuning) 0.65 381.55
ViLGen (LoRA) 0.66 366.62

Table 2: Narration Generation on VIST. We added
LoRA fine-tuning for GILL, MiniGPT-4, and ViLGen
with the same LoRA configuration. The results show
that adding generative vokens does not hurt the perfor-
mance on the multimodal comprehension tasks.

Model S-BERT (↑) Rouge-L (↑) Meteor (↑)

GILL (Koh et al., 2023) 0.3864 0.1784 0.1951
MiniGPT-4 (Zhu et al., 2023) 0.6273 0.3401 0.3296
ViLGen 0.6315 0.3373 0.3263

2016), and MMDialog (Feng et al., 2022). More427

details about datasets and data format can be found428

in Appendix C.429

4.1 Experimental Setup430

4.1.1 Baselines431

Baselines For a comprehensive evaluation of432

our performance in multimodal generation, we433

conducted comparative analyses with several434

prominent baseline models: the Fine-tuned Uni-435

modal Generation Models, Two-stage Baseline,436

GILL 1 (Koh et al., 2023), and Divter (Sun et al.,437

2021). The details of these can be found in Sec-438

tion C.3 in the Appendix.439

4.1.2 Metrics440

To comprehensively assess the model performance441

across image, text, and multimodal dimensions, we442

employ a diverse set of metrics. For evaluating the443

quality and diversity of generated images, we uti-444

lize the Inception Score (IS) (Salimans et al., 2016),445

and Fréchet Inception Distance (FID) (Heusel et al.,446

2017). Textual performance is gauged through met-447

rics such as BLEU (Papineni et al., 2002), Rouge-448

L (Lin, 2004), METEOR (Banerjee and Lavie,449

2005), and Sentence-BERT (S-BERT) (Reimers450

and Gurevych, 2019) scores.451

1Given the variations in the valid data within the CC3M
dataset, we made adjustments to ensure fair comparisons.
Specifically, we retrained it on our specific CC3M data, fol-
lowing the guidelines in their official implementation (https:
//github.com/kohjingyu/gill).

Model S-BERT (↑) Rouge-L (↑) Meteor (↑)

ViLGen (w/o vokens) 0.6273 0.3401 0.3296
ViLGen (w/ vokens) 0.6315 0.3373 0.3263

Table 3: Narration Generation on VIST. We added
LoRA fine-tuning for both ViLGen (w/o vokens) and
ViLGen. The results show that adding generative vo-
kens does not hurt the performance on the multimodal
comprehension tasks.

Model ViLGen Two-stage Baseline Tie

Language Continuity (%) 55.22 34.89 9.89
Image Quality (%) 52.43 37.79 9.78
Multimodal Coherence (%) 56.90 28.88 14.22

Table 4: VIST Human Evaluation on 5,000 samples
for multimodal generation from Language Continuity,
Image Quality, and Multimodal Coherence aspects. The
results indicate, in more than 70% cases, the ViLGen is
better or on par with the two-stage baseline.

From the multimodal perspective, we leverage 452

CLIP-based metrics (Rombach et al., 2022b) to as- 453

sess the similarities between generated content and 454

ground truth. CLIP-I evaluates the similarity be- 455

tween generated and ground-truth image features. 456

To address potential misalignments in the multi- 457

modal generation, such as when the ground truth is 458

text-only, but the output is multimodal, we utilize 459

MM-Relevance (Feng et al., 2022). This metric 460

calculates the F1 score based on CLIP similarities, 461

providing a nuanced evaluation of multimodal co- 462

herence. 463

We also incorporate human evaluation to assess 464

the model’s performance. We examine the model’s 465

effectiveness from three perspectives: (1) Lan- 466

guage Continuity: assessing if the produced text 467

aligns seamlessly with the provided context; (2) 468

Image Quality: evaluating the clarity and relevance 469

of the generated image; and (3) Multimodal Co- 470

herence: determining if the combined text-image 471

output is consistent with the initial context. 472

4.2 Main Results 473

In this subsection, we present the performance of 474

different models on the VIST (Huang et al., 2016) 475

and MMDialg (Feng et al., 2022) datasets. Our 476

evaluations span all vision, language, and multi- 477

modality domains to showcase the versatility and 478

robustness of the proposed models. 479

Unimodal Generation on VIST To evaluate the 480

model performance on image generation and text 481

generation, we systematically provide models with 482

prior history context and subsequently assess the 483

6
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we played
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They had an area for
cryptozoology.

They also have a gift
shop.

I bought a book
about the history of

the museum

GILL

A Maya example,
couple coming
soon to 8th-
century king and
wife, lady from
Tikal, dancing.

How gracefull
coming? From a
loan?

GILL

Yes, from a loan.

Figure 3: Qualitative examples from ViLGen and base-
lines on the VIST and MMDialog datasets. The or-
ange blocks indicate the input prompts, while the green
blocks include model outputs. The comparisons show
that ViLGen can produce coherent and high-quality mul-
timodal output. We would like to emphasize that ViL-
Gen does not use any caption data during fine-tuning on
VIST and MMDialog, which obeys to our description-
free settings. More qualitative examples can be found
in the Appendix E.

generated images and narrations at each following484

step. Tables 1 and 3 outline the results of these485

experiments on the VIST validation set, showing486

the performance in both image and language met-487

rics, respectively. The findings demonstrate that488

ViLGen can generate coherent, high-quality images489

utilizing long-horizontal multimodal input prompts490

across all data, without compromising the origi-491

nal model’s ability for multimodal comprehension,492

indicating the efficacy of our model in diverse set-493

tings.494

Multimodal Generation on VIST To assess the495

quality of multimodal generation, we test both our496

model and the baselines on the VIST validation497

set by human evaluation. Given a preceding multi-498

modal sequence, models are tasked with producing499

the subsequent scenario for each task. We select500

a random sample of 5,000 sequences, with each501

Model IS (↑) BLEU-1 (↑) BLEU-2 (↑) Rouge-L (↑) MM-Relevance (↑)

Divter (Sun et al., 2021) 20.53 0.0944 0.0745 0.1119 0.62
GILL (Koh et al., 2023) 23.78 0.2912 0.1945 0.1207 0.64
ViLGen 20.23 0.3369 0.2323 0.1176 0.67

Table 5: Multimodal generation results on MMDialog
test set. In order to compare with their baseline, we use
the same metrics reported in MMDialog (Feng et al.,
2022).

requiring evaluation by two workers. These eval- 502

uators are tasked with determining the superior 503

multimodal output based on three criteria: Lan- 504

guage Continuity, Image Quality, and Multimodal 505

Coherence. This assessment is facilitated using 506

Amazon Mechanical Turk (Crowston, 2012), with 507

a representative example (Fig. 4) provided in the 508

Appendix. As depicted in Table 4, our model, ViL- 509

Gen, is found to generate more fitting text narra- 510

tions in around 55% of instances, deliver superior 511

image quality in around 53% of cases, and produce 512

more coherent multimodal outputs in around 56% 513

of the scenarios. This data distinctly showcases 514

its enhanced multimodal generation capabilities 515

compared to the two-stage baseline, which must 516

generate intermediate image captions first. 517

Multimodal Dialog Generation on MMDia- 518

log We conduct an evaluation of our method on 519

the MMDialog dataset to determine the effective- 520

ness of generating precise and appropriate mul- 521

timodal information in multi-turn conversational 522

scenarios. The model is required to generate either 523

unimodal or multimodal responses based on the pre- 524

vious turns during the conversations. Our results, as 525

presented in Table 5, demonstrate that ViLGen out- 526

performs the baseline model Divter in terms of gen- 527

erating more accurate textual responses. While the 528

image qualities of the generated responses are sim- 529

ilar, ViLGen excels in MM-Relevance compared 530

to the baselines. This indicates that our model can 531

better learn how to position image generation and 532

produce highly coherent multimodal responses ap- 533

propriately. 534

4.3 Ablation Studies 535

To further evaluate the effectiveness of our design, 536

we conducted several ablation studies, and more 537

ablation studies can be found in Appendix D. 538

Evaluation of Classifier-Free Guidance 539

(CFG) To assess the effectiveness of the CFG 540

strategy, we trained our model without CFG 541

dropoff. During inference, the model utilized the 542

original CFG denoising process, which utilized the 543
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Model CLIP-I (↑) CLIP-T (↑) IS (↑) FID (↓)

ViLGen 0.61 0.22 28.09 31.47
ViLGen (w/o CFG) 0.60 0.22 23.41 33.73
ViLGen (w/o LCAP ) 0.54 0.16 21.27 40.24
ViLGen (w/o LLDM ) 0.58 0.20 24.79 34.65

Table 6: Evaluation of different method designs for
image generation qualities on the CC3M validation set.

empty caption feature from Stable Diffusion’s text544

encoder as negative prompt features. The results545

in Table 6 demonstrate that all metrics are worse546

without CFG, indicating that the CFG training547

strategy improves the image generation quality.548

Evaluation of Different Loss Guidance As de-549

scribed in Sec. 3.3, we introduced an auxiliary loss,550

denoted as LCAP for CC3M training. To assess551

the impact of this loss and determine if the single552

caption loss alone can generate high-quality im-553

ages like GILL, we trained our model without the554

caption loss LCAP (alignment between the mapped555

generative voken features and the caption features556

from stable diffusion text encoder) and the condi-557

tional latent diffusion loss LLDM (alignment be-558

tween the mapped generative voken features and559

conditional features for latent diffusion process of560

ground truth images) separately. The results, as561

shown in Table 6, indicate that the caption loss sig-562

nificantly aids in generating better images, and the563

voken alignment loss further enhances coherence564

and image quality performance.565

Influence of Input Types for Image Genera-566

tion To assess the impact of various types of input567

data for image generation, models are tasked with568

generating the final-step images based on specific569

prompts and comparing them with ground truth im-570

ages by CLIP-I metric. All models are fine-tuned571

on data with full multimodal context and tested on572

various input types. As indicated in Table 7, the573

ViLGen model exhibits exceptional proficiency in574

producing semantically precise images compared575

to other models. Furthermore, we observed in-576

creased CLIP similarities when more information577

was provided in the input, signifying the models’578

enhanced ability to process diverse, long-horizon579

multimodal inputs.580

Text-to-Image Generation Qualities on581

CC3M Instead of multimodal input, we also582

test single text-to-image generation qualities on583

the CC3M validation set, as displayed in Table 8.584

The results indicate that although our model can585

have better generation on multi-turn multimodal586

Model No Context Text Context Image Context Image-Text Context

SD 2 (Rombach et al., 2022b) (Zero-shot) 0.57 0.59 - -
GILL (Koh et al., 2023) (Zero-shot) 0.54 0.54 0.55 0.54
ViLGen (Zero-shot) 0.54 0.57 0.57 0.57
Fine-tuned SD 2 0.59 0.61 - -
Two-stage Baseline 0.54 0.56 0.57 0.58
ViLGen (Prefix Tuning) 0.60 0.63 0.68 0.70
ViLGen (LoRA) 0.61 0.64 0.69 0.70

Table 7: Influence of prompts for image generation on
CLIP-I metrics on VIST. We establish four distinct con-
ditions for the final-step image generation: ‘No Context’
(solely the last step’s narration), ‘Text Context’ (inclu-
sive of historical textual narrations), ‘Image Context’
(inclusive of historical images), and ‘Image-Text Con-
text’ (inclusive of both historical images and narrations).
From the results, ViLGen can generate more coherent
images.

CC3M VIST

Model CLIP-I (↑) FID (↓) CLIP-I (↑) FID (↓)

Stable Diffusion 2.1 (Rombach et al., 2022b) 0.64 26.39 0.59 393.49
GILL (Koh et al., 2023) 0.57 36.85 0.61 376.17
ViLGen 0.61 31.47 0.66 366.62

Table 8: Generation Qualities on CC3M and VIST. We
find that ViLGen is better at extracting features from
long-horizontal multimodal information than single text
input.

scenarios, Stable Diffusion 2 achieves the best 587

outcomes across all metrics for pure text-to-image 588

generation. Since our model attempts to align with 589

the pretrained text encoder of Stable Diffusion 2 590

in this stage, there is a slight gap in performance 591

due to the limitation of data amount. Compared 592

with the observations on the VIST dataset, we can 593

conclude that ViLGen is better at extracting fea- 594

tures from long-horizontal multimodal information 595

instead of single text input. This indicates potential 596

future directions on efficiently aligning LLMs with 597

generative models. On the other hand, our model 598

outperforms another state-of-the-art multimodal 599

generation model, GILL, on all metrics, further 600

validating the effectiveness of our design. 601

5 Conclusion 602

We introduce ViLGen, designed to augment the 603

capabilities of LLMs for multimodal generation by 604

aligning the LLM with a pretrained text-to-image 605

generation model. Our approach demonstrates sub- 606

stantial improvements. The limitation of ViLGen is 607

that we still find the object texture is hard to main- 608

tain in the new generation. Through this work, we 609

aspire to set a new benchmark for existing and fu- 610

ture multimodal generative models, opening doors 611

to applications previously deemed challenging due 612

to the disjointed nature of existing image and text 613

synthesis paradigms. 614
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A Implementation Details 861

In the pretraining stage, we introduce additional vo- 862

ken embeddings at both the input and output layers 863

of the Vicuna-7B model, while keeping the embed- 864

dings of other tokens fixed. These new embeddings 865

– denoted as θvoken_input and θvoken_output – along 866

with the feature mapper module (θMLP, θenc_dec, q) 867

are jointly trained on the CC3M dataset, which 868

consists of single text-image pairs. Training is 869

conducted using the AdamW optimizer over two 870

epochs, with a batch size of 48, amounting to over 871

110,000 steps, and a learning rate of 2× 10−4. 872

In the subsequent fine-tuning stage, we incor- 873

porate LoRA modules – denoted as θLoRA – into 874

Vicuna for the generation of both tokens and vo- 875

kens. We keep the MLP model θMLP and decoder 876

query q fixed. The model is then fine-tuned on inter- 877

leaved vision-and-language datasets, like VIST and 878

MMDialog. The trainable parameters for this stage 879

are θ = {θvoken_input, θvoken_output, θLoRA, θenc_dec}. 880

Training is carried out using the AdamW optimizer 881

over four epochs, with a batch size of 32 and a 882

learning rate of 2 × 10−5. Trainable parameters 883

are nearly 6.6 million, and all training can be com- 884

pleted on a server equipped with 4 A6000 GPUs. 885

B Additional Related Work 886

Large Language Models As Large Language 887

Models (LLMs) become increasingly impactful and 888

accessible, a growing body of research has emerged 889

to extend these pretrained LLMs into the realm of 890

multimodal comprehension tasks (Zhu et al., 2023; 891

Li et al., 2023c; Dai et al., 2023; OpenAI, 2023; Li 892

et al., 2023a; Alayrac et al., 2022; Li et al., 2023b). 893

For example, to reproduce the impressive multi- 894

modal comprehension ability in GPT-4 (OpenAI, 895

2023), MiniGPT-4 (Zhu et al., 2023) proposes a 896

projection layer to align pretrained vision compo- 897

nent of BLIP-2 (Li et al., 2023c) with an advanced 898

open-source large language model, Vicuna (Chiang 899

et al., 2023). In our work, we utilize the MiniGPT-4 900

as the base model and extend the model’s capabili- 901

ties to multimodal generation. 902

C Experimental Settings 903

C.1 Datasets 904

CC3M (Sharma et al., 2018): Conceptual Cap- 905

tions (CC3M) dataset represents a remarkable col- 906

lection of high-quality image captions, amassing 907

approximately 3.3 million pairs of text and images 908
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from the internet. The CC3M dataset’s diverse con-909

tent, quality assurance, and support for multimodal910

learning make it a valuable asset for researchers911

and AI enthusiasts. Each dataset sample consists of912

an image accompanied by a corresponding text de-913

scription, reflecting the richness of human language914

and visual perception. However, after accounting915

for license restrictions and eliminating invalid im-916

age links, the dataset comprises approximately 2.2917

million data pairs suitable for training purposes and918

10 thousand data pairs designated for validation.919

VIST (Huang et al., 2016): Visual Storytelling920

(VIST) dataset is an innovative compilation of vi-921

sual narratives. The VIST dataset’s engaging con-922

tent, narrative structure, and emphasis on sequen-923

tial understanding position it as an essential re-924

source for researchers focusing on sequential image925

understanding. Each sequence within this dataset926

consists of five images accompanied by correspond-927

ing textual narratives, showcasing the intricate in-928

terplay between visual imagery and storytelling.929

Designed to foster creativity and challenge conven-930

tional image-captioning models, the dataset pro-931

vides a platform for training and validating algo-932

rithms capable of generating coherent and contex-933

tually relevant stories. After eliminating the invalid934

image links, we got over 65 thousand unique photos935

organized into more than 34 thousand storytelling936

sequences for training and 4 thousand sequences937

with 8 thousand images for validation.938

MMDialog (Feng et al., 2022): Multi-Modal Dia-939

logue (MMDialog) dataset stands as the largest col-940

lection of multimodal conversation dialogues. The941

MMDialog dataset’s extensive scale, real human-942

human chat content, and emphasis on multimodal943

open-domain conversations position it as an un-944

paralleled asset for researchers and practitioners945

in artificial intelligence. Each dialogue within946

this dataset typically includes 2.59 images, inte-947

grated anywhere within the conversation, showcas-948

ing the complex interplay between text and visual949

elements. Designed to mirror real-world conver-950

sational dynamics, the dataset is a robust platform951

for developing, training, and validating algorithms952

capable of understanding and generating coherent953

dialogues that seamlessly blend textual and visual954

information.955

C.2 Data Format956

Pretraining Stage In the pretraining stage, we aim957

to synchronize the generative voken with the text-958

to-image model’s conditional feature, focusing on 959

single-turn text-image pairs. To achieve this, we 960

utilize data from the CC3M dataset, constructing 961

training samples by appending vokens as image 962

placeholders after the captions, such as “a big black 963

dog [IMG1] . . . [IMGn].” The Language Model 964

(LLM) is then tasked with only generating these 965

placeholders for text creation, and the correspond- 966

ing output hidden features are further employed to 967

compute the conditional generation loss with the 968

ground truth image. 969

Fine-tuning Stage In this stage, we utilize the 970

VIST and MMDialog datasets, which contain multi- 971

turn multimodal data. During training, we in- 972

tegrate placeholders for input images, such as 973

’<Img><ImageHere></Img>’, into the input 974

text prompts when applicable. These prompts also 975

encompass various instructions corresponding to 976

different task types, with outputs manifesting as 977

pure-text, pure-voken, or text-voken combinations. 978

Below, we present example templates in the VIST 979

dataset to illustrate the different task types: 980

• Text Generation: Input: “<History 981

Context> What happens in the next scene 982

image: <Img><ImageHere></Img>”; 983

Output: “<Text Description>” 984

• Image Generation: Input: “<History 985

Context> Generate an image with the scene 986

description: [Text Description]”; Output: 987

“[IMG1]...[IMGn]” 988

• Text-Image Generation: Input: “<History 989

Context> What should happen then?”; Out- 990

put: “<Text Description> [IMG1]...[IMGn]” 991

By structuring the input and output in this manner, 992

we create a flexible framework that accommodates 993

various multimodal tasks, enhancing the model’s 994

ability to interpret and generate textual and visual 995

content. The history context in the VIST dataset 996

includes all previous story steps with texts and im- 997

ages. In the MMDialog dataset, due to the limita- 998

tion of computational resources, we only use up 999

to one previous turn as the history context, and all 1000

data are formatted into the dialog. 1001

C.3 Baselines 1002

Fine-tuned Unimodal Generation Models: To 1003

facilitate fair comparisons in both image and text 1004

generation, we fine-tuned two separate models, Sta- 1005

ble Diffusion 2.1 and MiniGPT-4 (Zhu et al., 2023), 1006
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Figure 4: Screenshot for human evaluation interface on the Amazon Mechanical Turk crowdsource evaluation
platform. Output 1 is generated by ViLGen, while output 2 is generated by the two-stage baseline.

utilizing the VIST dataset. Within the Stable Dif-1007

fusion 2.1 (Rombach et al., 2022b) model, the U-1008

Net parameters were fine-tuned. For MiniGPT-4’s1009

LLM part, LoRA parameters were fine-tuned.1010

Two-stage Baseline: A common approach in mul-1011

timodal generation involves first employing Large1012

Language Models (LLMs) to create image captions,1013

which are then fed into text-to-image models for1014

image generation (Wu et al., 2023b). We create1015

such a two-stage baseline for comparison with our1016

end-to-end method by fine-tuning MiniGPT-4 for1017

caption generation and Stable Diffusion 2.1 for text-1018

to-image generation. Given the absence of image1019

descriptions in the VIST dataset, we incorporate1020

a SOTA image captioning model, InstructBLIP-1021

13B (Dai et al., 2023), to generate synthetic cap-1022

tions for supervision. 1023

GILL: GILL is a recent innovation that allows the 1024

LLM to generate vokens using a pre-trained text- 1025

to-image generation model for single-image gen- 1026

eration, where GILL minimizes the Mean Squared 1027

Error (MSE) loss between the text-to-image text 1028

encoding feature and voken features, similar to 1029

LCAP in our approach. For fine-tuning on mul- 1030

timodal datasets, since GILL requires image cap- 1031

tions for training, we use Descriptions of Images- 1032

in-Isolation (DII) (Huang et al., 2016) in the VIST 1033

fine-tuning and generate captions for MMDialog 1034

fine-tuning. Contrarily, ViLGen does not related 1035

on all caption data during multimodal generation 1036

fine-tuning. 1037

Divter (Sun et al., 2021): Divter is a state-of- 1038

13



the-art conversational agent developed for mul-1039

timodal dialogue contexts. It introduces a cus-1040

tomized transformer structure for generating multi-1041

modal responses. Divter’s methodology includes1042

pretraining on a vast corpus of text-only dialogues1043

and text-image pairs, followed by fine-tuning on1044

a selected set of multimodal response data. The1045

MMDialog dataset regards Divter’s method as the1046

baseline.1047

D More Experiments1048

D.1 Evaluation of Guidance Scale1049

Since our model incorporates CFG, evaluating how1050

different guidance scales affect image generation is1051

crucial. Therefore, we plotted several line charts in1052

Fig 5 to depict the changes in metrics with varying1053

guidance scales. The figures reveal that the sta-1054

ble diffusion model and our model generate better1055

images as the guidance scale increases. However,1056

when the scale exceeds 10, the image semantic co-1057

herence stabilizes while the image quality declines.1058

This suggests that the guidance scale should be1059

set within a reasonable range for optimal image1060

generation.1061

D.2 Evaluation of Voken Number1062

The voken features in our model are directly uti-1063

lized as conditions in the text-to-image model, lead-1064

ing to the expectation that an increase in the number1065

of vokens would enhance the model’s representa-1066

tive capabilities. To validate this hypothesis, we1067

experimented by training the model with varying1068

numbers of vokens, ranging from 1 to 8. As illus-1069

trated in Fig 6, the model’s performance consis-1070

tently improves with adding more vokens. This1071

improvement is particularly noticeable when the1072

number of vokens is increased from 1 to 4, high-1073

lighting the significant role that vokens play in en-1074

hancing the model’s effectiveness.1075

D.3 Ablation of Model Designs1076

This section explores alternatives to the transformer1077

encoder/decoder architecture discussed in the main1078

paper. Specifically, we experimented with two ad-1079

ditional settings: Fixed Queries, and Decoder-1080

Only model where learnable queries are fed into1081

the transformer decoder. For the fixed queries de-1082

sign, we initialize queries the same as learnable1083

queries experiments in the main paper and keep1084

them fixed during training. In the decoder-only1085

approach, we utilize solely the transformer decoder1086

Model CLIP-I (↑) CLIP-T (↑) IS (↑) FID (↓)

ViLGen 0.61 0.22 28.09 31.47
ViLGen (Fixed Queries) 0.60 0.21 28.55 30.56
ViLGen (Decoder-Only) 0.58 0.20 24.74 34.88

Table 9: Evaluation of different model designs for image
generation qualities on the CC3M validation set.

and apply padding to the decoder’s output, ensuring 1087

that the token length reaches 77. This length adjust- 1088

ment allows the output to be compatible with the 1089

Stable Diffusion encoder. The results of these ex- 1090

periments are detailed in Table 9. From the results 1091

of ViLGen with fixed queries, we find there exists a 1092

slight trade-off between image-text coherence and 1093

image qualities, where fixed queries can lead to 1094

higher image metrics (IS and FID) but lower CLIP 1095

similarities. Meanwhile, ViLGen consistently out- 1096

performs the Decoder-Only results in all four evalu- 1097

ation metrics, validating the robustness and efficacy 1098

of ViLGen’s transformer encoder/decoder architec- 1099

ture design. 1100

E More Qualitative Examples 1101

In this section, we provide additional qualitative 1102

examples to further demonstrate the capabilities 1103

of ViLGen. Figures 7,8,9, and 10 showcase these 1104

examples across various datasets and settings. 1105

Figure 7 presents a comparative analysis on the 1106

VIST validation set, illustrating how ViLGen out- 1107

performs baseline models in terms of image genera- 1108

tion quality and alignment with multimodal inputs. 1109

The examples highlight the superiority of ViLGen 1110

in generating images that closely match the given 1111

text prompts. 1112

In Figure 8, we focus on the performance of ViL- 1113

Gen in free multimodal generation scenarios. The 1114

results clearly indicate an improvement over the 1115

Two-Stage baseline, emphasizing ViLGen’s abil- 1116

ity to perform consistent and creative multimodal 1117

generation. 1118

Figure 9 showcases the application of ViLGen 1119

in the context of the MMDialog test set. Here, the 1120

emphasis is on free multimodal dialog generation, 1121

with ViLGen displaying a decent performance in 1122

generating coherent and contextually relevant mul- 1123

timodal dialogues. 1124

Lastly, Figure 10 highlights ViLGen’s perfor- 1125

mance in single text-to-image generation tasks on 1126

the CC3M validation set. The examples underline 1127

the model’s proficiency in generating visually ac- 1128

curate and contextually appropriate images from 1129
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(a) FID vs CFG Scale (b) IS vs CFG Scale

(c) CLIP-T vs CFG Scale (d) CLIP-I vs CFG Scale

Figure 5: Line charts for various metrics vs Classifier-free Guidance (CFG) scale on CC3M. The results suggest that
our CFG strategy can exhibit comparable effectiveness to the CFG strategy employed in SD2, with the appropriate
CFG scale significantly enhancing both image quality and coherence.

textual descriptions, surpassing the performance of1130

baseline models.1131

Each figure includes a clear depiction of input1132

prompts (indicated in orange blocks) and the corre-1133

sponding model outputs (in green blocks), provid-1134

ing a comprehensive view of ViLGen’s capabilities1135

across different multimodal generation tasks.1136
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(a) FID vs nvoken (b) IS vs nvoken

(c) CLIP-T vs nvoken (d) CLIP-I vs nvoken

Figure 6: Line charts for various metrics vs the number of vokens on CC3M. As the number of vokens increases,
the image quality and CLIP scores improve. In this work, our default voken number is 8.
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i had a photo
session with my

favorite doll.

she is so
philosophical
sometimes.

the cat likes
her too, they

were having a
good time.

the cat really likes
her, he even gave

her a kiss !

she finished
the session
posing with
her guitar,

she's such a
good

musician.

GILL SD 2 Two-stage ViLGen GT

we didn't expect
such beauty

outdoors.

the bridge was
all i thought it

would be.

the view of the
water were
amazing.

the bridge was
breath taking.

we all agreed
the food was

fantastic.

GILL SD 2 Two-stage ViLGen GT

i took my wife out
for our anniversary

dinner.

our first course
was a light but
delicious salad.

following our
salad we had

squash bisque

for our main course
we had a beautifully

plated salmon.

to end our
wonderful

night we had a
parfait for
dessert.

GILL SD 2 Two-stage ViLGen GT

Figure 7: Comparative examples from ViLGen and baselines on the VIST validation set for image generation with
multimodal input. Orange blocks denote input prompts, while green blocks show model outputs.
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On our class trip we all
wore our school uniforms

I got to read many
different book that I

had never read before.

I really enjoyed being
on this trip

ViLGenTwo-Stage

This book was about
animals and it had lots of

pictures too.

One of my friends
read us a story from

one of the books.

GT

All of the kids were so
excited to read new

books

The first book I read
had lots of cool

pictures in it.

I really enjoyed
reading the book.

GILL

Celebrating with all of
our friends

Her best friend even
came.

Even my dad got in
on the act.

ViLGenTwo-Stage

Even the guy behind us
was great and fun to be

around.

The happy couple
enjoying their
engagement.

GT

This is the crew right
here.

Everyone was in
greate spirits

We had a great
time.

GILL

We got to the town hall
meeting early and there

were a lot of people.

Here's us watching
the introduction.

Everyone had a lot of
questions and the

meeting was very long

ViLGenTwo-Stage

We all gathered to
discuss the program

Me and tanner taking
a selfie together after

the meeting.

GT

Me bondrit during
intermission. Jacob and his son.

The meeting was very
informative and we

learned a lot.

GILL

Figure 8: More qualitative examples from ViLGen and baselines on VIST validation set for free multimodal
generation.
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What I find so funny
is everyone has a

strong opinion of me
and no one realises
I'm actually a soppy,
over dramatic bugger
that :growing_heart:

Harry Potter

I've read all the books at least 10
times each!
Harry Potter

Haha he has the full box set
and home and at his Nanna's
:) he even tries to head butt

his lamp like dobby
:face_with_tears_of_joy:

:see-no-evil_monkey:

ViLGen GT

You would get on with
my 3 year old then he

is obsessed with
Harry potter haha

So cute!! I'm just
about to get into bed

and finish off the
Goblet of Fire for the

millionth time!

Haha I know what you
mean! I'm just about to

finish the last Harry Potter
book! I'm so excited for

the next one!

GILL

It the final FlashbackFridayz of 2019
and we are looking back with a theme
of TravelFaves2019. Tag and retweet

your hosts and guest hosts; Share
yous and tag you friends.

Travelfaves2019 ours is the
gorgeous waterfall in Costa Rica

Luxurious views!  Throwback to
our trip to New Orleans last

January where we stopped by the
Tabasco Factory in Avery Island

ViLGen GT

Travelfaves2019 we have seen
quite a number of gorgeous

Africa

Our travelfaves2019
what's yours

The Greate Wall of China

GILL

Figure 9: More qualitative examples from ViLGen on MMDialog test set for free multimodal dialog generation.
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ViLGenSD 2GILL GT

womens hands
sprinkle a dough

with flour close up

ViLGenSD 2GILL GT

sunflowers have a
deep sentimental
meaning for me

ViLGenSD 2GILL GTwe all know
superman , comic
book characters ,

but history is full of
less impressive

heroes

ViLGen SD 2GILL GT

boy looking in the
encyclopedia

through a
magnifying glass

ViLGenSD 2GILL GT
happy young

businessman with a
folder running up a

drawn stairs along a
concrete wall

Figure 10: More qualitative examples from ViLGen and baselines on CC3M validation set for single text-to-image
generation.
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